SlideShare a Scribd company logo
1 of 180
Download to read offline
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 1. 
Resolve 90 N force into vector components P and Q 
where Q = (90 N)sin 40° 
= 57.851 N 
Then MB = −rA/BQ 
= −(0.225 m)(57.851 N) 
= −13.0165 N⋅m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
MB = 13.02 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 2. 
Fx = (90 N)cos 25° 
= 81.568 N 
Fy = (90 N)sin 25° 
= 38.036 N 
x = (0.225 m)cos65° 
= 0.095089 m 
y = (0.225 m)sin 65° 
= 0.20392 m 
MB = xFy − yFx 
= (0.095089 m)(38.036 N) − (0.20392 m)(81.568 N) 
= −13.0165 N⋅m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
MB = 13.02 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 3. 
Px = (3 lb)sin 30° 
= 1.5 lb 
Py = (3 lb)cos30° 
= 2.5981 lb 
MA = xB/A Py + yB/A Px 
= (3.4 in.)(2.5981 lb) + (4.8 in.)(1.5 lb) 
= 16.0335 lb⋅in. 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
MA = 16.03 lb⋅in. W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 4. 
For P to be a minimum, it must be perpendicular to the line joining points 
A and B 
with ( )2 ( )2 rAB = 3.4 in. + 4.8 in. 
= 5.8822 in. 
tan 1 y 
α = θ = −   
x 
  
−   
tan 1 4.8 in. 
=   
3.4 in. 
  
= 54.689° 
Then MA = rAB Pmin 
P M 
or min 
19.5 lb in. 
5.8822 in. 
A 
AB 
r 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
⋅ 
= = 
= 3.3151 lb 
∴Pmin = 3.32 lb 54.7° 
or Pmin = 3.32 lb 35.3° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 5. 
By definition MA = rB/A Psinθ 
where θ = φ + (90° −α ) 
φ −   
=   
and tan 1 4.8 in. 
3.4 in. 
  
= 54.689° 
Also ( )2 ( )2 
rB/A = 3.4 in. + 4.8 in. 
= 5.8822 in. 
Then (17 lb⋅in.) = (5.8822 in.)(2.9 lb)sin (54.689° + 90° −α ) 
or sin (144.689° −α ) = 0.99658 
or 144.689° −α = 85.260°; 94.740° 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
∴α = 49.9°, 59.4° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 6. 
(a) 
(b) 
(a) MA = rB/A × TBF 
MA xTBFy yTBFx = + 
= (2 m)(200 N)sin 60° + (0.4 m)(200 N)cos60° 
= 386.41 N⋅m 
φ −   
=   = ° 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MA = 386 N⋅m W 
(b) For FC to be a minimum, it must be perpendicular to the line 
joining A and C. 
( )∴MA = d FC min 
with ( )2 ( )2 d = 2 m + 1.35 m 
= 2.4130 m 
Then ( )( )min 386.41 N⋅m = 2.4130 m FC 
( )min FC = 160.137 N 
and tan 1 1.35 m 34.019 
2 m 
  
θ = 90 − φ = 90° − 34.019° = 55.981° 
( )min ∴ FC = 160.1 N 56.0° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 7. 
(a) 
(b) 
(c) 
MA = xTBF + yTBF 
y x 
= (2 m)(200 N)sin 60° + (0.4 m)(200 N)cos60° 
= 386.41 N⋅m 
M = xF 
= = ⋅ 
= 193.205 N 
⋅ = F 
F = 
θ −  
=   = ° 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
AM = ⋅  
or 386 N m 
Have A C 
or 
386.41 N m 
2 m 
A 
C 
M 
F 
x 
∴F = 193.2 N 
 
C For B 
F to be minimum, it must be perpendicular to the line joining A 
and B 
( )A B min 
∴M = d F 
with ( ) ( ) 2 2 
d = 2 m + 0.40 m = 2.0396 m 
Then 386.41 N m ( 2.0396 m 
)( )C 
min 
( )min 
189.454 N 
C 
and 1 2 m 
tan 78.690 
0.4 m 
  
or ( )min 
F = 189.5 N 
78.7°  
C
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 8. 
(a) 
(b) 
(c) 
( ) / 
M = r cos15 
° W 
B AB 
= (14 in.)(cos15°)(5 lb) 
= 67.615 lb⋅in. 
M = r P ° 
M = r F 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
BM = ⋅  
or 67.6 lb in. 
/ 
sin85 
B DB 
67.615 lb⋅in. = (3.2 in.)Psin85° 
or P = 21.2 lb  
For ( )min, 
F F must be perpendicular to BC. 
Then, B C/B 
67.615 lb⋅in. = (18 in.)F 
or F = 3.76 lb 75.0°
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 9. 
(a) Slope of line 
EC= = 
T = T 
ABx AB 
= = 
T = = 
M = T − T 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
35 in. 5 
+ 
76 in. 8 in. 12 
Then ( ) 12 
13 
( ) 12 
260 lb 240 lb 
13 
and ( ) 5 
260 lb 100 lb 
13 ABy 
Then (35 in.) (8 in.) 
D ABx ABy 
= (240 lb)(35 in.) − (100 lb)(8 in.) 
= 7600 lb⋅in. 
DM = ⋅  
or 7600 lb in. 
(b) Have ( ) ( ) D ABx ABy M = T y + T x 
= (240 lb)(0) + (100 lb)(76 in.) 
= 7600 lb⋅in. 
DM = ⋅  
or 7600 lb in.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 10. 
Slope of line 
35 in. 7 
EC= = 
+ 
112 in. 8 in. 24 
Then 
24 
T = T 
ABx AB 
25 
and 
7 
T = T 
ABy AB 
25 
Have ( ) ( ) D ABx ABy M = T y + T x 
( ) ( ) 24 7 
∴ ⋅ = T + T 
7840 lb in. 0 112 in. 
AB AB 
25 25 
250 lb 
T = 
AB 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
T =  
or 250 lb 
AB
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 11. 
The minimum value of d can be found based on the equation relating the moment of the force TAB about D: 
( ) ( ) max D ABy 
M = T d 
where MD = 1152 N⋅m 
( ) ( ) ABmax y ABmax sin 2880 N sin T = T θ = θ 
Now 
sin 1.05 m 
( )2 ( )2 
d 0.24 1.05 m 
θ = 
+ + 
  
1152 N m 2880 N 1.05 
∴ ⋅ =     
( ) 2 2 
( 0.24 ) ( 1.05 
) 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
d 
d 
 + +  
or ( )2 ( )2 d + 0.24 + 1.05 = 2.625d 
or (d + 0.24)2 + (1.05)2 = 6.8906d 2 
or 5.8906d 2 − 0.48d − 1.1601 = 0 
Using the quadratic equation, the minimum values of d are 0.48639 m and −0.40490 m. 
Since only the positive value applies here, d = 0.48639 m 
or d = 486 mm W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 12. 
with ( )2 ( )2 dAB = 42 mm + 144 mm 
= 150 mm 
sin 42 mm 
150 mm 
θ = 
cos 144 mm 
150 mm 
θ = 
and FAB = − FAB sinθ i − FAB cosθ j 
2.5 kN ( 42 mm) (144 mm) 
150 mm 
=  − i − j 
= −(700 N)i − (2400 N) j 
Also ( ) ( ) rB/C = − 0.042 m i + 0.056 m j 
Now MC = rB/C × FAB 
= (−0.042i + 0.056 j) × (−700i − 2400 j)N⋅m 
= (140.0 N⋅m)k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MC = 140.0 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 13. 
with ( )2 ( )2 dAB = 42 mm + 144 mm 
= 150 mm 
sin 42 mm 
150 mm 
θ = 
cos 144 mm 
150 mm 
θ = 
FAB = − FAB sinθ i − FAB cosθ j 
2.5 kN ( 42 mm) (144 mm) 
150 mm 
=  − i − j 
= −(700 N)i − (2400 N) j 
Also ( ) ( ) rB/C = − 0.042 m i − 0.056 m j 
Now MC = rB/C × FAB 
= (−0.042i − 0.056j) × (−700i − 2400j)N⋅m 
= (61.6 N⋅m)k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MC = 61.6 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 14. 
: (0.090 m) 88 80 N (0.280 m) 105 80 N 
D D 137 137 ΣM M =  ×  −  ×  
    
= −12.5431 N⋅m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MD = 12.54 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 15. 
Note: B = B(cosβ i + sinβ j) 
B′ = B(cosβ i − sinβ j) 
C = C(cosαi + sinα j) 
By definition: B × C = BCsin (α − β ) (1) 
B′ × C = BCsin (α + β ) (2) 
Now ... B × C = B(cosβ i + sinβ j) × C(cosα i + sinα j) 
= BC(cosβ sinα − sinβ cosα )k (3) 
and B′ × C = B(cosβ i − sinβ j) × C(cosαi + sinα j) 
= BC(cosβ sinα + sinβ cosα )k (4) 
Equating the magnitudes of B × C from equations (1) and (3) yields: 
BCsin (α − β ) = BC(cosβ sinα − sinβ cosα ) (5) 
Similarly, equating the magnitudes of B′ × C from equations (2) and (4) yields: 
BCsin (α + β ) = BC(cosβ sinα + sinβ cosα ) (6) 
Adding equations (5) and (6) gives: 
sin (α − β ) + sin (α + β ) = 2cosβ sinα 
or sin cos 1 sin ( ) 1 sin ( ) 
α β = α + β + α − β W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
2 2
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 16. 
Have d = λAB × rO/A 
r 
B A 
where / 
rB A 
/ 
AB 
= 
λ 
and rB/A = (−210 mm − 630 mm)i 
+ (270 mm − (−225 mm))j 
= −(840 mm)i + (495 mm) j 
( )2 ( )2 
rB/A = −840 mm + 495 mm 
= 975 mm 
− 
(840 mm) + (495 mm) 
Then = 
i j 
AB 975 mm λ 
1 ( 56 33 ) 
65 
= − i + j 
Also rO/A = (0 − 630)i + (0 − (−225)) j 
= −(630 mm)i + (225 mm) j 
1 ( 56 33 ) (630 mm) (225 mm) 
65 
∴ d = − i + j × − i + j 
= 126.0 mm 
d = 126.0 mm W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 17. 
(a) 
= × 
A B 
× 
A B 
λ 
where A = 12i − 6j + 9k 
B = −3i + 9j − 7.5k 
Then 
i j k 
× = − 
12 6 9 
− − 
3 9 7.5 
A B 
= (45 − 81)i + (−27 + 90) j + (108 − 18)k 
= 9(−4i + 7j + 10k) 
And 2 2 2 A × B = 9 (−4) +(7) +(10) = 9 165 
9( − 4 + 7 + 
10 ) 
∴ = i j k λ 
9 165 
or ( ) 1 
A B 
i j k 
× = − − 
− 
− + − 
∴ = i j k λ 
λ = − i + j − k  
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
λ = − 4 i + 7 j + 10 
k  
165 
(b) 
= × 
× 
A B 
λ 
where A = −14i − 2j + 8k 
B = 3i + 1.5j − k 
Then 
14 2 8 
3 1.5 1 
A B 
= (2 − 12)i + (24 − 14) j + (−21 + 6)k 
= 5(−2i + 2j − 3k) 
and 2 2 2 A × B = 5 (−2) + (2) + (−3) = 5 17 
5( 2 2 3 ) 
5 17 
1 
or ( 2 2 3 
) 17
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 18. 
(a) Have A = P × Q 
i j k 
3 7 2 in.2 
5 1 3 
P Q 
× = − 
− 
= [(21 + 2)i + (10 − 9)j + (3 + 35)k]in.2 
= (23 in.2 )i + (1 in.2 )j + (38 in.2 )k 
∴ A = (23)2 + (1)2 + (38)2 = 44.430 in.2 
i j k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or A = 44.4 in.2 W 
(b) A = P × Q 
2 4 3 in.2 
6 1 5 
× = − 
− 
P Q 
= [(−20 − 3)i + (−18 − 10)j + (−2 + 24)k] in.2 
= −(23 in.2 )i − (28 in.2 )j + (22 in.2 )k 
∴ A = (−23)2 + (−28)2 + (22)2 = 42.391 in.2 
or A = 42.4 in.2 W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 19. 
(a) Have MO = r × F 
i j k 
6 3 1.5 N m 
7.5 3 4.5 
= − ⋅ 
− 
= [(−13.5 − 4.5)i + (11.25 − 27)j + (−18 − 22.5)k] N⋅m 
= (−18.00i − 15.75j − 40.5k) N⋅m 
or MO = −(18.00 N⋅m)i − (15.75 Ν⋅m)j − (40.5N⋅m)k W 
(b) Have MO = r × F 
i j k 
2 0.75 1 Nm 
7.5 3 4.5 
= − − ⋅ 
− 
= [(3.375 + 3)i + (−7.5 + 9)j + (6 + 5.625)k] N⋅m 
= (6.375i + 1.500j + 11.625k) N⋅m 
or MO = (6.38 N⋅m)i + (1.500 Ν⋅m)j + (11.63 Ν⋅m)k W 
(c) Have MO = r × F 
i j k 
= − − ⋅ 
2.5 1 1.5 N m 
7.5 3 4.5 
= [(4.5 − 4.5)i + (11.25 − 11.25)j + (−7.5 + 7.5)k] N⋅m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MO = 0 W 
This answer is expected since r and F are proportional (F = −3r). Therefore, vector F has a line of action 
passing through the origin at O.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 20. 
(a) Have MO = r × F 
i j k 
= − − ⋅ 
7.5 3 6 lb ft 
3 − 
6 4 
= [(12 − 36)i + (−18 + 30)j + (45 − 9)k] lb⋅ft 
or MO = −(24.0 lb⋅ft)i + (12.00 lb⋅ft) j + (36.0 lb⋅ft)k W 
(b) Have MO = r × F 
i j k 
= − − ⋅ 
7.5 1.5 1 lb ft 
3 − 
6 4 
= [(6 − 6)i + (−3 + 3)j + (4.5 − 4.5)k] lb⋅ft 
or MO = 0 W 
(c) Have MO = r × F 
i j k 
= − − ⋅ 
8 2 14 lb ft 
3 − 
6 4 
= [(8 − 84)i + (−42 + 32)j + (48 − 6)k] lb⋅ft 
or MO = −(76.0 lb⋅ft)i − (10.00 lb⋅ft) j + (42.0 lb⋅ft)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 21. 
With TAB = −(369 N) j 
( ) ( ) ( ) ( ) 
i − j − 
k 
2.4 m 3.1 m 1.2 m 
( )2 ( )2 ( )2 
369 N 
+ − + − 
2.4 m 3.1 m 1.2 m 
JJJG 
T AD 
= = 
T 
AB AD 
AD 
TAD = (216 N)i − (279 N) j − (108 N)k 
Then RA = 2 TAB + TAD 
= (216 N)i − (1017 N) j − (108 N)k 
Also ( ) ( ) rA/C = 3.1 m i + 1.2 m k 
Have MC = rA/C × RA 
i j k 
= ⋅ 
0 3.1 1.2 Nm 
216 − 1017 − 
108 
= (885.6 N⋅m)i + (259.2 N⋅m) j − (669.6 N⋅m)k 
MC = (886 N⋅m)i + (259 N⋅m) j − (670 N⋅m)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 22. 
Have MA = rC/A × F 
where ( ) ( ) ( ) rC/A = 215 mm i − 50 mm j + 140 mm k 
Fx = −(36 N)cos 45°sin12° 
Fy = −(36 N)sin 45° 
Fz = −(36 N)cos 45°cos12° 
∴ F = −(5.2926 N)i − (25.456 N) j − (24.900 N)k 
i j k 
A = − ⋅ 
M 
and 0.215 0.050 0.140 N m 
− − − 
5.2926 25.456 24.900 
= (4.8088 N⋅m)i + (4.6125 N⋅m) j − (5.7377 N⋅m)k 
MA = (4.81 N⋅m)i + (4.61 N⋅m) j − (5.74 N⋅m)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 23. 
Have MO = rA/O × R 
where ( ) ( ) rA/D = 30 ft j + 3 ft k 
( ) ( ) T1 = −  62 lb cos10° i −  62 lb sin10° j 
= −(61.058 lb)i − (10.766 lb) j 
JJJG 
T AB 
AB 
T = 
2 2 
( ) ( ) ( ) ( ) 
i − j + 
k 
5 ft 30 ft 6 ft 
( )2 ( )2 ( )2 
62 lb 
+ − + 
5 ft 30 ft 6 ft 
= 
= (10 lb)i − (60 lb) j + (12 lb)k 
∴ R = −(51.058 lb)i − (70.766 lb) j + (12 lb)k 
i j k 
O = ⋅ 
0 30 3lbft 
51.058 70.766 12 
− − 
M 
= (572.30 lb⋅ft)i − (153.17 lb⋅ft) j + (1531.74 lb⋅ft)k 
MO = (572 lb⋅ft)i − (153.2 lb⋅ft) j + (1532 lb⋅ft)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 24. 
(a) Have MO = rB/O × TBD 
where rB/O = (2.5 m)i + (2 m) j 
JJJG 
T BD 
T = 
BD BD 
BD 
( ) ( ) ( ) ( ) 
− 1 m i − 2 m j + 2 m 
k 
= 
 ( )2 ( )2 ( )2 
900 N 
1m 2 m 2 m 
− + − + 
= −(300 N)i − (600 N) j + (600 N)k 
Then 
i j k 
O= ⋅ 
2.5 2 0 N m 
300 600 600 
− − 
M 
MO = (1200 N⋅m)i − (1500 N⋅m) j − (900 N⋅m)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
continued
COSMOS: Complete Online Solutions Manual Organization System 
(b) Have MO = rB/O × TBE 
where rB/O = (2.5 m)i + (2 m) j 
JJJG 
T BE 
T = 
BE BE 
BE 
( ) ( ) ( ) ( ) 
− 0.5 m i − 2 m j − 4 m 
k 
= 
 ( )2 ( )2 ( )2 
675 N 
0.5 m + − 2 m + − 
4 m 
= −(75 N)i − (300 N) j − (600 N)k 
Then 
i j k 
O= ⋅ 
2.5 2 0 N m 
75 300 600 
− − − 
M 
MO = −(1200 N⋅m)i + (1500 N⋅m) j − (600 N⋅m)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 25. 
Have MC = rA/C × P 
where 
rA/C = rB/C + rA/B 
= (16 in.)(−cos80°cos15°i − sin80°j − cos80°sin15°k) 
+(15.2 in.)(−sin 20°cos15°i + cos 20°j − sin 20°sin15°k) 
= −(7.7053 in.)i − (1.47360 in.) j − (2.0646 in.)k 
and P = (150 lb)(cos5°cos70°i + sin 5°j − cos5°sin 70°k) 
= (51.108 lb)i + (13.0734 lb) j − (140.418 lb)k 
Then 
i j k 
C = − − − ⋅ 
7.7053 1.47360 2.0646 lb in. 
51.108 13.0734 − 
140.418 
M 
= (233.91 lb⋅in.)i − (1187.48 lb⋅in.) j − (25.422 lb⋅in.)k 
or MC = (19.49 lb⋅ft)i − (99.0 lb⋅ft) j − (2.12 lb⋅ft)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 26. 
Have MC = rA/C × FBA 
where ( ) ( ) ( ) rA/C = 0.96 m i − 0.12 m j + 0.72 m k 
and FBA = λBAFBA 
  − ( 0.1 m ) i + ( 1.8 m ) j − ( 0.6 m 
) 
k 
 =    
 ( ) + ( ) + ( ) 
 
( ) 2 2 2 
i j k 
∴ C = − ⋅ 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
228 N 
0.1 1.8 0.6 m 
= −(12.0 N)i + (216 N) j − (72 N)k 
0.96 0.12 0.72 N m 
12.0 216 72 
− − 
M 
= −(146.88 N⋅m)i + (60.480 N⋅m) j + (205.92 N⋅m)k 
or MC = −(146.9 N⋅m)i + (60.5 N⋅m) j + (206 N⋅m)k W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 27. 
Have MC = TAD d 
where d = Perpendicular distance from C to line AD 
T AD 
i j k 
2.4 m 3.1 m 1.2 m 
i j k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
JJJG 
with MC = rA/C TAD 
and ( ) ( ) rA/C = 3.1 m j + 1.2 m k 
AD AD 
AD 
T = 
JJJG 
( ) ( ) ( ) ( ) 
( )2 ( )2 ( )2 
369 N 
2.4 m 3.1 m 1.2 m 
AD 
 − −  = 
+ − + − 
T 
= (216 N)i − (279 N) j − (108 N)k 
Then 
0 3.1 1.2 Nm 
216 279 108 
C= ⋅ 
− − 
M 
= (259.2 N⋅m) j − (669.6 N⋅m)k 
and ( )2 ( )2 MC = 259.2 N⋅m + −669.6 N⋅m 
= 718.02 N⋅m 
∴ 718.02 N⋅m = (369 N)d 
or d = 1.946 m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 28. 
M = T 
Have O AC d 
where d = Perpendicular distance from O to rope AC 
with MO = rA/O × TAC 
and ( ) ( ) rA/O = 30 ft j + 3 ft k 
TAC = − (62 lb)cos10° i − (62 lb)sin10° j 
= −(61.058 lb)i − (10.766 lb) j 
Then 
i j k 
0 30 3lbft 
61.058 10.766 0 
O= ⋅ 
− − 
M 
= (32.298 lb⋅ft)i − (183.174 lb⋅ft) j + (1831.74 lb⋅ft)k 
and ( )2 ( )2 ( )2 MO = 32.298 lb⋅ft + −183.174 lb⋅ft + 1831.74 lb⋅ft 
= 1841.16 lb⋅ft 
∴1841.16 lb⋅ft = (62 lb)d 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 29.7 ft W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 29. 
Have MO = TAB d 
where d = Perpendicular distance from O to rope AB 
with MO = rA/O × TAB 
and ( ) ( ) rA/O = 30 ft j + 3 ft k 
JJJG 
T AB 
T = 
AB AB 
AB 
( ) ( ) ( ) ( ) 
 5 ft i − 30 ft j + 6 ft 
k 
= 
 ( )2 ( )2 ( )2 
62 lb 
5 ft + − 30 ft + 
6 ft 
= (10 lb)i − (60 lb) j + (12 lb)k 
Then 
i j k 
0 30 3 lbft 
10 60 12 
O = ⋅ 
− 
M 
= (540 lb⋅ft)i + (30 lb⋅ft) j − (300 lb⋅ft)k 
and ( )2 ( )2 ( )2 MO = 540 lb⋅ft + 30 lb⋅ft + −300 lb⋅ft 
= 618.47 lb⋅ft 
∴ 618.47 lb⋅ft = (62 lb)d 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 9.98 ft W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 30. 
Have MC = TBD d 
where d = Perpendicular distance from C to cable BD 
with MC = rB/C × TB/D 
and ( ) rB/C = 2 m j 
JJJG 
T BD 
T = 
BD BD 
BD 
( ) ( ) ( ) ( ) 
− 1m i − 2 m j + 2 m 
k 
= 
 ( )2 ( )2 ( )2 
900 N 
1m 2 m 2 m 
− + − + 
= −(300 N)i − (600 N) j + (600 N)k 
Then 
i j k 
0 2 0 Nm 
300 600 600 
C= ⋅ 
− − 
M 
= (1200 N⋅m)i + (600 N⋅m)k 
and ( )2 ( )2 MC = 1200 N⋅m + 600 N⋅m 
= 1341.64 N⋅m 
∴1341.64 = (900 N)d 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 1.491 m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 31. 
Have MC = Pd 
From the solution of problem 3.25 
MC = (233.91 lb⋅in.)i − (1187.48 lb⋅in.) j − (25.422 lb⋅in.)k 
Then 
( ) ( ) ( ) 2 2 2 MC = 233.91 + −1187.48 + −25.422 
= 1210.57 lb⋅in. 
d MC 
and 1210.57 lb.in. 
150 lb 
= = 
P 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 8.07 in.W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 32. 
Have |MD | = FBAd 
where d = perpendicular distance from D to line AB. 
MD = rA/D × FBA 
( ) ( ) rA/D = − 0.12 m j + 0.72 m k 
( ( 0.1m ) i ( 1.8 m ) j ( 0.6 m 
) k 
) 
( ) 2 2 2 
( ) ( ) ( ) 
i j k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
228 N 
0.1 1.8 0.6 m 
BA BAFBA 
− + − 
= = 
+ + 
F λ 
= −(12.0 N)i + (216 N) j − (72 N)k 
0 0.12 0.72 N m 
12.0 216 72 
∴ D = − ⋅ 
− − 
M 
= −(146.88 N⋅m)i − (8.64 N⋅m) j − (1.44 N⋅m)k 
and ( )2 ( )2 ( )2 |MD | = 146.88 + 8.64 + 1.44 = 147.141N⋅m 
∴ 147.141N⋅m = (228 N)d 
d = 0.64536 m 
or d = 0.645 mW
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 33. 
Have |MC | = FBAd 
where d = perpendicular distance from C to line AB. 
MC = rA/C × FBA 
( ) ( ) ( ) rA/C = 0.96 m i − 0.12 m j + 0.72 m k 
( ( 0.1m ) i ( 1.8 m ) j ( 0.6 
) k 
) 
( ) ( ) ( ) 
( ) 2 2 2 
i j k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
228 N 
0.1 1.8 0.6 m 
BA BAFBA 
− + − 
= = 
+ + 
F λ 
= −(12.0 N)i + (216 N) j − (72 N)k 
0.96 0.12 0.72 N m 
12.0 216 72 
∴ C = − ⋅ 
− − 
M 
= −(146.88 N⋅m)i − (60.48 N⋅m) j + (205.92 N⋅m)k 
and ( )2 ( )2 ( )2 |MC | = 146.88 + 60.48 + 205.92 = 260.07 N⋅m 
∴ 260.07 N⋅m = (228 N)d 
d = 1.14064 m 
or d = 1.141mW
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 34. 
(a) Have d = rC/A sinθ = λAB × rC/A 
where d = Perpendicular distance from C to pipe AB 
with 
λ AB i j k 
7 + 4 − 
32 
7 4 32 
( )2 ( )2 ( )2 
= = 
AB AB 
+ + − 
1 (7 4 32 ) 
33 
= i + j − k 
and ( ) ( ) ( ) rC/A = − 14 ft i + 5 ft j +  L − 22 ftk 
λ r 
Then / 
i j k 
1 7 4 32 ft 
33 
× = − 
L 
14 5 22 
AB C A 
− − 
1 { 4( 22) 32(5) 32(14) 7( 22) 7(5) 4(14) }ft 
33 
=  L − +  i +  − L −  j +  + k 
= 1  (4 L + 72) i + ( − 7 L + 602) j + 91 kft 
33 
 
and d = 1 (4 L + 72)2 + ( − 7 L + 602)2 + 
(91)2 
33 
2 
d dd L L 
( ) , 1 2 4 4 72 2 7 7 602 0 
For ( )( ) ( )( ) 
=  + + − − +  = 
min 2 
L 
d 33 
or 65L − 3926 = 0 
or L = 60.400 ft 
But L  Lgreenhouse so L = 30.0 ft W 
(b) with L = 30 ft, d = 1 (4 × 30 + 72)2 + ( − 7 × 30 + 602)2 + 
(91)2 
33 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 13.51 ft W 
Note: with L = 60.4 ft, 
1 (4 60.4 72)2 ( 7 60.4 602)2 (91)2 11.29 ft 
33 
d= × + + − × + + =
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 35. 
P⋅Q = (−4i + 8j − 3k) ⋅ (9i − j − 7k) 
= (−4)(9) + (8)(−1) + (−3)(−7) 
= −23 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or P⋅Q = −23W 
P⋅S = (−4i + 8j − 3k) ⋅ (5i − 6j + 2k) 
= (−4)(5) + (8)(−6) + (−3)(2) 
= −74 
or P⋅S = −74 W 
Q⋅S = (9i − j − 7k) ⋅ (5i − 6j + 2k) 
= (9)(5) + (−1)(−6) + (−7)(2) 
= 37 
or Q⋅S = 37 W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 36. 
By definition 
B⋅C = BCcos(α − β ) 
where B = B (cosβ )i + (sinβ ) j 
C = C (cosα )i + (sinα ) j 
∴ (Bcosβ )(C cosα ) + (Bsinβ )(Csinα ) = BC cos(α − β ) 
or cosβ cosα + sinβ sinα = cos(α − β ) (1) 
By definition 
B′⋅C = BC cos(α + β ) 
where B′ = (cosβ )i − (sinβ ) j 
∴ (Bcosβ )(Ccosα ) + (−Bsinβ )(Csinα ) = BCcos(α + β ) 
or cosβ cosα − sinβ sinα = cos(α + β ) (2) 
Adding Equations (1) and (2), 
2 cosβ cosα = cos(α − β ) + cos(α + β ) 
or cos cos 1 cos( ) 1 cos( ) 
α β = α + β + α − β W 
2 2 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 37. 
First note: 
rB/A = (0.56 m)i + (0.9 m) j 
( ) ( ) rC/A = 0.9 m j − 0.48 m k 
( ) ( ) ( ) rD/A = − 0.52 m i + 0.9 m j + 0.36 m k 
( )2 ( )2 
rB/A = 0.56 m + 0.9 m = 1.06 m 
( )2 ( )2 
rC/A = 0.9 m + −0.48 m = 1.02 m 
( )2 ( )2 ( )2 
rD/A = −0.52 m + 0.9 m + 0.36 m = 1.10 m 
By definition rB/A ⋅rD/A = rB/A rD/A cosθ 
or (0.56i + 0.9j) ⋅ (−0.52i + 0.9j + 0.36k) = (1.06)(1.10)cosθ 
(0.56)(−0.52) + (0.9)(0.9) + (0)(0.36) = 1.166cosθ 
cosθ = 0.44494 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
θ = 63.6° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 38. 
From the solution to problem 3.37 
rC/A = 1.02 m with rC/A = (0.9 m)i − (0.48 m) j 
( ) ( ) ( ) rD/A = 1.10 m with rD/A = − 0.52 m i + 0.9 m j + 0.36 m k 
Now by definition 
rC/A ⋅ rD/A = rC/A rD/A cosθ 
or (0.9j − 0.48k) ⋅ (−0.52i + 0.9j + 0.36k) = (1.02)(1.10)cosθ 
0(−0.52) + (0.9)(0.9) + (−0.48)(0.36) = 1.122cosθ 
cosθ = 0.56791 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or θ = 55.4° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 39. 
(a) By definition 
λBC + λEF = (1)(1) cosθ 
where 
( ) ( ) ( ) 
( )2 ( )2 ( )2 
i j k 
32 ft 9 ft 24 ft 
32 9 24 ft 
BC 
− − 
= 
+ − + − 
λ 
1 (32 9 24 ) 
41 
= i − j − k 
( ) ( ) ( ) 
( )2 ( )2 ( )2 
i j k 
14 ft 12 ft 12 ft 
14 12 12 ft 
EF 
− − + 
= 
− + − + 
λ 
1 ( 7 6 6 ) 
11 
= − i − j + k 
(32 i − 9 j − 24 k ) ( − 7 i − 6 j + 
6 k 
) 
Therefore ⋅ = 
cos 
41 11 
θ 
(32)(−7) + (−9)(−6) + (−24)(6) = (41)(11)cosθ 
cosθ = −0.69623 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or θ = 134.1° W 
(b) By definition ( EG )BC ( EF )cos T = T θ 
= (110 lb)(−0.69623) 
= −76.585 lb 
or ( EF )BC 76.6 lb T = − W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 40. 
(a) By definition 
λBC ⋅ λEG = (1) (1) cosθ 
where 
( ) ( ) ( ) 
( )2 ( )2 ( )2 
i j k 
32 ft 9 ft 24 ft 
32 9 24 ft 
BC 
− − 
= 
+ − + − 
λ 
1 (32 9 24 ) 
41 
= i − j − k 
( ) ( ) ( ) 
i j k 
16 ft − 12 ft + 
9.75 
16 12 9.75 ft 
( )2 ( )2 ( )2 
EG 
= 
+ − + 
λ 
1 (16 12 9.75 ) 
22.25 
= i − j + k 
(32 i − 9 j − 24 k ) (16 i − 12 j + 
9.75 k 
) 
Therefore ⋅ = 
cos 
41 22.25 
θ 
(32)(16) + (−9)(−12) + (−24)(9.75) = (41)(22.25)cosθ 
cosθ = 0.42313 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or θ = 65.0° W 
(b) By definition ( EG )BC ( EG )cos T = T θ 
= (178 lb)(0.42313) 
= 75.317 lb 
or ( EG )BC 75.3 lb T = W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 41. 
First locate point B: 
3.5 
d = 
22 14 
or d = 5.5 m 
(a) ( )2 ( )2 ( )2 dBA = 5.5 + 0.5 + −22 + −3 = 23 m 
Locate point D: 
(−3.5 − 7.5sin 45°cos15°), (14 + 7.5cos 45°), 
(0 + 7.5sin 45°sin15°)m 
or (−8.6226 m, 19.3033 m, 1.37260 m) 
Then 
( )2 ( )2 ( )2 dBD = −8.6226 + 5.5 + 19.3033 − 22 + 1.37260 − 0 m 
= 4.3482 m 
⋅ ( 6 i − 22 j − 3 k ) ⋅ ( − 3.1226 i − 2.6967 j + 
1.37260 
k 
) 
and ( )( ) 
cos 
23 4.3482 
d d 
d d 
BA BD 
θ 
ABD 
= = 
BA BD 
= 0.36471 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or θ ABD = 68.6° W 
(b) ( BA )BD BA cos ABD T = T θ 
= (230 N)(0.36471) 
or ( BA )BD 83.9 N T = W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 42. 
First locate point B: 
3.5 
d = 
22 14 
or d = 5.5 m 
(a) Locate point D: 
(−3.5 − 7.5sin 45°cos10°), (14 + 7.5cos 45°), 
3.2227 2.6967 0.92091 5.2227 5.3033 0.92091 
d d 
d d 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
(0 + 7.5sin 45°sin10°)m 
or (−8.7227 m, 19.3033 m, 0.92091 m) 
Then 
dDC = (5.2227 m)i − (5.3033 m) j − (0.92091 m)k 
and 
( )2 ( )2 ( )2 dDB = −5.5 + 8.7227 + 22 − 19.3033 + 0 − 0.92091 m 
= 4.3019 m 
and ( ) ( ) 
( )( ) 
cos 
4.3019 7.5 
DB DC 
BDC 
DB DC 
θ 
⋅ + − ⋅ − − 
= = 
i j k i j k 
= 0.104694 
or θ BDC = 84.0° W 
(b) ( BD )DC BD cos BDC (250 N)(0.104694) T = T θ = 
or ( BD )DC 26.2 N T = W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 43. 
Volume of parallelopiped is found using the mixed triple product 
(a) Vol = P⋅(Q × S) 
3 4 1 
7 6 8 in. 
9 2 3 
3 
− 
= − − 
− − 
= (−54 + 288 + 14 − 48 + 84 − 54)in.3 
= 230 in.3 
5 7 4 
6 2 5 in. 
4 8 9 
− − 
= − 
− − 
= (−90 + 140 + 192 + 200 − 378 − 32) in.3 
= 32 in.3 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or Volume = 230 in.3 W 
(b) Vol = P⋅(Q × S) 
3 
or Volume = 32 in.3 W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 44. 
For the vectors to all be in the same plane, the mixed triple product is zero. 
P⋅(Q × S) = 0 
3 7 5 
− − 
0 2 1 4 
∴ = − − 
8 Sy − 
6 
0 = 18 + 224 − 10Sy − 12Sy + 84 − 40 
So that 22 Sy = 286 
Sy = 13 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or Sy = 13.00 W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 45. 
Have rC = (2.25 m)k 
JJJG 
T CE 
T = 
CE CE 
CE 
( ) ( ) ( ) ( ) 
 0.90 m i + 1.50 m j − 2.25 m 
k 
= 
 ( )2 ( )2 ( )2 
1349 N 
0.90 1.50 2.25 m 
T 
CE 
+ + − 
= (426 N)i + (710 N) j − (1065 N)k 
Now MO = rC × TCE 
i j k 
0 0 2.25 Nm 
426 710 1065 
= ⋅ 
− 
= − (1597.5 N⋅m)i + (958.5 N⋅m) j 
∴ Mx = −1598 N⋅m, My = 959 N⋅m, Mz = 0 W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 46. 
Have rE = (0.90 m)i + (1.50 m) j 
JJJG 
T DE 
T = 
DE DE 
DE 
( ) ( ) ( ) ( ) 
− 2.30 m i + 1.50 m j − 2.25 m 
k 
= 
 ( )2 ( )2 ( )2 
1349 N 
2.30 1.50 2.25 m 
− + + − 
= −(874 N)i + (570 N) j − (855 N)k 
Now MO = rE × TDE 
i j k 
0.90 1.50 0 N m 
874 570 855 
= ⋅ 
− − 
= −(1282.5 N⋅m)i + (769.5 N⋅m) j + (1824 N⋅m)k 
∴Mx = −1283 N⋅m, My = 770 N⋅m, Mz = 1824 N⋅m W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 47. 
Have z ( B )y BA ( C )y CD 
= ⋅ ×  +  ×  M k  r T  k  r T  
where Mz = −(48 lb⋅ft)k 
( B )y ( C )y (3 ft) r = r = j 
( ) ( ) ( ) ( ) 
JJJG 
 4.5 ft i − 3 ft j + 9 ft 
k 
= = 
 ( )2 ( )2 ( )2 
14 lb 
4.5 3 9 ft 
T BA 
T 
BA BA 
BA 
+ − + 
= (6 lb)i − (4 lb) j + (12 lb)k 
( ) ( ) ( ) 
( )2 ( )2 ( )2 
JJJG 
 i − j − k 
= = 
 6 ft 3 ft 6 ft 
6 3 6 ft 
T CD T 
T 
CD CD CD 
CD 
+ − + − 
= TCD i − j − k 
(2 2 ) 
3 
Then −(48 lb⋅ft) = k⋅{(3 ft) j × (6 lb)i − (4 lb) j + (12 lb)k} 
 + k ⋅(3 ft) j × TCD (2 i − j − 2 k 
) 
   3 
 
or −48 = −18 − 2TCD 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
TCD = 15.00 lb W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 48. 
Have y ( B )z BA ( C )z CD 
M = j⋅ r × T  × j⋅ r × T  
where My = 156 lb⋅ft 
( B )z (24 ft) ; ( C )z (6 ft) r = k r = k 
( ) ( ) ( ) 
( )2 ( )2 ( )2 
JJJG 
 i − j + k 
= = 
 4.5 ft 3 ft 9 ft 
4.5 3 9 ft 
T BA T 
T 
BA BA BA 
BA 
+ − + 
= TBA i − j + k 
(4.5 3 9 ) 
10.5 
( ) ( ) ( ) ( ) 
JJJG 
 6 ft i − 3 ft j + 9 ft 
k 
= = 
 ( )2 ( )2 ( )2 
7.5 lb 
6 3 9 ft 
T CD 
T 
CD CD 
CD 
+ − + 
= (5 lb)i − (2.5 lb) j − (5 lb)k 
⋅ = ⋅ × TBA − +  
Then (156 lb ft) j (24 ft) k (4.5 i 3 j 9 k 
) 
10.5 
  
+ j⋅{(6 ft)k × (5 lb)i − (2.5 lb) j − (5 lb)k} 
or 156 108 30 
10.5 BA = T + 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
TBA = 12.25 lb W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 49. 
Based on Mx = (Pcosφ )(0.225 m)sinθ  − (Psinφ )(0.225 m)cosθ  (1) 
My = −(Pcosφ )(0.125 m) (2) 
Mz = −(Psinφ )(0.125 m) (3) 
By ( ) 
M P 
M P 
Equation 3 sin 0.125 
( ) 
( )( ) 
( )( ) 
: 
z 
y 
φ 
φ 
− 
= 
− 
Equation 2 cos 0.125 
− 
or 4 tan 9.8658 
23 
= ∴ = ° 
φ φ 
− 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or φ = 9.87° W 
From Equation (2) 
−23 N⋅m = −(Pcos9.8658°)(0.125 m) 
P = 186.762 N 
or P = 186.8 N W 
From Equation (1) 
26 N⋅m = (186.726 N)cos9.8658° (0.225 m)sinθ  
− (186.726 N)sin 9.8658° (0.225 m)cosθ  
or 0.98521sinθ − 0.171341cosθ = 0.61885 
Solving numerically, 
θ = 48.1° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 50. 
Based on Mx = (Pcosφ )(0.225 m)sinθ  − (Psinφ )(0.225 m)cosθ  (1) 
My = −(Pcosφ )(0.125 m) (2) 
Mz = −(Psinφ )(0.125 m) 
By ( ) 
M P 
M P 
Equation 3 sin 0.125 
( ) 
( )( ) 
( )( ) 
: 
z 
y 
φ 
φ 
− 
= 
− 
Equation 2 cos 0.125 
or 3.5 tan ; 9.9262 
20 
φ φ 
− 
= = ° 
− 
From Equation (3): 
−3.5 N⋅m = −(Psin 9.9262°)(0.125 m) 
P = 162.432 N 
From Equation (1): 
Mx = (162.432 N)(0.225 m)(cos9.9262°sin 60° − sin 9.9262°cos60°) 
= 28.027 N⋅m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or Mx = 28.0 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 51. 
First note: 
JJJG 
T BA 
T = 
BA BA 
BA 
( ) ( ) ( ) ( ) 
+  − +  + − = 
i j k 
L 
L 
4 1.5 1 6 
BC 
( ) ( ) ( ) 2 2 2 
70 lb 
+  − +  + − 
4 1.5 1 6 
BC 
( ) ( ) 
i L 
j k 
4 + 0.5 − − 
6 
BC 
( )2 
70 lb 
52 0.5 
L 
BC 
= 
+ − 
rA = (4 ft)i + (1.5 ft) j − (12 ft)k 
Have MO = rA × TBA 
70 lb 4 ft 1.5 ft 12 ft 
= − 
( ) ( ) 2 
52 + 0.5 − L BC 4 0.5 − L 
BC − 
6 763 lb ft 70 1.5 6 12 0.5 lb ft 
− ⋅ =  − + −  ⋅ 
2 190.81 190.81 4 25.19 6198.8225 
− ± − − 
= 
BC 2 25.19 L 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
i j k 
For the i components: 
( ) 
( ) ( ) 2 
52 + 0.5 
BC 
BC 
L 
L 
− 
or ( )2 10.9 52 + 0.5 − LBC = 3 + 12LBC 
or (10.9)2 52 + (0.5 − LBC )2  = 9 + 72LBC + 144L2BC 
or 25.19L2BC + 190.81LBC − 6198.8225 = 0 
Then 
( ) ( )( ) 
( ) 
Taking the positive root LBC = 12.35 ft W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 52. 
First note: 
JJJG 
T BA 
T = 
BA BA 
BA 
( ) ( ) ( ) ( ) 
+  − +  + − = 
i j k 
L 
L 
4 1.5 1 6 
BC 
( ) ( ) ( ) 2 2 2 
70 lb 
+  − +  + − 
4 1.5 1 6 
BC 
( ) ( ) 
i L 
j k 
4 + 0.5 − − 
6 
BC 
( )2 
70 lb 
52 0.5 
L 
BC 
= 
+ − 
rA = (4 ft)i + (1.5 ft) j − (12 ft)k 
Have MO = rA × TBA 
BA 
i j k 
= − 
( ) ( ) 2 
T BA 
L 
− ⋅ =  − + −  ⋅ 
L 
T BA 
L 
= + 
L 
T BA 
L 
− ⋅ =  − −  ⋅ 
L 
T L 
315 4 BA 
1 
= + 
L 
1 300 1 4 
2 315 41 BC 
L 
L 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
4 ft 1.5 ft 12 ft 
52 + 0.5 4 0.5 6 
BC BC 
T 
L L 
− − − 
For the i components: 
( ) 
( ) ( ) 2 
900 lb ft 1.5 6 12 0.5 lb ft 
52 + 0.5 
BC 
BC 
− 
or 
( ) 
( ) 2 
300 1 4 
52 + 0.5 
BC 
BC 
− 
(1) 
For the k components: 
( ) 
( ) ( ) 2 
315 lb ft 4 0.5 1.5 4 lb ft 
52 + 0.5 
BC 
BC 
− 
or 
( ) 
( ) 2 
52 + 0.5 
BC 
BC 
− 
(2) 
Then, ( ) 
( ) ( ) 
BC 
+ 
⇒ = 
+ 
or 59 ft 
BC 4 L = 
LBC = 14.75 ft W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 53. 
Have MAD = λ AD ⋅(rB/A × TBH ) 
where ( ) ( ) 
i k 
0.8 m − 
0.6 m 
λ = = i − 
k 
( )2 ( )2 
0.8 0.6 
0.8 m 0.6 m 
AD 
+ − 
( ) rB/A = 0.4 m i 
( ) ( ) ( ) ( ) 
JJJJG 
 0.3 m i + 0.6 m j − 0.6 m 
k 
= = 
 ( )2 ( )2 ( )2 
1125 N 
0.3 0.6 0.6 m 
T BH 
T 
BH BH 
BH 
+ + − 
Then 
0.8 0 0.6 
0.4 0 0 180 N m 
375 750 750 
MAD 
− 
= =− ⋅ 
− 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MAD = −180.0 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 54. 
Have MAD = λ AD ⋅(rB/A × TBG ) 
where λ AD = (0.8 m)i − (0.6 m)k 
( ) rB/A = 0.4 m i 
( ) ( ) ( ) ( ) 
JJJG 
− 0.4 m i + 0.74 j − 0.32 m 
k 
 = = 
( )2 ( )2 ( )2 
1125 N 
0.4 m 0.74 m 0.32 m 
T BG 
T 
BG BG 
BG 
− + + − 
= −(500 N)i + (925 N) j − (400 N)k 
Then 
0.8 0 0.6 
0.4 0 0 
500 925 400 
MAD 
− 
= 
− − 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MAD = −222 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 55. 
Have 
MAD = λ AD ⋅(rE/A × FEF ) 
λ = 
where AD 
JJJG 
AD 
AD 
( 7.2 m ) i ( 0.9 m 
) 
j 
( 7.2 m )2 ( 0.9 m 
)2 
AD 
+ 
= 
+ 
λ 
= 0.99228i + 0.124035 j 
( ) ( ) rE/A = 2.1 m i − 0.9 m j 
( ) ( ) ( ) ( ) 
JJJG 
 0.3 m i + 1.2 m j + 2.4 m 
k 
= = 
 ( )2 ( )2 ( )2 
24.3 kN 
0.3 m 1.2 m 2.4 m 
F EF 
F 
EF EF 
EF 
+ + 
= (2.7 kN)i + (10.8 kN) j + (21.6 kN)k 
Then 
0.99228 0.124035 0 
2.1 0.9 0 kN m 
2.7 10.8 21.6 
MAD = − ⋅ 
= −19.2899 − 5.6262 
= −24.916 kN⋅m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MAD = −24.9 kN⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 56. 
Have MAD = λ AD ⋅(rG/A × EEF ) 
Where ( ) ( ) 
i j 
7.2 m + 
0.9 m 
7.2 m 0.9 m 
( )2 ( )2 
AD 
= 
+ 
λ 
= 0.99228i + 0.124035 j 
( ) ( ) rG/A = 6 m i − 1.8 m j 
( ) ( ) ( ) ( ) 
JJJJG 
 − 1.2 m i + 2.4 m j + 2.4 m 
k 
= = 
 ( )2 ( )2 ( )2 
21.3 kN 
1.2 m 2.4 m 2.4 m 
F GH 
F 
GH GH 
GH 
− + + 
= −(7.1 kN)i + (14.2 kN) j + (14.2 kN)k 
Then 
0.99228 0.124035 0 
MAD = − ⋅ 
6 1.8 0 kNm 
7.1 14.2 14.2 
− 
= −25.363 − 10.5678 
= −35.931 kN⋅m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MAD = −35.9 kN⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 57. 
Have M = λ ⋅ ( r × P 
) 
OA OA C/O where 
From triangle OBC 
a 
( ) 2 x 
OA = 
( ) ( ) 1 
tan30 
2 3 2 3 z x 
OA = OA + OA + OA 
2 2 
=  a      + + a 
  
    
a OA 
∴ OA = a − − = a 
OAλ = i + j + k 
P = λ P 
° − ° 
P = i − k 
  ∴ =   
aP  
= −  − 
aP = 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
a a 
OA OA 
  
= ° =   = 
  
Since ( ) ( ) ( ) ( ) 2 2 2 2 
x y z 
or ( ) 
2 2 
2 y 2 3 
( ) 
2 2 
a a 
2 2 
y 4 12 3 
Then / 
2 
2 3 2 3 
AO 
a a 
r = i + a j + k 
and 
1 2 1 
2 3 2 3 
BC 
( asin30 ) ( acos30 
)( P 
) a 
= 
i k 
( 3 ) 
2 
C/O r = ai 
( ) 
1 2 1 
2 3 2 3 
1 0 0 2 
1 0 3 
OA 
P 
M a 
  
− 
2 
( 1 )( 3 
) 2 3 
  
2 
2 
OA 
aP 
M =
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 58. 
(a) For edge OA to be perpendicular to edge BC, 
OA BC = 0 uuur uuur ⋅⋅⋅⋅ 
where 
From triangle OBC 
a 
( OA ) = 
x 
2 ( ) ( ) 1 
tan30 
2 3 2 3 z x 
    ∴ =   + +   
i j k 
OA OA 
= a a i − k 
= a ( i − 3 k 
) 
 a    
 i + a a 
OA 
j +   k  ⋅⋅⋅⋅ i − k 
= 
    
2 2 
a a 
+ OA − = 
M = Pd with P acting along BC and d the 
uuur uuur 
Pa 
∴ = Pd 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
a a 
OA OA 
  
= ° =   = 
  
a a 
( ) 
 2  y  2 3 
 
uuur 
uuur 
and BC = (asin 30°)i − (acos30°)k 
3 
2 2 
2 
Then ( ) ( 3 ) 0 
2 y 2 3 2 
or ( ) ( ) 
0 0 
4 y 4 
∴ OA BC = 0 uuur uuur ⋅⋅⋅⋅ 
uuur 
so that OA 
uuur 
is perpendicular to . BC 
 
(b) Have OA , 
perpendicular distance from OA to BC. 
From the results of Problem 3.57, 
2 
OA 
Pa 
M = 
2 
or 
a 
d =  
2
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 59. 
Have MDI = λDI ⋅(rF/I × TEF ) 
where ( ) ( ) 
i j 
( )2 ( )2 
T EF 
 3.6 ft i − 10.8 ft j + 16.2 ft 
k 
= 
 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
4.8 ft 1.2 ft 
4.8 ft 1.2 ft 
DI 
DI 
DI 
− 
= = 
+ − 
λ 
JJJG 
= 0.97014i − 0.24254 j 
( ) rF/I = 16.2 ft k 
EF EF 
EF 
T = 
JJJG 
( ) ( ) ( ) ( ) 
( )2 ( )2 ( )2 
29.7 lb 
3.6 ft + − 10.8 ft + 
16.2 ft 
= (5.4 lb)i − (16.2 lb) j + (24.3 lb)k 
Then 
0.97014 0.24254 0 
0 0 16.2lbft 
5.4 16.2 24.3 
MDI 
− 
= ⋅ 
− 
= −21.217 + 254.60 
= 233.39 lb⋅ft 
or MDI = 233 lb⋅ft W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 60. 
Have MDI = λDI ⋅(rG/I × TEG ) 
where ( ) ( ) 
i j 
4.8 ft 1.2 ft 
4.8 ft 1.2 ft 
( )2 ( )2 
DI 
DI 
DI 
T EG 
 3.6 ft i − 10.8 ft j − 35.1 ft 
k 
= 
 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
− 
= = 
+ − 
λ 
JJJG 
= 0.97014i − 0.24254 j 
( ) rG/I = − 35.1 ft k 
EG EG 
EG 
T = 
JJJG 
( ) ( ) ( ) ( ) 
( )2 ( )2 ( )2 
24.6 lb 
3.6 ft + − 10.8 ft + − 
35.1 ft 
= (2.4 lb)i − (7.2 lb) j − (23.4 lb)k 
Then 
0.97014 0.24254 0 
0 0 35.1lbft 
2.4 7.2 23.4 
MDI 
− 
= − ⋅ 
− − 
= 20.432 − 245.17 
= −224.74 lb⋅ft 
or MDI = −225 lb⋅ft W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 61. 
First note that F1 = F1λ1 and F2 = F2λ2 
Let M1 = moment of F2 about the line of action of M1 
and M2 = moment of F1 about the line of action of M2 
Now, by definition 
( ) ( ) M1 = λ1 ⋅ rB/A × F2 = λ1 ⋅ rB/A × λ2 F2 
( ) ( ) M2 = λ2 ⋅ rA/B × F1 = λ2 ⋅ rA/B × λ1 F1 
Since F1 = F2 = F and rA/B = −rB/A 
( ) M1 = λ1 ⋅ rB/A × λ2 F 
( ) M2 = λ2 ⋅ −rB/A × λ1 F 
Using Equation (3.39) 
( ) ( ) λ1 ⋅ rB/A × λ2 = λ2 ⋅ −rB/A × λ1 
so that ( ) M2 = λ1 ⋅ rB/A × λ2 F 
∴ M12 = M21W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 62. 
From the solution of Problem 3.53: 
λAD = 0.8i − 0.6k 
TBH = (375 N)i + (750 N) j − (750 N)k; TBH = 1125 N 
MAD = −180 N⋅m 
Only the perpendicular component of TBH contributes to the moment of TBH about line AD. The 
parallel component of TBH will be used to find the perpendicular component. 
Have ( )TBH Parallel = λAD ⋅TBH 
= [0.8i − 0.6k] ⋅ (375 N)i + (750 N) j − (750 N)k 
= (300 + 450)N 
= 750 N 
Since ( ) ( ) TBH = TBH Perpendicular + TBH Parallel 
Then ( ) ( )2 ( )2 
TBH Perpendicular = TBH − TBH Parallel 
( )2 ( )2 = 1125 N − 750 N 
= 838.53 N 
and ( )MAD = TBH Perpendicular d 
180 N⋅m = (838.53 N)d 
d = 0.21466 m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 215 mm W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 63. 
From the solution of Problem 3.54: 
λAD = 0.8i − 0.6k 
(500 N) (925 N) (400 N) 
1125 N 
T i j k 
BG 
TBG 
= − + − 
= 
MAD = −222 N⋅m 
Only the perpendicular component of TBG contributes to the moment of TBG about line AD. The 
parallel component of TBG will be used to find the perpendicular component. 
Have ( )TBG Parallel = λAD ⋅TBG 
= [0.8i − 0.6k] ⋅ −(500 N)i + (925 N) j − (400 N)k 
= (−400 + 240)N 
= −160 N 
Since ( ) ( ) TBG = TBG Perpendicular + TBG Parallel 
Then ( ) ( )2 ( )2 
TBG Perpendicular = TBG − TBG Parallel 
( )2 ( )2 = 1125 N − −160 N 
= 1113.56 N 
and ( )MAD = TBG Perpendicular d 
222 N⋅m = (1113.56 N)d 
d = 0.199361 m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 199.4 mm W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 64. 
From the solution of Problem 3.59: 
λDI = 0.97014i − 0.24254 j 
(5.4 lb) (16.2 lb) (24.3 lb) 
29.7 lb 
T i j k 
EF 
TEF 
= − + 
= 
MDI = 233.39 lb⋅ft 
Only the perpendicular component of TEF contributes to the moment of TEF about line DI. The 
parallel component of TEF will be used to find the perpendicular component. 
Have ( )TEF Parallel = λDI ⋅TEF 
= [0.97014i − 0.24254 j] ⋅ (5.4 lb)i − (16.2 lb) j + (24.3 lb)k 
= (5.2388 + 3.9291) 
= 9.1679 lb 
Since ( ) ( ) TEF = TEF Perpendicular + TEF Parallel 
Then ( ) ( )2 ( )2 
TEF Perpendicular = TEF − TEF Parallel 
( )2 ( )2 = 29.7 − 9.1679 
= 28.250 lb 
and ( )MDI = TEF Perpendicular d 
233.39 lb⋅ft = (28.250 lb)d 
d = 8.2616 ft 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 8.26 ft W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 65. 
From the solution of Problem 3.60: 
λDI = 0.97014i − 0.24254 j 
(2.4 lb) (7.2 lb) (23.4 lb) 
24.6 lb 
T i j k 
EG 
TEG 
= − − 
= 
MDI = − 224.74 lb⋅ft 
Only the perpendicular component of TEG contributes to the moment of TEG about line DI. The 
parallel component of TEG will be used to find the perpendicular component. 
Have ( )TEG Parallel = λDI ⋅TEG 
= [0.97014 i − 0.24254 j] ⋅ (2.4 lb) i − (7.2 lb) j − (23.4 lb)k 
= (2.3283 + 1.74629) 
= 4.0746 lb 
Since ( ) ( ) TEG = TEG Perpendicular + TEG Parallel 
Then ( ) ( )2 ( )2 
TEG Perpendicular = TEG − TEG Parallel 
( )2 ( )2 = 24.6 − 4.0746 
= 24.260 lb 
and ( )MDI = TEG Perpendicular d 
224.74 lb⋅ft = (24.260 lb)d 
d = 9.2638 ft 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 9.26 ft W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 66. 
From the solution of Prob. 3.55: 
λAD = 0.99228i + 0.124035 j 
FEF = (2.7 kN)i + (10.8 kN) j + (21.6 kN)k 
FEF = 24.3 kN 
MAD = −24.916 kN⋅m 
Only the perpendicular component of FEF contributes to the moment of FEF about edge AD. The 
parallel component of FEF will be used to find the perpendicular component. 
Have ( )FEF Parallel = λAD ⋅FEF 
= [0.99228i + 0.124035 j] ⋅ (2.7 kN)i + (10.8 kN) j + (21.6 kN)k 
= 4.0187 kN 
Since ( ) ( ) FEF = FEF Perpendicular + FEF Parallel 
Then ( ) ( )2 ( )2 
FEF Perpendicular = FEF − FEF Parallel 
( )2 ( )2 = 24.3 − 4.0187 
= 23.965 kN 
and ( )MAD = FEF Perpendicular d 
24.916 kN⋅m = (23.965 kN)d 
d =1.039683m or d = 1.040 m W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 67. 
From the solution of Prob. 3.56: 
λAD = 0.99228i + 0.124035 j 
FGH = −(7.1 kN)i + (14.2 kN) j + (14.2 kN)k 
FGH = 21.3 kN 
MAD = −35.931 kN⋅m 
Only the perpendicular component of FGH contributes to the moment of FGH about edge AD. The 
parallel component of FGH will be used to find the perpendicular component. 
Have ( )FGH Parallel = λAD ⋅FGH 
= (0.99228i + 0.124035 j) ⋅ −(7.1 kN)i + (14.2 kN) j + (14.2 kN)k 
= −5.2839 kN 
Since ( ) ( ) FGH = FGH Perpendicular + FGH Parallel 
Then ( ) ( )2 ( )2 
FGH Perpendicular = FGH − FGH Parallel 
( )2 ( )2 = 21.3 − 5.2839 
= 20.634 kN 
and ( )MAD = FGH Perpendicular d 
35.931 kN⋅m = (20.634 kN)d 
d = 1.741349m or d = 1.741 m W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 68. 
(a) Have M1 = d1F1 
Where d1 = 0.6 m and F1 = 40 N 
( )( ) ∴ M1 = 0.6 m 40 N 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or M1 = 24.0 N⋅m W 
(b) Have MTotal = M1 + M2 
8 N⋅m = 24.0 N⋅m − (0.820 m)(cosα )(24 N) 
∴ cosα = 0.81301 
or α = 35.6° W 
(c) Have M1 + M2 = 0 
( ) 24 N⋅m − d2 24 N = 0 
or d2 = 1.000 m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 69. 
(a) M = Fd 
12 N⋅m = F (0.45 m) 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or F = 26.7 N W 
(b) M = Fd 
12 N⋅m = F (0.24 m) 
or F = 50.0 N W 
(c) M = Fd 
( )2 ( )2 Where d = 0.45 m + 0.24m 
= 0.51 m 
12 N⋅m = F (0.51 m) 
or F = 23.5 N W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 70. 
(a) Note when a = 8 in., rC/F is perpendicular to the inclined 10 lb forces. 
Have M = ΣFd ( ) 
= −(10 lb)a + 8 in. + 2(1 in.) − (10 lb)2a 2 + 2(1 in.) 
For a = 8 in., 
M = −(10 lb)(18 in. + 24.627 in.) 
= −426.27 lb⋅in. 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or M = 426 lb⋅in. W 
(b) Have M = 480 lb⋅in. 
Also M = Σ(M + Fd ) ( ) 
= Moment of couple due to horizontal forces at A and D + 
Moment of force-couple systems at C and F about C. 
Then −480 lb⋅in. = −10 lb a + 8 in. + 2(1 in.) + MC + MF + FX (a + 8 in.) + Fy (2a) 
Where MC = −(10 lb)(1 in.) = −10 lb⋅in. 
MF = MC = −10 lb⋅in. 
Fx − 
= 
10 lb 
2 Fy − 
= 
10 lb 
2 ∴ −480 lb⋅in. = −10 lb(a + 10 in.) − 10 lb⋅in. − 10 lb⋅in. 
10 lb ( 8 in.) 10 lb (2 ) 
2 2 
− a + − a 
303.43 = 31.213 a 
or a = 9.72in.W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 71. 
(a) Have M = ΣFd ( ) 
= (9 lb)(13.8 in.) − (2.5 lb)(15.2 in.) 
= (86.2 lb⋅in.) 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
M = 86.2 lb⋅in. W 
(b) Have M = Td = 86.2 lb⋅in. 
For T to be a minimum, d must be maximum. 
∴Tmin must be perpendicular to line AC. 
tan 15.2 in. 
11.4 in. 
θ = 
θ = 53.130° 
or θ = 53.1° W 
(c) Have M = Tmindmax Where M = 86.2 lb⋅in. 
( )2 ( )2 ( ) 
dmax = 15.2 in. + 11.4 in. + 2 1.2 in. 
= 21.4 in. 
( ) ∴86.2 lb⋅ in. = Tmin 21.4 in. 
Tmin = 4.0280 lb 
or Tmin = 4.03 lb W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 72. 
Based on M = M1 + M2 
( ) M1 = 18 N⋅m k 
( ) M2 = 7.5 N⋅m i 
∴M = (7.5 N⋅m)i + (18 N⋅m)k 
and ( )2 ( )2 M = 7.5 N⋅m + 18 N⋅m 
= 19.5 N⋅m 
M ⋅ i + ⋅ 
k λ 
= = 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or M = 19.50 N⋅m W 
With (7.5 N m) (18 N m) 
M 19.5 N ⋅ 
m 
5 12 
13 13 
= i + k 
Then cos 5 67.380 
x 13 x θ = ∴θ = ° 
cosθ y = 0 ∴θ y = 90° 
cos 12 22.620 
z 13 z θ = ∴θ = ° 
or θ x = 67.4°, θ y = 90.0°, θ z = 22.6° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 73. 
Have M = M1 + M2 
Where M1 = rC/B × PIC 
( ) ( ) rC/B = 38.4 in. i − 16 in. j 
PIC = −(25 lb)k 
i j k 
M 
1 38.4 16 0 lb in. 
∴ = − ⋅ 
0 0 − 
25 
= (400 lb⋅in.)i + (960 lb⋅in.) j 
and M2 = rD/A × PZE 
( ) ( ) rD/A = 8 in. j − 22 in. k 
( ) ( ) ( ) 
JJJG 
− 19.2 in. i + 22 in. 
k 
 = = 
( )2 ( )2 
36.5 lb 
19.2 in. 22 in. 
P ED 
P 
ZE ZE 
ED 
− + 
= −(24 lb)i + (27.5 lb)k 
i j k 
2 0 8 22lbin. 
M 
∴ = − ⋅ 
24 0 27.5 
− 
( ) ( ) ( ) M2 = 220 lb⋅in. i + 528 lb⋅in. j + 192 lb⋅in. k 
and M = M1 + M2 
= (400 lb⋅in.)i + (960 lb⋅in.) j + (220 lb⋅in.)i + (528 lb⋅in.) j + (192 lb⋅in.)k 
= (620 lb⋅in.)i + (1488 lb⋅in.) j + (192 lb⋅in.)k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
continued
COSMOS: Complete Online Solutions Manual Organization System 
( )2 ( )2 ( )2 M =  620 + 1488 + 192  lb⋅in.   
= 1623.39 lb⋅in. 
M ⋅ i + ⋅ j + ⋅ 
k λ 
= = 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or M = 1.623 kip⋅in.W 
(620 lb in.) (1488 lb in.) (192 lb in.) 
M 1623.39 lb ⋅ 
in. 
= 0.38192i + 0.91660 j + 0.118271k 
cosθ x = 0.38192 or θ x = 67.5° W 
cosθ y = 0.91660 or θ y = 23.6° W 
cosθ z = 0.118271 or θ z = 83.2°W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 74. 
Have M = M1 + M2 
Where M1 = rE/D × FD 
= −(0.7 m)k × (80 N) j 
= (56.0 N⋅m)i 
And M2 = rG/F × FB 
Now ( )2 ( )2 ( )2 dBF = −0.300 m + 0.540 m + 0.350 m 
= 0.710m 
Then FB = λBFFB 
( − 0.300 m) i + (0.540 m) j + 
(0.350 m) k 
( 71 N 
) 
0.710 m 
= 
= −(30 N)i + (54 N) j + (35 N)k 
∴ ( ) ( ) ( ) ( ) M2 = 0.54 m j × − 30 N i + 54 N j + 35 N k 
= (18.90 N⋅m)i + (16.20 N⋅m)k 
Finally M = (56.0 N⋅m)i + (18.90 N⋅m)i + (16.20 N⋅m)k 
= (74.9 N⋅m)i + (16.20 N⋅m)k 
and ( )2 ( )2 M = 74.9 N⋅m + 16.20 N⋅m 
= 76.632 N⋅m or M = 76.6 N⋅m W 
cos 74.9 cos 0 cos 16.20 
x 76.632 y 76.632 z 76.632 θ = θ = θ = 
or θ x = 12.20° θ y = 90.0° θ z = 77.8° W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 75. 
Have M = (M1 + M2 ) + MP 
From the solution to Problem 3.74 
( ) ( ) ( ) M1 + M2 = 74.9 N⋅m i + 16.20 N⋅m k 
Now MP = rD / E × PE 
= (0.54 m) j + (0.70 m)k × (90 N)i 
= (63.0 N⋅m) j − (48.6 N⋅m)k 
∴ M = (74.9i + 16.20k) + (63.0 j − 48.6 k) 
= (74.9 N⋅m)i + (63.0 N⋅m) j − (32.4 N⋅m)k 
and ( )2 ( )2 ( )2 M = 74.9 N⋅m + 63.0 N⋅m + −32.4 N⋅m 
= 103.096 N⋅m 
− 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or M = 103.1 N⋅m W 
and cos 74.9 cos 63.0 cos 32.4 
θ x = θ 103.096 y = θ 
= 
103.096 z 103.096 or θ x = 43.4° θ y = 52.3° θ z = 108.3° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 76. 
Have M = M1 + M2 + MP 
From Problem 3.73 solution: 
( ) ( ) M1 = 400 lb⋅in. i + 960 lb⋅in. j 
( ) ( ) ( ) M2 = 220 lb⋅in. i + 528 lb⋅in. j + 192 lb⋅in. k 
Now MP = rE/A × PE 
( ) ( ) ( ) rE/A = 19.2 in. i + 8 in. j − 44 in. k 
PE = (52.5 lb) j 
Therefore 
i j k 
19.2 8 44 
0 52.5 0 
P = − 
M 
= (2310 lb. in.)i + (1008 lb. in.)k 
and M = M1 + M2 + MP 
= [(400 + 220 + 2310)i + (960 + 528)j + (192 +1008)k] lb⋅in. 
= (2930 lb⋅in.)i + (1488 lb⋅in.) j + (1200 lb⋅in.)k 
( )2 ( )2 ( )2 M = 2930 + 1488 + 1200 
= 3498.4 lb⋅in. 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or M = 3.50 kip⋅in.W 
continued
COSMOS: Complete Online Solutions Manual Organization System 
M 2930 i + 1488 j + 
= = 1200 
k 
M 
3498.4 
λ 
= 0.83753i + 0.42534j + 0.34301k 
cosθ x = 0.83753 
or θ x = 33.1° W 
cosθ y = 0.42534 
or θ y = 64.8° W 
cosθ z = 0.34301 
or θ z = 69.9° W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 77. 
Have M = M1 + M2 + M3 
Where M1 = −(1.2 lb⋅ft)cos 25°j − (1.2 lb⋅ft)sin 25°k 
M2 = −(1.3 lb⋅ft) j 
M3 = −(1.4 lb⋅ft)cos 20°j + (1.4 lb⋅ft)sin 20°k 
∴ M = (−1.08757 − 1.3 − 1.31557) j + (−0.507142 + 0.478828)k 
= −(3.7031 lb⋅ft) j − (0.028314 lb⋅ft)k 
and ( )2 ( )2 M = −3.7031 + −0.028314 = 3.7032 lb⋅ft 
− − 
= M = j k 
M 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or M = 3.70 lb⋅ft W 
3.7031 0.028314 
3.7032 
λ 
= −0.99997j − 0.0076458k 
cosθ x = 0 
or θ x = 90°W 
cosθ y = −0.99997 
or θ y = 179.6° W 
cosθ z = −0.0076458 
or θ z = 90.4° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 78. 
(a) FB = P: ∴ FB = 160.0 N 50.0° W 
MB = −rBAPcos10° 
= −(0.355 m)(160 N)cos10° 
= −55.937 N⋅m 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or MB = 55.9 N⋅m W 
(b) FC = P: ∴ FC = 160.0 N 50.0° W 
( ) C B CB B M M r F⊥ 
= − 
= MB − rCBFB sin 55° 
= −55.937 N⋅m − (0.305 m)(160 N)sin 55° 
or MC = 95.9 N⋅m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 79. 
(a) ΣF: FB = 135 N 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or FB = 135 N W 
ΣM: MB = P dB 
= (135 N)(0.125 m) 
= 16.875 N⋅m 
or MB = 16.88 N⋅m W 
(b) ΣMB : MB = FC d 
16.875 N⋅m = FC (0.075 m) 
FC = 225 N 
or FC = 225 N W 
ΣF: 0 = − FB + FC 
FB = FC = 225 N 
or FB = 225 N W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 80. 
(a) Based on ΣF: PC = P = 700 N 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or PC = 700 N 60°W 
ΣMC : MC = −PxdCy + PydCx 
where Px = (700 N)cos60° = 350 N 
Py = (700 N)sin 60° = 606.22 N 
dCx = 1.6 m 
dCy = 1.1 m 
∴ MC = −(350 N)(1.1 m) + (606.22 N)(1.6 m) 
= −385 N⋅m + 969.95 N⋅m 
= 584.95 N⋅m 
or MC = 585 N⋅m W 
(b) Based on ΣFx : PDx = Pcos60° 
= (700 N)cos60° 
= 350 N 
ΣMD : (Pcos60°)(dDA ) = PB (dDB ) 
(700 N)cos60° (0.6 m) = PB (2.4 m) 
PB = 87.5 N 
or PB = 87.5 N W
COSMOS: Complete Online Solutions Manual Organization System 
ΣFy : Psin 60° = PB + PDy 
(700 N)sin 60° = 87.5 N + PDy 
PDy = 518.72 N 
( ) ( )2 2 
PD = PDx + PDy 
( )2 ( )2 = 350 + 518.72 = 625.76 N 
P 
P 
  θ = tan − 1   = tan − 1  518.72    = 55.991 
° 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
350 
Dy 
Dx 
    
or PD = 626 N 56.0°W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 81. 
ΣFx : 2.8cos65° = FA cosθ + FC cosθ 
= (FA + FC )cosθ (1) 
ΣFy : 2.8sin 65° = FA sinθ + FC sinθ 
= (FA + FC )sinθ (2) 
Then (2) tan 65 tan 
(1) 
⇒ ° = θ 
or θ = 65.0° 
ΣMA : (27 m)(2.8 kN)sin 65° = (72 m)(FC )sin 65° 
or FC = 1.050 kN 
From Equation (1): 2.8 kN = FA + 1.050 kN 
or FA = 1.750 kN 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
∴ FA = 1.750 kN 65.0°W 
FC = 1.050 kN 65.0° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 82. 
Based on 
ΣFx : − (54 lb)cos30° = −FB cosα − FC cosα 
(FB + FC )cosα = (54 lb)cos30° (1) 
ΣFy : (54 lb)sin 30° = FB sinα + FC sinα 
or (FB + FC )sinα = (54 lb)sin 30° (2) 
From ( ) 
2 
: tan tan30 
1 
( ) 
Eq 
Eq 
α = ° 
∴α = 30° 
Based on ΣMC : (54 lb)cos(30° − 20°) (10 in.) = (FB cos10°)(24 in.) 
∴ FB = 22.5 lb 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or FB = 22.5 lb 30° W 
From Eq. (1), (22.5 + FC )cos30° = (54)cos30° 
FC = 31.5 lb 
or FC = 31.5 lb 30° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 83. 
(a) Based on 
ΣFx : −(54 lb)cos30° = − FC cos30° 
∴ FC = 54 lb 
1 27 : tan 63.006 
2 13.7534 
27 30.301 lb 
B sin 63.006 F = = 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or FC = 54.0 lb 30° W 
ΣMC : (54 lb)cos10° (10 in.) = MC 
∴ MC = 531.80 lb⋅in. 
or MC = 532 lb⋅in. W 
(b) Based on 
ΣFy : (54 lb)sin 30° = FB sinα 
or FB sinα = 27 (1) 
ΣMB : 531.80 lb⋅in. − (54 lb)cos10° (24 in.) 
= − FC (24 in.)cos 20° 
FC = 33.012 lb 
or FC = 33.0 lb W 
And ΣFx : −(54 lb)cos30° = −33.012 lb − FB cosα 
FB cosα = 13.7534 (2) 
From ( ) 
( ) 
Eq 
Eq 
α = ∴α = ° 
From Eq. (1), ( ° 
) 
or FB = 30.3 lb 63.0° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 84. 
ΣF F + F + F = F 
(a) Have : 
y C D E 
F = −200lb + 150 lb − 150 lb 
F = −200 lb 
ΣM F d − − F = 
(200 lb)(d − 4.5 ft ) − (150 lb)(6 ft ) = 0 
ΣM F d − + F = 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or F = 200 lb  
Have : ( 4.5 ft ) (6 ft ) 0 
G C D 
d = 9 ft 
or d = 9.00 ft  
(b) Changing directions of the two 150-lb forces only changes the sign of 
the couple. 
∴ F = −200 lb 
or F = 200 lb  
And : ( 4.5 ft ) (6 ft ) 0 
G C D 
(200 lb)(d − 4.5 ft ) + (150 lb)(6 ft ) = 0 
d = 0 
or d = 0
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 85. 
(a) 
(b) 
(c) 
Based on ΣFz : 
−200 N + 200 N + 240 N = FA 
FA = 240 N 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or FA = (240 N)k W 
Based on ΣMA: 
(200 N)(0.7 m) − (200 N)(0.2 m) = MA 
MA = 100 N⋅m 
or MA = (100.0 N⋅m) jW 
Based on ΣFz : 
−200 N + 200 N + 240 N = F 
F = 240 N 
or F = (240 N)k W 
Based on ΣMA: 
100 N⋅m = (240 N)(x) 
x = 0.41667 m 
or x = 0.417 m From A along AB W 
Based on ΣMB : 
−(200 N)(0.3 m) + (200 N)(0.8 m) − P(1 m) = R(0) 
P = 100 N 
or P = 100.0 N W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 86. 
Let R be the single equivalent force... 
ΣF: R = FA + FC 
= (260 N)(cos10°i − sin10°k) + (320 N)(−cos8°i − sin8°k) 
= −(60.836 N)i − (89.684 N)k 
or R = −(60.8 N)i − (89.7 N)k W 
ΣMA : rADRx = rACFC cos8° 
rAD (60.836 N) = (0.690 m)(320 N)cos8° 
rAD = 3.5941 m 
∴R Would have to be applied 3.59 m to the right of A W 
on an extension of handle ABC. 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 87. 
(a) Have ΣF: FB + FC + FD = FA 
Since FB = −FD 
∴ FA = FC = 22 lb 20° 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or FA = 22.0 lb 20° W 
Have ΣMA : − FBT (r ) − FCT (r ) + FDT (r ) = MA 
− (28 lb)sin15° (8 in.) − (22 lb)sin 25° (8 in.) 
+ (28 lb)sin 45° (8 in.) = MA 
MA = 26.036 lb⋅in. 
or MA = 26.0 lb⋅in. W 
(b) Have ΣF: FA = FE 
or FE = 22.0 lb 20° W 
ΣM: MA = [FE cos 20°](a) 
∴ 26.036 lb⋅in. = (22 lb)cos 20° (a) 
a = 1.25941 in. 
or a = 1.259 in. Below AW
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 88. 
(a) Let R be the single equivalent force. Then 
R = (120 N)k R = 120 N W 
ΣMB : − a(120 N) = −(0.165 m)(90 N)cos15° + (0.201 m)(90 N)sin15° 
a = 0.080516 m 
∴The line of action is y = 201mm − 80.516 mm = 
19.984 mm 
2 
2 3.1697 3.1697 4 2.48396 0.69263 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or y = 19.98 mm W 
(b) ΣMB : − (0.201 − 0.040)m (120 N) = −(0.165 m)(90 N)cosθ + (0.201 m)(90 N)sinθ 
or cosθ − 1.21818sinθ = 1.30101 
or cos2θ = (1.30101 + 1.21818sinθ )2 
or 1 − sin2θ = 1.69263 + 3.1697sinθ + 1.48396sin2θ 
or 2.48396sin2θ + 3.1697sinθ + 0.69263 = 0 
Then 
( ) ( )( ) 
( ) 
sin 
2 2.48396 
θ 
− ± − 
= 
or θ = −16.26° and θ = −85.0° W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 89. 
(a) First note that F = P and that F must be equivalent to (P, MD) at point D, 
Where MD = 57.6 N⋅m 
For ( )min F = F F must act as far from D as possible 
∴ Point of application is at point B W 
(b) For ( )min F F must be perpendicular to BD 
Now ( )2 ( )2 dDB = 630 mm + −160 mm 
= 650 mm 
tan 63 
16 
α = 
α = 75.7° 
Then MD = dDB F 
57.6 N⋅m = (0.650 m)F 
F = 88.6 N 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or F = 88.6 N 75.7°W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 90. 
Have ΣF: −(250 kN) j = F 
i j k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or F = −(250 kN) jW 
Also have ΣMG : rP × P = M 
0.030 0 0.060 kN m = 
0 250 0 
− ⋅ 
− 
M 
∴ M = (15 kN⋅m)i + (7.5 kN⋅m)k 
or M = (15.00 kN⋅m)i + (7.50 kN⋅m)k W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 91. 
Have ΣF: TAB = F 
JJJG 
T AB 
T = 
where AB AB 
AB 
i j k 
54 lb 2.25 18 9 
( ) 
− + 
( 2.25 )2 ( 18 )2 ( 9 
)2 
= 
+ − + 
= (6 lb)i − (48 lb) j + (24 lb)k 
So that F = (6.00 lb)i − (48.0 lb) j + (24.0 lb)k W 
Have ΣME : rA/E × TAB = M 
i j k 
0 22.5 0 lb ft 
6 48 24 
⋅ = 
− 
M 
∴M = (540 lb⋅ft)i − (135 lb⋅ft)k 
or M = (540 lb⋅ft)i − (135.0 lb⋅ft)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 92. 
Have ΣF: TCD = F 
JJJG 
T CD 
T = 
where CD CD 
CD 
i j k 
61 lb 0.9 16.8 7.2 
( ) 
− − + 
( 0.9 )2 ( 16.8 )2 ( 7.2 
)2 
= 
− + − + 
= −(3 lb)i − (56 lb) j + (24 lb)k 
So that F = −(3.00 lb)i − (56.0 lb) j + (24.0 lb)k W 
Have ΣMO = rC/D × TCD = M 
i j k 
0 22.5 0 lb ft 
3 56 24 
⋅ = 
− − 
M 
∴M = (540 lb⋅ft)i + (67.5 lb⋅ft)k 
M = (540 lb⋅ft)i + (67.5 lb⋅ft)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 93. 
Have ΣF: TAB = F 
JJJG 
T AB 
T = 
where AB AB 
AB 
i j k 
10.5 kN 4.75 2 
( ) 
− − + 
( 1 )2 ( 4.75 )2 ( 2 
)2 
= 
− + − + 
= −(2 kN)i − (9.5 kN) j + (4 kN)k 
So that F = −(2.00 kN)i − (9.50 kN) j + (4.00 kN)k W 
Have ΣMO : rA × TAB = M 
i j k 
3 4.75 0 kNm 
2 9.5 4 
⋅ = 
− − 
M 
∴M = (19 kN⋅m)i − (12 kN⋅m) j − (19 kN⋅m)k 
M = (19.00 kN⋅m)i − (12.00 kN⋅m) j − (19.00 kN⋅m)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 94. 
Let (R, MO ) be the equivalent force-couple system 
Then R = (220 N)(−sin 60°j − cos60°k) 
= (110 N)(− 3j − k) 
or R = −(190.5 N) j − (110 N)k W 
Now ΣMO : MO = rOC × R 
Where rOC = (0.2 m)i + (0.1 − 0.4sin 20°)m j + (0.4cos 20°m)k 
i j k 
Then (0.1)(110 N) 2 (1 4sin 20 ) 4cos 20 (m) 
O = − − ° ° 
0 3 1 
M 
= −(11 N⋅m){(1 − 4sin 20°)(1) − (4cos 20°)( 3) i − 2 j + 2 3 k} 
or MO = (75.7 N⋅m)i + (22.0 N⋅m) j − (38.1 N⋅m)k W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 95. 
Have ΣF: F = FD 
JJG 
where F AI 
AI 
F = 
i j k 
63 lb 14.4 4.8 7.2 
( ) 
− + 
( 14.4 )2 ( 4.8 )2 ( 7.2 
)2 
= 
+ − + 
So that F = (54.0 lb)i − (18.00 lb) j + (27.0 lb)k W 
Have ΣMD : M + rI/O × F = MD 
JJJG 
where M AC 
AC 
M = 
i k 
560 lb in. 9.6 7.2 
( ) 
− 
( 9.6 )2 ( 7.2 
)2 
= ⋅ 
+ − 
= (448 lb⋅in.)i − (336 lb⋅in.)k 
i j k 
Then (448 lb in.) (336 lb in.) 0 0 14.4 lb in. 
D = ⋅ − ⋅ + ⋅ 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
54 − 
18 27 
M i k 
= (448 lb⋅in.)i − (336 lb⋅in.)k + (259.2 lb⋅in.)i + (777.6 lb⋅in.) j 
or MD = (707 lb⋅in.)i + (778 lb⋅in.) j − (336 lb⋅in.)k W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 96. 
First assume that the given force W and couples M1 and M2 act at the 
origin. 
Now W = −Wj 
and M = M1 + M2 = −(M2 cos 25°)i + (M1 − M2 sin 25°)k 
Note that since W and M are perpendicular, it follows that they can be 
replaced with a single equivalent force. 
(a) Have F = W or F = −Wj = −(2.4 N) j 
i j k 
x z Wz Wx 
= = − 
W 
− 
= − ° = − − °    
x = − ° = − 
z = − ° = − 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or F = −(2.40 N) j W 
(b) Assume that the line of action of F passes through point P (x, 0, z). 
Then for equivalence 
M = rP/O × F 
where rP/O = xi + zk 
∴ −(M2 cos 25°)i + (M1 − M2 sin 25°)k 
0 ( ) ( ) 
0 0 
i k 
Equating the i and k coefficients, 
z Mz cos 25 and x M1 M2 sin 25 
W W 
  
(b) For W = 2.4 N, M1 = 0.068 N⋅m, M2 = 0.065 N⋅m 
0.068 0.065sin 25 0.0168874 m 
2.4 
− 
or x = −16.89 mmW 
0.065cos 25 0.024546 m 
2.4 
or z = −24.5 mmW
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 97. 
(a) Have ΣMBz : M2z = 0 
( ) k⋅ rH/B × F1 + M1z = 0 (1) 
where ( ) ( ) rH/B = 31 in. i − 2 in. j 
F1 = λEHF1 
(6 in.) + (6 in.) − 
(7 in.) ( ) 
i j k 
− + − 
= ⋅ 
⋅ − ⋅ 
− + = 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
20 lb 
11.0 in. 
= 
i j k 
20 lb (6 6 7 ) 
11.0 
= i + j − k 
M1z = k⋅M1 
M1 = λEJM1 
( 3 in. ) ( 7 in. 
) ( 480 lb in. 
) 2 
58 in. 
d 
d 
+ 
Then from Equation (1), 
( )( ) 
2 
0 0 1 
20 lb in. 7 480 lb in. 31 2 0 0 
11.0 6 6 − 7 d 
+ 
58 continued
COSMOS: Complete Online Solutions Manual Organization System 
Solving for d, Equation (1) reduces to 
20 lb ⋅ in. ( ⋅ 
186 + 12 ) − 3360 lb in. = 
0 
11.0 d 2 
+ 
58 
From which d = 5.3955 in. 
or d = 5.40 in.W 
20 lb 6 6 7 
11.0 
(b) F 2 = F 1 
= ( i + j − k 
) = (10.9091i + 10.9091j − 12.7273k)lb 
( ) ( ) ( ) or F2 = 10.91 lb i + 10.91 lb j − 12.73 lb k W 
M2 = rH/B × F1 + M1 
i j k 
⋅ ( − 5.3955) i + 3 j − 
7 k 
31 2 0 20 lb in. (480 lb in.) 
= − + ⋅ 
11.0 9.3333 
6 6 − 
7 
= (25.455i + 394.55j + 360k)lb⋅in. 
+(−277.48i + 154.285j − 360k)lb⋅in. 
( ) ( ) M2 = − 252.03 lb⋅in. i + 548.84 lb⋅in. j 
( ) ( ) or M2 = − 21.0 lb⋅ft i + 45.7 lb⋅ft j W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 98. 
(a) a: ΣFy : Ra = −400 N − 600 N 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or Ra = 1000 N W 
ΣMB : Ma = (2 kN⋅m) + (2 kN⋅m) + (5 m)(400 N) 
or Ma = 6.00 kN⋅m W 
b: ΣFy : Rb = −1200 N + 200 N 
or Rb = 1000 N W 
ΣMB : Mb = (0.6 kN⋅m) + (5 m)(1200 N) 
or Mb = 6.60 kN⋅m W 
c: ΣFy : Rc = 200 N − 1200 N 
or Rc = 1000 N W 
ΣMB : Mc = −(4 kN⋅m) − (1.6 kN⋅m) − (5 m)(200 N) 
or Mc = 6.60 kN⋅m W 
d : ΣFy : Rd = −800 N − 200 N 
or Rd = 1000 N W 
ΣMB : Md = −(1.6 kN⋅m) + (4.2 kN⋅m) + (5 m)(800 N) 
or Md = 6.60 kN⋅m W 
continued
COSMOS: Complete Online Solutions Manual Organization System 
e: ΣFy : Re = −500 N − 400 N 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or Re = 900 N W 
ΣMB : Me = (3.8 kN⋅m) + (0.3 kN⋅m) + (5 m)(500 N) 
or Me = 6.60 kN⋅m W 
f : ΣFy : Rf = 400 N − 1400 N 
or R f = 1000 N W 
ΣMB : M f = (8.6 kN⋅m) − (0.8 kN⋅m) − (5 m)(400 N) 
or Mf = 5.80 kN⋅m W 
g: ΣFy : Rg = −1200 N + 300 N 
or Rg = 900 N W 
ΣMB : Mg = (0.3 kN⋅m) + (0.3 kN⋅m) + (5 m)(1200 N) 
or Mg = 6.60 kN⋅m W 
h: ΣFy : Rh = −250 N − 750 N 
or Rh = 1000 N W 
ΣMB : Mh = −(0.65 kN⋅m) + (6 kN⋅m) + (5 m)(250 N) 
or Mh = 6.60 kN⋅m W 
(b) The equivalent loadings are (b), (d), (h) W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 99. 
The equivalent force-couple system at B is... 
ΣFy : R = −650 N − 350 N 
or R = 1000 N 
ΣMB : M = (1.6 m)(800 N) + (1.27 kN⋅m) + (5 m)(650 N) 
or M = 5.80 kN⋅m 
∴ The equivalent loading of Problem 3.98 is (f) W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 100. 
Equivalent force system... 
(a) ΣFy : R = −400 N − 200 N 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or R = 600 N W 
ΣMA : −d (600 N) = −(200 N⋅m) + (100 N⋅m) − (4 m)(200 N) 
or d = 1.500 m W 
(b) ΣFy : R = −400 N + 100 N 
or R = 300 N W 
ΣMA : −d (300 N) = −(200 N⋅m) − (600 N⋅m) + (4 m)(100 N) 
or d = 1.333 m W 
(c) ΣFy : R = −400 N − 100 N 
or R = 500 N W 
ΣMA : −d (500 N) = −(200 N⋅m) − (200 N⋅m) − (4 m)(100 N) 
or d = 1.600 m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 101. 
The equivalent force-couple system at A for each of the five force-couple systems will be determined and 
compared to 
F = (2 lb) j M = (48 lb⋅in.)i + (32 lb⋅in.)k 
To determine if they are equivalent 
Force-couple system at B: 
Have ΣF: F = (2 lb) j 
and ( ) ΣMA : M = ΣMB + rB/A × FB 
M = (32 lb⋅in.)i + (16 lb⋅in.)k + (8 in.)i × (2 lb) j 
= (32 lb⋅in.)i + (32 lb⋅in.)k 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
∴ is not equivalent W 
Force-couple system at C: 
Have ΣF: F = (2 lb) j 
And ( ) ΣMA : M = MC + rC/A × FC 
M = (68 lb⋅in.)i + (8 in.)i + (10 in.)k × (2 lb) j 
= (48 lb⋅in.)i + (16 lb⋅in.)k 
∴ is not equivalent W 
continued
COSMOS: Complete Online Solutions Manual Organization System 
Force-couple system at E: 
Have ΣF: F = (2 lb) j 
and ( ) ΣMA : M = ME + rE/A × FE 
M = (48 lb⋅in.)i + (16 in.)i − (3.2 in.) j × (2 lb) j 
= (48 lb⋅in.)i + (32 lb⋅in.)k 
∴ is equivalent W 
Force-couple system at G: 
Have ΣF: F = (2 lb)i + (2 lb) j 
F has two force components 
∴ is not equivalent W 
Force-couple system at I: 
Have ΣF: F = (2 lb) j 
and ( ) ΣMA : ΣMI + rI/A × FI 
M = (80 lb⋅in.)i − (16 in.)k 
+ (16 in.)i − (8 in.) j + (16 in.)k × (2 lb) j 
M = (48 lb⋅in.)i + (16 lb⋅in.)k 
∴ is not equivalent W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 102. 
First WA = mAg = (38 kg) g 
WB = mBg = (29 kg) g 
(a) WC = mCg = (27 kg) g 
For resultant weight to act at C, ΣMC = 0 
Then (38 kg) g (2 m) − (27 kg) g (d ) − (29 kg) g (2 m) = 0 
76 58 0.66667 m 
27 
d − 
∴ = = 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 0.667 m W 
(b) WC = mCg = (24 kg) g 
For resultant weight to act at C, ΣMC = 0 
Then (38 kg) g (2 m) − (24 kg) g (d ) − (29 kg) g (2 m) = 0 
76 58 0.75 m 
24 
d − 
∴ = = 
or d = 0.750 m W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 103. 
ΣF −W − W − W = R 
∴R = −200 lb − 175 lb − 135 lb 
(a) Have : 
C D E 
= −510 lb 
  Σ =−   
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or R = 510 lb  
Have : 
A 
ΣM 
−(200 lb)(4.5 ft ) − (175 lb)(7.8 ft ) − (135 lb)(12.75 ft ) = − R(d ) 
∴−3986.3 lb⋅ft = (−510 lb)d 
or d = 7.82 ft  
(b) For equal reactions at A and B, 
The resultant R must act at midspan. 
From 
2 
A 
L 
M R 
  
∴−(200 lb)(4.5 ft ) − (175 lb)(4.5 ft + a) − (135 lb)(4.5 ft + 2.5 a) 
= −(510 lb)(9 ft ) 
or 2295 + 512.5 a = 4590 
and a = 4.48 ft
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 104. 
Have ΣF: −12 kN − WL − 18 kN = −40 kN − 40 kN 
WL = 50 kN 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or WL = 50.0 kN W 
ΣMB : (12 kN)(5 m) + (50 kN)d = (40 kN)(5 m) 
d = 2.8 m 
or heaviest load (50 kN) is located W 
2.80 m from front axle
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 105. 
(a) ΣF: R = (80 N)i − (40 N) j − (60 N) j +(90 N)(−sin 50°i − cos50°j) 
= (11.0560 N)i − (157.851 N) j 
( )2 ( )2 R = 11.0560 N + −157.851 N 
= 158.2 N 
− 
tan = 
157.851 
11.0560 
θ 
θ = 86.0° 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or R = 158.2 N 86.0° W 
(b) 
ΣMF : d −(157.851 N) = (0.32 m)(80 N) − (0.15 m)(40 N) − (0.35 m)(60 N) 
− (0.61 m)(90 N)cos50° − (0.16 m)(90 N)sin 50° 
or d = 302 mm to the right of F W
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 106. 
(a) : 0 (0.32 m)(80 N) (0.1 m)(40 N) (0.1 m)(60 N) (0.36 m)(90 N)cos 
ΣM = + − − α 
I 
−(0.16 m)(90 N)sinα 
or 4sinα + 9cosα = 6.5556 
( ) ( ) 2 2 
9cosα = 6.5556 − 4sinα 
( 2 ) 2 81 1 − sin α = 42.976 − 52.445sinα + 16sin α 
2 97sin α − 52.445sinα − 38.024 = 0 
Solving by the quadratic formula gives for the positive root 
sinα = 0.95230 
α = 72.233° 
or α = 72.2°  
Note: The second root (α = −24.3°) is rejected since 0  α  90°. 
(b) ΣF: R = (80 N)i − (40 N) j − (60 N) j 
+(90 N)(−sin 72.233°i − cos72.233°j) 
= −(5.7075 N)i − (127.463 N) j 
( ) ( ) 2 2 
R = −5.7075 N + −127.463 N 
= 127.6 N 
127.463 
θ = − 
tan 
5.7075 
− 
θ = 87.4° 
or R = 127.6 N 87.4°  
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 107. 
(a) Have ΣMD : 0 = M − (0.8 in.)(40 lb) − (2.9 in.)(20 lb)cos30° −(3.3 in.)(20 lb)sin 30° 
or M = 115.229 lb⋅in. 
or M = 115.2 lb⋅in. W 
Now, R is oriented at 45° as shown (since its line of action 
passes through B and D). 
Have ΣFx′ : 0 = (40 lb)cos 45° − (20 lb)cos15° 
−(90 lb)cos(α + 45°) 
or α = 39.283° 
or α = 39.3° W 
(b) ΣFx : Rx = 40 − 20sin 30° − 90cos39.283° 
= −39.663 lb 
Now R = 2Rx or R = 56.1 lb 45.0° W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 108. 
(a) Reduce system to a force and couple at B: 
Have R = ΣF = −(10 lb) j + (25 lb)cos60°i + (25 lb)sin 60°j − (40 lb)i 
= −(27.5 lb)i + (11.6506 lb) j 
or ( )2 ( )2 R = −27.5 lb + 11.6506 lb = 29.866 lb 
tan 1 11.6506 22.960 
θ = −   = ° 
27.5 
  
or R = 29.9 lb 23.0° W 
Also MB = ΣMB = (80 lb⋅in.)k − (12 in.)i × (−10 lb) j − (8 in.) j × (−40 lb)i 
= −(120 lb⋅in.)k 
(b) 
Have MB = −(120 lb⋅in.)k = −(u)i × (11.6506 lb) j 
−(120 lb⋅in.)k = −(11.6506 lb)(u)k 
u = 10.2999 in. and x = 12 in. − 10.2999 in. 
= 1.7001 in. 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Have MB = −(120 lb⋅in.)k = −(v) j × (−27.5 lb)i 
−(120 lb⋅in.)k = −(27.5 lb)(v)k 
v = 4.3636 in. 
and y = 8 in. − 4.3636 in. = 3.6364 in. 
or 1.700 in. to the right of A and 3.64 in. above C W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 109. 
(a) Position origin along centerline of sheet metal at the intersection with 
line EF. 
(a) Have ΣF = R 
R = −0.52 j − 1.05 j − 2.1(sin 45°i + cos 45° j) − 0.64i kips 
R = −(2.1249 kips)i − (3.0549 kips) j 
( ) ( ) 2 2 
R = −2.1249 + −3.0549 
= 3.7212 kips 
− − 3.0549 
θ = 1 tan   = 55.179 
°  − 2.1249 
 
or R = 3.72 kips 55.2°  
M = ΣM 
Have EF EF 
Where M = (0.52 kip)(3.6 in.) + 
(1.05 kips)(1.6 in.) EF 
−(2.1 kips)(0.8 in.) − (0.64 kip)(1.6 in.)sin 45° + 1.6 in. 
= 0.123923 kip⋅in. 
To obtain distance d left of EF, 
Have M = dR = d ( − 
3.0549 kips) EF y 
0.123923 kip ⋅ in. 
d = = − 
0.040565 in. 
3.0549 kips 
− 
or d = 0.0406 in. left of EF  
(b) 
M = ΣM = 
Have 0 
EF EF 
(0.52 kip)(3.6 in.) (1.05 kips)(1.6 in.) EF 
M = + 
−(2.1 kips)(0.8 in.) 
−(0.64 kip)(1.6 in.)sinα + 1.6 in. 
∴ (1.024 kip⋅in.)sinα = 0.848 kip⋅in. 
or α = 55.9°  
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 110. 
(a) Have ΣF = R 
R = −0.52j − 1.05j − 2.1(sinαi + cosα j) − 0.64i kips 
= − 0.64 kip + (2.1 kips)(sinα )i − 1.57 kips + (2.1 kips)cosα  j 
R 
R 
Then tan 0.64 2.1sin 
α 
+ 
1.57 2.1cos 
x 
y 
α 
α 
= = 
+ 
1.57 tanα + 2.1sinα = 0.64 + 2.1sinα 
tan 0.64 
1.57 
α = 
α = 22.178° 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or α = 22.2° W 
(b) From α = 22.178° 
Rx = −0.64 kip − (2.1 kips)sin 22.178° 
= −1.43272 kips 
Ry = −1.57 kips − (2.1 kips)cos 22.178° 
= −3.5146 kips
COSMOS: Complete Online Solutions Manual Organization System 
( )2 ( )2 R = −1.43272 + −3.5146 
= 3.7954 kips 
or R = 3.80 kips 67.8°W 
Then MEF = ΣMEF 
Where MEF = (0.52 kip)(3.6 in.) + (1.05 kips)(1.6 in.) − (2.1 kips)(0.8 in.) 
−(0.64 kip)(1.6 in.)sin 22.178° + 1.6 in. 
= 0.46146 kip⋅in. 
To obtain distance d left of EF, 
Have MEF = dRy 
= d (−3.5146 kips) 
0.46146 kip in. 
d ⋅ 
3.5146 kips 
= 
− 
= −0.131298 in. 
or d = 0.1313 in. left of EF W 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies.
COSMOS: Complete Online Solutions Manual Organization System 
Chapter 3, Solution 111. 
Equivalent force-couple at A due to belts on pulley A 
Have ΣF: −120 N − 160 N = RA 
∴ RA = 280 N 
Have ΣMA : −40 N(0.02 m) = MA 
∴ MA = 0.8 N⋅m 
Equivalent force-couple at B due to belts on pulley B 
Have ΣF: (210 N + 150 N) 25° = RB 
∴ RB = 360 N 25° 
Have ΣMB : −60 N(0.015 m) = MB 
∴ MB = 0.9 N⋅m 
Equivalent force-couple at F 
Have ΣF: RF = (−280 N) j + (360 N)(cos 25°i + sin 25°j) 
= (326.27 N)i − (127.857 N) j 
R = RF = RF2x + RF2y = (326.27)2 + (127.857)2 = 350.43 N 
R 
R 
  − θ = tan − 1   = tan − 1  127.857    = − 21.399 
° 
326.27 
Fy 
Fx 
    
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or RF = R = 350 N 21.4°W
COSMOS: Complete Online Solutions Manual Organization System 
Have 
ΣMF : MF = −(280 N)(0.06 m) − 0.80 N⋅m 
− (360 N)cos 25° (0.010 m) 
+ (360 N)sin 25° (0.120 m) − 0.90 N⋅m 
MF = −(3.5056 N⋅m)k 
To determine where a single resultant force will intersect line FE, 
MF = dRy 
3.5056 N m 0.027418 m 27.418 mm 
127.857 N 
F 
y 
d M 
∴ = = = = 
R 
− ⋅ 
− 
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., 
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 
© 2007 The McGraw-Hill Companies. 
or d = 27.4 mmW
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.
Cap 03 mecanica vectorial para ingenieros estatica 8ed.

More Related Content

What's hot

Mecánica vectorial para ingenieros estática 9na Edición Beer Johnston.pdf
Mecánica vectorial para ingenieros estática 9na Edición Beer Johnston.pdfMecánica vectorial para ingenieros estática 9na Edición Beer Johnston.pdf
Mecánica vectorial para ingenieros estática 9na Edición Beer Johnston.pdf
SANTIAGO PABLO ALBERTO
 
Problema con vigas distribuidas triangulares y rectangulares
Problema con vigas distribuidas triangulares y rectangularesProblema con vigas distribuidas triangulares y rectangulares
Problema con vigas distribuidas triangulares y rectangulares
josiascbc
 
mecnica-vectorial-paraingenieros-8-edicion.pdf
mecnica-vectorial-paraingenieros-8-edicion.pdfmecnica-vectorial-paraingenieros-8-edicion.pdf
mecnica-vectorial-paraingenieros-8-edicion.pdf
MelisaSanvcnte
 
Determinantes De Dos Columnas Por N Filas
Determinantes De Dos Columnas Por N FilasDeterminantes De Dos Columnas Por N Filas
Determinantes De Dos Columnas Por N Filas
gerarjam
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 

What's hot (20)

Mecánica vectorial para ingenieros estática 9na Edición Beer Johnston.pdf
Mecánica vectorial para ingenieros estática 9na Edición Beer Johnston.pdfMecánica vectorial para ingenieros estática 9na Edición Beer Johnston.pdf
Mecánica vectorial para ingenieros estática 9na Edición Beer Johnston.pdf
 
Solucionario Estatica, Beer, 10ma edición,
Solucionario Estatica, Beer, 10ma edición, Solucionario Estatica, Beer, 10ma edición,
Solucionario Estatica, Beer, 10ma edición,
 
Ejercicios de integrales_impropias
Ejercicios de integrales_impropiasEjercicios de integrales_impropias
Ejercicios de integrales_impropias
 
Examen parcial 1 (solucionario)
Examen parcial 1 (solucionario)Examen parcial 1 (solucionario)
Examen parcial 1 (solucionario)
 
Metodo nodos y secciones
Metodo nodos y seccionesMetodo nodos y secciones
Metodo nodos y secciones
 
Problema con vigas distribuidas triangulares y rectangulares
Problema con vigas distribuidas triangulares y rectangularesProblema con vigas distribuidas triangulares y rectangulares
Problema con vigas distribuidas triangulares y rectangulares
 
Dinamica semana 4 - 5
Dinamica   semana 4 - 5Dinamica   semana 4 - 5
Dinamica semana 4 - 5
 
Expo Analitica
Expo AnaliticaExpo Analitica
Expo Analitica
 
Solucionario estatica meriam 4th edicion
Solucionario estatica meriam 4th edicionSolucionario estatica meriam 4th edicion
Solucionario estatica meriam 4th edicion
 
mecnica-vectorial-paraingenieros-8-edicion.pdf
mecnica-vectorial-paraingenieros-8-edicion.pdfmecnica-vectorial-paraingenieros-8-edicion.pdf
mecnica-vectorial-paraingenieros-8-edicion.pdf
 
Tabla centroide-momento-inercia
Tabla centroide-momento-inerciaTabla centroide-momento-inercia
Tabla centroide-momento-inercia
 
Funciones -Variable compleja
Funciones -Variable complejaFunciones -Variable compleja
Funciones -Variable compleja
 
UNIDAD I_Mecanica_de_Materiales (2).pptx
UNIDAD I_Mecanica_de_Materiales (2).pptxUNIDAD I_Mecanica_de_Materiales (2).pptx
UNIDAD I_Mecanica_de_Materiales (2).pptx
 
Division algebraica # 02
Division algebraica # 02Division algebraica # 02
Division algebraica # 02
 
Energia de deformacion
Energia de deformacionEnergia de deformacion
Energia de deformacion
 
Determinantes De Dos Columnas Por N Filas
Determinantes De Dos Columnas Por N FilasDeterminantes De Dos Columnas Por N Filas
Determinantes De Dos Columnas Por N Filas
 
Tipos de apoyos y cálculo de reacciones
Tipos de apoyos y cálculo de reaccionesTipos de apoyos y cálculo de reacciones
Tipos de apoyos y cálculo de reacciones
 
Capitulo 6 estatica solucionario Beer 9 edicion
Capitulo 6 estatica solucionario Beer 9 edicionCapitulo 6 estatica solucionario Beer 9 edicion
Capitulo 6 estatica solucionario Beer 9 edicion
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Calculo integral
Calculo integralCalculo integral
Calculo integral
 

Viewers also liked

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
Sohar Carr
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5
Nahla Hazem
 

Viewers also liked (8)

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 
Cap 02 beer and jhoston .. resistencia de materiales
Cap 02 beer and jhoston .. resistencia de materialesCap 02 beer and jhoston .. resistencia de materiales
Cap 02 beer and jhoston .. resistencia de materiales
 
Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2Solucionario Mecanica Racional Since Capt2
Solucionario Mecanica Racional Since Capt2
 
BEER Cap 05 Solucionario
BEER Cap 05 SolucionarioBEER Cap 05 Solucionario
BEER Cap 05 Solucionario
 
Cap 03
Cap 03Cap 03
Cap 03
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5
 

Similar to Cap 03 mecanica vectorial para ingenieros estatica 8ed.

problemas resueltas estatica 2parte
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parte
Quintana Excélsior
 
Problemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parteProblemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parte
Quintana Excélsior
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
Jesthiger Cohil
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
AntonellaMeaurio
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Ansal Valappil
 

Similar to Cap 03 mecanica vectorial para ingenieros estatica 8ed. (20)

problemas resueltas estatica 2parte
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parte
 
Sol cap 03 edicion 8
Sol cap 03   edicion 8Sol cap 03   edicion 8
Sol cap 03 edicion 8
 
Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12
 
Cap 12
Cap 12Cap 12
Cap 12
 
Cap 02
Cap 02Cap 02
Cap 02
 
Cap 02
Cap 02Cap 02
Cap 02
 
Problemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parteProblemas de estatica resueltas 1a parte
Problemas de estatica resueltas 1a parte
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
 
Ejercicio dos
Ejercicio dosEjercicio dos
Ejercicio dos
 
Solucion ejercicios beer
Solucion ejercicios beerSolucion ejercicios beer
Solucion ejercicios beer
 
Problemas resueltos rozamiento
Problemas resueltos rozamientoProblemas resueltos rozamiento
Problemas resueltos rozamiento
 
Sol cap 10 edicion 8
Sol cap 10   edicion 8Sol cap 10   edicion 8
Sol cap 10 edicion 8
 
ME 245_ 2.pptx
ME 245_ 2.pptxME 245_ 2.pptx
ME 245_ 2.pptx
 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structures
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
تحليل انشائي2
تحليل انشائي2تحليل انشائي2
تحليل انشائي2
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
Capitulo 6 estatica
Capitulo 6 estaticaCapitulo 6 estatica
Capitulo 6 estatica
 

Cap 03 mecanica vectorial para ingenieros estatica 8ed.

  • 1. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 1. Resolve 90 N force into vector components P and Q where Q = (90 N)sin 40° = 57.851 N Then MB = −rA/BQ = −(0.225 m)(57.851 N) = −13.0165 N⋅m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. MB = 13.02 N⋅m W
  • 2. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 2. Fx = (90 N)cos 25° = 81.568 N Fy = (90 N)sin 25° = 38.036 N x = (0.225 m)cos65° = 0.095089 m y = (0.225 m)sin 65° = 0.20392 m MB = xFy − yFx = (0.095089 m)(38.036 N) − (0.20392 m)(81.568 N) = −13.0165 N⋅m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. MB = 13.02 N⋅m W
  • 3. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 3. Px = (3 lb)sin 30° = 1.5 lb Py = (3 lb)cos30° = 2.5981 lb MA = xB/A Py + yB/A Px = (3.4 in.)(2.5981 lb) + (4.8 in.)(1.5 lb) = 16.0335 lb⋅in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. MA = 16.03 lb⋅in. W
  • 4. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 4. For P to be a minimum, it must be perpendicular to the line joining points A and B with ( )2 ( )2 rAB = 3.4 in. + 4.8 in. = 5.8822 in. tan 1 y α = θ = −   x   −   tan 1 4.8 in. =   3.4 in.   = 54.689° Then MA = rAB Pmin P M or min 19.5 lb in. 5.8822 in. A AB r Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ⋅ = = = 3.3151 lb ∴Pmin = 3.32 lb 54.7° or Pmin = 3.32 lb 35.3° W
  • 5. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 5. By definition MA = rB/A Psinθ where θ = φ + (90° −α ) φ −   =   and tan 1 4.8 in. 3.4 in.   = 54.689° Also ( )2 ( )2 rB/A = 3.4 in. + 4.8 in. = 5.8822 in. Then (17 lb⋅in.) = (5.8822 in.)(2.9 lb)sin (54.689° + 90° −α ) or sin (144.689° −α ) = 0.99658 or 144.689° −α = 85.260°; 94.740° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ∴α = 49.9°, 59.4° W
  • 6. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 6. (a) (b) (a) MA = rB/A × TBF MA xTBFy yTBFx = + = (2 m)(200 N)sin 60° + (0.4 m)(200 N)cos60° = 386.41 N⋅m φ −   =   = ° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MA = 386 N⋅m W (b) For FC to be a minimum, it must be perpendicular to the line joining A and C. ( )∴MA = d FC min with ( )2 ( )2 d = 2 m + 1.35 m = 2.4130 m Then ( )( )min 386.41 N⋅m = 2.4130 m FC ( )min FC = 160.137 N and tan 1 1.35 m 34.019 2 m   θ = 90 − φ = 90° − 34.019° = 55.981° ( )min ∴ FC = 160.1 N 56.0° W
  • 7. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 7. (a) (b) (c) MA = xTBF + yTBF y x = (2 m)(200 N)sin 60° + (0.4 m)(200 N)cos60° = 386.41 N⋅m M = xF = = ⋅ = 193.205 N ⋅ = F F = θ −  =   = ° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. AM = ⋅ or 386 N m Have A C or 386.41 N m 2 m A C M F x ∴F = 193.2 N C For B F to be minimum, it must be perpendicular to the line joining A and B ( )A B min ∴M = d F with ( ) ( ) 2 2 d = 2 m + 0.40 m = 2.0396 m Then 386.41 N m ( 2.0396 m )( )C min ( )min 189.454 N C and 1 2 m tan 78.690 0.4 m   or ( )min F = 189.5 N 78.7° C
  • 8. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 8. (a) (b) (c) ( ) / M = r cos15 ° W B AB = (14 in.)(cos15°)(5 lb) = 67.615 lb⋅in. M = r P ° M = r F Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. BM = ⋅ or 67.6 lb in. / sin85 B DB 67.615 lb⋅in. = (3.2 in.)Psin85° or P = 21.2 lb For ( )min, F F must be perpendicular to BC. Then, B C/B 67.615 lb⋅in. = (18 in.)F or F = 3.76 lb 75.0°
  • 9. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 9. (a) Slope of line EC= = T = T ABx AB = = T = = M = T − T Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 35 in. 5 + 76 in. 8 in. 12 Then ( ) 12 13 ( ) 12 260 lb 240 lb 13 and ( ) 5 260 lb 100 lb 13 ABy Then (35 in.) (8 in.) D ABx ABy = (240 lb)(35 in.) − (100 lb)(8 in.) = 7600 lb⋅in. DM = ⋅ or 7600 lb in. (b) Have ( ) ( ) D ABx ABy M = T y + T x = (240 lb)(0) + (100 lb)(76 in.) = 7600 lb⋅in. DM = ⋅ or 7600 lb in.
  • 10. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 10. Slope of line 35 in. 7 EC= = + 112 in. 8 in. 24 Then 24 T = T ABx AB 25 and 7 T = T ABy AB 25 Have ( ) ( ) D ABx ABy M = T y + T x ( ) ( ) 24 7 ∴ ⋅ = T + T 7840 lb in. 0 112 in. AB AB 25 25 250 lb T = AB Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. T = or 250 lb AB
  • 11. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 11. The minimum value of d can be found based on the equation relating the moment of the force TAB about D: ( ) ( ) max D ABy M = T d where MD = 1152 N⋅m ( ) ( ) ABmax y ABmax sin 2880 N sin T = T θ = θ Now sin 1.05 m ( )2 ( )2 d 0.24 1.05 m θ = + +   1152 N m 2880 N 1.05 ∴ ⋅ =     ( ) 2 2 ( 0.24 ) ( 1.05 ) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. d d  + +  or ( )2 ( )2 d + 0.24 + 1.05 = 2.625d or (d + 0.24)2 + (1.05)2 = 6.8906d 2 or 5.8906d 2 − 0.48d − 1.1601 = 0 Using the quadratic equation, the minimum values of d are 0.48639 m and −0.40490 m. Since only the positive value applies here, d = 0.48639 m or d = 486 mm W
  • 12. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 12. with ( )2 ( )2 dAB = 42 mm + 144 mm = 150 mm sin 42 mm 150 mm θ = cos 144 mm 150 mm θ = and FAB = − FAB sinθ i − FAB cosθ j 2.5 kN ( 42 mm) (144 mm) 150 mm =  − i − j = −(700 N)i − (2400 N) j Also ( ) ( ) rB/C = − 0.042 m i + 0.056 m j Now MC = rB/C × FAB = (−0.042i + 0.056 j) × (−700i − 2400 j)N⋅m = (140.0 N⋅m)k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MC = 140.0 N⋅m W
  • 13. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 13. with ( )2 ( )2 dAB = 42 mm + 144 mm = 150 mm sin 42 mm 150 mm θ = cos 144 mm 150 mm θ = FAB = − FAB sinθ i − FAB cosθ j 2.5 kN ( 42 mm) (144 mm) 150 mm =  − i − j = −(700 N)i − (2400 N) j Also ( ) ( ) rB/C = − 0.042 m i − 0.056 m j Now MC = rB/C × FAB = (−0.042i − 0.056j) × (−700i − 2400j)N⋅m = (61.6 N⋅m)k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MC = 61.6 N⋅m W
  • 14. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 14. : (0.090 m) 88 80 N (0.280 m) 105 80 N D D 137 137 ΣM M =  ×  −  ×      = −12.5431 N⋅m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MD = 12.54 N⋅m W
  • 15. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 15. Note: B = B(cosβ i + sinβ j) B′ = B(cosβ i − sinβ j) C = C(cosαi + sinα j) By definition: B × C = BCsin (α − β ) (1) B′ × C = BCsin (α + β ) (2) Now ... B × C = B(cosβ i + sinβ j) × C(cosα i + sinα j) = BC(cosβ sinα − sinβ cosα )k (3) and B′ × C = B(cosβ i − sinβ j) × C(cosαi + sinα j) = BC(cosβ sinα + sinβ cosα )k (4) Equating the magnitudes of B × C from equations (1) and (3) yields: BCsin (α − β ) = BC(cosβ sinα − sinβ cosα ) (5) Similarly, equating the magnitudes of B′ × C from equations (2) and (4) yields: BCsin (α + β ) = BC(cosβ sinα + sinβ cosα ) (6) Adding equations (5) and (6) gives: sin (α − β ) + sin (α + β ) = 2cosβ sinα or sin cos 1 sin ( ) 1 sin ( ) α β = α + β + α − β W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 2 2
  • 16. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 16. Have d = λAB × rO/A r B A where / rB A / AB = λ and rB/A = (−210 mm − 630 mm)i + (270 mm − (−225 mm))j = −(840 mm)i + (495 mm) j ( )2 ( )2 rB/A = −840 mm + 495 mm = 975 mm − (840 mm) + (495 mm) Then = i j AB 975 mm λ 1 ( 56 33 ) 65 = − i + j Also rO/A = (0 − 630)i + (0 − (−225)) j = −(630 mm)i + (225 mm) j 1 ( 56 33 ) (630 mm) (225 mm) 65 ∴ d = − i + j × − i + j = 126.0 mm d = 126.0 mm W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 17. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 17. (a) = × A B × A B λ where A = 12i − 6j + 9k B = −3i + 9j − 7.5k Then i j k × = − 12 6 9 − − 3 9 7.5 A B = (45 − 81)i + (−27 + 90) j + (108 − 18)k = 9(−4i + 7j + 10k) And 2 2 2 A × B = 9 (−4) +(7) +(10) = 9 165 9( − 4 + 7 + 10 ) ∴ = i j k λ 9 165 or ( ) 1 A B i j k × = − − − − + − ∴ = i j k λ λ = − i + j − k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. λ = − 4 i + 7 j + 10 k 165 (b) = × × A B λ where A = −14i − 2j + 8k B = 3i + 1.5j − k Then 14 2 8 3 1.5 1 A B = (2 − 12)i + (24 − 14) j + (−21 + 6)k = 5(−2i + 2j − 3k) and 2 2 2 A × B = 5 (−2) + (2) + (−3) = 5 17 5( 2 2 3 ) 5 17 1 or ( 2 2 3 ) 17
  • 18. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 18. (a) Have A = P × Q i j k 3 7 2 in.2 5 1 3 P Q × = − − = [(21 + 2)i + (10 − 9)j + (3 + 35)k]in.2 = (23 in.2 )i + (1 in.2 )j + (38 in.2 )k ∴ A = (23)2 + (1)2 + (38)2 = 44.430 in.2 i j k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or A = 44.4 in.2 W (b) A = P × Q 2 4 3 in.2 6 1 5 × = − − P Q = [(−20 − 3)i + (−18 − 10)j + (−2 + 24)k] in.2 = −(23 in.2 )i − (28 in.2 )j + (22 in.2 )k ∴ A = (−23)2 + (−28)2 + (22)2 = 42.391 in.2 or A = 42.4 in.2 W
  • 19. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 19. (a) Have MO = r × F i j k 6 3 1.5 N m 7.5 3 4.5 = − ⋅ − = [(−13.5 − 4.5)i + (11.25 − 27)j + (−18 − 22.5)k] N⋅m = (−18.00i − 15.75j − 40.5k) N⋅m or MO = −(18.00 N⋅m)i − (15.75 Ν⋅m)j − (40.5N⋅m)k W (b) Have MO = r × F i j k 2 0.75 1 Nm 7.5 3 4.5 = − − ⋅ − = [(3.375 + 3)i + (−7.5 + 9)j + (6 + 5.625)k] N⋅m = (6.375i + 1.500j + 11.625k) N⋅m or MO = (6.38 N⋅m)i + (1.500 Ν⋅m)j + (11.63 Ν⋅m)k W (c) Have MO = r × F i j k = − − ⋅ 2.5 1 1.5 N m 7.5 3 4.5 = [(4.5 − 4.5)i + (11.25 − 11.25)j + (−7.5 + 7.5)k] N⋅m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MO = 0 W This answer is expected since r and F are proportional (F = −3r). Therefore, vector F has a line of action passing through the origin at O.
  • 20. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 20. (a) Have MO = r × F i j k = − − ⋅ 7.5 3 6 lb ft 3 − 6 4 = [(12 − 36)i + (−18 + 30)j + (45 − 9)k] lb⋅ft or MO = −(24.0 lb⋅ft)i + (12.00 lb⋅ft) j + (36.0 lb⋅ft)k W (b) Have MO = r × F i j k = − − ⋅ 7.5 1.5 1 lb ft 3 − 6 4 = [(6 − 6)i + (−3 + 3)j + (4.5 − 4.5)k] lb⋅ft or MO = 0 W (c) Have MO = r × F i j k = − − ⋅ 8 2 14 lb ft 3 − 6 4 = [(8 − 84)i + (−42 + 32)j + (48 − 6)k] lb⋅ft or MO = −(76.0 lb⋅ft)i − (10.00 lb⋅ft) j + (42.0 lb⋅ft)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 21. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 21. With TAB = −(369 N) j ( ) ( ) ( ) ( ) i − j − k 2.4 m 3.1 m 1.2 m ( )2 ( )2 ( )2 369 N + − + − 2.4 m 3.1 m 1.2 m JJJG T AD = = T AB AD AD TAD = (216 N)i − (279 N) j − (108 N)k Then RA = 2 TAB + TAD = (216 N)i − (1017 N) j − (108 N)k Also ( ) ( ) rA/C = 3.1 m i + 1.2 m k Have MC = rA/C × RA i j k = ⋅ 0 3.1 1.2 Nm 216 − 1017 − 108 = (885.6 N⋅m)i + (259.2 N⋅m) j − (669.6 N⋅m)k MC = (886 N⋅m)i + (259 N⋅m) j − (670 N⋅m)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 22. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 22. Have MA = rC/A × F where ( ) ( ) ( ) rC/A = 215 mm i − 50 mm j + 140 mm k Fx = −(36 N)cos 45°sin12° Fy = −(36 N)sin 45° Fz = −(36 N)cos 45°cos12° ∴ F = −(5.2926 N)i − (25.456 N) j − (24.900 N)k i j k A = − ⋅ M and 0.215 0.050 0.140 N m − − − 5.2926 25.456 24.900 = (4.8088 N⋅m)i + (4.6125 N⋅m) j − (5.7377 N⋅m)k MA = (4.81 N⋅m)i + (4.61 N⋅m) j − (5.74 N⋅m)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 23. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 23. Have MO = rA/O × R where ( ) ( ) rA/D = 30 ft j + 3 ft k ( ) ( ) T1 = −  62 lb cos10° i −  62 lb sin10° j = −(61.058 lb)i − (10.766 lb) j JJJG T AB AB T = 2 2 ( ) ( ) ( ) ( ) i − j + k 5 ft 30 ft 6 ft ( )2 ( )2 ( )2 62 lb + − + 5 ft 30 ft 6 ft = = (10 lb)i − (60 lb) j + (12 lb)k ∴ R = −(51.058 lb)i − (70.766 lb) j + (12 lb)k i j k O = ⋅ 0 30 3lbft 51.058 70.766 12 − − M = (572.30 lb⋅ft)i − (153.17 lb⋅ft) j + (1531.74 lb⋅ft)k MO = (572 lb⋅ft)i − (153.2 lb⋅ft) j + (1532 lb⋅ft)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 24. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 24. (a) Have MO = rB/O × TBD where rB/O = (2.5 m)i + (2 m) j JJJG T BD T = BD BD BD ( ) ( ) ( ) ( ) − 1 m i − 2 m j + 2 m k =  ( )2 ( )2 ( )2 900 N 1m 2 m 2 m − + − + = −(300 N)i − (600 N) j + (600 N)k Then i j k O= ⋅ 2.5 2 0 N m 300 600 600 − − M MO = (1200 N⋅m)i − (1500 N⋅m) j − (900 N⋅m)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. continued
  • 25. COSMOS: Complete Online Solutions Manual Organization System (b) Have MO = rB/O × TBE where rB/O = (2.5 m)i + (2 m) j JJJG T BE T = BE BE BE ( ) ( ) ( ) ( ) − 0.5 m i − 2 m j − 4 m k =  ( )2 ( )2 ( )2 675 N 0.5 m + − 2 m + − 4 m = −(75 N)i − (300 N) j − (600 N)k Then i j k O= ⋅ 2.5 2 0 N m 75 300 600 − − − M MO = −(1200 N⋅m)i + (1500 N⋅m) j − (600 N⋅m)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 26. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 25. Have MC = rA/C × P where rA/C = rB/C + rA/B = (16 in.)(−cos80°cos15°i − sin80°j − cos80°sin15°k) +(15.2 in.)(−sin 20°cos15°i + cos 20°j − sin 20°sin15°k) = −(7.7053 in.)i − (1.47360 in.) j − (2.0646 in.)k and P = (150 lb)(cos5°cos70°i + sin 5°j − cos5°sin 70°k) = (51.108 lb)i + (13.0734 lb) j − (140.418 lb)k Then i j k C = − − − ⋅ 7.7053 1.47360 2.0646 lb in. 51.108 13.0734 − 140.418 M = (233.91 lb⋅in.)i − (1187.48 lb⋅in.) j − (25.422 lb⋅in.)k or MC = (19.49 lb⋅ft)i − (99.0 lb⋅ft) j − (2.12 lb⋅ft)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 27. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 26. Have MC = rA/C × FBA where ( ) ( ) ( ) rA/C = 0.96 m i − 0.12 m j + 0.72 m k and FBA = λBAFBA   − ( 0.1 m ) i + ( 1.8 m ) j − ( 0.6 m ) k  =     ( ) + ( ) + ( )  ( ) 2 2 2 i j k ∴ C = − ⋅ Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 228 N 0.1 1.8 0.6 m = −(12.0 N)i + (216 N) j − (72 N)k 0.96 0.12 0.72 N m 12.0 216 72 − − M = −(146.88 N⋅m)i + (60.480 N⋅m) j + (205.92 N⋅m)k or MC = −(146.9 N⋅m)i + (60.5 N⋅m) j + (206 N⋅m)k W
  • 28. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 27. Have MC = TAD d where d = Perpendicular distance from C to line AD T AD i j k 2.4 m 3.1 m 1.2 m i j k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. JJJG with MC = rA/C TAD and ( ) ( ) rA/C = 3.1 m j + 1.2 m k AD AD AD T = JJJG ( ) ( ) ( ) ( ) ( )2 ( )2 ( )2 369 N 2.4 m 3.1 m 1.2 m AD  − −  = + − + − T = (216 N)i − (279 N) j − (108 N)k Then 0 3.1 1.2 Nm 216 279 108 C= ⋅ − − M = (259.2 N⋅m) j − (669.6 N⋅m)k and ( )2 ( )2 MC = 259.2 N⋅m + −669.6 N⋅m = 718.02 N⋅m ∴ 718.02 N⋅m = (369 N)d or d = 1.946 m W
  • 29. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 28. M = T Have O AC d where d = Perpendicular distance from O to rope AC with MO = rA/O × TAC and ( ) ( ) rA/O = 30 ft j + 3 ft k TAC = − (62 lb)cos10° i − (62 lb)sin10° j = −(61.058 lb)i − (10.766 lb) j Then i j k 0 30 3lbft 61.058 10.766 0 O= ⋅ − − M = (32.298 lb⋅ft)i − (183.174 lb⋅ft) j + (1831.74 lb⋅ft)k and ( )2 ( )2 ( )2 MO = 32.298 lb⋅ft + −183.174 lb⋅ft + 1831.74 lb⋅ft = 1841.16 lb⋅ft ∴1841.16 lb⋅ft = (62 lb)d Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 29.7 ft W
  • 30. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 29. Have MO = TAB d where d = Perpendicular distance from O to rope AB with MO = rA/O × TAB and ( ) ( ) rA/O = 30 ft j + 3 ft k JJJG T AB T = AB AB AB ( ) ( ) ( ) ( )  5 ft i − 30 ft j + 6 ft k =  ( )2 ( )2 ( )2 62 lb 5 ft + − 30 ft + 6 ft = (10 lb)i − (60 lb) j + (12 lb)k Then i j k 0 30 3 lbft 10 60 12 O = ⋅ − M = (540 lb⋅ft)i + (30 lb⋅ft) j − (300 lb⋅ft)k and ( )2 ( )2 ( )2 MO = 540 lb⋅ft + 30 lb⋅ft + −300 lb⋅ft = 618.47 lb⋅ft ∴ 618.47 lb⋅ft = (62 lb)d Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 9.98 ft W
  • 31. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 30. Have MC = TBD d where d = Perpendicular distance from C to cable BD with MC = rB/C × TB/D and ( ) rB/C = 2 m j JJJG T BD T = BD BD BD ( ) ( ) ( ) ( ) − 1m i − 2 m j + 2 m k =  ( )2 ( )2 ( )2 900 N 1m 2 m 2 m − + − + = −(300 N)i − (600 N) j + (600 N)k Then i j k 0 2 0 Nm 300 600 600 C= ⋅ − − M = (1200 N⋅m)i + (600 N⋅m)k and ( )2 ( )2 MC = 1200 N⋅m + 600 N⋅m = 1341.64 N⋅m ∴1341.64 = (900 N)d Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 1.491 m W
  • 32. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 31. Have MC = Pd From the solution of problem 3.25 MC = (233.91 lb⋅in.)i − (1187.48 lb⋅in.) j − (25.422 lb⋅in.)k Then ( ) ( ) ( ) 2 2 2 MC = 233.91 + −1187.48 + −25.422 = 1210.57 lb⋅in. d MC and 1210.57 lb.in. 150 lb = = P Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 8.07 in.W
  • 33. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 32. Have |MD | = FBAd where d = perpendicular distance from D to line AB. MD = rA/D × FBA ( ) ( ) rA/D = − 0.12 m j + 0.72 m k ( ( 0.1m ) i ( 1.8 m ) j ( 0.6 m ) k ) ( ) 2 2 2 ( ) ( ) ( ) i j k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 228 N 0.1 1.8 0.6 m BA BAFBA − + − = = + + F λ = −(12.0 N)i + (216 N) j − (72 N)k 0 0.12 0.72 N m 12.0 216 72 ∴ D = − ⋅ − − M = −(146.88 N⋅m)i − (8.64 N⋅m) j − (1.44 N⋅m)k and ( )2 ( )2 ( )2 |MD | = 146.88 + 8.64 + 1.44 = 147.141N⋅m ∴ 147.141N⋅m = (228 N)d d = 0.64536 m or d = 0.645 mW
  • 34. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 33. Have |MC | = FBAd where d = perpendicular distance from C to line AB. MC = rA/C × FBA ( ) ( ) ( ) rA/C = 0.96 m i − 0.12 m j + 0.72 m k ( ( 0.1m ) i ( 1.8 m ) j ( 0.6 ) k ) ( ) ( ) ( ) ( ) 2 2 2 i j k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 228 N 0.1 1.8 0.6 m BA BAFBA − + − = = + + F λ = −(12.0 N)i + (216 N) j − (72 N)k 0.96 0.12 0.72 N m 12.0 216 72 ∴ C = − ⋅ − − M = −(146.88 N⋅m)i − (60.48 N⋅m) j + (205.92 N⋅m)k and ( )2 ( )2 ( )2 |MC | = 146.88 + 60.48 + 205.92 = 260.07 N⋅m ∴ 260.07 N⋅m = (228 N)d d = 1.14064 m or d = 1.141mW
  • 35. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 34. (a) Have d = rC/A sinθ = λAB × rC/A where d = Perpendicular distance from C to pipe AB with λ AB i j k 7 + 4 − 32 7 4 32 ( )2 ( )2 ( )2 = = AB AB + + − 1 (7 4 32 ) 33 = i + j − k and ( ) ( ) ( ) rC/A = − 14 ft i + 5 ft j +  L − 22 ftk λ r Then / i j k 1 7 4 32 ft 33 × = − L 14 5 22 AB C A − − 1 { 4( 22) 32(5) 32(14) 7( 22) 7(5) 4(14) }ft 33 =  L − +  i +  − L −  j +  + k = 1  (4 L + 72) i + ( − 7 L + 602) j + 91 kft 33  and d = 1 (4 L + 72)2 + ( − 7 L + 602)2 + (91)2 33 2 d dd L L ( ) , 1 2 4 4 72 2 7 7 602 0 For ( )( ) ( )( ) =  + + − − +  = min 2 L d 33 or 65L − 3926 = 0 or L = 60.400 ft But L Lgreenhouse so L = 30.0 ft W (b) with L = 30 ft, d = 1 (4 × 30 + 72)2 + ( − 7 × 30 + 602)2 + (91)2 33 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 13.51 ft W Note: with L = 60.4 ft, 1 (4 60.4 72)2 ( 7 60.4 602)2 (91)2 11.29 ft 33 d= × + + − × + + =
  • 36. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 35. P⋅Q = (−4i + 8j − 3k) ⋅ (9i − j − 7k) = (−4)(9) + (8)(−1) + (−3)(−7) = −23 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or P⋅Q = −23W P⋅S = (−4i + 8j − 3k) ⋅ (5i − 6j + 2k) = (−4)(5) + (8)(−6) + (−3)(2) = −74 or P⋅S = −74 W Q⋅S = (9i − j − 7k) ⋅ (5i − 6j + 2k) = (9)(5) + (−1)(−6) + (−7)(2) = 37 or Q⋅S = 37 W
  • 37. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 36. By definition B⋅C = BCcos(α − β ) where B = B (cosβ )i + (sinβ ) j C = C (cosα )i + (sinα ) j ∴ (Bcosβ )(C cosα ) + (Bsinβ )(Csinα ) = BC cos(α − β ) or cosβ cosα + sinβ sinα = cos(α − β ) (1) By definition B′⋅C = BC cos(α + β ) where B′ = (cosβ )i − (sinβ ) j ∴ (Bcosβ )(Ccosα ) + (−Bsinβ )(Csinα ) = BCcos(α + β ) or cosβ cosα − sinβ sinα = cos(α + β ) (2) Adding Equations (1) and (2), 2 cosβ cosα = cos(α − β ) + cos(α + β ) or cos cos 1 cos( ) 1 cos( ) α β = α + β + α − β W 2 2 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 38. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 37. First note: rB/A = (0.56 m)i + (0.9 m) j ( ) ( ) rC/A = 0.9 m j − 0.48 m k ( ) ( ) ( ) rD/A = − 0.52 m i + 0.9 m j + 0.36 m k ( )2 ( )2 rB/A = 0.56 m + 0.9 m = 1.06 m ( )2 ( )2 rC/A = 0.9 m + −0.48 m = 1.02 m ( )2 ( )2 ( )2 rD/A = −0.52 m + 0.9 m + 0.36 m = 1.10 m By definition rB/A ⋅rD/A = rB/A rD/A cosθ or (0.56i + 0.9j) ⋅ (−0.52i + 0.9j + 0.36k) = (1.06)(1.10)cosθ (0.56)(−0.52) + (0.9)(0.9) + (0)(0.36) = 1.166cosθ cosθ = 0.44494 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. θ = 63.6° W
  • 39. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 38. From the solution to problem 3.37 rC/A = 1.02 m with rC/A = (0.9 m)i − (0.48 m) j ( ) ( ) ( ) rD/A = 1.10 m with rD/A = − 0.52 m i + 0.9 m j + 0.36 m k Now by definition rC/A ⋅ rD/A = rC/A rD/A cosθ or (0.9j − 0.48k) ⋅ (−0.52i + 0.9j + 0.36k) = (1.02)(1.10)cosθ 0(−0.52) + (0.9)(0.9) + (−0.48)(0.36) = 1.122cosθ cosθ = 0.56791 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 55.4° W
  • 40. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 39. (a) By definition λBC + λEF = (1)(1) cosθ where ( ) ( ) ( ) ( )2 ( )2 ( )2 i j k 32 ft 9 ft 24 ft 32 9 24 ft BC − − = + − + − λ 1 (32 9 24 ) 41 = i − j − k ( ) ( ) ( ) ( )2 ( )2 ( )2 i j k 14 ft 12 ft 12 ft 14 12 12 ft EF − − + = − + − + λ 1 ( 7 6 6 ) 11 = − i − j + k (32 i − 9 j − 24 k ) ( − 7 i − 6 j + 6 k ) Therefore ⋅ = cos 41 11 θ (32)(−7) + (−9)(−6) + (−24)(6) = (41)(11)cosθ cosθ = −0.69623 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 134.1° W (b) By definition ( EG )BC ( EF )cos T = T θ = (110 lb)(−0.69623) = −76.585 lb or ( EF )BC 76.6 lb T = − W
  • 41. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 40. (a) By definition λBC ⋅ λEG = (1) (1) cosθ where ( ) ( ) ( ) ( )2 ( )2 ( )2 i j k 32 ft 9 ft 24 ft 32 9 24 ft BC − − = + − + − λ 1 (32 9 24 ) 41 = i − j − k ( ) ( ) ( ) i j k 16 ft − 12 ft + 9.75 16 12 9.75 ft ( )2 ( )2 ( )2 EG = + − + λ 1 (16 12 9.75 ) 22.25 = i − j + k (32 i − 9 j − 24 k ) (16 i − 12 j + 9.75 k ) Therefore ⋅ = cos 41 22.25 θ (32)(16) + (−9)(−12) + (−24)(9.75) = (41)(22.25)cosθ cosθ = 0.42313 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ = 65.0° W (b) By definition ( EG )BC ( EG )cos T = T θ = (178 lb)(0.42313) = 75.317 lb or ( EG )BC 75.3 lb T = W
  • 42. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 41. First locate point B: 3.5 d = 22 14 or d = 5.5 m (a) ( )2 ( )2 ( )2 dBA = 5.5 + 0.5 + −22 + −3 = 23 m Locate point D: (−3.5 − 7.5sin 45°cos15°), (14 + 7.5cos 45°), (0 + 7.5sin 45°sin15°)m or (−8.6226 m, 19.3033 m, 1.37260 m) Then ( )2 ( )2 ( )2 dBD = −8.6226 + 5.5 + 19.3033 − 22 + 1.37260 − 0 m = 4.3482 m ⋅ ( 6 i − 22 j − 3 k ) ⋅ ( − 3.1226 i − 2.6967 j + 1.37260 k ) and ( )( ) cos 23 4.3482 d d d d BA BD θ ABD = = BA BD = 0.36471 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or θ ABD = 68.6° W (b) ( BA )BD BA cos ABD T = T θ = (230 N)(0.36471) or ( BA )BD 83.9 N T = W
  • 43. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 42. First locate point B: 3.5 d = 22 14 or d = 5.5 m (a) Locate point D: (−3.5 − 7.5sin 45°cos10°), (14 + 7.5cos 45°), 3.2227 2.6967 0.92091 5.2227 5.3033 0.92091 d d d d Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. (0 + 7.5sin 45°sin10°)m or (−8.7227 m, 19.3033 m, 0.92091 m) Then dDC = (5.2227 m)i − (5.3033 m) j − (0.92091 m)k and ( )2 ( )2 ( )2 dDB = −5.5 + 8.7227 + 22 − 19.3033 + 0 − 0.92091 m = 4.3019 m and ( ) ( ) ( )( ) cos 4.3019 7.5 DB DC BDC DB DC θ ⋅ + − ⋅ − − = = i j k i j k = 0.104694 or θ BDC = 84.0° W (b) ( BD )DC BD cos BDC (250 N)(0.104694) T = T θ = or ( BD )DC 26.2 N T = W
  • 44. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 43. Volume of parallelopiped is found using the mixed triple product (a) Vol = P⋅(Q × S) 3 4 1 7 6 8 in. 9 2 3 3 − = − − − − = (−54 + 288 + 14 − 48 + 84 − 54)in.3 = 230 in.3 5 7 4 6 2 5 in. 4 8 9 − − = − − − = (−90 + 140 + 192 + 200 − 378 − 32) in.3 = 32 in.3 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Volume = 230 in.3 W (b) Vol = P⋅(Q × S) 3 or Volume = 32 in.3 W
  • 45. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 44. For the vectors to all be in the same plane, the mixed triple product is zero. P⋅(Q × S) = 0 3 7 5 − − 0 2 1 4 ∴ = − − 8 Sy − 6 0 = 18 + 224 − 10Sy − 12Sy + 84 − 40 So that 22 Sy = 286 Sy = 13 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Sy = 13.00 W
  • 46. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 45. Have rC = (2.25 m)k JJJG T CE T = CE CE CE ( ) ( ) ( ) ( )  0.90 m i + 1.50 m j − 2.25 m k =  ( )2 ( )2 ( )2 1349 N 0.90 1.50 2.25 m T CE + + − = (426 N)i + (710 N) j − (1065 N)k Now MO = rC × TCE i j k 0 0 2.25 Nm 426 710 1065 = ⋅ − = − (1597.5 N⋅m)i + (958.5 N⋅m) j ∴ Mx = −1598 N⋅m, My = 959 N⋅m, Mz = 0 W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 47. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 46. Have rE = (0.90 m)i + (1.50 m) j JJJG T DE T = DE DE DE ( ) ( ) ( ) ( ) − 2.30 m i + 1.50 m j − 2.25 m k =  ( )2 ( )2 ( )2 1349 N 2.30 1.50 2.25 m − + + − = −(874 N)i + (570 N) j − (855 N)k Now MO = rE × TDE i j k 0.90 1.50 0 N m 874 570 855 = ⋅ − − = −(1282.5 N⋅m)i + (769.5 N⋅m) j + (1824 N⋅m)k ∴Mx = −1283 N⋅m, My = 770 N⋅m, Mz = 1824 N⋅m W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 48. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 47. Have z ( B )y BA ( C )y CD = ⋅ ×  +  ×  M k  r T  k  r T  where Mz = −(48 lb⋅ft)k ( B )y ( C )y (3 ft) r = r = j ( ) ( ) ( ) ( ) JJJG  4.5 ft i − 3 ft j + 9 ft k = =  ( )2 ( )2 ( )2 14 lb 4.5 3 9 ft T BA T BA BA BA + − + = (6 lb)i − (4 lb) j + (12 lb)k ( ) ( ) ( ) ( )2 ( )2 ( )2 JJJG  i − j − k = =  6 ft 3 ft 6 ft 6 3 6 ft T CD T T CD CD CD CD + − + − = TCD i − j − k (2 2 ) 3 Then −(48 lb⋅ft) = k⋅{(3 ft) j × (6 lb)i − (4 lb) j + (12 lb)k}  + k ⋅(3 ft) j × TCD (2 i − j − 2 k )    3  or −48 = −18 − 2TCD Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. TCD = 15.00 lb W
  • 49. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 48. Have y ( B )z BA ( C )z CD M = j⋅ r × T  × j⋅ r × T  where My = 156 lb⋅ft ( B )z (24 ft) ; ( C )z (6 ft) r = k r = k ( ) ( ) ( ) ( )2 ( )2 ( )2 JJJG  i − j + k = =  4.5 ft 3 ft 9 ft 4.5 3 9 ft T BA T T BA BA BA BA + − + = TBA i − j + k (4.5 3 9 ) 10.5 ( ) ( ) ( ) ( ) JJJG  6 ft i − 3 ft j + 9 ft k = =  ( )2 ( )2 ( )2 7.5 lb 6 3 9 ft T CD T CD CD CD + − + = (5 lb)i − (2.5 lb) j − (5 lb)k ⋅ = ⋅ × TBA − +  Then (156 lb ft) j (24 ft) k (4.5 i 3 j 9 k ) 10.5   + j⋅{(6 ft)k × (5 lb)i − (2.5 lb) j − (5 lb)k} or 156 108 30 10.5 BA = T + Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. TBA = 12.25 lb W
  • 50. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 49. Based on Mx = (Pcosφ )(0.225 m)sinθ  − (Psinφ )(0.225 m)cosθ  (1) My = −(Pcosφ )(0.125 m) (2) Mz = −(Psinφ )(0.125 m) (3) By ( ) M P M P Equation 3 sin 0.125 ( ) ( )( ) ( )( ) : z y φ φ − = − Equation 2 cos 0.125 − or 4 tan 9.8658 23 = ∴ = ° φ φ − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or φ = 9.87° W From Equation (2) −23 N⋅m = −(Pcos9.8658°)(0.125 m) P = 186.762 N or P = 186.8 N W From Equation (1) 26 N⋅m = (186.726 N)cos9.8658° (0.225 m)sinθ  − (186.726 N)sin 9.8658° (0.225 m)cosθ  or 0.98521sinθ − 0.171341cosθ = 0.61885 Solving numerically, θ = 48.1° W
  • 51. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 50. Based on Mx = (Pcosφ )(0.225 m)sinθ  − (Psinφ )(0.225 m)cosθ  (1) My = −(Pcosφ )(0.125 m) (2) Mz = −(Psinφ )(0.125 m) By ( ) M P M P Equation 3 sin 0.125 ( ) ( )( ) ( )( ) : z y φ φ − = − Equation 2 cos 0.125 or 3.5 tan ; 9.9262 20 φ φ − = = ° − From Equation (3): −3.5 N⋅m = −(Psin 9.9262°)(0.125 m) P = 162.432 N From Equation (1): Mx = (162.432 N)(0.225 m)(cos9.9262°sin 60° − sin 9.9262°cos60°) = 28.027 N⋅m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Mx = 28.0 N⋅m W
  • 52. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 51. First note: JJJG T BA T = BA BA BA ( ) ( ) ( ) ( ) +  − +  + − = i j k L L 4 1.5 1 6 BC ( ) ( ) ( ) 2 2 2 70 lb +  − +  + − 4 1.5 1 6 BC ( ) ( ) i L j k 4 + 0.5 − − 6 BC ( )2 70 lb 52 0.5 L BC = + − rA = (4 ft)i + (1.5 ft) j − (12 ft)k Have MO = rA × TBA 70 lb 4 ft 1.5 ft 12 ft = − ( ) ( ) 2 52 + 0.5 − L BC 4 0.5 − L BC − 6 763 lb ft 70 1.5 6 12 0.5 lb ft − ⋅ =  − + −  ⋅ 2 190.81 190.81 4 25.19 6198.8225 − ± − − = BC 2 25.19 L Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. i j k For the i components: ( ) ( ) ( ) 2 52 + 0.5 BC BC L L − or ( )2 10.9 52 + 0.5 − LBC = 3 + 12LBC or (10.9)2 52 + (0.5 − LBC )2  = 9 + 72LBC + 144L2BC or 25.19L2BC + 190.81LBC − 6198.8225 = 0 Then ( ) ( )( ) ( ) Taking the positive root LBC = 12.35 ft W
  • 53. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 52. First note: JJJG T BA T = BA BA BA ( ) ( ) ( ) ( ) +  − +  + − = i j k L L 4 1.5 1 6 BC ( ) ( ) ( ) 2 2 2 70 lb +  − +  + − 4 1.5 1 6 BC ( ) ( ) i L j k 4 + 0.5 − − 6 BC ( )2 70 lb 52 0.5 L BC = + − rA = (4 ft)i + (1.5 ft) j − (12 ft)k Have MO = rA × TBA BA i j k = − ( ) ( ) 2 T BA L − ⋅ =  − + −  ⋅ L T BA L = + L T BA L − ⋅ =  − −  ⋅ L T L 315 4 BA 1 = + L 1 300 1 4 2 315 41 BC L L Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 4 ft 1.5 ft 12 ft 52 + 0.5 4 0.5 6 BC BC T L L − − − For the i components: ( ) ( ) ( ) 2 900 lb ft 1.5 6 12 0.5 lb ft 52 + 0.5 BC BC − or ( ) ( ) 2 300 1 4 52 + 0.5 BC BC − (1) For the k components: ( ) ( ) ( ) 2 315 lb ft 4 0.5 1.5 4 lb ft 52 + 0.5 BC BC − or ( ) ( ) 2 52 + 0.5 BC BC − (2) Then, ( ) ( ) ( ) BC + ⇒ = + or 59 ft BC 4 L = LBC = 14.75 ft W
  • 54. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 53. Have MAD = λ AD ⋅(rB/A × TBH ) where ( ) ( ) i k 0.8 m − 0.6 m λ = = i − k ( )2 ( )2 0.8 0.6 0.8 m 0.6 m AD + − ( ) rB/A = 0.4 m i ( ) ( ) ( ) ( ) JJJJG  0.3 m i + 0.6 m j − 0.6 m k = =  ( )2 ( )2 ( )2 1125 N 0.3 0.6 0.6 m T BH T BH BH BH + + − Then 0.8 0 0.6 0.4 0 0 180 N m 375 750 750 MAD − = =− ⋅ − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MAD = −180.0 N⋅m W
  • 55. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 54. Have MAD = λ AD ⋅(rB/A × TBG ) where λ AD = (0.8 m)i − (0.6 m)k ( ) rB/A = 0.4 m i ( ) ( ) ( ) ( ) JJJG − 0.4 m i + 0.74 j − 0.32 m k  = = ( )2 ( )2 ( )2 1125 N 0.4 m 0.74 m 0.32 m T BG T BG BG BG − + + − = −(500 N)i + (925 N) j − (400 N)k Then 0.8 0 0.6 0.4 0 0 500 925 400 MAD − = − − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MAD = −222 N⋅m W
  • 56. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 55. Have MAD = λ AD ⋅(rE/A × FEF ) λ = where AD JJJG AD AD ( 7.2 m ) i ( 0.9 m ) j ( 7.2 m )2 ( 0.9 m )2 AD + = + λ = 0.99228i + 0.124035 j ( ) ( ) rE/A = 2.1 m i − 0.9 m j ( ) ( ) ( ) ( ) JJJG  0.3 m i + 1.2 m j + 2.4 m k = =  ( )2 ( )2 ( )2 24.3 kN 0.3 m 1.2 m 2.4 m F EF F EF EF EF + + = (2.7 kN)i + (10.8 kN) j + (21.6 kN)k Then 0.99228 0.124035 0 2.1 0.9 0 kN m 2.7 10.8 21.6 MAD = − ⋅ = −19.2899 − 5.6262 = −24.916 kN⋅m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MAD = −24.9 kN⋅m W
  • 57. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 56. Have MAD = λ AD ⋅(rG/A × EEF ) Where ( ) ( ) i j 7.2 m + 0.9 m 7.2 m 0.9 m ( )2 ( )2 AD = + λ = 0.99228i + 0.124035 j ( ) ( ) rG/A = 6 m i − 1.8 m j ( ) ( ) ( ) ( ) JJJJG  − 1.2 m i + 2.4 m j + 2.4 m k = =  ( )2 ( )2 ( )2 21.3 kN 1.2 m 2.4 m 2.4 m F GH F GH GH GH − + + = −(7.1 kN)i + (14.2 kN) j + (14.2 kN)k Then 0.99228 0.124035 0 MAD = − ⋅ 6 1.8 0 kNm 7.1 14.2 14.2 − = −25.363 − 10.5678 = −35.931 kN⋅m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MAD = −35.9 kN⋅m W
  • 58. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 57. Have M = λ ⋅ ( r × P ) OA OA C/O where From triangle OBC a ( ) 2 x OA = ( ) ( ) 1 tan30 2 3 2 3 z x OA = OA + OA + OA 2 2 =  a      + + a       a OA ∴ OA = a − − = a OAλ = i + j + k P = λ P ° − ° P = i − k   ∴ =   aP  = −  − aP = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. a a OA OA   = ° =   =   Since ( ) ( ) ( ) ( ) 2 2 2 2 x y z or ( ) 2 2 2 y 2 3 ( ) 2 2 a a 2 2 y 4 12 3 Then / 2 2 3 2 3 AO a a r = i + a j + k and 1 2 1 2 3 2 3 BC ( asin30 ) ( acos30 )( P ) a = i k ( 3 ) 2 C/O r = ai ( ) 1 2 1 2 3 2 3 1 0 0 2 1 0 3 OA P M a   − 2 ( 1 )( 3 ) 2 3   2 2 OA aP M =
  • 59. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 58. (a) For edge OA to be perpendicular to edge BC, OA BC = 0 uuur uuur ⋅⋅⋅⋅ where From triangle OBC a ( OA ) = x 2 ( ) ( ) 1 tan30 2 3 2 3 z x     ∴ =   + +   i j k OA OA = a a i − k = a ( i − 3 k )  a     i + a a OA j +   k  ⋅⋅⋅⋅ i − k =     2 2 a a + OA − = M = Pd with P acting along BC and d the uuur uuur Pa ∴ = Pd Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. a a OA OA   = ° =   =   a a ( )  2  y  2 3  uuur uuur and BC = (asin 30°)i − (acos30°)k 3 2 2 2 Then ( ) ( 3 ) 0 2 y 2 3 2 or ( ) ( ) 0 0 4 y 4 ∴ OA BC = 0 uuur uuur ⋅⋅⋅⋅ uuur so that OA uuur is perpendicular to . BC (b) Have OA , perpendicular distance from OA to BC. From the results of Problem 3.57, 2 OA Pa M = 2 or a d = 2
  • 60. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 59. Have MDI = λDI ⋅(rF/I × TEF ) where ( ) ( ) i j ( )2 ( )2 T EF  3.6 ft i − 10.8 ft j + 16.2 ft k =  Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 4.8 ft 1.2 ft 4.8 ft 1.2 ft DI DI DI − = = + − λ JJJG = 0.97014i − 0.24254 j ( ) rF/I = 16.2 ft k EF EF EF T = JJJG ( ) ( ) ( ) ( ) ( )2 ( )2 ( )2 29.7 lb 3.6 ft + − 10.8 ft + 16.2 ft = (5.4 lb)i − (16.2 lb) j + (24.3 lb)k Then 0.97014 0.24254 0 0 0 16.2lbft 5.4 16.2 24.3 MDI − = ⋅ − = −21.217 + 254.60 = 233.39 lb⋅ft or MDI = 233 lb⋅ft W
  • 61. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 60. Have MDI = λDI ⋅(rG/I × TEG ) where ( ) ( ) i j 4.8 ft 1.2 ft 4.8 ft 1.2 ft ( )2 ( )2 DI DI DI T EG  3.6 ft i − 10.8 ft j − 35.1 ft k =  Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. − = = + − λ JJJG = 0.97014i − 0.24254 j ( ) rG/I = − 35.1 ft k EG EG EG T = JJJG ( ) ( ) ( ) ( ) ( )2 ( )2 ( )2 24.6 lb 3.6 ft + − 10.8 ft + − 35.1 ft = (2.4 lb)i − (7.2 lb) j − (23.4 lb)k Then 0.97014 0.24254 0 0 0 35.1lbft 2.4 7.2 23.4 MDI − = − ⋅ − − = 20.432 − 245.17 = −224.74 lb⋅ft or MDI = −225 lb⋅ft W
  • 62. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 61. First note that F1 = F1λ1 and F2 = F2λ2 Let M1 = moment of F2 about the line of action of M1 and M2 = moment of F1 about the line of action of M2 Now, by definition ( ) ( ) M1 = λ1 ⋅ rB/A × F2 = λ1 ⋅ rB/A × λ2 F2 ( ) ( ) M2 = λ2 ⋅ rA/B × F1 = λ2 ⋅ rA/B × λ1 F1 Since F1 = F2 = F and rA/B = −rB/A ( ) M1 = λ1 ⋅ rB/A × λ2 F ( ) M2 = λ2 ⋅ −rB/A × λ1 F Using Equation (3.39) ( ) ( ) λ1 ⋅ rB/A × λ2 = λ2 ⋅ −rB/A × λ1 so that ( ) M2 = λ1 ⋅ rB/A × λ2 F ∴ M12 = M21W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 63. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 62. From the solution of Problem 3.53: λAD = 0.8i − 0.6k TBH = (375 N)i + (750 N) j − (750 N)k; TBH = 1125 N MAD = −180 N⋅m Only the perpendicular component of TBH contributes to the moment of TBH about line AD. The parallel component of TBH will be used to find the perpendicular component. Have ( )TBH Parallel = λAD ⋅TBH = [0.8i − 0.6k] ⋅ (375 N)i + (750 N) j − (750 N)k = (300 + 450)N = 750 N Since ( ) ( ) TBH = TBH Perpendicular + TBH Parallel Then ( ) ( )2 ( )2 TBH Perpendicular = TBH − TBH Parallel ( )2 ( )2 = 1125 N − 750 N = 838.53 N and ( )MAD = TBH Perpendicular d 180 N⋅m = (838.53 N)d d = 0.21466 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 215 mm W
  • 64. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 63. From the solution of Problem 3.54: λAD = 0.8i − 0.6k (500 N) (925 N) (400 N) 1125 N T i j k BG TBG = − + − = MAD = −222 N⋅m Only the perpendicular component of TBG contributes to the moment of TBG about line AD. The parallel component of TBG will be used to find the perpendicular component. Have ( )TBG Parallel = λAD ⋅TBG = [0.8i − 0.6k] ⋅ −(500 N)i + (925 N) j − (400 N)k = (−400 + 240)N = −160 N Since ( ) ( ) TBG = TBG Perpendicular + TBG Parallel Then ( ) ( )2 ( )2 TBG Perpendicular = TBG − TBG Parallel ( )2 ( )2 = 1125 N − −160 N = 1113.56 N and ( )MAD = TBG Perpendicular d 222 N⋅m = (1113.56 N)d d = 0.199361 m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 199.4 mm W
  • 65. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 64. From the solution of Problem 3.59: λDI = 0.97014i − 0.24254 j (5.4 lb) (16.2 lb) (24.3 lb) 29.7 lb T i j k EF TEF = − + = MDI = 233.39 lb⋅ft Only the perpendicular component of TEF contributes to the moment of TEF about line DI. The parallel component of TEF will be used to find the perpendicular component. Have ( )TEF Parallel = λDI ⋅TEF = [0.97014i − 0.24254 j] ⋅ (5.4 lb)i − (16.2 lb) j + (24.3 lb)k = (5.2388 + 3.9291) = 9.1679 lb Since ( ) ( ) TEF = TEF Perpendicular + TEF Parallel Then ( ) ( )2 ( )2 TEF Perpendicular = TEF − TEF Parallel ( )2 ( )2 = 29.7 − 9.1679 = 28.250 lb and ( )MDI = TEF Perpendicular d 233.39 lb⋅ft = (28.250 lb)d d = 8.2616 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 8.26 ft W
  • 66. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 65. From the solution of Problem 3.60: λDI = 0.97014i − 0.24254 j (2.4 lb) (7.2 lb) (23.4 lb) 24.6 lb T i j k EG TEG = − − = MDI = − 224.74 lb⋅ft Only the perpendicular component of TEG contributes to the moment of TEG about line DI. The parallel component of TEG will be used to find the perpendicular component. Have ( )TEG Parallel = λDI ⋅TEG = [0.97014 i − 0.24254 j] ⋅ (2.4 lb) i − (7.2 lb) j − (23.4 lb)k = (2.3283 + 1.74629) = 4.0746 lb Since ( ) ( ) TEG = TEG Perpendicular + TEG Parallel Then ( ) ( )2 ( )2 TEG Perpendicular = TEG − TEG Parallel ( )2 ( )2 = 24.6 − 4.0746 = 24.260 lb and ( )MDI = TEG Perpendicular d 224.74 lb⋅ft = (24.260 lb)d d = 9.2638 ft Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 9.26 ft W
  • 67. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 66. From the solution of Prob. 3.55: λAD = 0.99228i + 0.124035 j FEF = (2.7 kN)i + (10.8 kN) j + (21.6 kN)k FEF = 24.3 kN MAD = −24.916 kN⋅m Only the perpendicular component of FEF contributes to the moment of FEF about edge AD. The parallel component of FEF will be used to find the perpendicular component. Have ( )FEF Parallel = λAD ⋅FEF = [0.99228i + 0.124035 j] ⋅ (2.7 kN)i + (10.8 kN) j + (21.6 kN)k = 4.0187 kN Since ( ) ( ) FEF = FEF Perpendicular + FEF Parallel Then ( ) ( )2 ( )2 FEF Perpendicular = FEF − FEF Parallel ( )2 ( )2 = 24.3 − 4.0187 = 23.965 kN and ( )MAD = FEF Perpendicular d 24.916 kN⋅m = (23.965 kN)d d =1.039683m or d = 1.040 m W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 68. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 67. From the solution of Prob. 3.56: λAD = 0.99228i + 0.124035 j FGH = −(7.1 kN)i + (14.2 kN) j + (14.2 kN)k FGH = 21.3 kN MAD = −35.931 kN⋅m Only the perpendicular component of FGH contributes to the moment of FGH about edge AD. The parallel component of FGH will be used to find the perpendicular component. Have ( )FGH Parallel = λAD ⋅FGH = (0.99228i + 0.124035 j) ⋅ −(7.1 kN)i + (14.2 kN) j + (14.2 kN)k = −5.2839 kN Since ( ) ( ) FGH = FGH Perpendicular + FGH Parallel Then ( ) ( )2 ( )2 FGH Perpendicular = FGH − FGH Parallel ( )2 ( )2 = 21.3 − 5.2839 = 20.634 kN and ( )MAD = FGH Perpendicular d 35.931 kN⋅m = (20.634 kN)d d = 1.741349m or d = 1.741 m W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 69. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 68. (a) Have M1 = d1F1 Where d1 = 0.6 m and F1 = 40 N ( )( ) ∴ M1 = 0.6 m 40 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M1 = 24.0 N⋅m W (b) Have MTotal = M1 + M2 8 N⋅m = 24.0 N⋅m − (0.820 m)(cosα )(24 N) ∴ cosα = 0.81301 or α = 35.6° W (c) Have M1 + M2 = 0 ( ) 24 N⋅m − d2 24 N = 0 or d2 = 1.000 m W
  • 70. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 69. (a) M = Fd 12 N⋅m = F (0.45 m) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or F = 26.7 N W (b) M = Fd 12 N⋅m = F (0.24 m) or F = 50.0 N W (c) M = Fd ( )2 ( )2 Where d = 0.45 m + 0.24m = 0.51 m 12 N⋅m = F (0.51 m) or F = 23.5 N W
  • 71. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 70. (a) Note when a = 8 in., rC/F is perpendicular to the inclined 10 lb forces. Have M = ΣFd ( ) = −(10 lb)a + 8 in. + 2(1 in.) − (10 lb)2a 2 + 2(1 in.) For a = 8 in., M = −(10 lb)(18 in. + 24.627 in.) = −426.27 lb⋅in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M = 426 lb⋅in. W (b) Have M = 480 lb⋅in. Also M = Σ(M + Fd ) ( ) = Moment of couple due to horizontal forces at A and D + Moment of force-couple systems at C and F about C. Then −480 lb⋅in. = −10 lb a + 8 in. + 2(1 in.) + MC + MF + FX (a + 8 in.) + Fy (2a) Where MC = −(10 lb)(1 in.) = −10 lb⋅in. MF = MC = −10 lb⋅in. Fx − = 10 lb 2 Fy − = 10 lb 2 ∴ −480 lb⋅in. = −10 lb(a + 10 in.) − 10 lb⋅in. − 10 lb⋅in. 10 lb ( 8 in.) 10 lb (2 ) 2 2 − a + − a 303.43 = 31.213 a or a = 9.72in.W
  • 72. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 71. (a) Have M = ΣFd ( ) = (9 lb)(13.8 in.) − (2.5 lb)(15.2 in.) = (86.2 lb⋅in.) Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. M = 86.2 lb⋅in. W (b) Have M = Td = 86.2 lb⋅in. For T to be a minimum, d must be maximum. ∴Tmin must be perpendicular to line AC. tan 15.2 in. 11.4 in. θ = θ = 53.130° or θ = 53.1° W (c) Have M = Tmindmax Where M = 86.2 lb⋅in. ( )2 ( )2 ( ) dmax = 15.2 in. + 11.4 in. + 2 1.2 in. = 21.4 in. ( ) ∴86.2 lb⋅ in. = Tmin 21.4 in. Tmin = 4.0280 lb or Tmin = 4.03 lb W
  • 73. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 72. Based on M = M1 + M2 ( ) M1 = 18 N⋅m k ( ) M2 = 7.5 N⋅m i ∴M = (7.5 N⋅m)i + (18 N⋅m)k and ( )2 ( )2 M = 7.5 N⋅m + 18 N⋅m = 19.5 N⋅m M ⋅ i + ⋅ k λ = = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M = 19.50 N⋅m W With (7.5 N m) (18 N m) M 19.5 N ⋅ m 5 12 13 13 = i + k Then cos 5 67.380 x 13 x θ = ∴θ = ° cosθ y = 0 ∴θ y = 90° cos 12 22.620 z 13 z θ = ∴θ = ° or θ x = 67.4°, θ y = 90.0°, θ z = 22.6° W
  • 74. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 73. Have M = M1 + M2 Where M1 = rC/B × PIC ( ) ( ) rC/B = 38.4 in. i − 16 in. j PIC = −(25 lb)k i j k M 1 38.4 16 0 lb in. ∴ = − ⋅ 0 0 − 25 = (400 lb⋅in.)i + (960 lb⋅in.) j and M2 = rD/A × PZE ( ) ( ) rD/A = 8 in. j − 22 in. k ( ) ( ) ( ) JJJG − 19.2 in. i + 22 in. k  = = ( )2 ( )2 36.5 lb 19.2 in. 22 in. P ED P ZE ZE ED − + = −(24 lb)i + (27.5 lb)k i j k 2 0 8 22lbin. M ∴ = − ⋅ 24 0 27.5 − ( ) ( ) ( ) M2 = 220 lb⋅in. i + 528 lb⋅in. j + 192 lb⋅in. k and M = M1 + M2 = (400 lb⋅in.)i + (960 lb⋅in.) j + (220 lb⋅in.)i + (528 lb⋅in.) j + (192 lb⋅in.)k = (620 lb⋅in.)i + (1488 lb⋅in.) j + (192 lb⋅in.)k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. continued
  • 75. COSMOS: Complete Online Solutions Manual Organization System ( )2 ( )2 ( )2 M =  620 + 1488 + 192  lb⋅in.   = 1623.39 lb⋅in. M ⋅ i + ⋅ j + ⋅ k λ = = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M = 1.623 kip⋅in.W (620 lb in.) (1488 lb in.) (192 lb in.) M 1623.39 lb ⋅ in. = 0.38192i + 0.91660 j + 0.118271k cosθ x = 0.38192 or θ x = 67.5° W cosθ y = 0.91660 or θ y = 23.6° W cosθ z = 0.118271 or θ z = 83.2°W
  • 76. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 74. Have M = M1 + M2 Where M1 = rE/D × FD = −(0.7 m)k × (80 N) j = (56.0 N⋅m)i And M2 = rG/F × FB Now ( )2 ( )2 ( )2 dBF = −0.300 m + 0.540 m + 0.350 m = 0.710m Then FB = λBFFB ( − 0.300 m) i + (0.540 m) j + (0.350 m) k ( 71 N ) 0.710 m = = −(30 N)i + (54 N) j + (35 N)k ∴ ( ) ( ) ( ) ( ) M2 = 0.54 m j × − 30 N i + 54 N j + 35 N k = (18.90 N⋅m)i + (16.20 N⋅m)k Finally M = (56.0 N⋅m)i + (18.90 N⋅m)i + (16.20 N⋅m)k = (74.9 N⋅m)i + (16.20 N⋅m)k and ( )2 ( )2 M = 74.9 N⋅m + 16.20 N⋅m = 76.632 N⋅m or M = 76.6 N⋅m W cos 74.9 cos 0 cos 16.20 x 76.632 y 76.632 z 76.632 θ = θ = θ = or θ x = 12.20° θ y = 90.0° θ z = 77.8° W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 77. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 75. Have M = (M1 + M2 ) + MP From the solution to Problem 3.74 ( ) ( ) ( ) M1 + M2 = 74.9 N⋅m i + 16.20 N⋅m k Now MP = rD / E × PE = (0.54 m) j + (0.70 m)k × (90 N)i = (63.0 N⋅m) j − (48.6 N⋅m)k ∴ M = (74.9i + 16.20k) + (63.0 j − 48.6 k) = (74.9 N⋅m)i + (63.0 N⋅m) j − (32.4 N⋅m)k and ( )2 ( )2 ( )2 M = 74.9 N⋅m + 63.0 N⋅m + −32.4 N⋅m = 103.096 N⋅m − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M = 103.1 N⋅m W and cos 74.9 cos 63.0 cos 32.4 θ x = θ 103.096 y = θ = 103.096 z 103.096 or θ x = 43.4° θ y = 52.3° θ z = 108.3° W
  • 78. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 76. Have M = M1 + M2 + MP From Problem 3.73 solution: ( ) ( ) M1 = 400 lb⋅in. i + 960 lb⋅in. j ( ) ( ) ( ) M2 = 220 lb⋅in. i + 528 lb⋅in. j + 192 lb⋅in. k Now MP = rE/A × PE ( ) ( ) ( ) rE/A = 19.2 in. i + 8 in. j − 44 in. k PE = (52.5 lb) j Therefore i j k 19.2 8 44 0 52.5 0 P = − M = (2310 lb. in.)i + (1008 lb. in.)k and M = M1 + M2 + MP = [(400 + 220 + 2310)i + (960 + 528)j + (192 +1008)k] lb⋅in. = (2930 lb⋅in.)i + (1488 lb⋅in.) j + (1200 lb⋅in.)k ( )2 ( )2 ( )2 M = 2930 + 1488 + 1200 = 3498.4 lb⋅in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M = 3.50 kip⋅in.W continued
  • 79. COSMOS: Complete Online Solutions Manual Organization System M 2930 i + 1488 j + = = 1200 k M 3498.4 λ = 0.83753i + 0.42534j + 0.34301k cosθ x = 0.83753 or θ x = 33.1° W cosθ y = 0.42534 or θ y = 64.8° W cosθ z = 0.34301 or θ z = 69.9° W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 80. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 77. Have M = M1 + M2 + M3 Where M1 = −(1.2 lb⋅ft)cos 25°j − (1.2 lb⋅ft)sin 25°k M2 = −(1.3 lb⋅ft) j M3 = −(1.4 lb⋅ft)cos 20°j + (1.4 lb⋅ft)sin 20°k ∴ M = (−1.08757 − 1.3 − 1.31557) j + (−0.507142 + 0.478828)k = −(3.7031 lb⋅ft) j − (0.028314 lb⋅ft)k and ( )2 ( )2 M = −3.7031 + −0.028314 = 3.7032 lb⋅ft − − = M = j k M Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or M = 3.70 lb⋅ft W 3.7031 0.028314 3.7032 λ = −0.99997j − 0.0076458k cosθ x = 0 or θ x = 90°W cosθ y = −0.99997 or θ y = 179.6° W cosθ z = −0.0076458 or θ z = 90.4° W
  • 81. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 78. (a) FB = P: ∴ FB = 160.0 N 50.0° W MB = −rBAPcos10° = −(0.355 m)(160 N)cos10° = −55.937 N⋅m Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or MB = 55.9 N⋅m W (b) FC = P: ∴ FC = 160.0 N 50.0° W ( ) C B CB B M M r F⊥ = − = MB − rCBFB sin 55° = −55.937 N⋅m − (0.305 m)(160 N)sin 55° or MC = 95.9 N⋅m W
  • 82. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 79. (a) ΣF: FB = 135 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or FB = 135 N W ΣM: MB = P dB = (135 N)(0.125 m) = 16.875 N⋅m or MB = 16.88 N⋅m W (b) ΣMB : MB = FC d 16.875 N⋅m = FC (0.075 m) FC = 225 N or FC = 225 N W ΣF: 0 = − FB + FC FB = FC = 225 N or FB = 225 N W
  • 83. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 80. (a) Based on ΣF: PC = P = 700 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or PC = 700 N 60°W ΣMC : MC = −PxdCy + PydCx where Px = (700 N)cos60° = 350 N Py = (700 N)sin 60° = 606.22 N dCx = 1.6 m dCy = 1.1 m ∴ MC = −(350 N)(1.1 m) + (606.22 N)(1.6 m) = −385 N⋅m + 969.95 N⋅m = 584.95 N⋅m or MC = 585 N⋅m W (b) Based on ΣFx : PDx = Pcos60° = (700 N)cos60° = 350 N ΣMD : (Pcos60°)(dDA ) = PB (dDB ) (700 N)cos60° (0.6 m) = PB (2.4 m) PB = 87.5 N or PB = 87.5 N W
  • 84. COSMOS: Complete Online Solutions Manual Organization System ΣFy : Psin 60° = PB + PDy (700 N)sin 60° = 87.5 N + PDy PDy = 518.72 N ( ) ( )2 2 PD = PDx + PDy ( )2 ( )2 = 350 + 518.72 = 625.76 N P P   θ = tan − 1   = tan − 1  518.72    = 55.991 ° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 350 Dy Dx     or PD = 626 N 56.0°W
  • 85. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 81. ΣFx : 2.8cos65° = FA cosθ + FC cosθ = (FA + FC )cosθ (1) ΣFy : 2.8sin 65° = FA sinθ + FC sinθ = (FA + FC )sinθ (2) Then (2) tan 65 tan (1) ⇒ ° = θ or θ = 65.0° ΣMA : (27 m)(2.8 kN)sin 65° = (72 m)(FC )sin 65° or FC = 1.050 kN From Equation (1): 2.8 kN = FA + 1.050 kN or FA = 1.750 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ∴ FA = 1.750 kN 65.0°W FC = 1.050 kN 65.0° W
  • 86. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 82. Based on ΣFx : − (54 lb)cos30° = −FB cosα − FC cosα (FB + FC )cosα = (54 lb)cos30° (1) ΣFy : (54 lb)sin 30° = FB sinα + FC sinα or (FB + FC )sinα = (54 lb)sin 30° (2) From ( ) 2 : tan tan30 1 ( ) Eq Eq α = ° ∴α = 30° Based on ΣMC : (54 lb)cos(30° − 20°) (10 in.) = (FB cos10°)(24 in.) ∴ FB = 22.5 lb Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or FB = 22.5 lb 30° W From Eq. (1), (22.5 + FC )cos30° = (54)cos30° FC = 31.5 lb or FC = 31.5 lb 30° W
  • 87. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 83. (a) Based on ΣFx : −(54 lb)cos30° = − FC cos30° ∴ FC = 54 lb 1 27 : tan 63.006 2 13.7534 27 30.301 lb B sin 63.006 F = = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or FC = 54.0 lb 30° W ΣMC : (54 lb)cos10° (10 in.) = MC ∴ MC = 531.80 lb⋅in. or MC = 532 lb⋅in. W (b) Based on ΣFy : (54 lb)sin 30° = FB sinα or FB sinα = 27 (1) ΣMB : 531.80 lb⋅in. − (54 lb)cos10° (24 in.) = − FC (24 in.)cos 20° FC = 33.012 lb or FC = 33.0 lb W And ΣFx : −(54 lb)cos30° = −33.012 lb − FB cosα FB cosα = 13.7534 (2) From ( ) ( ) Eq Eq α = ∴α = ° From Eq. (1), ( ° ) or FB = 30.3 lb 63.0° W
  • 88. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 84. ΣF F + F + F = F (a) Have : y C D E F = −200lb + 150 lb − 150 lb F = −200 lb ΣM F d − − F = (200 lb)(d − 4.5 ft ) − (150 lb)(6 ft ) = 0 ΣM F d − + F = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or F = 200 lb Have : ( 4.5 ft ) (6 ft ) 0 G C D d = 9 ft or d = 9.00 ft (b) Changing directions of the two 150-lb forces only changes the sign of the couple. ∴ F = −200 lb or F = 200 lb And : ( 4.5 ft ) (6 ft ) 0 G C D (200 lb)(d − 4.5 ft ) + (150 lb)(6 ft ) = 0 d = 0 or d = 0
  • 89. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 85. (a) (b) (c) Based on ΣFz : −200 N + 200 N + 240 N = FA FA = 240 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or FA = (240 N)k W Based on ΣMA: (200 N)(0.7 m) − (200 N)(0.2 m) = MA MA = 100 N⋅m or MA = (100.0 N⋅m) jW Based on ΣFz : −200 N + 200 N + 240 N = F F = 240 N or F = (240 N)k W Based on ΣMA: 100 N⋅m = (240 N)(x) x = 0.41667 m or x = 0.417 m From A along AB W Based on ΣMB : −(200 N)(0.3 m) + (200 N)(0.8 m) − P(1 m) = R(0) P = 100 N or P = 100.0 N W
  • 90. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 86. Let R be the single equivalent force... ΣF: R = FA + FC = (260 N)(cos10°i − sin10°k) + (320 N)(−cos8°i − sin8°k) = −(60.836 N)i − (89.684 N)k or R = −(60.8 N)i − (89.7 N)k W ΣMA : rADRx = rACFC cos8° rAD (60.836 N) = (0.690 m)(320 N)cos8° rAD = 3.5941 m ∴R Would have to be applied 3.59 m to the right of A W on an extension of handle ABC. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 91. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 87. (a) Have ΣF: FB + FC + FD = FA Since FB = −FD ∴ FA = FC = 22 lb 20° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or FA = 22.0 lb 20° W Have ΣMA : − FBT (r ) − FCT (r ) + FDT (r ) = MA − (28 lb)sin15° (8 in.) − (22 lb)sin 25° (8 in.) + (28 lb)sin 45° (8 in.) = MA MA = 26.036 lb⋅in. or MA = 26.0 lb⋅in. W (b) Have ΣF: FA = FE or FE = 22.0 lb 20° W ΣM: MA = [FE cos 20°](a) ∴ 26.036 lb⋅in. = (22 lb)cos 20° (a) a = 1.25941 in. or a = 1.259 in. Below AW
  • 92. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 88. (a) Let R be the single equivalent force. Then R = (120 N)k R = 120 N W ΣMB : − a(120 N) = −(0.165 m)(90 N)cos15° + (0.201 m)(90 N)sin15° a = 0.080516 m ∴The line of action is y = 201mm − 80.516 mm = 19.984 mm 2 2 3.1697 3.1697 4 2.48396 0.69263 Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or y = 19.98 mm W (b) ΣMB : − (0.201 − 0.040)m (120 N) = −(0.165 m)(90 N)cosθ + (0.201 m)(90 N)sinθ or cosθ − 1.21818sinθ = 1.30101 or cos2θ = (1.30101 + 1.21818sinθ )2 or 1 − sin2θ = 1.69263 + 3.1697sinθ + 1.48396sin2θ or 2.48396sin2θ + 3.1697sinθ + 0.69263 = 0 Then ( ) ( )( ) ( ) sin 2 2.48396 θ − ± − = or θ = −16.26° and θ = −85.0° W
  • 93. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 89. (a) First note that F = P and that F must be equivalent to (P, MD) at point D, Where MD = 57.6 N⋅m For ( )min F = F F must act as far from D as possible ∴ Point of application is at point B W (b) For ( )min F F must be perpendicular to BD Now ( )2 ( )2 dDB = 630 mm + −160 mm = 650 mm tan 63 16 α = α = 75.7° Then MD = dDB F 57.6 N⋅m = (0.650 m)F F = 88.6 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or F = 88.6 N 75.7°W
  • 94. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 90. Have ΣF: −(250 kN) j = F i j k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or F = −(250 kN) jW Also have ΣMG : rP × P = M 0.030 0 0.060 kN m = 0 250 0 − ⋅ − M ∴ M = (15 kN⋅m)i + (7.5 kN⋅m)k or M = (15.00 kN⋅m)i + (7.50 kN⋅m)k W
  • 95. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 91. Have ΣF: TAB = F JJJG T AB T = where AB AB AB i j k 54 lb 2.25 18 9 ( ) − + ( 2.25 )2 ( 18 )2 ( 9 )2 = + − + = (6 lb)i − (48 lb) j + (24 lb)k So that F = (6.00 lb)i − (48.0 lb) j + (24.0 lb)k W Have ΣME : rA/E × TAB = M i j k 0 22.5 0 lb ft 6 48 24 ⋅ = − M ∴M = (540 lb⋅ft)i − (135 lb⋅ft)k or M = (540 lb⋅ft)i − (135.0 lb⋅ft)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 96. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 92. Have ΣF: TCD = F JJJG T CD T = where CD CD CD i j k 61 lb 0.9 16.8 7.2 ( ) − − + ( 0.9 )2 ( 16.8 )2 ( 7.2 )2 = − + − + = −(3 lb)i − (56 lb) j + (24 lb)k So that F = −(3.00 lb)i − (56.0 lb) j + (24.0 lb)k W Have ΣMO = rC/D × TCD = M i j k 0 22.5 0 lb ft 3 56 24 ⋅ = − − M ∴M = (540 lb⋅ft)i + (67.5 lb⋅ft)k M = (540 lb⋅ft)i + (67.5 lb⋅ft)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 97. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 93. Have ΣF: TAB = F JJJG T AB T = where AB AB AB i j k 10.5 kN 4.75 2 ( ) − − + ( 1 )2 ( 4.75 )2 ( 2 )2 = − + − + = −(2 kN)i − (9.5 kN) j + (4 kN)k So that F = −(2.00 kN)i − (9.50 kN) j + (4.00 kN)k W Have ΣMO : rA × TAB = M i j k 3 4.75 0 kNm 2 9.5 4 ⋅ = − − M ∴M = (19 kN⋅m)i − (12 kN⋅m) j − (19 kN⋅m)k M = (19.00 kN⋅m)i − (12.00 kN⋅m) j − (19.00 kN⋅m)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 98. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 94. Let (R, MO ) be the equivalent force-couple system Then R = (220 N)(−sin 60°j − cos60°k) = (110 N)(− 3j − k) or R = −(190.5 N) j − (110 N)k W Now ΣMO : MO = rOC × R Where rOC = (0.2 m)i + (0.1 − 0.4sin 20°)m j + (0.4cos 20°m)k i j k Then (0.1)(110 N) 2 (1 4sin 20 ) 4cos 20 (m) O = − − ° ° 0 3 1 M = −(11 N⋅m){(1 − 4sin 20°)(1) − (4cos 20°)( 3) i − 2 j + 2 3 k} or MO = (75.7 N⋅m)i + (22.0 N⋅m) j − (38.1 N⋅m)k W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 99. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 95. Have ΣF: F = FD JJG where F AI AI F = i j k 63 lb 14.4 4.8 7.2 ( ) − + ( 14.4 )2 ( 4.8 )2 ( 7.2 )2 = + − + So that F = (54.0 lb)i − (18.00 lb) j + (27.0 lb)k W Have ΣMD : M + rI/O × F = MD JJJG where M AC AC M = i k 560 lb in. 9.6 7.2 ( ) − ( 9.6 )2 ( 7.2 )2 = ⋅ + − = (448 lb⋅in.)i − (336 lb⋅in.)k i j k Then (448 lb in.) (336 lb in.) 0 0 14.4 lb in. D = ⋅ − ⋅ + ⋅ Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 54 − 18 27 M i k = (448 lb⋅in.)i − (336 lb⋅in.)k + (259.2 lb⋅in.)i + (777.6 lb⋅in.) j or MD = (707 lb⋅in.)i + (778 lb⋅in.) j − (336 lb⋅in.)k W
  • 100. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 96. First assume that the given force W and couples M1 and M2 act at the origin. Now W = −Wj and M = M1 + M2 = −(M2 cos 25°)i + (M1 − M2 sin 25°)k Note that since W and M are perpendicular, it follows that they can be replaced with a single equivalent force. (a) Have F = W or F = −Wj = −(2.4 N) j i j k x z Wz Wx = = − W − = − ° = − − °    x = − ° = − z = − ° = − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or F = −(2.40 N) j W (b) Assume that the line of action of F passes through point P (x, 0, z). Then for equivalence M = rP/O × F where rP/O = xi + zk ∴ −(M2 cos 25°)i + (M1 − M2 sin 25°)k 0 ( ) ( ) 0 0 i k Equating the i and k coefficients, z Mz cos 25 and x M1 M2 sin 25 W W   (b) For W = 2.4 N, M1 = 0.068 N⋅m, M2 = 0.065 N⋅m 0.068 0.065sin 25 0.0168874 m 2.4 − or x = −16.89 mmW 0.065cos 25 0.024546 m 2.4 or z = −24.5 mmW
  • 101. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 97. (a) Have ΣMBz : M2z = 0 ( ) k⋅ rH/B × F1 + M1z = 0 (1) where ( ) ( ) rH/B = 31 in. i − 2 in. j F1 = λEHF1 (6 in.) + (6 in.) − (7 in.) ( ) i j k − + − = ⋅ ⋅ − ⋅ − + = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 20 lb 11.0 in. = i j k 20 lb (6 6 7 ) 11.0 = i + j − k M1z = k⋅M1 M1 = λEJM1 ( 3 in. ) ( 7 in. ) ( 480 lb in. ) 2 58 in. d d + Then from Equation (1), ( )( ) 2 0 0 1 20 lb in. 7 480 lb in. 31 2 0 0 11.0 6 6 − 7 d + 58 continued
  • 102. COSMOS: Complete Online Solutions Manual Organization System Solving for d, Equation (1) reduces to 20 lb ⋅ in. ( ⋅ 186 + 12 ) − 3360 lb in. = 0 11.0 d 2 + 58 From which d = 5.3955 in. or d = 5.40 in.W 20 lb 6 6 7 11.0 (b) F 2 = F 1 = ( i + j − k ) = (10.9091i + 10.9091j − 12.7273k)lb ( ) ( ) ( ) or F2 = 10.91 lb i + 10.91 lb j − 12.73 lb k W M2 = rH/B × F1 + M1 i j k ⋅ ( − 5.3955) i + 3 j − 7 k 31 2 0 20 lb in. (480 lb in.) = − + ⋅ 11.0 9.3333 6 6 − 7 = (25.455i + 394.55j + 360k)lb⋅in. +(−277.48i + 154.285j − 360k)lb⋅in. ( ) ( ) M2 = − 252.03 lb⋅in. i + 548.84 lb⋅in. j ( ) ( ) or M2 = − 21.0 lb⋅ft i + 45.7 lb⋅ft j W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 103. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 98. (a) a: ΣFy : Ra = −400 N − 600 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Ra = 1000 N W ΣMB : Ma = (2 kN⋅m) + (2 kN⋅m) + (5 m)(400 N) or Ma = 6.00 kN⋅m W b: ΣFy : Rb = −1200 N + 200 N or Rb = 1000 N W ΣMB : Mb = (0.6 kN⋅m) + (5 m)(1200 N) or Mb = 6.60 kN⋅m W c: ΣFy : Rc = 200 N − 1200 N or Rc = 1000 N W ΣMB : Mc = −(4 kN⋅m) − (1.6 kN⋅m) − (5 m)(200 N) or Mc = 6.60 kN⋅m W d : ΣFy : Rd = −800 N − 200 N or Rd = 1000 N W ΣMB : Md = −(1.6 kN⋅m) + (4.2 kN⋅m) + (5 m)(800 N) or Md = 6.60 kN⋅m W continued
  • 104. COSMOS: Complete Online Solutions Manual Organization System e: ΣFy : Re = −500 N − 400 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or Re = 900 N W ΣMB : Me = (3.8 kN⋅m) + (0.3 kN⋅m) + (5 m)(500 N) or Me = 6.60 kN⋅m W f : ΣFy : Rf = 400 N − 1400 N or R f = 1000 N W ΣMB : M f = (8.6 kN⋅m) − (0.8 kN⋅m) − (5 m)(400 N) or Mf = 5.80 kN⋅m W g: ΣFy : Rg = −1200 N + 300 N or Rg = 900 N W ΣMB : Mg = (0.3 kN⋅m) + (0.3 kN⋅m) + (5 m)(1200 N) or Mg = 6.60 kN⋅m W h: ΣFy : Rh = −250 N − 750 N or Rh = 1000 N W ΣMB : Mh = −(0.65 kN⋅m) + (6 kN⋅m) + (5 m)(250 N) or Mh = 6.60 kN⋅m W (b) The equivalent loadings are (b), (d), (h) W
  • 105. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 99. The equivalent force-couple system at B is... ΣFy : R = −650 N − 350 N or R = 1000 N ΣMB : M = (1.6 m)(800 N) + (1.27 kN⋅m) + (5 m)(650 N) or M = 5.80 kN⋅m ∴ The equivalent loading of Problem 3.98 is (f) W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 106. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 100. Equivalent force system... (a) ΣFy : R = −400 N − 200 N Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or R = 600 N W ΣMA : −d (600 N) = −(200 N⋅m) + (100 N⋅m) − (4 m)(200 N) or d = 1.500 m W (b) ΣFy : R = −400 N + 100 N or R = 300 N W ΣMA : −d (300 N) = −(200 N⋅m) − (600 N⋅m) + (4 m)(100 N) or d = 1.333 m W (c) ΣFy : R = −400 N − 100 N or R = 500 N W ΣMA : −d (500 N) = −(200 N⋅m) − (200 N⋅m) − (4 m)(100 N) or d = 1.600 m W
  • 107. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 101. The equivalent force-couple system at A for each of the five force-couple systems will be determined and compared to F = (2 lb) j M = (48 lb⋅in.)i + (32 lb⋅in.)k To determine if they are equivalent Force-couple system at B: Have ΣF: F = (2 lb) j and ( ) ΣMA : M = ΣMB + rB/A × FB M = (32 lb⋅in.)i + (16 lb⋅in.)k + (8 in.)i × (2 lb) j = (32 lb⋅in.)i + (32 lb⋅in.)k Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. ∴ is not equivalent W Force-couple system at C: Have ΣF: F = (2 lb) j And ( ) ΣMA : M = MC + rC/A × FC M = (68 lb⋅in.)i + (8 in.)i + (10 in.)k × (2 lb) j = (48 lb⋅in.)i + (16 lb⋅in.)k ∴ is not equivalent W continued
  • 108. COSMOS: Complete Online Solutions Manual Organization System Force-couple system at E: Have ΣF: F = (2 lb) j and ( ) ΣMA : M = ME + rE/A × FE M = (48 lb⋅in.)i + (16 in.)i − (3.2 in.) j × (2 lb) j = (48 lb⋅in.)i + (32 lb⋅in.)k ∴ is equivalent W Force-couple system at G: Have ΣF: F = (2 lb)i + (2 lb) j F has two force components ∴ is not equivalent W Force-couple system at I: Have ΣF: F = (2 lb) j and ( ) ΣMA : ΣMI + rI/A × FI M = (80 lb⋅in.)i − (16 in.)k + (16 in.)i − (8 in.) j + (16 in.)k × (2 lb) j M = (48 lb⋅in.)i + (16 lb⋅in.)k ∴ is not equivalent W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 109. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 102. First WA = mAg = (38 kg) g WB = mBg = (29 kg) g (a) WC = mCg = (27 kg) g For resultant weight to act at C, ΣMC = 0 Then (38 kg) g (2 m) − (27 kg) g (d ) − (29 kg) g (2 m) = 0 76 58 0.66667 m 27 d − ∴ = = Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 0.667 m W (b) WC = mCg = (24 kg) g For resultant weight to act at C, ΣMC = 0 Then (38 kg) g (2 m) − (24 kg) g (d ) − (29 kg) g (2 m) = 0 76 58 0.75 m 24 d − ∴ = = or d = 0.750 m W
  • 110. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 103. ΣF −W − W − W = R ∴R = −200 lb − 175 lb − 135 lb (a) Have : C D E = −510 lb   Σ =−   Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or R = 510 lb Have : A ΣM −(200 lb)(4.5 ft ) − (175 lb)(7.8 ft ) − (135 lb)(12.75 ft ) = − R(d ) ∴−3986.3 lb⋅ft = (−510 lb)d or d = 7.82 ft (b) For equal reactions at A and B, The resultant R must act at midspan. From 2 A L M R   ∴−(200 lb)(4.5 ft ) − (175 lb)(4.5 ft + a) − (135 lb)(4.5 ft + 2.5 a) = −(510 lb)(9 ft ) or 2295 + 512.5 a = 4590 and a = 4.48 ft
  • 111. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 104. Have ΣF: −12 kN − WL − 18 kN = −40 kN − 40 kN WL = 50 kN Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or WL = 50.0 kN W ΣMB : (12 kN)(5 m) + (50 kN)d = (40 kN)(5 m) d = 2.8 m or heaviest load (50 kN) is located W 2.80 m from front axle
  • 112. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 105. (a) ΣF: R = (80 N)i − (40 N) j − (60 N) j +(90 N)(−sin 50°i − cos50°j) = (11.0560 N)i − (157.851 N) j ( )2 ( )2 R = 11.0560 N + −157.851 N = 158.2 N − tan = 157.851 11.0560 θ θ = 86.0° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or R = 158.2 N 86.0° W (b) ΣMF : d −(157.851 N) = (0.32 m)(80 N) − (0.15 m)(40 N) − (0.35 m)(60 N) − (0.61 m)(90 N)cos50° − (0.16 m)(90 N)sin 50° or d = 302 mm to the right of F W
  • 113. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 106. (a) : 0 (0.32 m)(80 N) (0.1 m)(40 N) (0.1 m)(60 N) (0.36 m)(90 N)cos ΣM = + − − α I −(0.16 m)(90 N)sinα or 4sinα + 9cosα = 6.5556 ( ) ( ) 2 2 9cosα = 6.5556 − 4sinα ( 2 ) 2 81 1 − sin α = 42.976 − 52.445sinα + 16sin α 2 97sin α − 52.445sinα − 38.024 = 0 Solving by the quadratic formula gives for the positive root sinα = 0.95230 α = 72.233° or α = 72.2° Note: The second root (α = −24.3°) is rejected since 0 α 90°. (b) ΣF: R = (80 N)i − (40 N) j − (60 N) j +(90 N)(−sin 72.233°i − cos72.233°j) = −(5.7075 N)i − (127.463 N) j ( ) ( ) 2 2 R = −5.7075 N + −127.463 N = 127.6 N 127.463 θ = − tan 5.7075 − θ = 87.4° or R = 127.6 N 87.4° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 114. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 107. (a) Have ΣMD : 0 = M − (0.8 in.)(40 lb) − (2.9 in.)(20 lb)cos30° −(3.3 in.)(20 lb)sin 30° or M = 115.229 lb⋅in. or M = 115.2 lb⋅in. W Now, R is oriented at 45° as shown (since its line of action passes through B and D). Have ΣFx′ : 0 = (40 lb)cos 45° − (20 lb)cos15° −(90 lb)cos(α + 45°) or α = 39.283° or α = 39.3° W (b) ΣFx : Rx = 40 − 20sin 30° − 90cos39.283° = −39.663 lb Now R = 2Rx or R = 56.1 lb 45.0° W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 115. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 108. (a) Reduce system to a force and couple at B: Have R = ΣF = −(10 lb) j + (25 lb)cos60°i + (25 lb)sin 60°j − (40 lb)i = −(27.5 lb)i + (11.6506 lb) j or ( )2 ( )2 R = −27.5 lb + 11.6506 lb = 29.866 lb tan 1 11.6506 22.960 θ = −   = ° 27.5   or R = 29.9 lb 23.0° W Also MB = ΣMB = (80 lb⋅in.)k − (12 in.)i × (−10 lb) j − (8 in.) j × (−40 lb)i = −(120 lb⋅in.)k (b) Have MB = −(120 lb⋅in.)k = −(u)i × (11.6506 lb) j −(120 lb⋅in.)k = −(11.6506 lb)(u)k u = 10.2999 in. and x = 12 in. − 10.2999 in. = 1.7001 in. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 116. COSMOS: Complete Online Solutions Manual Organization System Have MB = −(120 lb⋅in.)k = −(v) j × (−27.5 lb)i −(120 lb⋅in.)k = −(27.5 lb)(v)k v = 4.3636 in. and y = 8 in. − 4.3636 in. = 3.6364 in. or 1.700 in. to the right of A and 3.64 in. above C W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 117. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 109. (a) Position origin along centerline of sheet metal at the intersection with line EF. (a) Have ΣF = R R = −0.52 j − 1.05 j − 2.1(sin 45°i + cos 45° j) − 0.64i kips R = −(2.1249 kips)i − (3.0549 kips) j ( ) ( ) 2 2 R = −2.1249 + −3.0549 = 3.7212 kips − − 3.0549 θ = 1 tan   = 55.179 °  − 2.1249  or R = 3.72 kips 55.2° M = ΣM Have EF EF Where M = (0.52 kip)(3.6 in.) + (1.05 kips)(1.6 in.) EF −(2.1 kips)(0.8 in.) − (0.64 kip)(1.6 in.)sin 45° + 1.6 in. = 0.123923 kip⋅in. To obtain distance d left of EF, Have M = dR = d ( − 3.0549 kips) EF y 0.123923 kip ⋅ in. d = = − 0.040565 in. 3.0549 kips − or d = 0.0406 in. left of EF (b) M = ΣM = Have 0 EF EF (0.52 kip)(3.6 in.) (1.05 kips)(1.6 in.) EF M = + −(2.1 kips)(0.8 in.) −(0.64 kip)(1.6 in.)sinα + 1.6 in. ∴ (1.024 kip⋅in.)sinα = 0.848 kip⋅in. or α = 55.9° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 118. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 110. (a) Have ΣF = R R = −0.52j − 1.05j − 2.1(sinαi + cosα j) − 0.64i kips = − 0.64 kip + (2.1 kips)(sinα )i − 1.57 kips + (2.1 kips)cosα  j R R Then tan 0.64 2.1sin α + 1.57 2.1cos x y α α = = + 1.57 tanα + 2.1sinα = 0.64 + 2.1sinα tan 0.64 1.57 α = α = 22.178° Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or α = 22.2° W (b) From α = 22.178° Rx = −0.64 kip − (2.1 kips)sin 22.178° = −1.43272 kips Ry = −1.57 kips − (2.1 kips)cos 22.178° = −3.5146 kips
  • 119. COSMOS: Complete Online Solutions Manual Organization System ( )2 ( )2 R = −1.43272 + −3.5146 = 3.7954 kips or R = 3.80 kips 67.8°W Then MEF = ΣMEF Where MEF = (0.52 kip)(3.6 in.) + (1.05 kips)(1.6 in.) − (2.1 kips)(0.8 in.) −(0.64 kip)(1.6 in.)sin 22.178° + 1.6 in. = 0.46146 kip⋅in. To obtain distance d left of EF, Have MEF = dRy = d (−3.5146 kips) 0.46146 kip in. d ⋅ 3.5146 kips = − = −0.131298 in. or d = 0.1313 in. left of EF W Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies.
  • 120. COSMOS: Complete Online Solutions Manual Organization System Chapter 3, Solution 111. Equivalent force-couple at A due to belts on pulley A Have ΣF: −120 N − 160 N = RA ∴ RA = 280 N Have ΣMA : −40 N(0.02 m) = MA ∴ MA = 0.8 N⋅m Equivalent force-couple at B due to belts on pulley B Have ΣF: (210 N + 150 N) 25° = RB ∴ RB = 360 N 25° Have ΣMB : −60 N(0.015 m) = MB ∴ MB = 0.9 N⋅m Equivalent force-couple at F Have ΣF: RF = (−280 N) j + (360 N)(cos 25°i + sin 25°j) = (326.27 N)i − (127.857 N) j R = RF = RF2x + RF2y = (326.27)2 + (127.857)2 = 350.43 N R R   − θ = tan − 1   = tan − 1  127.857    = − 21.399 ° 326.27 Fy Fx     Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or RF = R = 350 N 21.4°W
  • 121. COSMOS: Complete Online Solutions Manual Organization System Have ΣMF : MF = −(280 N)(0.06 m) − 0.80 N⋅m − (360 N)cos 25° (0.010 m) + (360 N)sin 25° (0.120 m) − 0.90 N⋅m MF = −(3.5056 N⋅m)k To determine where a single resultant force will intersect line FE, MF = dRy 3.5056 N m 0.027418 m 27.418 mm 127.857 N F y d M ∴ = = = = R − ⋅ − Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. or d = 27.4 mmW