SlideShare a Scribd company logo
1 of 48
Download to read offline
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                             page 1



                         CLEAN DEVELOPMENT MECHANISM
                     PROJECT DESIGN DOCUMENT FORM (CDM-PDD)
                          Version 03 - in effect as of: 28 July 2006

                                             CONTENTS

      A.      General description of project activity

      B.      Application of a baseline and monitoring methodology

      C.      Duration of the project activity / crediting period

      D.      Environmental impacts

      E.      Stakeholders’ comments

                                               Annexes

      Annex 1: Contact information on participants in the project activity

      Annex 2: Information regarding public funding

      Annex 3: Baseline information

      Annex 4: Monitoring plan
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                              page 2




SECTION A. General description of project activity

A.1     Title of the project activity:
>>
Project title: Jiangxi Duchang Jishanhu Wind Farm Project
PDD version: 2.0
Completion date PDD: 10/10/2008

A.2.    Description of the project activity:
>>
Jiangxi Duchang Jishanhu Wind Farm Project (hereinafter referred to the proposed project) is located in
Duchang County of Jiujiang City in Jiangxi Province, China. The proposed project will be constructed
and operated by Jiangxi Zhongdiantou New Energies Co., Ltd.

With a period of 21 years in total, the proposed project will have a total installed capacity of 30MW
(1.5MW×20) contributing to power generation of 55,042MWh annually to Central China Grid through
Jiangxi Grid. The annual operation hours are 1835. By utilizing clean and renewable power, electricity
generated by the proposed project will replace the same amount of electricity generated by Central China
Grid which is dominated by fossil-fuel fired power. As a result, greenhouse gas emission reduction of
estimated 62,616tCO2e per year can be achieved.

The proposed project will not only provide clean electricity to grid but also contribute to sustainable
development of the host country by means of:
    Providing reliable, zero-emitting renewable energy to Central China Grid
    Contributing to local economic development through employment creation
    Stimulating the growth of wind power industry in China
    Decrease the GHG emission by reducing the electricity generation from the fossil-fuel fired power
    plants, and also the emission of SOx, NOx and dust
    Stimulating the development of local tourism industry
    Improving people’s living standard

A.3.    Project participants:
>>
The parties involved in the proposed project are shown in Table A-1:

Table A-1 Project participants
  Name of Party involved      Private and/or public entity(ies)           Kindly indicate if the Party
 (*)((host) indicates a host    project participants (*) (as          involved wishes to be considered as
           Party)                        applicable)                     project participant (Yes/No)
                                 Jiangxi Zhongdiantou New
      P. R. China (host)                                                                No
                                      Energies Co., Ltd
          Germany                           KfW                                         No

For more detailed contact information on participants in the project activities, please refer to Annex 1.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                     page 3



A.4.    Technical description of the project activity:

        A.4.1. Location of the project activity:
>>

                A.4.1.1.         Host Party(ies):
>>
People’s Republic of China

                A.4.1.2.         Region/State/Province etc.:
>>
Jiangxi Province

             A.4.1.3.          City/Town/Community etc:
>>
Duchang County of Jiujiang City

                A.4.1.4.        Detail of physical location, including information allowing the
unique identification of this project activity (maximum one page):
>>
The project site is located in Duchang County, Jiujiang City, Jiangxi Province. The site location’s
approximate coordinates are east longitude of 116°09′32′′ and north latitude of 29°15′12′′.

Figure A-1 illustrates the location of the proposed project.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                             page 4




                                                  Jiangxi Duchang Jishanhu
                                                     Wind Farm Project




                              Figure A-1 Map of the project location
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                               page 5



        A.4.2. Category(ies) of project activity:
>>
The project activity falls within Sectoral Scope 1: Energy Industries.
- Electricity generation from wind power

        A.4.3. Technology to be employed by the project activity:
>>
The proposed project utilises standard wind power technology which will be domestically manufactured.

The proposed project involves the installation of 20 wind turbines produced by Goldwind Science and
Technology Co., Ltd. with an individual capacity of 1500kW per unit adding up to a total installed
capacity of 30MW. The main specifications of the turbine are listed in Table A-2.

Table A-2 Technical specifications of employed turbine (Goldwind S77-1500kW)
Rotor                             Diameter                        77m
                                  Installation height             65m
                                  Area swept                      4657m2
                                  Number of blades                3
                                  Rotor Speed                     9~17.3rpm
Operational data                  Cut-in wind speed               3m/s
                                  Nominal wind speed              11.5m/s
                                  Cut-out wind speed              22m/s
                                  Ultimate wind speed             59.5m/s
                                  Operation temperature           -30~40℃
Generator                         Nominal output                  1500kW
                                  Rated voltage                   690V
                                  Frequency                       50Hz
                                  Rated speed                     17.3rpm
                                  Rated current                   660A

The project entity has made arrangements for its staff to become familiar with the operation and
maintenance requirements of a wind farm.

All technologies utilized in the proposed project are domestically produced and there is no technical
transfer involved.

        A.4.4   Estimated amount of emission reductions over the chosen crediting period:
>>
7*3 year renewable crediting period is chosen for the proposed project. Annual emission reduction of the
proposed project is estimated to be 62,616 tCO2e which totals in 438,312 tCO2e during the first crediting
period (from January, 2009 to December, 2015).

The estimation of the emission reductions in the crediting period is presented in Table A-3.

Table A-3 Estimation of emission reduction over the first crediting period
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                          page 6



                Year                     Annual estimation of emission reductions in tones of CO2 e

       01/01/2009 – 31/12/2009                                     62,616
       01/01/2010 – 31/12/2010                                     62,616
       01/01/2011 – 31/12/2011                                     62,616
       01/01/2012 – 31/12/2012                                     62,616
       01/01/2013 – 31/12/2013                                     62,616
       01/01/2014 – 31/12/2014                                     62,616
       01/01/2015 – 31/12/2015                                     62,616

 Total estimated reductions (tCO2 e)                               438,312
  Total number of crediting years                                     7
 Annual average over the crediting
  period of estimated reductions                                   62,616
              (tCO2e)

        A.4.5. Public funding of the project activity:
>>
There is no public funding from Annex I countries available to the proposed project.

SECTION B. Application of a baseline and monitoring methodology


B.1.    Title and reference of the approved baseline and monitoring methodology applied to the
project activity:
>>
     ACM0002: “Consolidated baseline methodology for grid-connected electricity generation from
     renewable sources” , version 07, EB36;
     “Tool to calculate the emission factor for an electricity system”, version 01, EB35;
     “Tool for the demonstration and assessment of additionality”, version 05, EB39;

For more information regarding the methodology, please refer to the link:
http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html

B.2     Justification of the choice of the methodology and why it is applicable to the project
activity:
>>
The baseline methodology ACM0002 is applicable to the proposed project, because the proposed project
meets all the applicability criteria stated in the methodology:

    The proposed project is a new wind power plant to supply the electricity capacity additions;
    The proposed project does not involve an on-site switch from fossil fuels to a renewable source;
    The geographic and system boundaries for the relevant electricity grid, the Central China Power Grid,
    can be clearly identified and information on the characteristics of the grid is available.

Therefore, ACM0002 (version 07) has been applied to the proposed project.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                              page 7




B.3.    Description of the sources and gases included in the project boundary
>>
The spatial extent of the project boundary includes the project site and all power plants connected
physically to the Central China Grid. Central China Grid covers Henan Province, Hunan Province, Hubei
Province, Jiangxi Province, Sichuan Province and Chongqing Municipality.1

The sources and gases included in the project boundary are described in Table B-1 as follows:

Table B-1 Inclusion of gases and sources in the calculation of the emission reductions
                 Source        Gas     Included?                 Justification / Explanation
              Fossil fuel-     CO2         Yes                     Main emission source
              fired Power                                  Minor emission source. Excluded for
                  plants       CH4         No
                                                            simplification. This is conservative.
Baseline     connected to
              the Central                                  Minor emission source. Excluded for
             China Power       N2O         No
                                                            simplification. This is conservative.
                   Grid
                                                        Excluded by the methodology for wind farm
                               CO2         No
                 Jiangxi                                                   projects
 Project        Duchang                                 Excluded by the methodology for wind farm
                               CH4         No
 Activity   Jishanhu Wind                                                  projects
             Farm Project                               Excluded by the methodology for wind farm
                               N2O         No
                                                                           projects

B.4.    Description of how the baseline scenario is identified and description of the identified
baseline scenario:

>>
The proposed project activity is the installation of a new grid-connected wind power plant. As per
ACM0002: “Consolidated baseline methodology for grid-connected electricity generation from renewable
sources”, version 07, the baseline scenario is the following:

“If the project activity is the installation of a new grid-connected renewable power plant/unit, the baseline
scenario is the following: Electricity delivered to the grid by the project would have otherwise been
generated by the operation of grid-connected power plants and by the addition of new generation sources
as reflected in the combined margin (CM) calculations described in the “Tool to calculate the emission
factor for a electricity system.”

According to the above discussion, the equivalent electricity provided by the Central China Grid is
selected as the baseline scenario for the proposed project.

Parameters and data sources for determining the baseline scenario are listed in Table B-2:




1
    http://cdm.ccchina.gov.cn/web/NewsInfo.asp?NewsId=2875
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                             page 8


Table B-2 Parameters and data sources for determining the baseline scenario
          Parameter                          Value                                    Source
                                                                        - China Electric Power Yearbook 2002-
                                                                                         2007
                                                                          - 2006 IPCC Guidelines for National
    Baseline emission factor                     1.1376                 Greenhouse Gas Inventories:Volume 2
                                                                                        Energy
                                                                           - China Energy Statistical Yearbook
                                                                                       2005-2007
  Net electricity supplied to the
                                              55,042MWh                      Feasibility Study Report
  grid by the proposed project

B.5.    Description of how the anthropogenic emissions of GHG by sources are reduced below
those that would have occurred in the absence of the registered CDM project activity (assessment
and demonstration of additionality): >>

The proposed project is a public bid project. On February 08, 2007, local government sent out the bid
invitation document of the proposed project on. On the document, the government gave out the principle
on feed-in tariff, which was “the feed-in tariff of the project will be no more than 0.7855 RMB/KWh”.
After evaluating the financial situation of the project, the project owner found the project faced serious
investment barrier.

In order to overcome the barrier, the project owner got in touch with CDM Project Development Center
of CPCEC to discuss the possibility of CDM development intending to get the support from CERs sales.
According to the expected CDM development income analysis from CDM Project Development Center
of CPCEC on February 12, 2007, the CDM income will make compensation for the tariff to a degree of
0.083 RMB/KWh.

On February 26, 2007, a management meeting was held to discuss the bidding tariff for the proposed
project. Based on the principle on feed-in tariff in the bid invitation document and expected CERs sales,
all the participants reached a consensus to choose 0.78 RMB/KWh as the bidding tariff and to develop the
proposed project as a CDM project after winning the bid.

On April 19, 2007, the project owner won the bid, and 0.78 RMB/KWh was confirmed as the fixed feed-
in tariff. The project owner continued discussing with CDM Project Development Center of CPCEC
about the details of CDM application. On April 26, 2007, a report of CDM development financial
evaluation was made by CDM Project Development Center of CPCEC to calculate CDM revenue which
is a necessity to improve the financial situation of the project. On June 06, 2007, the CDM Development
Service Contract was signed between the project owner and CDM Project Development Center of CPCEC.
The design institute compiling the Feasibility Study Report (FSR) for the project has also fully considered
CDM incentives and revenue when compiling the FSR, which is reflected in the FSR, the main reference
for the construction and implementation of the project.

The construction of the proposed project started on November 26, 2007, which has been applied as the
starting date of the project activity.

In conclusion, during the decision-making process, the project proponent has seriously considered the
CDM revenue to overcome the investment barrier of the proposed project. The milestone of the proposed
project is shown in Table B-3:
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                              page 9




Table B-3 Milestone of the proposed project
       Time                            Milestone
  February 2007                Bid Invitation Document
  February 2007            CDM development income analysis
  February 2007                  Management meeting
    April 2007              Letter of acceptance for bidding
    April 2007        CDM development finance evaluation report
    June 2007              CDM development service contract
    June 2007               Environment Impact Assessment
   August 2007                      Approval of EIA
   August 2007                  Feasibility Study Report
  November 2007             Approval of the proposed project
  November 2007               Construction works started

The additionality of the project activity is demonstrated using the steps described in the ‘Tool for the
demonstration and assessment of additionality’ (version 05).

Step 1. Identification of alternatives to the project activity consistent with mandatory laws and
regulations

Sub-step 1a: Define alternatives to the project activity

The methodological step requires a number of sub-steps, the first of which is the identification of realistic
and credible alternatives to the project activity. There are only a few alternatives that are realistic and
credible in the context of the Central China Power Grid:

Alternative 1: The proposed wind power activity undertaken without being registered as a CDM project
activity
Alternative 2: Thermal power generation resulting in the same amount of power delivery to the grid
Alternative 3: Power generation from other renewable power sources, such as hydropower plants,
biomass power plants or solar power plants
Alternative 4: Equivalent electricity service provided by the Central China Grid

The hydro power is unrealistic due to limited resources in Duchang County. The total exploitable hydro
resources in Duchang County is amounted to 1.8MW2, and average operation hour for hydro power plants
in Jiangxi Province in 2006 is 2730 hours3, which means it is difficult to develop a hydro power plant
with equivalent installed capacity based on limited hydro resources.
Due to technology development status and high cost for power generation, investments of solar power
and biomass project of equivalent installed capacity as the proposed project are far from being financial
attractive45.

2
    http://218.65.3.188/dcx/bmgkxx/slj/fzgh/fzgh/200808/t20080803_14204.htm
3
    China Electric Power Yearbook 2007
4
    http://finance.people.com.cn/GB/1038/59942/59949/6294546.html
5
    http://jjckb.xinhuanet.com/cjxw/2007-11/27/content_75467.htm
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                                           page 10




Sub-step 1b: Consistency with mandatory laws and regulations

Considering the same annual electricity generation, the alternative baseline scenario for the proposed
project should be a thermal power plant with installed capacity of 15MW. According to Chinese power
regulations, fuel-fired power plants of less than 135MW are prohibited to construct in the areas covered
by large grids6. Therefore, Alternative 2 is not in compliance with Chinese regulations, and is not a
realistic and credible alternative.

For Alternative 1, the proposed project undertaken without being registered as a CDM project activity
satisfies China’s regulations.

For Alternative 4, equivalent electricity service provided by Central China Grid satisfies China’s
regulations.

Therefore, Alternative 1 and Alternative 4 comply with China’s regulations and will be analyzed in Step
2 as potential alternatives.

Step 2 Investment analysis

Sub-step 2a - Determine appropriate analysis method

The “Tool for the Demonstration and Assessment of Additionality” recommends three analysis methods.
They are simple cost analysis (option I), investment comparison analysis (option II) and benchmark
analysis (option III).

The proposed project produces economic benefits through the sales of electricity other than CDM related
income; therefore, the simple cost analysis cannot be taken. The investment comparison analysis is not
applicable to the proposed project because the alternative of the proposed project is “Equivalent
electricity service provided by the Central China Grid”, not a new investment project. Hence, the
benchmark analysis is chosen and the Internal Return Rate (IRR) is used to assess the financial viability
of the project activity.

Sub-step 2b - Options III: Apply benchmark analysis

The investment analysis is conducted through a calculation of the Internal Rate of Return (IRR) of the
project and IRR is compared with a benchmark stated on the Interim Rules on Economic Assessment of
Electrical Engineering Retrofit Projects, issued by the State Power Corporation of China. The Interim
Rules provide a guideline for projects in the electric power industry which state a minimum Internal Rate
of Return (IRR) of 8%7. This minimum IRR is of total investment and is a widely accepted standard for
projects in the power industry. Many of China’s power projects apply this benchmark IRR for financial
assessment and use it as a hurdle rate for investment in the power industry such as wind power projects,
hydropower projects, fossil fuel fired projects, transmission and substation projects.

6
  Notice on Strictly Prohibiting the Installation of Fuel-fired Generators with Capacity of 135 MW or below issued by the
General Office of the State Council, decree no. 2002-6.
7
  State Power Corporation of China. Interim Rules on Economic Assessment of Electrical Engineering Retrofit Projects. Beijing:
China Electric Power Press, 2003
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                         page 11




Sub-step 2c - Calculation and comparison of financial indicators

1) Parameters needed for calculation of IRR
According to the Feasibility Study Report of the proposed project, parameters needed for calculation of
IRR are as follows:

Table B-4 Parameters for calculation of IRR
          Parameter                           Data                                   Source
      Installed capacity                    30 MW                     Feasibility Study Report Page 14-1
 Electricity delivered to grid            55,042 MWh                  Feasibility Study Report Page 14-1
   Static total investment               RMB 336,823,500              Feasibility Study Report Page 14-1
   Long-term Loans Rate                      7.83%                    Feasibility Study Report Page 14-1
 Current Capital Loans Rate                  7.29%                    Feasibility Study Report Page 14-1
   Tariff(Including VAT)                 RMB 0.78 /KWh                 Letter of Acceptance for Bidding
        Material Cost                     RMB 15/KW                   Feasibility Study Report Page 14-2
     Salary and Welfare
                                     RMB 80,000/employee/year         Feasibility Study Report Page 14-2
          Allowance
   Number of Employees                         15                     Feasibility Study Report Page 14-2
Repair Cost       2009-2011                  0.5%                     Feasibility Study Report Page 14-2
    Rate          2012-2016                  1.0%                     Feasibility Study Report Page 14-2
      Depreciation Rate                      6.67%                    Feasibility Study Report Page 14-2
       Insurance Rate                        0.25%                    Feasibility Study Report Page 14-2
       Other Expenses                     RMB 35/KW                   Feasibility Study Report Page 14-2
          VAT Rate                           8.5%                     Feasibility Study Report Page 14-2
       Extra VAT Rate                         10%                     Feasibility Study Report Page 14-2
      Income Tax Rate                         25%                     Feasibility Study Report Page 14-2
    Surplus Reserve Rate                      10%                     Feasibility Study Report Page 14-2
        Operation life                      20 years                  Feasibility Study Report Page 14-1
Annual O&M         2009-2011             RMB 5.31 Million              Excel Table for IRR Calculation
     cost          2012-2016             RMB 7.04 Million              Excel Table for IRR Calculation
    Expected CERs price                   EUR 11/tCO2e                          Estimated Value

2) Comparison of the project IRR and the financial benchmark

In accordance with benchmark analysis, if the financial indicators of the proposed project, such as the
project IRR, are lower than the benchmark, the proposed project is not considered to be financially
attractive.

Table B-5 shows the project IRR with and without the income from CERs sale. Without the sales of
CERs, the project IRR is 6.51% which is lower than the financial benchmark. Thus the proposed project
is not financially attractive. Taking into account the CDM revenues, the project IRR is 8.02% which is
higher than the financial benchmark, and the proposed project becomes financially attractive.

Table B-5 Comparison of IRR with and without the income from CERs sale
        Item              Without CDM                Benchmark                        With CDM
        IRR                   6.51%                     8%                             8.02%

Sub-step 2d - Sensitivity analysis
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                                              page 12




For the proposed project, four parameters were selected as sensitive factors to check out the financial
attractiveness:

1)   Static Total Investment
2)   Power Generation
3)   Tariff
4)   Annual O&M Cost

Assuming the above four factors vary in the range of -10% to 10%, the project IRR ( without the income
from CERs sales) varies to different extents as shown in Table B-6 and Figure B-1 below.

Table B-6 Results of the sensitivity analysis
                                           -10.00%          -5.00%      0.00%         5.00%          10.00%
           Static Total Investment          7.96%            7.20%      6.51%         5.87%          5.21%
             Power Generation               4.93%            5.78%      6.51%         7.22%           7.92%
                    Tariff                  4.93%           5.78%       6.51%         7.22%          7.92%
             Annual O&M Cost                6.79%            6.65%      6.51%         6.36%          6.22%



Figure B-1 Results of the sensitivity analysis

                                                     9%

                                                     8%

                                                     7%
     IRR




                                                     6%

                                                     5%

                                                     4%
           -1 0%                     -5%               0%               5%                    1 0%


                      St at i c Tot al I nvest ment             Power Gener at i on
                      Tar i ff                                  Annual O&M Cost



The total investment is an important factor affecting the financial attractiveness of the proposed project.
In the case that the total investment decreases by more than 10%, IRR of the proposed project begins to
exceed the benchmark. However, most of the total investment is related to purchasing raw materials and
equipments and the trend of price for raw materials and equipments is rising. Therefore, the total
investment is not likely to decrease by more than 10%.

Another important factor affecting the financial attractiveness is power generation. The output of power
generation is subject to two factors, namely, the total installed capacity and the annual operational hours.
As the total installed capacity has already been fixed, the output of power generation lies only in
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                              page 13


operational hours. According to the feasibility report, the average wind velocity for the recent 30 years,
20 years and 10 years are 2.7m/s, 2.6m/s and 2.5m/s respectively. Lower PLF (plant load factor) due to
lower wind velocity will result in reduced power generation. For this reason, the chances of power
generation exceeding 10% are extremely small due to the fact that the average wind speed at the proposed
project site has been decreasing over the past 30 years.

Tariff is also an important factor affecting the financial attractiveness. In the case that tariff increases by
more than 10%, IRR of the proposed project begins to exceed the benchmark. In Letter of Acceptance for
Bidding8, RMB 0.78/kWh (including VAT) is chosen as the on-grid tariff which will be fixed in the
future. Hence, it is impossible that the tariff increases to 10%.

Based on the Investment Analysis above, the proposed project is not financially attractive without CERs
sales revenues. Alternative 1 of the proposed project undertaken without being registered as a CDM
project activity is not feasible.

In conclusion, Alternative 4 - Equivalent electricity service provided by the Central China Grid is
the only feasible alternative.

Step 4 Common practice analysis

Sub-step 4a Analyze other activities similar to the proposed project activity:

According to China Wind Farm Installed Capacity Statistic in 2007 by Shi Pengfei9,there are no other
wind power projects that are operational in Jiangxi Province10. The proposed project is one of the first
wind power projects in Jiangxi Province. In conclusion, there are no other activities similar to the
proposed project activity.

Sub-step 4b Discuss any similar options that are occurring

Since there is serious investment barrier for the proposed project, the CDM has been considered in early
evaluation period. The proposed project is one of the first wind power projects in Jiangxi Province. Hence,
the proposed project is not a common practice.

In conclusion, the proposed project is additional, not (part of) the baseline scenario. Without CDM
support, the proposed project would unlikely occur. The proposed project can reduce the greenhouse gas
emissions. If the proposed project fails to be registered as a CDM project, this portion of emission
reduction can not be realized.

B.6.       Emission reductions:

           B.6.1. Explanation of methodological choices:
>>


8
    Letter of Acceptance for Bidding was provided to DOE for verifying
9
    http://www.cwea.org.cn/upload/20080324.pdf
10
     http://www.jxdpc.gov.cn/zxxx/gzdt-hy/20071128/100048.htm
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                            page 14


ACM0002, Baseline Emission Factor of Chinese Power Grids in 200811 is applied as the following steps,
and the data are from China Electric Power Yearbook and China Energy Statistical Yearbook.

The key methodological steps are:

1. Calculating the Baseline Emission(BEy);
2. Calculating the Project Emission(PEy);
3. Calculating the Leakage Emission( LEy);
4. Calculating the Emission Reduction(ERy)

1. Calculating the Baseline Emission

According to ACM0002, the baseline emission (BEy) is the product of the baseline emission factor
(EFgrid,CM,y) times the electricity supplied by the project activity to the grid (EGy). First, the baseline
emission factor is calculated as the Combined Margin emission factor.

1.1 Calculation of the baseline emission factor (EFgrid,CM,y)

According to ACM0002, the baseline emission factor (EFgrid,CM,y) is calculated by “Tool to calculate the
emission factor for an electricity system”.

The baseline emission factor (EFgrid,CM,y) is the Combined Margin emission factor, which consists of the
weighted average of Operating Margin emission factor and Build Margin emission factor by utilizing the
latest data vintage (ex-ante) for the Central China Grid

Six steps are utilized to calculate the baseline emission:

Step 1 – Identify the relevant electric power system.
Step 2 – Select an operating margin (OM) method.
Step 3 – Calculate the operating margin emission factor (EF grid,OM,y)according to the selected method.
Step 4 – Identify the cohort of power units to be included in the build margin (BM).
Step 5 – Calculate the build margin emission factor (EF grid,BM,y).
Step 6 – Calculate the combined margin emissions factor (EF grid,CM,y).

Step 1 – Identify the relevant electric power system

According to ‘Tool to calculate the emission factor for an electricity system’ and ‘Baseline Emission
Factor of Chinese Power Grids in 2008’ published by Chinese DNA, the relevant electric power system
of the proposed project is Central China Grid, and the data of calculation are from China Electric Power
Yearbook and China Energy Statistical Yearbook.

Step 2 –Select an operating margin (OM) method

The calculation of (EF grid,OM,y) is based on one of the four following methods:


11
     http://cdm.ccchina.gov.cn/web/NewsInfo.asp?NewsId=2875
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                                              page 15


(a) Simple OM, or
(b) Simple Adjusted OM, or
(c) Dispatch Data Analysis OM, or
(d) Average OM.

As the detailed dispatch data of the Central China Grid is unavailable, method (c) and method (b) is not
applicable.

Method (a) can only be used where low-cost/must run resources12 constitute less than 50% of total grid
generation in: 1) average of the five most recent years, or 2) based on long-term normals for
hydroelectricity production.

According to the total electricity generation in 2002-2006 of the Central China Grid, the low-cost/must
run resources constitute less than 50% of total amount grid generating output (see Annex 3 for details).
Therefore, Method (a) simple OM is used to calculate the simple OM emission factor utilize the data of
2004-2006 in ex-ante option.

Step 3 –Calculate the operating margin emission factor (EFgrid,                       OM, y)   according to the selected
method.

According to “Tool to calculate the emission factor for an electricity system”, the simple OM emission
factor in y year (EFgrid,OM,simple,y ) is calculated as the generation-weighted average CO2 emissions per unit
net electricity generation (tCO2/MWh) of all generating power plants serving the system, not including
low-cost / must-run power plants / units. It may be calculated:

Option A: Based on data on fuel consumption and net electricity generation of each power plant / unit, or
Option B: Based on data on net electricity generation, the average efficiency of each power unit and the
fuel type(s) used in each power unit, or
Option C: Based on data on the total net electricity generation of all power plants serving the system and
the fuel types and total fuel consumption of the project electricity system.

Option A should be preferred and must be used if fuel consumption data is available for each power
plant/unit. In other cases, option B or option C can be used. For the purpose of calculating the simple
OM, Option C should only be used if the necessary data for option A and option B is not available and
can only be used if only nuclear and renewable power generation are considered as low-cost/must-run
power sources and if the quantity of electricity supplied to the grid by these sources is known.

Because the fuel consumption and net electricity generation data of each power plant / unit in the Central
China Grid is unavailable, but the total net electricity generation, the fuel types and total fuel
consumption of all power plants in the Central China Grid is available and the low-cost/must run power
resources in Central China Power Grid include only nuclear and renewable power generation,, so option
C is selected.

The formula of EF grid,OM,simple,y in option C is:


12
     The low-cost/must run resources include hydro power, geothermal sources, wind power, solar sources etc
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                               page 16



                             ∑ FC   i, y   × NCVi , y × EFCO 2,i , y
     EFgrid ,OMsimple, y =   i

                                               EG y
                                                                                                            (1)

Where:

EFgrid,OMsimple,y = Simple operating margin CO2 emission factor in year y (tCO2/MWh);
FCi,y             =Amount of fossil fuel type i consumed in the project electricity system in year y (mass
or volume unit);
NCVi,y            = Net calorific value (energy content) of fossil fuel type i in year y (GJ / mass or volume
unit);
EFCO2,i,y         = CO2 emission factor of fossil fuel type i in year y (tCO2/GJ);
EGy               = Net electricity generated and delivered to the grid by all power sources serving the
system, not including low-cost / must-run power plants / units, in year y (MWh);
i                 = All fossil fuel types combusted in power sources in the project electricity system in
year y;
y                 = the three most recent years for which data is available at the time of submission of the
CDM-PDD to the DOE for validation.

The data in the calculation is from China Electric Power Yearbook 2005-2007.

Step 4 – Identify the cohort of power units to be included in the build margin

According to “Tool to calculate the emission factor for an electricity system”, the sample group m
consists of either 1) the five power plants that have been built most recently; or 2) the power plant
capacity additions in the electricity system that comprise 20% of the system generation and that built
most recently. The one with larger annual generation should be used.

However, the information on the five power plants built most recently in the Central China Grid is not
publicly available. Therefore, option 2 is selected.

EB guidance on the application of approved methodology AM0005 now consolidated into ACM0002 can
be applied for the purposed project for estimating the build margin emission factor for each fuel type. The
proposed deviations accepted and the alternative solutions in absence of data were as follows:

1) It is agreed to use the new capacity additions during the past 1-3 years to calculate the Build Margin
emission factor;

2) It is agreed that the use of the installed capacity to replace the annual electricity generation to calculate
the Build Margin emission factor;

Using the average fuel efficiency of existing power plants as the baseline will bring about higher baseline
emission and result in higher emission reductions, as the average fuel efficiency of old power plants is
lower than the new power plants, which is not a conservative method.

Step 5 - Calculation of the Build Margin Emission Factor (EFgrid,BM,y)
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                             page 17




Due to the difficulty of separating the coal-fired, gas-fired or oil-fired installed capacity from the total
fuel-fired installed capacity, according to the suggestion on the alternative solutions in absence of data by
CDM EB, the Build Margin emission factor (EFBM,y ) will be calculated as :

1) Based on the most recent year’s energy balance of the Central China Grid, calculating the percentages
of CO2 emissions from the coal-fired, oil-fired and gas-fired power plants in total fuel-fired CO2
emissions;

2) Based on the most advanced commercialized technologies which applied by the coal-fired, oil-fired
and gas-fired power plants, calculating the fuel-fired emission factor of the Central China Grid;

3) Calculating the Build Margin emission factor (EFBM,y)through fuel-fired emission factor times the
weighted-average of fuel-fired installed capacity which is more close to 20% in the new capacity
additions. The detailed calculation as follows:

Sub-Step 5a. Calculating the percentages of CO2 emissions from the coal-fired, oil-fired and gas-fired
power plants in total fuel-fired CO2 emissions.

              ∑F
          i∈Coal , j
                         i, j, y   × COEFi , j , y
λCoal =                                                                                                  (2)
            ∑F
             i, j
                       i, j, y     × COEFi , j , y

          ∑F
         i∈Oil , j
                      i, j, y    × COEFi , j , y
λOil =                                                                                                   (3)
          ∑F
          i, j
                     i, j, y    × COEFi , j , y

            ∑F
          i∈Gas , j
                       i, j, y   × COEFi , j , y
λGas =                                                                                                   (4)
           ∑F
            i, j
                      i, j, y    × COEFi , j , y


Where:
Fi ,j, y is the amount of fuel i (in a mass or volume unit) consumed by relevant power sources j in year(s) y
COEFi,j,y is the CO2 emission coefficient of fuel i (tCO2e/ mass or volume unit of the fuel), taking into
account the carbon content of the fuels used by relevant power sources j and the percent oxidation of the
fuel in year(s) y
λCoal is the percentage of CO2 emissions from the coal-fired power plants in total fuel-fired CO2 emissions;
λOil is the percentage of CO2 emissions from the oil-fired power plants in total fuel-fired CO2 emissions;
λGas is the percentage of CO2 emissions from the gas-fired power plants in total fuel-fired CO2 emissions;

Sub-Step 5b. Calculating the fuel-fired emission factor

EFThermal = λCoal × EFCoal , Adv + λOil × EFOil , Adv + λGas × EFGas , Adv                               (5)

Where:
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                                    page 18


EFThermal is the fuel-fired emission factor;
EFCoal,Adv,EFOil,Adv and EFGas ,Adv are corresponding to the emission factors of coal, oil and gas fired
power plants which are applied by the most advanced commercialized technologies.

                  3.6 × EFCO2,i, y × 44                                                                          (6)
EFCoal, Adv =                             (i ∈ Coal)
                FCRCoal, Adv ×1000×12
                 3.6 × EFCO2,i, y × 44
EFOil, Adv =                               (i ∈Oil)                                                              (7)
                FCROil, Adv × 1000× 12
                 3.6 × EFCO2,i , y × 44
EFGas, Adv =                              (i ∈ Gas)                                                              (8)
                FCRGas, Adv ×1000×12
FCRCoal , Adv : The fuel consumption rate of Coal-fired power plants which employed the most advanced
commercialized technologies
FCROil , Adv : The fuel consumption rate of Oil-fired power plants which employed the most advanced
commercialized technologies
FCRGas , Adv : The fuel consumption rate of Gas-fired power plants which employed the most advanced
commercialized technologies

Sub-Step 5c. Calculating the Build Margin Emission Factor.

                 CAPThermal
EFBM , y =                  × EFThermal                                                                          (9)
                  CAPTotal
Where:
EFBM,y is the Build Margin emission factor with advanced commercialized technologies for year y;
CAPTotal is the new capacity additions;
CAPThermal is the new fuel-fired capacity additions.

Step 6 - Calculation of the Baseline Emission Factor (EFgid,CM,y)

EFgrid ,CM , y = EFgrid ,OM , y × wOM + EFgrid , BM , y × wBM                                            (10)
Where:
According to the ‘Tool to calculate the emission factor for an electricity system’, the default weights of
wind farm project are ωOM =0.75 and ω BM = 0.25.

1.2. Calculation of the Baseline Emission (BEy)

 BE y = (EG y − EG baseline )× EFgrid ,CM , y                                                                   (11)

Where:
BEy is baseline emissions in year y (tCO2/yr).
EGy is electricity supplied by the project activity to the grid (MWh), EG y = EG PJ to grid, y − EG grid to PJ, y .
EGbaseline is baseline electricity supplied to the grid in the case of modified or retrofit facilities(MWh). For
new power plants this value is taken as zero.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                             page 19


EFgrid,CM,y is combined margin CO2 emission factor for grid connected power generation in year y
calculated using the latest version of the “Tool to calculate the emission factor for an electricity system”.

2. Project Emission

According to the methodology, there are no expected project emissions for a wind farm project.

Therefore, PEy=0

3. Leakage Emission

According to the methodology, the leakage of the proposed project need not be considered. LEy=0.

4. Emission Reduction

Emission reductions will be estimated based on the baseline emission, the project emission and the
leakage emission. The emission reduction ERy due to the proposed project activity during a given year y is
calculated as follows:

ER y = BE y − PE y − LE y                                                                              (12)

        B.6.2. Data and parameters that are available at validation:

Data / Parameter:         FCi,y
Data unit:                104t/108m3
Description:              Amount of fossil fuel type i consumed in the project electricity system in year
                          y
Source of data used:      China Energy Statistical Yearbook 2005-2007
Value applied:            See Annex 3 for details
Justification of the      Data that is collected from the official statistics.
choice of data or
description of
measurement methods
and procedures actually
applied :
Any comment:

Data / Parameter:         EFCO2,i,y
Data unit:                tC/TJ
Description:               the CO2 emission factor per unit of energy of the fuel i in year y
Source of data used:      Table 1.4 of Chapter 1 of Vol.2 of the 2006 IPCC Guidelines
Value applied:            See Annex 3 for details
Justification of the      Data that is collected from the IPCC because the local data is not available.
choice of data or
description of
measurement methods
and procedures actually
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                            page 20


applied :
Any comment:

Data / Parameter:         NCV i ,y
Data unit:                TJ/ mass or volume unit of a fuel
Description:              the net calorific value (energy content) per mass or volume unit of a fuel i in
                          year y
Source of data used:      China Energy Statistical Yearbook 2007
Value applied:            See Annex 3 for details
Justification of the      China Energy Statistics Yearbook is published by China Statistics Press, it is
choice of data or         authorized.
description of
measurement methods
and procedures actually
applied :
Any comment:

Data / Parameter:         Installed Capacity
Data unit:                MW
Description:              Installed capacities of the Central China Grid 2002-2006
Source of data used:      China Electric Power Yearbook 2003-2007
Value applied:            See Annex 3 for details
Justification of the      Data that is collected from the official statistics.
choice of data or
description of
measurement methods
and procedures actually
applied :
Any comment:

Data / Parameter:         Electricity Generation
Data unit:                MWh
Description:              The electricity generated by source j
Source of data used:      China Electric Power Yearbook 2003-2007
Value applied:            See Annex 3 for details
Justification of the      Data that is collected from the official statistics.
choice of data or
description of
measurement methods
and procedures actually
applied :
Any comment:

Data / Parameter:         Auxiliary Power Ratio
Data unit:                %
Description:              The auxiliary power ratio of source j in Central China Grid
Source of data used:      China Electric Power Yearbook 2003-2007
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                        page 21


Value applied:          See Annex 3 for details
Justification of the    Data that is collected from the official statistics.
choice of data or
description of
measurement methods
and procedures actually
applied :
Any comment:

Data / Parameter:         FCRCoal,Adv
Data unit:                %
Description:              The fuel consumption rate of coal-fired power plants which employed the
                          most advanced commercialized technologies.
Source of data used:      From Chinese DNA
Value applied:            37.28%
Justification of the      Data that is collected from the official statistics.
choice of data or
description of
measurement methods
and procedures actually
applied :
Any comment:

Data / Parameter:         FCROil,Adv
Data unit:                %
Description:              The fuel consumption rate of Oil-fired power plants which employed the most
                          advanced commercialized technologies.
Source of data used:      From Chinese DNA
Value applied:            48.81%
Justification of the      Data that is collected from the official statistics.
choice of data or
description of
measurement methods
and procedures actually
applied :
Any comment:

Data / Parameter:         FCRGas,,Adv
Data unit:                %
Description:              The fuel consumption rate of Gas-fired power plants which employed the
                          most advanced commercialized technologies.
Source of data used:      From Chinese DNA
Value applied:            48.81%
Justification of the      Data that is collected from the official statistics.
choice of data or
description of
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                          page 22


measurement methods
and procedures actually
applied :
Any comment:

        B.6.3 Ex-ante calculation of emission reductions:
        >>
1. Calculating the Baseline Emission

1.1 Calculation of the baseline emission factor (EFgrid,CM,y)

Therefore, the Operating Margin emission factor (EFOM,simple ) is the weighted emission factors of 2004-
2006 of Central China Grid:
EF OM , simple =1.2783 tCO2e/MWh

The Build Margin emission factor can be calculated by formulae (2)-(9):
EFBM,y=0.7156 tCO2e/MWh

The baseline emission factor EFy is calculated as formula (10). Thus,
EFy = 1.1376 tCO2e/MWh

1.2. Calculation of the Baseline Emission (BEy)

The baseline emission BEy is calculated as formulae (11):
              (                 )
BEy = BE y = EG y − EGbaseline × EFgrid ,CM , y =(55,042-0)×1.1376 =62,616 tCO2e /year

See Annex 3 for details.

2.   Project Emission

PEy = 0.

3.   Leakage Emission

LEy=0.

4.   Emission Reduction

The Emission Reductions (ERy) for the proposed project activity could be calculated as the formula (12):
ERy =62,616 -0-0 = 62,616 tCO2e /year

       B.6.4 Summary of the ex-ante estimation of emission reductions:
       >>
Table B-2 Estimation of emission reductions due to the proposed project
                            Estimation of      Estimation of     Estimation of           Estimation of
         Year
                           project activity       baseline          leakage             overall emission
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                                     page 23



                                      emissions              emissions         (tonnes of CO2e)        reductions
                                 (tonnes of CO2e)        (tonnes of CO2e)                           (tonnes of CO2e)
           2009                           0                   62,616                   0                  62,616
           2010                           0                   62,616                   0                  62,616
           2011                           0                   62,616                   0                  62,616
           2012                           0                   62,616                   0                  62,616
           2013                           0                   62,616                   0                  62,616
           2014                           0                   62,616                   0                  62,616
           2015                           0                   62,616                   0                  62,616
 Total (tonnes of CO2e)                   0                   438,312                  0                 438,312
Note: The starting date of the first crediting period is expected to be Jan. 1, 2009, and the deadline is Dec. 31, 2015.


B.7      Application of the monitoring methodology and description of the monitoring plan:
>>

         B.7.1 Data and parameters monitored:
Data / Parameter:      EGPJ to grid,y
Data unit:             MWh
Description:           Electricity supplied to the grid by the proposed project
Source of data to be   Measured by meters; 100% of data will be monitored and electronic archived.
used:
Value of data applied  55,042 MWh
for the purpose of
calculating expected
emission reductions in
section B.5
Description of         Hourly measurement and monthly recording
measurement methods
and procedures to be
applied:
QA/QC procedures to    The measurement will in compliance with the National Guidelines and
be applied:            requirements of the grid company for accuracy and reliability. The calibration
                       will be carried out according to relevant national standards and regulations by
                       authorized organisation.
Any comment:           Double check by receipt of sales

Data / Parameter:            EGgrid to PJ,y
Data unit:                   MWh
Description:                 Electricity supplied to the proposed project by the grid
Source of data to be         Measured by meters
used:
Value of data applied        0
for the purpose of
calculating expected
emission reductions in
section B.5
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                          page 24


Description of           Hourly measurement and monthly recording
measurement methods
and procedures to be
applied:
QA/QC procedures to      The measurement will in compliance with the National Guidelines and
be applied:              requirements of the grid company for accuracy and reliability. The calibration
                         will be carried out according to relevant national standards and regulations by
                         authorized organisation.
Any comment:             Double check by receipt of sales

Data / Parameter:        EGy
Data unit:               MWh
Description:             Net electricity delivered to the grid by the proposed project
Source of data to be     Calculated from data EGPJ to grid,y and EGgrid to PJ,y
used:
Value of data applied    55,042MWh
for the purpose of
calculating expected
emission reductions in
section B.5
Description of           EGy = EGPJ to grid,y - EGgrid   to PJ,y
measurement methods
and procedures to be
applied:
QA/QC procedures to
be applied:
Any comment:

      B.7.2 Description of the monitoring plan:
>>
1. Key data to be monitored

The data required to be monitored during the implementation of the proposed project include those listed
in B.7.1.

2. The Operational and Management Structure for Monitoring

The project owner will set up a CDM Monitoring Office and designate a qualified staff responsible for all
relevant matters, including data collection and archiving, QC/QA, and verification. The structure of the
CDM Monitoring Office is outlined in Figure B-2.

Figure B-2 Organization chart of CDM project management office
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                       page 25



                                    CDM Monitoring Office


                                         Office Manager




              Monitoring Section                                   Audit Section

The responsibilities of the sections are briefly described as follows:
    Office Manager: Manage the work of CDM Monitoring Office; Charge of all relevant matters with
    the monitoring activity.
    Monitoring Section: Monitor, collect and archive the data according to the Monitoring Plan.
    Audit Section: Audit the work of Monitoring Section and execute the QC/QA procedures according
    to the Monitoring Plan.

3. Metering Systems


The connecting method of the proposed project is one turbine along with one transformer. Each turbine
will have a 0.69kV/35kV transformer. The proposed project will be connected to 35kV/110kV
transformer station via two 35kV transmission lines (See Figure B-3). The 110kV transformer station is
linked to Central China Grid through Jiangxi provincial Grid.

Figure B-3 Simplified electrical connection diagram
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                             page 26




                                Backup Meter          Main Meter




                                    M2                     M1




                                          35kV/110kV               Transformer station
          0.69kV/35kV                     transformer
                                                                         0.69kV line
          transformer
                                                                         35kV line

                                                                         110kV
                                                                         li
                                                                         Wind turbine


The bi-direction main meter (M1 in Figure B-3) is expected to be installed at outflow side of the on-site
35kV/110kV transformer to measure net electricity supplied by the proposed project, which is treated as
the main recording system. The sales receipts will be made according to the data on the main meter
agreed by both the project owner and Jiangxi Provincial Grid Company. Net electricity delivered to the
grid by the proposed project will be cross-checked against sales receipts. The expected accuracy degree of
the main meter is 0.2S.

The bi-direction backup meter (M2 in Figure B-3) is employed to measure the input and output electricity
which is treated as the backup recording system.

4. Calibration

The calibration of the electric meters will be at least annually carried out according to relevant standards
and regulations. The electric meters for the electricity delivered to the grid by the proposed project should
be tested by a qualified metrical organization co-authorized by the owner and Jiangxi Provincial Grid
Company. After the calibration, the electric meters should be jointly inspected and sealed by the parties
concerned and shall not be accessible by either party without the presence of the other party or its
accredited representatives.

When remove, replacement, disassembling, sealing, seal-breaking, incident treatment and etc. happens to
the main recording system, Jiangxi Provincial Grid Company is the responsible operator, and the
representative of the project owner should attend.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                             page 27


If the parties have dissidence on the operation condition of the main metering system, the main metering
system will be calibrated by the qualified metrical organization co-authorized by both parties. Both
parties will decide the amount of electricity depending on the results of the calibration and relevant
regulations. If the parties have dissidence on the calibration results, a metrical organization with higher
qualification will be authorized to re-calibrate the meters.

If the main metering system has failure, damage or missing, the amount of the electricity delivered to the
grid by the proposed project will be determined by the records of the backup metering system or other
relevant metering system agreed by both parties.

5. Data Collection and Management

Two methods will be used to measure and record the data: hand log and automatic log.

Under the monitoring system, a data management system will be set up for keeping data and information,
and tracking information from the primary source to data calculation, in paper format. It is the
responsibility of the project entity to provide additional necessary data, information and document for
validation and verification requirements of respective DOE.

Paper documentation such as maps, diagrams and environmental assessment will be collected in a central
place, together with this monitoring plan. In order to facilitate auditor’s reference, monitoring results
should be indexed. All paper-based information will be stored by the owner and kept at least one copy.

The data monitored and required for verification and issuance will be kept for two years after the end of
the crediting period or the last issuance of CERs for this proposed project activity, whichever occurs later.

B.8     Date of completion of the application of the baseline study and monitoring methodology and
the name of the responsible person(s)/entity(ies)
>>
Date of completion of the baseline study and monitoring methodology: 26/03/2008

Responsible persons of completion of the baseline study and monitoring methodology:
1) Ms. Fu Shujie, CDM Project Development Center of CPCEC,
E-mail: fushujie@cpcec.com , Tel: +86 10 85285120-809.

2) Mr. Jia Xu, CDM Project Development Center of CPCEC,
E-mail: jiaxu@cpcec.com , Tel: +86 10 85285120-826.

Persons and entities as listed above are not project participants involved.

SECTION C. Duration of the project activity / crediting period

C.1     Duration of the project activity:

        C.1.1. Starting date of the project activity:
>>
26/11/2007
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                            page 28




        C.1.2. Expected operational lifetime of the project activity:
>>
20 years 0 month

C.2     Choice of the crediting period and related information:

        C.2.1. Renewable crediting period

               C.2.1.1.          Starting date of the first crediting period:
>>
01/01/2009 or date of registration, whichever is later.

                  C.2.1.2.       Length of the first crediting period:
>>
7 years 0 month

        C.2.2. Fixed crediting period:

                  C.2.2.1.       Starting date:
>>
Not applicable

                  C.2.2.2.       Length:
>>
Not applicable

SECTION D. Environmental impacts
>>

D.1.    Documentation on the analysis of the environmental impacts, including transboundary
impacts:
>>
The proposed project EIA was carried out by Jiangxi Academy of Environmental Sciences and approved
by Jiangxi Environmental Protection Administration. The summary of this evaluation is as follows:

1. Water pollution impacts

The small amount of waste water during the construction period is mainly sewage. Water-processing
facility such as drain for sorting and disposing sewage will be built and waste water will be released after
being treated up to standard.

2. Air pollution impacts:
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                             page 29


The dust and exhaust gas will be mainly generated in construction period. To reduce the pollution impact
on air, the following measures are applied:

(1) Control quantities of vehicles; limit speed of vehicles; avoid overload of vehicles
(2) Set up fences in construction area, apply watering regularly
(3) Soil left after backfill in construction period should be removed in time to recover vegetation

3. Solid waste pollution impacts

Solid waste in construction period includes mainly construction trash and living trash. Living trash should
be collected into dustbin and construction trash should be buried in appointed location.

4. Noise pollution impacts:

A. Construction period
It includes mainly machine noise, operation noise and vehicle noise. To reduce noise impacts, the
following measure are applied:

(1) Arrange operation timetable properly according to related regulation. Operation with high level noise
    at night is prohibited.
(2) Set up cover around high level noise facility
(3) Control quantities and density of vehicles

Besides, the construction site is far away from residential area and construction work will be mainly
carried out during daytime. Therefore, the impact of noise is minor.

B. Operation period
It will meet the noise standard for the construction site during the operation period. In addition, there are
not any environmental protected sensitive objects surrounding this project. For this reason, the proposed
project will not have bad impact on this point.

5. Ecological environmental impacts:

There’s no precious plant in local area and recover and afforestation will be applied after construction
period.

There are no big size animals in this area and this proposed project is not located on the birds’ migratory
routes, so it seldom happens that the blades will knock on the birds.

Even the construction work of this project will occupies relatively limited area of their activity place,
animals can easily find other places on other part of grassland. Meanwhile, after finishing of construction,
these animals can move back.

In conclusion, through taking the above measures, the negative impacts on environments will be
minimized and meet requirements of laws and regulations during the construction and implementation.
Furthermore, as renewable power project, the proposed project can reduce the consumption of fossil fuel
sources and GHG emission. In addition, the operation of the proposed project will improve the
development of the local tourism.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                            page 30




D.2.    If environmental impacts are considered significant by the project participants or the host
Party, please provide conclusions and all references to support documentation of an environmental
impact assessment undertaken in accordance with the procedures as required by the host Party:
>>
According to EIA, no significant environmental impacts are discovered by the project participants or the
host party. Jiangxi Environmental Protection Administration has approved the EIA.

SECTION E. Stakeholders’ comments
>>
E.1.    Brief description how comments by local stakeholders have been invited and compiled:
>>
The project owner has carried out investigation on the public’s comments by way of questionnaires and
the investigation lasted for one month.

52 questionnaires were distributed and 45 valid questionnaires have been returned.

The questions in the questionnaires include:
What do you think about the proposed project?
What do you think the positive influence on the conditions of the local ecosystem?
What do you think the negative influence on the local economy?
What do you think the positive influence on the local economy?
Do you support the construction of the proposed project?
Do you support the applying of CDM for the proposed project?

The investigated stakeholders include residents, technicians and related governmental officials. The
outcome of the consultation is described in section E.2.

E.2. Summary of the comments received:
>>
Comments from the questionnaires

Of all investigated persons, 100% supported the construction of the proposed project; 84.4% think
positive influences will be brought by the proposed project and 15.6% think the proposed project has no
influence on their daily life. On the question of potential negative influence on daily life, 33.3% chose no
influence and 44.4% chose noise influence which is the most percentage.

E.3.     Report on how due account was taken of any comments received:
>>
According to the above information, local residence and government are very supportive to the proposed
project; there are no negative comments on it.

As for the noise impacts which are mostly worried by local residents, the following measures will be
taken:

(1) Arrange operation timetable properly according to related regulation. Operation with high level noise
    at night is prohibited.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                                      page 31


(2) Set up cover around high level noise facility
(3) Control quantities and density of vehicles

Based on the related comments, the project entity will take environmental protection measures in both
construction period and operation period to make sure that the negative impact on environment will be
reduced to the lowest level.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                            page 32


                                              Annex 1

       CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:            Jiangxi Zhongdiantou New Energies Co. Ltd.
Street/P.O.Box:          No. 699 Lvyin Road
Building:                /
City:                    Nanchang
State/Region:            Jiangxi Province
Postfix/ZIP:             330038
Country:                 China
Telephone:               +86-0791-3961875
FAX:                     /
E-Mail:                  yihongjing@cpijx.cn
URL:                     /
Represented by:          Hongjing Yi
Title:                   /
Salutation:              /
Last Name:               Yi
Middle Name:             /
First Name:              Hongjing
Department:              /
Mobile:                  /
Direct FAX:              /
Direct tel:              +86-0791-3961875
Personal E-Mail:         yihongjing@cpijx.cn




Organization:            KfW
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                            page 33



Street/P.O.Box:          Palmengartenstr. 5-9.
Building:                /
City:                    Frankfurt
State/Region:            /
Postfix/ZIP:             60325
Country:                 Germany
Telephone:               +49 69 7431 4032
FAX:                     +49 69 7431 4775
E-Mail:                  /
URL:                     www.kfw.de/carbonfund
Represented by:          Florian Sekinger
Title:                   Senior Project Manager
Salutation:              Mr.
Last Name:               Sekinger
Middle Name:             /
First Name:              Florian
Department:              KfW Carbon Fund
Mobile:                  /
Direct FAX:              +49 69 7431 4775
Direct tel:              +49 69 7431 4032
Personal E-Mail:         florian.sekinger@kfw.de
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board

                                                                               page 34


                                                 Annex 2

                         INFORMATION REGARDING PUBLIC FUNDING

No public funding from Annex I parties is involved in this project activity.
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board                                                                                                                             page 35


                                                                          Annex 3

                                                               BASELINE INFORMATION

Step 1 – Identify the relevant electric power system

According to ‘the Baseline Emission Factor of Chinese Power Grids in 2008’ published by Chinese DNA, the relevant electric power system of the project is
Central China Grid, and the data of calculation are from China Electric Power Yearbook and China Energy Statistical Yearbook.

Step 2 –Select an operating margin (OM) method

According to the electricity generation in 2002-2006 of the Central China Grid, the low-cost/must run resources constitute less than 50% of total amount grid
generating output. Method (a) simple OM is used to calculate the simple OM emission factor utilize the data of 2004-2006 in ex-ante option for the proposed
project.

Step 3 – Calculating an operating margin (OM)

The emission factor and average low caloric value used to calculate operating margin and build margin are listed below:

Table 1 Data of Emission Factor and Average Low Caloric Value for different types of fuel
                              Emission Factor
          Fuel                                  Average Low Caloric Value (MJ/t, km3)
                                  (tc/TJ)
                                     H                             J
        Raw Coal                   25.8                         20908
      Cleaned Coal                 25.8                         26344
   Other Washed Coal               25.8                          8363
  Brown Coal Briquettes            26.6                         20908
          Coke                     29.2                         28435
     Coke Oven Gas                 12.1                         16726
        Other Gas                  12.1                          5227
        Crude Oil                    20                         41816
        Gasoline                   18.9                         43070
         Coal Oil                  19.6                         43070
        Diesel Oil                 20.2                         42652
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board                                                                                                                                   page 36



         Fuel Oil                          21.1                                 41816
           PLG                             17.2                                 50179
       Refinery Gas                        15.7                                 46055
       Natural Gas                         15.3                                 38931
 Other Petroleum Products                   20                                  38369
  Other Coking Products                    25.8                                 28435
       Other Energy                         0                                     0
Source: 1 “Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 2 Energy”, Chapter One
        2 China Energy Statistical Yearbook 2007

Table 2 Annual Electricity Generation of Central China Grid 2002-2006
           Electricity Generation (MWh)
                                                   Split of
Year
          Hydro        Thermal        Total       Thermal

 2002        112440000      200347000      312787000          64.05%
 2003        126448000      240839000      367287000          65.57%
 2004        169094000      270846000      439940000          61.56%
 2005        187734000      303976000      491720000          61.82%
 2006        192296000      355453000      547859000          64.88%
Source: China Electric Power Yearbook 2003-2007

Procedures of calculating simple OM for Central China Grid from 2004 to 2006 is as below:

Table 3 Calculation of the Operating Margin Emission Factor, 2004
                                                                                                                 Emission   Average Low
      Fuel           Unit     Jiangxi    Henan       Hubei     Hunan     Chongqing       Sichuan        Total     Factor    Caloric Value   CO2 Emission(tCO2e)
                                                                                                                 (tc/TJ)    (MJ/t,km3)

                                                                                                                                            K=G*H*I*44/12/10000
                                                                                                     G=A+B+C                                   (质量单位)
                                 A          B          C          D           E             F                       H             I
                                                                                                      +D+E+F                                K=G*H*I*44/12/1000
                                                                                                                                               (体积单位)
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board                                                                                                         page 37



   Raw Coal          104 t       1863.8   6948.5     2510.5   2197.9   875.5   2747.9   17144.1    25.8     20908   339092605
                        4
 Cleaned Coal        10 t          0        2.34       0        0       0        0       2.34      25.8     26344     58316
 Other Washed
                     104 t       48.93    104.22       0        0      89.72     0      242.87     25.8     8363     1921441
     Coal
     Coke            104 t         0      109.61       0        0       0        0      109.61     29.2     28435    3337011
                       8     3
Coke Oven Gas       10 m           0         0        1.68      0      0.34      0       2.02      12.1     16726     149900
                       8     3
   Other Gas        10 m           0         0         0        0      2.61      0       2.61      12.1     5227      60527
                        4
   Crude Oil         10 t          0        0.86      0.22      0       0        0       1.08      20       41816     33118
                        4
   Gasoline          10 t          0        0.06       0        0      0.01      0       0.07      18.9     43070      2089
                        4
   Diesel Oil        10 t         0.02      3.86       1.7     1.72    1.14      0       8.44      20.2     42652     266627
                        4
    Fuel Oil         10 t         1.09      0.19      9.55     1.38    0.48     1.68     14.37     21.1     41816     464893
                        4
      PLG            10 t          0         0         0        0       0        0        0        17.2     50179       0
                        4
 Refinery Gas        10 t         3.52      2.27       0        0       0        0       5.79      15.7     46055     153506
                       8     3
 Natural Gas        10 m           0         0         0        0       0       2.27     2.27      15.3     38931     495775
    Other
  Petroleum          104 t         0         0         0        0       0        0        0        20       38369       0
   Products
 Other Coking
                     104 t         0         0         0        0       0        0        0        25.8     28435       0
   Products
 Other Energy       104tce         0       16.92       0       15.2    20.95     0       53.07      0         0         0
     Total                                                                                                          346035810
Sources: China Energy Statistical Yearbook 2005

Table 4 Calculation of thermal power supply to Central China Grid, 2004
                  Electricity      Auxiliary       Supplied
Province          generation      power ratio      electricity
                  (MWh)             (%)            (MWh)
 Jiangxi          30127000           7.04          28006059
 Henan           109352000           8.19         100396071
  Hubei           43034000           6.58          40202363
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board                                                                                                                           page 38



 Hunan               37186000                  7.47            34408206
Chongqin
                     16520000                 11.06            14692888
    g
 Sichuan             34627000                  9.41           31368599
  Total                                                      249074186
Source:China Electric Power Yearbook 2005

EFGrid,OM,simple,2004=1.38929

Table 5 Calculation of the Operating Margin Emission Factor, 2005

                                                                                                              Emission   Average Low
      Fuel           Unit          Jiangxi   Henan     Hubei       Hunan     Chongqing   Sichuan    Total      Factor    Caloric Value   CO2 Emission(tCO2e)
                                                                                                              (tc/TJ)    (MJ/t,km3)

                                                                                                                                         K=G*H*I*44/12/10000
                                                                                                   G=A+B+C                                  (质量单位)
                                     A         B         C           D          E          F                     H             I
                                                                                                    +D+E+F                               K=G*H*I*44/12/1000
                                                                                                                                            (体积单位)
    Raw Coal         104 t         1869.29   7638.87   2732.15     1712.27     875.4     2999.77   17827.75     25.8        20908             352614497
                           4
 Cleaned Coal        10 t           0.02       0         0           0          0          0         0.02       25.8        26344                498
 Other Washed
                     104 t
     Coal                            0       138.12      0           0         89.99       0        228.11      25.8         8363              1804669
                           4
     Coke            10 t            0        25.95      0          105         0          0        130.95      29.2        28435              3986695
                       8       3
 Coke Oven Gas      10 m             0         0        1.15         0         0.36        0         1.51       12.1        16726              112054
   Other Gas        108m3            0        10.2       0           0         3.12        0        13.32       12.1         5227              308897
    Crude Oil        104 t           0        0.82      0.36         0          0          0         1.18        20         41816               36185
    Gasoline         104 t           0        0.02       0           0         0.02        0         0.04       18.9        43070               1194
   Diesel Oil        104 t           1.3      3.03      2.39        1.39       1.38        0         9.49       20.2        42652              299798
    Fuel Oil         104 t          0.64      0.29      3.15        1.68       0.89       2.22       8.87       21.1        41816              286959
      PLG            104 t           0         0         0           0          0          0          0         17.2        50179                 0
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board                                                                                                     page 39



  Refinery Gas        104 t      0.71         3.41       1.76        0.78    0        0       6.66      15.7    46055    176572
  Natural Gas        108m3         0              0       0           0      0        3        3        15.3    38931    655209
Other Petroleum          4
                      10 t
   Products                        0              0       0           0     00        0        0        20      38369       0
 Other Coking            4
                      10 t
   Products                        0              0       0           1.5    0        0       1.5       25.8    28435     40349
                      104tc
  Other Energy
                        e          0          2.88        0          1.74   32.8      0      37.42          0     0         0
      Total                                                                                                             360323575
Sources: China Energy Statistical Yearbook 2006

Table 6 Calculation of thermal power supply to Central China Grid, 2005
                  Electricity      Auxiliary       Supplied
                  generation      power ratio      electricity
Province
                  (MWh)             (%)            (MWh)

  Jiangxi             30000000                    6.48          28056000

  Henan              131590000                    7.32        121957612

  Hubei               47700000                    2.51          46502730

  Hunan               39900000                     5            37905000

Chongqin
                      17584000                    8.05          16168488
   g

 Sichuan              37202000                    4.27          35613475

   Total                                                      286203305

Source:China Electric Power Yearbook 2006
EFGrid,OM,simple,2005=1.25898
Table 7 Calculation of the Operating Margin Emission Factor in Central China Grid, 2006
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board                                                                                                                      page 40




                                                                                                         Emission   Average Low
     Fuel         Unit          Jiangxi   Henan     Hubei     Hunan     Chongqing   Sichuan    Total      Factor    Caloric Value   CO2 Emission(tCO2e)
                                                                                                         (tc/TJ)    (MJ/t,km3)

                                                                                                                                    K=G*H*I*44/12/10000
                                                                                              G=A+B+C                                  (质量单位)
                                  A         B         C         D          E          F                     H             I
                                                                                               +D+E+F                               K=G*H*I*44/12/1000
                                                                                                                                       (体积单位)
   Raw Coal       104 t         1926.02   8098.01   3179.79   2454.48    1184.3     3285.22   20127.82     25.8        20908             398107508
                        4
 Cleaned Coal     10 t            0         0         0         0         5.79        0         5.79       25.8        26344              144295
 Other Washed           4
                  10 t
     Coal                        4.51     104.12      0        8.59       79.21       0        196.43      25.8         8363              1554036
  Brown Coal            4
                  10 t
   Briquettes                     0         0         0         0          0         0.01       0.01       26.6        20908                204
                        4
     Coke         10 t            0        17.23      0        0.32        0          0        17.55       29.2        28435              534299
                    8       3
Coke Oven Gas     10 m            0        0.52      1.07      4.24       0.38       0.01       6.22       12.1        16726              461572
                    8       3
  Other Gas       10 m           12.69     3.95       0         1.7       4.36       0.01      22.71       12.1         5227              526655
                        4
   Crude Oil      10 t            0        0.49       0         0          0          0         0.49        20         41816               15026
                        4
   Gasoline       10 t            0        0.01       0         0          0          0         0.01       18.9        43070                298
                        4
  Diesel Oil      10 t           0.91      2.23      1.41      1.78       0.96        0         7.29       20.2        42652              230298
                        4
   Fuel Oil       10 t           0.51      1.26      1.31       0.8       0.57       3.49       7.94       21.1        41816              256872
                        4
     PLG          10 t            0         0         0         0          0          0          0         17.2        50179                 0
 Refinery Gas     104 t          0.86       8.1       1        0.97        0          0        10.93       15.7        46055              289780
  Natural Gas     108m3           0         0        0.28       0         0.16       18.63     19.07       15.3        38931              4164943
Other Petroleum         4
                  10 t
   Products                       0         0         0         0          0          0          0         20          38369                 0
 Other Coking           4
                  10 t
   Products                       0         0         0         0          0         0.01       0.01       25.8        28435                269
                  104tc
 Other Energy
                    e            17.45     37.36     31.55     18.29      29.35       0         134         0            0                   0
     Total                                                                                                                              406286055
PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1.

CDM – Executive Board                                                                                                                                       page 41


Sources: China Energy Statistical Yearbook 2007

Table 8 Calculation of thermal power supply to Central China Grid, 2006
                                                                                            Auxiliary            Supplied
                                                       Electricity generation
                                                                                           power ratio           electricity
                 Province
                                                              (MWh)
                                                                                            (%)                  (MWh)

                  Jiangxi                                     34449000                        6.17               32323497

                  Henan                                       151235000                       7.06           140557809

                  Hubei                                       54841000                        2.75               53332873

                  Hunan                                       46408000                        4.95               44110804

                Chongqing                                     23487000                        8.45               21502349

                 Sichuan                                      44193000                        4.51               42199896

    Net Electricity imported from
                                                                                                       3028950
       Northwest China Grid

                   Total                                                                             337056176

Source:China Electric Power Yearbook 2007


Table 9 Calculation of the Operating Margin Emission Factor in Northwest China Grid, 2006

                                                                                                           Emission        Average Low
       Fuel           Unit      Shanxi       Gansu     Qinghai    Ningxia       Xinjiang       Total        Factor         Caloric Value   CO2 Emission(tCO2e)
                                                                                                           (tc/TJ)         (MJ/t,km3)

                                                                                                                                           I=F*G*H*44/12/10000
                                                                                             F=A+B+C                                           (质量单位)
                                   A              B       C          D             E                             G              H
                                                                                               +D+E                                         I=F*G*H*44/12/1000
                                                                                                                                               (体积单位)
Jishanhu  P D D
Jishanhu  P D D
Jishanhu  P D D
Jishanhu  P D D
Jishanhu  P D D
Jishanhu  P D D
Jishanhu  P D D

More Related Content

Similar to Jishanhu P D D

Convergent Wind Mill with Velocity and Acceleration Control
Convergent Wind Mill with Velocity and Acceleration ControlConvergent Wind Mill with Velocity and Acceleration Control
Convergent Wind Mill with Velocity and Acceleration ControlIRJET Journal
 
Cut Carbon Symposium: Capital Carbon Inventory Seedcorn Project
Cut Carbon Symposium: Capital Carbon Inventory Seedcorn ProjectCut Carbon Symposium: Capital Carbon Inventory Seedcorn Project
Cut Carbon Symposium: Capital Carbon Inventory Seedcorn ProjectDecarboN8
 
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter MediumIRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter MediumIRJET Journal
 
INDUSTRIAL TRAINING REPORT
INDUSTRIAL TRAINING REPORTINDUSTRIAL TRAINING REPORT
INDUSTRIAL TRAINING REPORTNur Ain Samsudin
 
Modelling for Linear and Radial Heat Transfer using 3D Experience
Modelling for Linear and Radial Heat Transfer using 3D ExperienceModelling for Linear and Radial Heat Transfer using 3D Experience
Modelling for Linear and Radial Heat Transfer using 3D ExperienceIRJET Journal
 
IRJET- Design Analysis of Exhaust Muffler with VOC Emission Filter
IRJET- Design Analysis of Exhaust Muffler with VOC Emission FilterIRJET- Design Analysis of Exhaust Muffler with VOC Emission Filter
IRJET- Design Analysis of Exhaust Muffler with VOC Emission FilterIRJET Journal
 
Assignment 1 Principles Of Project Management Mthabisi Sibanda MANCOSA 130635
Assignment 1 Principles Of Project Management Mthabisi Sibanda MANCOSA 130635Assignment 1 Principles Of Project Management Mthabisi Sibanda MANCOSA 130635
Assignment 1 Principles Of Project Management Mthabisi Sibanda MANCOSA 130635Claudia Acosta
 
Waste Heat Recovery Power Plant - WHRPP Kalina Based Cycle.
Waste Heat Recovery Power Plant - WHRPP Kalina Based Cycle.Waste Heat Recovery Power Plant - WHRPP Kalina Based Cycle.
Waste Heat Recovery Power Plant - WHRPP Kalina Based Cycle.Muhammad Awais
 
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...IRJET Journal
 
Ash Townes. AMEC. 27th January
Ash Townes. AMEC. 27th JanuaryAsh Townes. AMEC. 27th January
Ash Townes. AMEC. 27th JanuaryUKTI2014
 
SUNSHINE short overview of the project and its objectives
SUNSHINE short overview of the project and its objectives SUNSHINE short overview of the project and its objectives
SUNSHINE short overview of the project and its objectives Raffaele de Amicis
 
IRJET -- CFD Analysis of Dual Throat Thrust Vectoring with Chevron Nozzle
IRJET -- CFD Analysis of Dual Throat Thrust Vectoring with Chevron NozzleIRJET -- CFD Analysis of Dual Throat Thrust Vectoring with Chevron Nozzle
IRJET -- CFD Analysis of Dual Throat Thrust Vectoring with Chevron NozzleIRJET Journal
 
IRJET- Embedded Energy’ of Dr. D.Y. Patil Institute of Engineering, Managemen...
IRJET- Embedded Energy’ of Dr. D.Y. Patil Institute of Engineering, Managemen...IRJET- Embedded Energy’ of Dr. D.Y. Patil Institute of Engineering, Managemen...
IRJET- Embedded Energy’ of Dr. D.Y. Patil Institute of Engineering, Managemen...IRJET Journal
 
Bunaken Island | Nov-15 | Bitung low carbon model town
Bunaken Island | Nov-15 | Bitung low carbon model townBunaken Island | Nov-15 | Bitung low carbon model town
Bunaken Island | Nov-15 | Bitung low carbon model townSmart Villages
 
Design, Analysis and Investigation of Solar flat Plate Collector
Design, Analysis and Investigation of Solar flat Plate CollectorDesign, Analysis and Investigation of Solar flat Plate Collector
Design, Analysis and Investigation of Solar flat Plate CollectorIRJET Journal
 
An Analysis of Clean Development Mechanism
An Analysis of Clean Development MechanismAn Analysis of Clean Development Mechanism
An Analysis of Clean Development MechanismBaral Pradeep
 
CFD Analysis of Symmetrical Tangential Inlet Cyclone Separator
CFD Analysis of Symmetrical Tangential Inlet Cyclone SeparatorCFD Analysis of Symmetrical Tangential Inlet Cyclone Separator
CFD Analysis of Symmetrical Tangential Inlet Cyclone SeparatorIRJET Journal
 
Carbon finance for beginners (Kyoto Protocol and its mechanisms; Current stat...
Carbon finance for beginners (Kyoto Protocol and its mechanisms; Current stat...Carbon finance for beginners (Kyoto Protocol and its mechanisms; Current stat...
Carbon finance for beginners (Kyoto Protocol and its mechanisms; Current stat...UNDP Eurasia
 

Similar to Jishanhu P D D (20)

Convergent Wind Mill with Velocity and Acceleration Control
Convergent Wind Mill with Velocity and Acceleration ControlConvergent Wind Mill with Velocity and Acceleration Control
Convergent Wind Mill with Velocity and Acceleration Control
 
Monthly Progress Report No.05 - June-2012
Monthly Progress Report No.05 - June-2012Monthly Progress Report No.05 - June-2012
Monthly Progress Report No.05 - June-2012
 
Cut Carbon Symposium: Capital Carbon Inventory Seedcorn Project
Cut Carbon Symposium: Capital Carbon Inventory Seedcorn ProjectCut Carbon Symposium: Capital Carbon Inventory Seedcorn Project
Cut Carbon Symposium: Capital Carbon Inventory Seedcorn Project
 
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter MediumIRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
 
INDUSTRIAL TRAINING REPORT
INDUSTRIAL TRAINING REPORTINDUSTRIAL TRAINING REPORT
INDUSTRIAL TRAINING REPORT
 
Modelling for Linear and Radial Heat Transfer using 3D Experience
Modelling for Linear and Radial Heat Transfer using 3D ExperienceModelling for Linear and Radial Heat Transfer using 3D Experience
Modelling for Linear and Radial Heat Transfer using 3D Experience
 
IRJET- Design Analysis of Exhaust Muffler with VOC Emission Filter
IRJET- Design Analysis of Exhaust Muffler with VOC Emission FilterIRJET- Design Analysis of Exhaust Muffler with VOC Emission Filter
IRJET- Design Analysis of Exhaust Muffler with VOC Emission Filter
 
Assignment 1 Principles Of Project Management Mthabisi Sibanda MANCOSA 130635
Assignment 1 Principles Of Project Management Mthabisi Sibanda MANCOSA 130635Assignment 1 Principles Of Project Management Mthabisi Sibanda MANCOSA 130635
Assignment 1 Principles Of Project Management Mthabisi Sibanda MANCOSA 130635
 
Waste Heat Recovery Power Plant - WHRPP Kalina Based Cycle.
Waste Heat Recovery Power Plant - WHRPP Kalina Based Cycle.Waste Heat Recovery Power Plant - WHRPP Kalina Based Cycle.
Waste Heat Recovery Power Plant - WHRPP Kalina Based Cycle.
 
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
 
Ash Townes. AMEC. 27th January
Ash Townes. AMEC. 27th JanuaryAsh Townes. AMEC. 27th January
Ash Townes. AMEC. 27th January
 
SUNSHINE short overview of the project and its objectives
SUNSHINE short overview of the project and its objectives SUNSHINE short overview of the project and its objectives
SUNSHINE short overview of the project and its objectives
 
IRJET -- CFD Analysis of Dual Throat Thrust Vectoring with Chevron Nozzle
IRJET -- CFD Analysis of Dual Throat Thrust Vectoring with Chevron NozzleIRJET -- CFD Analysis of Dual Throat Thrust Vectoring with Chevron Nozzle
IRJET -- CFD Analysis of Dual Throat Thrust Vectoring with Chevron Nozzle
 
IRJET- Embedded Energy’ of Dr. D.Y. Patil Institute of Engineering, Managemen...
IRJET- Embedded Energy’ of Dr. D.Y. Patil Institute of Engineering, Managemen...IRJET- Embedded Energy’ of Dr. D.Y. Patil Institute of Engineering, Managemen...
IRJET- Embedded Energy’ of Dr. D.Y. Patil Institute of Engineering, Managemen...
 
GHG Target Management Program in Korea
GHG Target Management Program in Korea GHG Target Management Program in Korea
GHG Target Management Program in Korea
 
Bunaken Island | Nov-15 | Bitung low carbon model town
Bunaken Island | Nov-15 | Bitung low carbon model townBunaken Island | Nov-15 | Bitung low carbon model town
Bunaken Island | Nov-15 | Bitung low carbon model town
 
Design, Analysis and Investigation of Solar flat Plate Collector
Design, Analysis and Investigation of Solar flat Plate CollectorDesign, Analysis and Investigation of Solar flat Plate Collector
Design, Analysis and Investigation of Solar flat Plate Collector
 
An Analysis of Clean Development Mechanism
An Analysis of Clean Development MechanismAn Analysis of Clean Development Mechanism
An Analysis of Clean Development Mechanism
 
CFD Analysis of Symmetrical Tangential Inlet Cyclone Separator
CFD Analysis of Symmetrical Tangential Inlet Cyclone SeparatorCFD Analysis of Symmetrical Tangential Inlet Cyclone Separator
CFD Analysis of Symmetrical Tangential Inlet Cyclone Separator
 
Carbon finance for beginners (Kyoto Protocol and its mechanisms; Current stat...
Carbon finance for beginners (Kyoto Protocol and its mechanisms; Current stat...Carbon finance for beginners (Kyoto Protocol and its mechanisms; Current stat...
Carbon finance for beginners (Kyoto Protocol and its mechanisms; Current stat...
 

Jishanhu P D D

  • 1. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 1 CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006 CONTENTS A. General description of project activity B. Application of a baseline and monitoring methodology C. Duration of the project activity / crediting period D. Environmental impacts E. Stakeholders’ comments Annexes Annex 1: Contact information on participants in the project activity Annex 2: Information regarding public funding Annex 3: Baseline information Annex 4: Monitoring plan
  • 2. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 2 SECTION A. General description of project activity A.1 Title of the project activity: >> Project title: Jiangxi Duchang Jishanhu Wind Farm Project PDD version: 2.0 Completion date PDD: 10/10/2008 A.2. Description of the project activity: >> Jiangxi Duchang Jishanhu Wind Farm Project (hereinafter referred to the proposed project) is located in Duchang County of Jiujiang City in Jiangxi Province, China. The proposed project will be constructed and operated by Jiangxi Zhongdiantou New Energies Co., Ltd. With a period of 21 years in total, the proposed project will have a total installed capacity of 30MW (1.5MW×20) contributing to power generation of 55,042MWh annually to Central China Grid through Jiangxi Grid. The annual operation hours are 1835. By utilizing clean and renewable power, electricity generated by the proposed project will replace the same amount of electricity generated by Central China Grid which is dominated by fossil-fuel fired power. As a result, greenhouse gas emission reduction of estimated 62,616tCO2e per year can be achieved. The proposed project will not only provide clean electricity to grid but also contribute to sustainable development of the host country by means of: Providing reliable, zero-emitting renewable energy to Central China Grid Contributing to local economic development through employment creation Stimulating the growth of wind power industry in China Decrease the GHG emission by reducing the electricity generation from the fossil-fuel fired power plants, and also the emission of SOx, NOx and dust Stimulating the development of local tourism industry Improving people’s living standard A.3. Project participants: >> The parties involved in the proposed project are shown in Table A-1: Table A-1 Project participants Name of Party involved Private and/or public entity(ies) Kindly indicate if the Party (*)((host) indicates a host project participants (*) (as involved wishes to be considered as Party) applicable) project participant (Yes/No) Jiangxi Zhongdiantou New P. R. China (host) No Energies Co., Ltd Germany KfW No For more detailed contact information on participants in the project activities, please refer to Annex 1.
  • 3. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 3 A.4. Technical description of the project activity: A.4.1. Location of the project activity: >> A.4.1.1. Host Party(ies): >> People’s Republic of China A.4.1.2. Region/State/Province etc.: >> Jiangxi Province A.4.1.3. City/Town/Community etc: >> Duchang County of Jiujiang City A.4.1.4. Detail of physical location, including information allowing the unique identification of this project activity (maximum one page): >> The project site is located in Duchang County, Jiujiang City, Jiangxi Province. The site location’s approximate coordinates are east longitude of 116°09′32′′ and north latitude of 29°15′12′′. Figure A-1 illustrates the location of the proposed project.
  • 4. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 4 Jiangxi Duchang Jishanhu Wind Farm Project Figure A-1 Map of the project location
  • 5. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 5 A.4.2. Category(ies) of project activity: >> The project activity falls within Sectoral Scope 1: Energy Industries. - Electricity generation from wind power A.4.3. Technology to be employed by the project activity: >> The proposed project utilises standard wind power technology which will be domestically manufactured. The proposed project involves the installation of 20 wind turbines produced by Goldwind Science and Technology Co., Ltd. with an individual capacity of 1500kW per unit adding up to a total installed capacity of 30MW. The main specifications of the turbine are listed in Table A-2. Table A-2 Technical specifications of employed turbine (Goldwind S77-1500kW) Rotor Diameter 77m Installation height 65m Area swept 4657m2 Number of blades 3 Rotor Speed 9~17.3rpm Operational data Cut-in wind speed 3m/s Nominal wind speed 11.5m/s Cut-out wind speed 22m/s Ultimate wind speed 59.5m/s Operation temperature -30~40℃ Generator Nominal output 1500kW Rated voltage 690V Frequency 50Hz Rated speed 17.3rpm Rated current 660A The project entity has made arrangements for its staff to become familiar with the operation and maintenance requirements of a wind farm. All technologies utilized in the proposed project are domestically produced and there is no technical transfer involved. A.4.4 Estimated amount of emission reductions over the chosen crediting period: >> 7*3 year renewable crediting period is chosen for the proposed project. Annual emission reduction of the proposed project is estimated to be 62,616 tCO2e which totals in 438,312 tCO2e during the first crediting period (from January, 2009 to December, 2015). The estimation of the emission reductions in the crediting period is presented in Table A-3. Table A-3 Estimation of emission reduction over the first crediting period
  • 6. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 6 Year Annual estimation of emission reductions in tones of CO2 e 01/01/2009 – 31/12/2009 62,616 01/01/2010 – 31/12/2010 62,616 01/01/2011 – 31/12/2011 62,616 01/01/2012 – 31/12/2012 62,616 01/01/2013 – 31/12/2013 62,616 01/01/2014 – 31/12/2014 62,616 01/01/2015 – 31/12/2015 62,616 Total estimated reductions (tCO2 e) 438,312 Total number of crediting years 7 Annual average over the crediting period of estimated reductions 62,616 (tCO2e) A.4.5. Public funding of the project activity: >> There is no public funding from Annex I countries available to the proposed project. SECTION B. Application of a baseline and monitoring methodology B.1. Title and reference of the approved baseline and monitoring methodology applied to the project activity: >> ACM0002: “Consolidated baseline methodology for grid-connected electricity generation from renewable sources” , version 07, EB36; “Tool to calculate the emission factor for an electricity system”, version 01, EB35; “Tool for the demonstration and assessment of additionality”, version 05, EB39; For more information regarding the methodology, please refer to the link: http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html B.2 Justification of the choice of the methodology and why it is applicable to the project activity: >> The baseline methodology ACM0002 is applicable to the proposed project, because the proposed project meets all the applicability criteria stated in the methodology: The proposed project is a new wind power plant to supply the electricity capacity additions; The proposed project does not involve an on-site switch from fossil fuels to a renewable source; The geographic and system boundaries for the relevant electricity grid, the Central China Power Grid, can be clearly identified and information on the characteristics of the grid is available. Therefore, ACM0002 (version 07) has been applied to the proposed project.
  • 7. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 7 B.3. Description of the sources and gases included in the project boundary >> The spatial extent of the project boundary includes the project site and all power plants connected physically to the Central China Grid. Central China Grid covers Henan Province, Hunan Province, Hubei Province, Jiangxi Province, Sichuan Province and Chongqing Municipality.1 The sources and gases included in the project boundary are described in Table B-1 as follows: Table B-1 Inclusion of gases and sources in the calculation of the emission reductions Source Gas Included? Justification / Explanation Fossil fuel- CO2 Yes Main emission source fired Power Minor emission source. Excluded for plants CH4 No simplification. This is conservative. Baseline connected to the Central Minor emission source. Excluded for China Power N2O No simplification. This is conservative. Grid Excluded by the methodology for wind farm CO2 No Jiangxi projects Project Duchang Excluded by the methodology for wind farm CH4 No Activity Jishanhu Wind projects Farm Project Excluded by the methodology for wind farm N2O No projects B.4. Description of how the baseline scenario is identified and description of the identified baseline scenario: >> The proposed project activity is the installation of a new grid-connected wind power plant. As per ACM0002: “Consolidated baseline methodology for grid-connected electricity generation from renewable sources”, version 07, the baseline scenario is the following: “If the project activity is the installation of a new grid-connected renewable power plant/unit, the baseline scenario is the following: Electricity delivered to the grid by the project would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources as reflected in the combined margin (CM) calculations described in the “Tool to calculate the emission factor for a electricity system.” According to the above discussion, the equivalent electricity provided by the Central China Grid is selected as the baseline scenario for the proposed project. Parameters and data sources for determining the baseline scenario are listed in Table B-2: 1 http://cdm.ccchina.gov.cn/web/NewsInfo.asp?NewsId=2875
  • 8. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 8 Table B-2 Parameters and data sources for determining the baseline scenario Parameter Value Source - China Electric Power Yearbook 2002- 2007 - 2006 IPCC Guidelines for National Baseline emission factor 1.1376 Greenhouse Gas Inventories:Volume 2 Energy - China Energy Statistical Yearbook 2005-2007 Net electricity supplied to the 55,042MWh Feasibility Study Report grid by the proposed project B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of additionality): >> The proposed project is a public bid project. On February 08, 2007, local government sent out the bid invitation document of the proposed project on. On the document, the government gave out the principle on feed-in tariff, which was “the feed-in tariff of the project will be no more than 0.7855 RMB/KWh”. After evaluating the financial situation of the project, the project owner found the project faced serious investment barrier. In order to overcome the barrier, the project owner got in touch with CDM Project Development Center of CPCEC to discuss the possibility of CDM development intending to get the support from CERs sales. According to the expected CDM development income analysis from CDM Project Development Center of CPCEC on February 12, 2007, the CDM income will make compensation for the tariff to a degree of 0.083 RMB/KWh. On February 26, 2007, a management meeting was held to discuss the bidding tariff for the proposed project. Based on the principle on feed-in tariff in the bid invitation document and expected CERs sales, all the participants reached a consensus to choose 0.78 RMB/KWh as the bidding tariff and to develop the proposed project as a CDM project after winning the bid. On April 19, 2007, the project owner won the bid, and 0.78 RMB/KWh was confirmed as the fixed feed- in tariff. The project owner continued discussing with CDM Project Development Center of CPCEC about the details of CDM application. On April 26, 2007, a report of CDM development financial evaluation was made by CDM Project Development Center of CPCEC to calculate CDM revenue which is a necessity to improve the financial situation of the project. On June 06, 2007, the CDM Development Service Contract was signed between the project owner and CDM Project Development Center of CPCEC. The design institute compiling the Feasibility Study Report (FSR) for the project has also fully considered CDM incentives and revenue when compiling the FSR, which is reflected in the FSR, the main reference for the construction and implementation of the project. The construction of the proposed project started on November 26, 2007, which has been applied as the starting date of the project activity. In conclusion, during the decision-making process, the project proponent has seriously considered the CDM revenue to overcome the investment barrier of the proposed project. The milestone of the proposed project is shown in Table B-3:
  • 9. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 9 Table B-3 Milestone of the proposed project Time Milestone February 2007 Bid Invitation Document February 2007 CDM development income analysis February 2007 Management meeting April 2007 Letter of acceptance for bidding April 2007 CDM development finance evaluation report June 2007 CDM development service contract June 2007 Environment Impact Assessment August 2007 Approval of EIA August 2007 Feasibility Study Report November 2007 Approval of the proposed project November 2007 Construction works started The additionality of the project activity is demonstrated using the steps described in the ‘Tool for the demonstration and assessment of additionality’ (version 05). Step 1. Identification of alternatives to the project activity consistent with mandatory laws and regulations Sub-step 1a: Define alternatives to the project activity The methodological step requires a number of sub-steps, the first of which is the identification of realistic and credible alternatives to the project activity. There are only a few alternatives that are realistic and credible in the context of the Central China Power Grid: Alternative 1: The proposed wind power activity undertaken without being registered as a CDM project activity Alternative 2: Thermal power generation resulting in the same amount of power delivery to the grid Alternative 3: Power generation from other renewable power sources, such as hydropower plants, biomass power plants or solar power plants Alternative 4: Equivalent electricity service provided by the Central China Grid The hydro power is unrealistic due to limited resources in Duchang County. The total exploitable hydro resources in Duchang County is amounted to 1.8MW2, and average operation hour for hydro power plants in Jiangxi Province in 2006 is 2730 hours3, which means it is difficult to develop a hydro power plant with equivalent installed capacity based on limited hydro resources. Due to technology development status and high cost for power generation, investments of solar power and biomass project of equivalent installed capacity as the proposed project are far from being financial attractive45. 2 http://218.65.3.188/dcx/bmgkxx/slj/fzgh/fzgh/200808/t20080803_14204.htm 3 China Electric Power Yearbook 2007 4 http://finance.people.com.cn/GB/1038/59942/59949/6294546.html 5 http://jjckb.xinhuanet.com/cjxw/2007-11/27/content_75467.htm
  • 10. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 10 Sub-step 1b: Consistency with mandatory laws and regulations Considering the same annual electricity generation, the alternative baseline scenario for the proposed project should be a thermal power plant with installed capacity of 15MW. According to Chinese power regulations, fuel-fired power plants of less than 135MW are prohibited to construct in the areas covered by large grids6. Therefore, Alternative 2 is not in compliance with Chinese regulations, and is not a realistic and credible alternative. For Alternative 1, the proposed project undertaken without being registered as a CDM project activity satisfies China’s regulations. For Alternative 4, equivalent electricity service provided by Central China Grid satisfies China’s regulations. Therefore, Alternative 1 and Alternative 4 comply with China’s regulations and will be analyzed in Step 2 as potential alternatives. Step 2 Investment analysis Sub-step 2a - Determine appropriate analysis method The “Tool for the Demonstration and Assessment of Additionality” recommends three analysis methods. They are simple cost analysis (option I), investment comparison analysis (option II) and benchmark analysis (option III). The proposed project produces economic benefits through the sales of electricity other than CDM related income; therefore, the simple cost analysis cannot be taken. The investment comparison analysis is not applicable to the proposed project because the alternative of the proposed project is “Equivalent electricity service provided by the Central China Grid”, not a new investment project. Hence, the benchmark analysis is chosen and the Internal Return Rate (IRR) is used to assess the financial viability of the project activity. Sub-step 2b - Options III: Apply benchmark analysis The investment analysis is conducted through a calculation of the Internal Rate of Return (IRR) of the project and IRR is compared with a benchmark stated on the Interim Rules on Economic Assessment of Electrical Engineering Retrofit Projects, issued by the State Power Corporation of China. The Interim Rules provide a guideline for projects in the electric power industry which state a minimum Internal Rate of Return (IRR) of 8%7. This minimum IRR is of total investment and is a widely accepted standard for projects in the power industry. Many of China’s power projects apply this benchmark IRR for financial assessment and use it as a hurdle rate for investment in the power industry such as wind power projects, hydropower projects, fossil fuel fired projects, transmission and substation projects. 6 Notice on Strictly Prohibiting the Installation of Fuel-fired Generators with Capacity of 135 MW or below issued by the General Office of the State Council, decree no. 2002-6. 7 State Power Corporation of China. Interim Rules on Economic Assessment of Electrical Engineering Retrofit Projects. Beijing: China Electric Power Press, 2003
  • 11. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 11 Sub-step 2c - Calculation and comparison of financial indicators 1) Parameters needed for calculation of IRR According to the Feasibility Study Report of the proposed project, parameters needed for calculation of IRR are as follows: Table B-4 Parameters for calculation of IRR Parameter Data Source Installed capacity 30 MW Feasibility Study Report Page 14-1 Electricity delivered to grid 55,042 MWh Feasibility Study Report Page 14-1 Static total investment RMB 336,823,500 Feasibility Study Report Page 14-1 Long-term Loans Rate 7.83% Feasibility Study Report Page 14-1 Current Capital Loans Rate 7.29% Feasibility Study Report Page 14-1 Tariff(Including VAT) RMB 0.78 /KWh Letter of Acceptance for Bidding Material Cost RMB 15/KW Feasibility Study Report Page 14-2 Salary and Welfare RMB 80,000/employee/year Feasibility Study Report Page 14-2 Allowance Number of Employees 15 Feasibility Study Report Page 14-2 Repair Cost 2009-2011 0.5% Feasibility Study Report Page 14-2 Rate 2012-2016 1.0% Feasibility Study Report Page 14-2 Depreciation Rate 6.67% Feasibility Study Report Page 14-2 Insurance Rate 0.25% Feasibility Study Report Page 14-2 Other Expenses RMB 35/KW Feasibility Study Report Page 14-2 VAT Rate 8.5% Feasibility Study Report Page 14-2 Extra VAT Rate 10% Feasibility Study Report Page 14-2 Income Tax Rate 25% Feasibility Study Report Page 14-2 Surplus Reserve Rate 10% Feasibility Study Report Page 14-2 Operation life 20 years Feasibility Study Report Page 14-1 Annual O&M 2009-2011 RMB 5.31 Million Excel Table for IRR Calculation cost 2012-2016 RMB 7.04 Million Excel Table for IRR Calculation Expected CERs price EUR 11/tCO2e Estimated Value 2) Comparison of the project IRR and the financial benchmark In accordance with benchmark analysis, if the financial indicators of the proposed project, such as the project IRR, are lower than the benchmark, the proposed project is not considered to be financially attractive. Table B-5 shows the project IRR with and without the income from CERs sale. Without the sales of CERs, the project IRR is 6.51% which is lower than the financial benchmark. Thus the proposed project is not financially attractive. Taking into account the CDM revenues, the project IRR is 8.02% which is higher than the financial benchmark, and the proposed project becomes financially attractive. Table B-5 Comparison of IRR with and without the income from CERs sale Item Without CDM Benchmark With CDM IRR 6.51% 8% 8.02% Sub-step 2d - Sensitivity analysis
  • 12. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 12 For the proposed project, four parameters were selected as sensitive factors to check out the financial attractiveness: 1) Static Total Investment 2) Power Generation 3) Tariff 4) Annual O&M Cost Assuming the above four factors vary in the range of -10% to 10%, the project IRR ( without the income from CERs sales) varies to different extents as shown in Table B-6 and Figure B-1 below. Table B-6 Results of the sensitivity analysis -10.00% -5.00% 0.00% 5.00% 10.00% Static Total Investment 7.96% 7.20% 6.51% 5.87% 5.21% Power Generation 4.93% 5.78% 6.51% 7.22% 7.92% Tariff 4.93% 5.78% 6.51% 7.22% 7.92% Annual O&M Cost 6.79% 6.65% 6.51% 6.36% 6.22% Figure B-1 Results of the sensitivity analysis 9% 8% 7% IRR 6% 5% 4% -1 0% -5% 0% 5% 1 0% St at i c Tot al I nvest ment Power Gener at i on Tar i ff Annual O&M Cost The total investment is an important factor affecting the financial attractiveness of the proposed project. In the case that the total investment decreases by more than 10%, IRR of the proposed project begins to exceed the benchmark. However, most of the total investment is related to purchasing raw materials and equipments and the trend of price for raw materials and equipments is rising. Therefore, the total investment is not likely to decrease by more than 10%. Another important factor affecting the financial attractiveness is power generation. The output of power generation is subject to two factors, namely, the total installed capacity and the annual operational hours. As the total installed capacity has already been fixed, the output of power generation lies only in
  • 13. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 13 operational hours. According to the feasibility report, the average wind velocity for the recent 30 years, 20 years and 10 years are 2.7m/s, 2.6m/s and 2.5m/s respectively. Lower PLF (plant load factor) due to lower wind velocity will result in reduced power generation. For this reason, the chances of power generation exceeding 10% are extremely small due to the fact that the average wind speed at the proposed project site has been decreasing over the past 30 years. Tariff is also an important factor affecting the financial attractiveness. In the case that tariff increases by more than 10%, IRR of the proposed project begins to exceed the benchmark. In Letter of Acceptance for Bidding8, RMB 0.78/kWh (including VAT) is chosen as the on-grid tariff which will be fixed in the future. Hence, it is impossible that the tariff increases to 10%. Based on the Investment Analysis above, the proposed project is not financially attractive without CERs sales revenues. Alternative 1 of the proposed project undertaken without being registered as a CDM project activity is not feasible. In conclusion, Alternative 4 - Equivalent electricity service provided by the Central China Grid is the only feasible alternative. Step 4 Common practice analysis Sub-step 4a Analyze other activities similar to the proposed project activity: According to China Wind Farm Installed Capacity Statistic in 2007 by Shi Pengfei9,there are no other wind power projects that are operational in Jiangxi Province10. The proposed project is one of the first wind power projects in Jiangxi Province. In conclusion, there are no other activities similar to the proposed project activity. Sub-step 4b Discuss any similar options that are occurring Since there is serious investment barrier for the proposed project, the CDM has been considered in early evaluation period. The proposed project is one of the first wind power projects in Jiangxi Province. Hence, the proposed project is not a common practice. In conclusion, the proposed project is additional, not (part of) the baseline scenario. Without CDM support, the proposed project would unlikely occur. The proposed project can reduce the greenhouse gas emissions. If the proposed project fails to be registered as a CDM project, this portion of emission reduction can not be realized. B.6. Emission reductions: B.6.1. Explanation of methodological choices: >> 8 Letter of Acceptance for Bidding was provided to DOE for verifying 9 http://www.cwea.org.cn/upload/20080324.pdf 10 http://www.jxdpc.gov.cn/zxxx/gzdt-hy/20071128/100048.htm
  • 14. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 14 ACM0002, Baseline Emission Factor of Chinese Power Grids in 200811 is applied as the following steps, and the data are from China Electric Power Yearbook and China Energy Statistical Yearbook. The key methodological steps are: 1. Calculating the Baseline Emission(BEy); 2. Calculating the Project Emission(PEy); 3. Calculating the Leakage Emission( LEy); 4. Calculating the Emission Reduction(ERy) 1. Calculating the Baseline Emission According to ACM0002, the baseline emission (BEy) is the product of the baseline emission factor (EFgrid,CM,y) times the electricity supplied by the project activity to the grid (EGy). First, the baseline emission factor is calculated as the Combined Margin emission factor. 1.1 Calculation of the baseline emission factor (EFgrid,CM,y) According to ACM0002, the baseline emission factor (EFgrid,CM,y) is calculated by “Tool to calculate the emission factor for an electricity system”. The baseline emission factor (EFgrid,CM,y) is the Combined Margin emission factor, which consists of the weighted average of Operating Margin emission factor and Build Margin emission factor by utilizing the latest data vintage (ex-ante) for the Central China Grid Six steps are utilized to calculate the baseline emission: Step 1 – Identify the relevant electric power system. Step 2 – Select an operating margin (OM) method. Step 3 – Calculate the operating margin emission factor (EF grid,OM,y)according to the selected method. Step 4 – Identify the cohort of power units to be included in the build margin (BM). Step 5 – Calculate the build margin emission factor (EF grid,BM,y). Step 6 – Calculate the combined margin emissions factor (EF grid,CM,y). Step 1 – Identify the relevant electric power system According to ‘Tool to calculate the emission factor for an electricity system’ and ‘Baseline Emission Factor of Chinese Power Grids in 2008’ published by Chinese DNA, the relevant electric power system of the proposed project is Central China Grid, and the data of calculation are from China Electric Power Yearbook and China Energy Statistical Yearbook. Step 2 –Select an operating margin (OM) method The calculation of (EF grid,OM,y) is based on one of the four following methods: 11 http://cdm.ccchina.gov.cn/web/NewsInfo.asp?NewsId=2875
  • 15. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 15 (a) Simple OM, or (b) Simple Adjusted OM, or (c) Dispatch Data Analysis OM, or (d) Average OM. As the detailed dispatch data of the Central China Grid is unavailable, method (c) and method (b) is not applicable. Method (a) can only be used where low-cost/must run resources12 constitute less than 50% of total grid generation in: 1) average of the five most recent years, or 2) based on long-term normals for hydroelectricity production. According to the total electricity generation in 2002-2006 of the Central China Grid, the low-cost/must run resources constitute less than 50% of total amount grid generating output (see Annex 3 for details). Therefore, Method (a) simple OM is used to calculate the simple OM emission factor utilize the data of 2004-2006 in ex-ante option. Step 3 –Calculate the operating margin emission factor (EFgrid, OM, y) according to the selected method. According to “Tool to calculate the emission factor for an electricity system”, the simple OM emission factor in y year (EFgrid,OM,simple,y ) is calculated as the generation-weighted average CO2 emissions per unit net electricity generation (tCO2/MWh) of all generating power plants serving the system, not including low-cost / must-run power plants / units. It may be calculated: Option A: Based on data on fuel consumption and net electricity generation of each power plant / unit, or Option B: Based on data on net electricity generation, the average efficiency of each power unit and the fuel type(s) used in each power unit, or Option C: Based on data on the total net electricity generation of all power plants serving the system and the fuel types and total fuel consumption of the project electricity system. Option A should be preferred and must be used if fuel consumption data is available for each power plant/unit. In other cases, option B or option C can be used. For the purpose of calculating the simple OM, Option C should only be used if the necessary data for option A and option B is not available and can only be used if only nuclear and renewable power generation are considered as low-cost/must-run power sources and if the quantity of electricity supplied to the grid by these sources is known. Because the fuel consumption and net electricity generation data of each power plant / unit in the Central China Grid is unavailable, but the total net electricity generation, the fuel types and total fuel consumption of all power plants in the Central China Grid is available and the low-cost/must run power resources in Central China Power Grid include only nuclear and renewable power generation,, so option C is selected. The formula of EF grid,OM,simple,y in option C is: 12 The low-cost/must run resources include hydro power, geothermal sources, wind power, solar sources etc
  • 16. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 16 ∑ FC i, y × NCVi , y × EFCO 2,i , y EFgrid ,OMsimple, y = i EG y (1) Where: EFgrid,OMsimple,y = Simple operating margin CO2 emission factor in year y (tCO2/MWh); FCi,y =Amount of fossil fuel type i consumed in the project electricity system in year y (mass or volume unit); NCVi,y = Net calorific value (energy content) of fossil fuel type i in year y (GJ / mass or volume unit); EFCO2,i,y = CO2 emission factor of fossil fuel type i in year y (tCO2/GJ); EGy = Net electricity generated and delivered to the grid by all power sources serving the system, not including low-cost / must-run power plants / units, in year y (MWh); i = All fossil fuel types combusted in power sources in the project electricity system in year y; y = the three most recent years for which data is available at the time of submission of the CDM-PDD to the DOE for validation. The data in the calculation is from China Electric Power Yearbook 2005-2007. Step 4 – Identify the cohort of power units to be included in the build margin According to “Tool to calculate the emission factor for an electricity system”, the sample group m consists of either 1) the five power plants that have been built most recently; or 2) the power plant capacity additions in the electricity system that comprise 20% of the system generation and that built most recently. The one with larger annual generation should be used. However, the information on the five power plants built most recently in the Central China Grid is not publicly available. Therefore, option 2 is selected. EB guidance on the application of approved methodology AM0005 now consolidated into ACM0002 can be applied for the purposed project for estimating the build margin emission factor for each fuel type. The proposed deviations accepted and the alternative solutions in absence of data were as follows: 1) It is agreed to use the new capacity additions during the past 1-3 years to calculate the Build Margin emission factor; 2) It is agreed that the use of the installed capacity to replace the annual electricity generation to calculate the Build Margin emission factor; Using the average fuel efficiency of existing power plants as the baseline will bring about higher baseline emission and result in higher emission reductions, as the average fuel efficiency of old power plants is lower than the new power plants, which is not a conservative method. Step 5 - Calculation of the Build Margin Emission Factor (EFgrid,BM,y)
  • 17. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 17 Due to the difficulty of separating the coal-fired, gas-fired or oil-fired installed capacity from the total fuel-fired installed capacity, according to the suggestion on the alternative solutions in absence of data by CDM EB, the Build Margin emission factor (EFBM,y ) will be calculated as : 1) Based on the most recent year’s energy balance of the Central China Grid, calculating the percentages of CO2 emissions from the coal-fired, oil-fired and gas-fired power plants in total fuel-fired CO2 emissions; 2) Based on the most advanced commercialized technologies which applied by the coal-fired, oil-fired and gas-fired power plants, calculating the fuel-fired emission factor of the Central China Grid; 3) Calculating the Build Margin emission factor (EFBM,y)through fuel-fired emission factor times the weighted-average of fuel-fired installed capacity which is more close to 20% in the new capacity additions. The detailed calculation as follows: Sub-Step 5a. Calculating the percentages of CO2 emissions from the coal-fired, oil-fired and gas-fired power plants in total fuel-fired CO2 emissions. ∑F i∈Coal , j i, j, y × COEFi , j , y λCoal = (2) ∑F i, j i, j, y × COEFi , j , y ∑F i∈Oil , j i, j, y × COEFi , j , y λOil = (3) ∑F i, j i, j, y × COEFi , j , y ∑F i∈Gas , j i, j, y × COEFi , j , y λGas = (4) ∑F i, j i, j, y × COEFi , j , y Where: Fi ,j, y is the amount of fuel i (in a mass or volume unit) consumed by relevant power sources j in year(s) y COEFi,j,y is the CO2 emission coefficient of fuel i (tCO2e/ mass or volume unit of the fuel), taking into account the carbon content of the fuels used by relevant power sources j and the percent oxidation of the fuel in year(s) y λCoal is the percentage of CO2 emissions from the coal-fired power plants in total fuel-fired CO2 emissions; λOil is the percentage of CO2 emissions from the oil-fired power plants in total fuel-fired CO2 emissions; λGas is the percentage of CO2 emissions from the gas-fired power plants in total fuel-fired CO2 emissions; Sub-Step 5b. Calculating the fuel-fired emission factor EFThermal = λCoal × EFCoal , Adv + λOil × EFOil , Adv + λGas × EFGas , Adv (5) Where:
  • 18. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 18 EFThermal is the fuel-fired emission factor; EFCoal,Adv,EFOil,Adv and EFGas ,Adv are corresponding to the emission factors of coal, oil and gas fired power plants which are applied by the most advanced commercialized technologies. 3.6 × EFCO2,i, y × 44 (6) EFCoal, Adv = (i ∈ Coal) FCRCoal, Adv ×1000×12 3.6 × EFCO2,i, y × 44 EFOil, Adv = (i ∈Oil) (7) FCROil, Adv × 1000× 12 3.6 × EFCO2,i , y × 44 EFGas, Adv = (i ∈ Gas) (8) FCRGas, Adv ×1000×12 FCRCoal , Adv : The fuel consumption rate of Coal-fired power plants which employed the most advanced commercialized technologies FCROil , Adv : The fuel consumption rate of Oil-fired power plants which employed the most advanced commercialized technologies FCRGas , Adv : The fuel consumption rate of Gas-fired power plants which employed the most advanced commercialized technologies Sub-Step 5c. Calculating the Build Margin Emission Factor. CAPThermal EFBM , y = × EFThermal (9) CAPTotal Where: EFBM,y is the Build Margin emission factor with advanced commercialized technologies for year y; CAPTotal is the new capacity additions; CAPThermal is the new fuel-fired capacity additions. Step 6 - Calculation of the Baseline Emission Factor (EFgid,CM,y) EFgrid ,CM , y = EFgrid ,OM , y × wOM + EFgrid , BM , y × wBM (10) Where: According to the ‘Tool to calculate the emission factor for an electricity system’, the default weights of wind farm project are ωOM =0.75 and ω BM = 0.25. 1.2. Calculation of the Baseline Emission (BEy) BE y = (EG y − EG baseline )× EFgrid ,CM , y (11) Where: BEy is baseline emissions in year y (tCO2/yr). EGy is electricity supplied by the project activity to the grid (MWh), EG y = EG PJ to grid, y − EG grid to PJ, y . EGbaseline is baseline electricity supplied to the grid in the case of modified or retrofit facilities(MWh). For new power plants this value is taken as zero.
  • 19. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 19 EFgrid,CM,y is combined margin CO2 emission factor for grid connected power generation in year y calculated using the latest version of the “Tool to calculate the emission factor for an electricity system”. 2. Project Emission According to the methodology, there are no expected project emissions for a wind farm project. Therefore, PEy=0 3. Leakage Emission According to the methodology, the leakage of the proposed project need not be considered. LEy=0. 4. Emission Reduction Emission reductions will be estimated based on the baseline emission, the project emission and the leakage emission. The emission reduction ERy due to the proposed project activity during a given year y is calculated as follows: ER y = BE y − PE y − LE y (12) B.6.2. Data and parameters that are available at validation: Data / Parameter: FCi,y Data unit: 104t/108m3 Description: Amount of fossil fuel type i consumed in the project electricity system in year y Source of data used: China Energy Statistical Yearbook 2005-2007 Value applied: See Annex 3 for details Justification of the Data that is collected from the official statistics. choice of data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter: EFCO2,i,y Data unit: tC/TJ Description: the CO2 emission factor per unit of energy of the fuel i in year y Source of data used: Table 1.4 of Chapter 1 of Vol.2 of the 2006 IPCC Guidelines Value applied: See Annex 3 for details Justification of the Data that is collected from the IPCC because the local data is not available. choice of data or description of measurement methods and procedures actually
  • 20. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 20 applied : Any comment: Data / Parameter: NCV i ,y Data unit: TJ/ mass or volume unit of a fuel Description: the net calorific value (energy content) per mass or volume unit of a fuel i in year y Source of data used: China Energy Statistical Yearbook 2007 Value applied: See Annex 3 for details Justification of the China Energy Statistics Yearbook is published by China Statistics Press, it is choice of data or authorized. description of measurement methods and procedures actually applied : Any comment: Data / Parameter: Installed Capacity Data unit: MW Description: Installed capacities of the Central China Grid 2002-2006 Source of data used: China Electric Power Yearbook 2003-2007 Value applied: See Annex 3 for details Justification of the Data that is collected from the official statistics. choice of data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter: Electricity Generation Data unit: MWh Description: The electricity generated by source j Source of data used: China Electric Power Yearbook 2003-2007 Value applied: See Annex 3 for details Justification of the Data that is collected from the official statistics. choice of data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter: Auxiliary Power Ratio Data unit: % Description: The auxiliary power ratio of source j in Central China Grid Source of data used: China Electric Power Yearbook 2003-2007
  • 21. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 21 Value applied: See Annex 3 for details Justification of the Data that is collected from the official statistics. choice of data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter: FCRCoal,Adv Data unit: % Description: The fuel consumption rate of coal-fired power plants which employed the most advanced commercialized technologies. Source of data used: From Chinese DNA Value applied: 37.28% Justification of the Data that is collected from the official statistics. choice of data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter: FCROil,Adv Data unit: % Description: The fuel consumption rate of Oil-fired power plants which employed the most advanced commercialized technologies. Source of data used: From Chinese DNA Value applied: 48.81% Justification of the Data that is collected from the official statistics. choice of data or description of measurement methods and procedures actually applied : Any comment: Data / Parameter: FCRGas,,Adv Data unit: % Description: The fuel consumption rate of Gas-fired power plants which employed the most advanced commercialized technologies. Source of data used: From Chinese DNA Value applied: 48.81% Justification of the Data that is collected from the official statistics. choice of data or description of
  • 22. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 22 measurement methods and procedures actually applied : Any comment: B.6.3 Ex-ante calculation of emission reductions: >> 1. Calculating the Baseline Emission 1.1 Calculation of the baseline emission factor (EFgrid,CM,y) Therefore, the Operating Margin emission factor (EFOM,simple ) is the weighted emission factors of 2004- 2006 of Central China Grid: EF OM , simple =1.2783 tCO2e/MWh The Build Margin emission factor can be calculated by formulae (2)-(9): EFBM,y=0.7156 tCO2e/MWh The baseline emission factor EFy is calculated as formula (10). Thus, EFy = 1.1376 tCO2e/MWh 1.2. Calculation of the Baseline Emission (BEy) The baseline emission BEy is calculated as formulae (11): ( ) BEy = BE y = EG y − EGbaseline × EFgrid ,CM , y =(55,042-0)×1.1376 =62,616 tCO2e /year See Annex 3 for details. 2. Project Emission PEy = 0. 3. Leakage Emission LEy=0. 4. Emission Reduction The Emission Reductions (ERy) for the proposed project activity could be calculated as the formula (12): ERy =62,616 -0-0 = 62,616 tCO2e /year B.6.4 Summary of the ex-ante estimation of emission reductions: >> Table B-2 Estimation of emission reductions due to the proposed project Estimation of Estimation of Estimation of Estimation of Year project activity baseline leakage overall emission
  • 23. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 23 emissions emissions (tonnes of CO2e) reductions (tonnes of CO2e) (tonnes of CO2e) (tonnes of CO2e) 2009 0 62,616 0 62,616 2010 0 62,616 0 62,616 2011 0 62,616 0 62,616 2012 0 62,616 0 62,616 2013 0 62,616 0 62,616 2014 0 62,616 0 62,616 2015 0 62,616 0 62,616 Total (tonnes of CO2e) 0 438,312 0 438,312 Note: The starting date of the first crediting period is expected to be Jan. 1, 2009, and the deadline is Dec. 31, 2015. B.7 Application of the monitoring methodology and description of the monitoring plan: >> B.7.1 Data and parameters monitored: Data / Parameter: EGPJ to grid,y Data unit: MWh Description: Electricity supplied to the grid by the proposed project Source of data to be Measured by meters; 100% of data will be monitored and electronic archived. used: Value of data applied 55,042 MWh for the purpose of calculating expected emission reductions in section B.5 Description of Hourly measurement and monthly recording measurement methods and procedures to be applied: QA/QC procedures to The measurement will in compliance with the National Guidelines and be applied: requirements of the grid company for accuracy and reliability. The calibration will be carried out according to relevant national standards and regulations by authorized organisation. Any comment: Double check by receipt of sales Data / Parameter: EGgrid to PJ,y Data unit: MWh Description: Electricity supplied to the proposed project by the grid Source of data to be Measured by meters used: Value of data applied 0 for the purpose of calculating expected emission reductions in section B.5
  • 24. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 24 Description of Hourly measurement and monthly recording measurement methods and procedures to be applied: QA/QC procedures to The measurement will in compliance with the National Guidelines and be applied: requirements of the grid company for accuracy and reliability. The calibration will be carried out according to relevant national standards and regulations by authorized organisation. Any comment: Double check by receipt of sales Data / Parameter: EGy Data unit: MWh Description: Net electricity delivered to the grid by the proposed project Source of data to be Calculated from data EGPJ to grid,y and EGgrid to PJ,y used: Value of data applied 55,042MWh for the purpose of calculating expected emission reductions in section B.5 Description of EGy = EGPJ to grid,y - EGgrid to PJ,y measurement methods and procedures to be applied: QA/QC procedures to be applied: Any comment: B.7.2 Description of the monitoring plan: >> 1. Key data to be monitored The data required to be monitored during the implementation of the proposed project include those listed in B.7.1. 2. The Operational and Management Structure for Monitoring The project owner will set up a CDM Monitoring Office and designate a qualified staff responsible for all relevant matters, including data collection and archiving, QC/QA, and verification. The structure of the CDM Monitoring Office is outlined in Figure B-2. Figure B-2 Organization chart of CDM project management office
  • 25. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 25 CDM Monitoring Office Office Manager Monitoring Section Audit Section The responsibilities of the sections are briefly described as follows: Office Manager: Manage the work of CDM Monitoring Office; Charge of all relevant matters with the monitoring activity. Monitoring Section: Monitor, collect and archive the data according to the Monitoring Plan. Audit Section: Audit the work of Monitoring Section and execute the QC/QA procedures according to the Monitoring Plan. 3. Metering Systems The connecting method of the proposed project is one turbine along with one transformer. Each turbine will have a 0.69kV/35kV transformer. The proposed project will be connected to 35kV/110kV transformer station via two 35kV transmission lines (See Figure B-3). The 110kV transformer station is linked to Central China Grid through Jiangxi provincial Grid. Figure B-3 Simplified electrical connection diagram
  • 26. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 26 Backup Meter Main Meter M2 M1 35kV/110kV Transformer station 0.69kV/35kV transformer 0.69kV line transformer 35kV line 110kV li Wind turbine The bi-direction main meter (M1 in Figure B-3) is expected to be installed at outflow side of the on-site 35kV/110kV transformer to measure net electricity supplied by the proposed project, which is treated as the main recording system. The sales receipts will be made according to the data on the main meter agreed by both the project owner and Jiangxi Provincial Grid Company. Net electricity delivered to the grid by the proposed project will be cross-checked against sales receipts. The expected accuracy degree of the main meter is 0.2S. The bi-direction backup meter (M2 in Figure B-3) is employed to measure the input and output electricity which is treated as the backup recording system. 4. Calibration The calibration of the electric meters will be at least annually carried out according to relevant standards and regulations. The electric meters for the electricity delivered to the grid by the proposed project should be tested by a qualified metrical organization co-authorized by the owner and Jiangxi Provincial Grid Company. After the calibration, the electric meters should be jointly inspected and sealed by the parties concerned and shall not be accessible by either party without the presence of the other party or its accredited representatives. When remove, replacement, disassembling, sealing, seal-breaking, incident treatment and etc. happens to the main recording system, Jiangxi Provincial Grid Company is the responsible operator, and the representative of the project owner should attend.
  • 27. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 27 If the parties have dissidence on the operation condition of the main metering system, the main metering system will be calibrated by the qualified metrical organization co-authorized by both parties. Both parties will decide the amount of electricity depending on the results of the calibration and relevant regulations. If the parties have dissidence on the calibration results, a metrical organization with higher qualification will be authorized to re-calibrate the meters. If the main metering system has failure, damage or missing, the amount of the electricity delivered to the grid by the proposed project will be determined by the records of the backup metering system or other relevant metering system agreed by both parties. 5. Data Collection and Management Two methods will be used to measure and record the data: hand log and automatic log. Under the monitoring system, a data management system will be set up for keeping data and information, and tracking information from the primary source to data calculation, in paper format. It is the responsibility of the project entity to provide additional necessary data, information and document for validation and verification requirements of respective DOE. Paper documentation such as maps, diagrams and environmental assessment will be collected in a central place, together with this monitoring plan. In order to facilitate auditor’s reference, monitoring results should be indexed. All paper-based information will be stored by the owner and kept at least one copy. The data monitored and required for verification and issuance will be kept for two years after the end of the crediting period or the last issuance of CERs for this proposed project activity, whichever occurs later. B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies) >> Date of completion of the baseline study and monitoring methodology: 26/03/2008 Responsible persons of completion of the baseline study and monitoring methodology: 1) Ms. Fu Shujie, CDM Project Development Center of CPCEC, E-mail: fushujie@cpcec.com , Tel: +86 10 85285120-809. 2) Mr. Jia Xu, CDM Project Development Center of CPCEC, E-mail: jiaxu@cpcec.com , Tel: +86 10 85285120-826. Persons and entities as listed above are not project participants involved. SECTION C. Duration of the project activity / crediting period C.1 Duration of the project activity: C.1.1. Starting date of the project activity: >> 26/11/2007
  • 28. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 28 C.1.2. Expected operational lifetime of the project activity: >> 20 years 0 month C.2 Choice of the crediting period and related information: C.2.1. Renewable crediting period C.2.1.1. Starting date of the first crediting period: >> 01/01/2009 or date of registration, whichever is later. C.2.1.2. Length of the first crediting period: >> 7 years 0 month C.2.2. Fixed crediting period: C.2.2.1. Starting date: >> Not applicable C.2.2.2. Length: >> Not applicable SECTION D. Environmental impacts >> D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts: >> The proposed project EIA was carried out by Jiangxi Academy of Environmental Sciences and approved by Jiangxi Environmental Protection Administration. The summary of this evaluation is as follows: 1. Water pollution impacts The small amount of waste water during the construction period is mainly sewage. Water-processing facility such as drain for sorting and disposing sewage will be built and waste water will be released after being treated up to standard. 2. Air pollution impacts:
  • 29. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 29 The dust and exhaust gas will be mainly generated in construction period. To reduce the pollution impact on air, the following measures are applied: (1) Control quantities of vehicles; limit speed of vehicles; avoid overload of vehicles (2) Set up fences in construction area, apply watering regularly (3) Soil left after backfill in construction period should be removed in time to recover vegetation 3. Solid waste pollution impacts Solid waste in construction period includes mainly construction trash and living trash. Living trash should be collected into dustbin and construction trash should be buried in appointed location. 4. Noise pollution impacts: A. Construction period It includes mainly machine noise, operation noise and vehicle noise. To reduce noise impacts, the following measure are applied: (1) Arrange operation timetable properly according to related regulation. Operation with high level noise at night is prohibited. (2) Set up cover around high level noise facility (3) Control quantities and density of vehicles Besides, the construction site is far away from residential area and construction work will be mainly carried out during daytime. Therefore, the impact of noise is minor. B. Operation period It will meet the noise standard for the construction site during the operation period. In addition, there are not any environmental protected sensitive objects surrounding this project. For this reason, the proposed project will not have bad impact on this point. 5. Ecological environmental impacts: There’s no precious plant in local area and recover and afforestation will be applied after construction period. There are no big size animals in this area and this proposed project is not located on the birds’ migratory routes, so it seldom happens that the blades will knock on the birds. Even the construction work of this project will occupies relatively limited area of their activity place, animals can easily find other places on other part of grassland. Meanwhile, after finishing of construction, these animals can move back. In conclusion, through taking the above measures, the negative impacts on environments will be minimized and meet requirements of laws and regulations during the construction and implementation. Furthermore, as renewable power project, the proposed project can reduce the consumption of fossil fuel sources and GHG emission. In addition, the operation of the proposed project will improve the development of the local tourism.
  • 30. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 30 D.2. If environmental impacts are considered significant by the project participants or the host Party, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the host Party: >> According to EIA, no significant environmental impacts are discovered by the project participants or the host party. Jiangxi Environmental Protection Administration has approved the EIA. SECTION E. Stakeholders’ comments >> E.1. Brief description how comments by local stakeholders have been invited and compiled: >> The project owner has carried out investigation on the public’s comments by way of questionnaires and the investigation lasted for one month. 52 questionnaires were distributed and 45 valid questionnaires have been returned. The questions in the questionnaires include: What do you think about the proposed project? What do you think the positive influence on the conditions of the local ecosystem? What do you think the negative influence on the local economy? What do you think the positive influence on the local economy? Do you support the construction of the proposed project? Do you support the applying of CDM for the proposed project? The investigated stakeholders include residents, technicians and related governmental officials. The outcome of the consultation is described in section E.2. E.2. Summary of the comments received: >> Comments from the questionnaires Of all investigated persons, 100% supported the construction of the proposed project; 84.4% think positive influences will be brought by the proposed project and 15.6% think the proposed project has no influence on their daily life. On the question of potential negative influence on daily life, 33.3% chose no influence and 44.4% chose noise influence which is the most percentage. E.3. Report on how due account was taken of any comments received: >> According to the above information, local residence and government are very supportive to the proposed project; there are no negative comments on it. As for the noise impacts which are mostly worried by local residents, the following measures will be taken: (1) Arrange operation timetable properly according to related regulation. Operation with high level noise at night is prohibited.
  • 31. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 31 (2) Set up cover around high level noise facility (3) Control quantities and density of vehicles Based on the related comments, the project entity will take environmental protection measures in both construction period and operation period to make sure that the negative impact on environment will be reduced to the lowest level.
  • 32. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 32 Annex 1 CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY Organization: Jiangxi Zhongdiantou New Energies Co. Ltd. Street/P.O.Box: No. 699 Lvyin Road Building: / City: Nanchang State/Region: Jiangxi Province Postfix/ZIP: 330038 Country: China Telephone: +86-0791-3961875 FAX: / E-Mail: yihongjing@cpijx.cn URL: / Represented by: Hongjing Yi Title: / Salutation: / Last Name: Yi Middle Name: / First Name: Hongjing Department: / Mobile: / Direct FAX: / Direct tel: +86-0791-3961875 Personal E-Mail: yihongjing@cpijx.cn Organization: KfW
  • 33. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 33 Street/P.O.Box: Palmengartenstr. 5-9. Building: / City: Frankfurt State/Region: / Postfix/ZIP: 60325 Country: Germany Telephone: +49 69 7431 4032 FAX: +49 69 7431 4775 E-Mail: / URL: www.kfw.de/carbonfund Represented by: Florian Sekinger Title: Senior Project Manager Salutation: Mr. Last Name: Sekinger Middle Name: / First Name: Florian Department: KfW Carbon Fund Mobile: / Direct FAX: +49 69 7431 4775 Direct tel: +49 69 7431 4032 Personal E-Mail: florian.sekinger@kfw.de
  • 34. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 34 Annex 2 INFORMATION REGARDING PUBLIC FUNDING No public funding from Annex I parties is involved in this project activity.
  • 35. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 35 Annex 3 BASELINE INFORMATION Step 1 – Identify the relevant electric power system According to ‘the Baseline Emission Factor of Chinese Power Grids in 2008’ published by Chinese DNA, the relevant electric power system of the project is Central China Grid, and the data of calculation are from China Electric Power Yearbook and China Energy Statistical Yearbook. Step 2 –Select an operating margin (OM) method According to the electricity generation in 2002-2006 of the Central China Grid, the low-cost/must run resources constitute less than 50% of total amount grid generating output. Method (a) simple OM is used to calculate the simple OM emission factor utilize the data of 2004-2006 in ex-ante option for the proposed project. Step 3 – Calculating an operating margin (OM) The emission factor and average low caloric value used to calculate operating margin and build margin are listed below: Table 1 Data of Emission Factor and Average Low Caloric Value for different types of fuel Emission Factor Fuel Average Low Caloric Value (MJ/t, km3) (tc/TJ) H J Raw Coal 25.8 20908 Cleaned Coal 25.8 26344 Other Washed Coal 25.8 8363 Brown Coal Briquettes 26.6 20908 Coke 29.2 28435 Coke Oven Gas 12.1 16726 Other Gas 12.1 5227 Crude Oil 20 41816 Gasoline 18.9 43070 Coal Oil 19.6 43070 Diesel Oil 20.2 42652
  • 36. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 36 Fuel Oil 21.1 41816 PLG 17.2 50179 Refinery Gas 15.7 46055 Natural Gas 15.3 38931 Other Petroleum Products 20 38369 Other Coking Products 25.8 28435 Other Energy 0 0 Source: 1 “Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 2 Energy”, Chapter One 2 China Energy Statistical Yearbook 2007 Table 2 Annual Electricity Generation of Central China Grid 2002-2006 Electricity Generation (MWh) Split of Year Hydro Thermal Total Thermal 2002 112440000 200347000 312787000 64.05% 2003 126448000 240839000 367287000 65.57% 2004 169094000 270846000 439940000 61.56% 2005 187734000 303976000 491720000 61.82% 2006 192296000 355453000 547859000 64.88% Source: China Electric Power Yearbook 2003-2007 Procedures of calculating simple OM for Central China Grid from 2004 to 2006 is as below: Table 3 Calculation of the Operating Margin Emission Factor, 2004 Emission Average Low Fuel Unit Jiangxi Henan Hubei Hunan Chongqing Sichuan Total Factor Caloric Value CO2 Emission(tCO2e) (tc/TJ) (MJ/t,km3) K=G*H*I*44/12/10000 G=A+B+C (质量单位) A B C D E F H I +D+E+F K=G*H*I*44/12/1000 (体积单位)
  • 37. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 37 Raw Coal 104 t 1863.8 6948.5 2510.5 2197.9 875.5 2747.9 17144.1 25.8 20908 339092605 4 Cleaned Coal 10 t 0 2.34 0 0 0 0 2.34 25.8 26344 58316 Other Washed 104 t 48.93 104.22 0 0 89.72 0 242.87 25.8 8363 1921441 Coal Coke 104 t 0 109.61 0 0 0 0 109.61 29.2 28435 3337011 8 3 Coke Oven Gas 10 m 0 0 1.68 0 0.34 0 2.02 12.1 16726 149900 8 3 Other Gas 10 m 0 0 0 0 2.61 0 2.61 12.1 5227 60527 4 Crude Oil 10 t 0 0.86 0.22 0 0 0 1.08 20 41816 33118 4 Gasoline 10 t 0 0.06 0 0 0.01 0 0.07 18.9 43070 2089 4 Diesel Oil 10 t 0.02 3.86 1.7 1.72 1.14 0 8.44 20.2 42652 266627 4 Fuel Oil 10 t 1.09 0.19 9.55 1.38 0.48 1.68 14.37 21.1 41816 464893 4 PLG 10 t 0 0 0 0 0 0 0 17.2 50179 0 4 Refinery Gas 10 t 3.52 2.27 0 0 0 0 5.79 15.7 46055 153506 8 3 Natural Gas 10 m 0 0 0 0 0 2.27 2.27 15.3 38931 495775 Other Petroleum 104 t 0 0 0 0 0 0 0 20 38369 0 Products Other Coking 104 t 0 0 0 0 0 0 0 25.8 28435 0 Products Other Energy 104tce 0 16.92 0 15.2 20.95 0 53.07 0 0 0 Total 346035810 Sources: China Energy Statistical Yearbook 2005 Table 4 Calculation of thermal power supply to Central China Grid, 2004 Electricity Auxiliary Supplied Province generation power ratio electricity (MWh) (%) (MWh) Jiangxi 30127000 7.04 28006059 Henan 109352000 8.19 100396071 Hubei 43034000 6.58 40202363
  • 38. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 38 Hunan 37186000 7.47 34408206 Chongqin 16520000 11.06 14692888 g Sichuan 34627000 9.41 31368599 Total 249074186 Source:China Electric Power Yearbook 2005 EFGrid,OM,simple,2004=1.38929 Table 5 Calculation of the Operating Margin Emission Factor, 2005 Emission Average Low Fuel Unit Jiangxi Henan Hubei Hunan Chongqing Sichuan Total Factor Caloric Value CO2 Emission(tCO2e) (tc/TJ) (MJ/t,km3) K=G*H*I*44/12/10000 G=A+B+C (质量单位) A B C D E F H I +D+E+F K=G*H*I*44/12/1000 (体积单位) Raw Coal 104 t 1869.29 7638.87 2732.15 1712.27 875.4 2999.77 17827.75 25.8 20908 352614497 4 Cleaned Coal 10 t 0.02 0 0 0 0 0 0.02 25.8 26344 498 Other Washed 104 t Coal 0 138.12 0 0 89.99 0 228.11 25.8 8363 1804669 4 Coke 10 t 0 25.95 0 105 0 0 130.95 29.2 28435 3986695 8 3 Coke Oven Gas 10 m 0 0 1.15 0 0.36 0 1.51 12.1 16726 112054 Other Gas 108m3 0 10.2 0 0 3.12 0 13.32 12.1 5227 308897 Crude Oil 104 t 0 0.82 0.36 0 0 0 1.18 20 41816 36185 Gasoline 104 t 0 0.02 0 0 0.02 0 0.04 18.9 43070 1194 Diesel Oil 104 t 1.3 3.03 2.39 1.39 1.38 0 9.49 20.2 42652 299798 Fuel Oil 104 t 0.64 0.29 3.15 1.68 0.89 2.22 8.87 21.1 41816 286959 PLG 104 t 0 0 0 0 0 0 0 17.2 50179 0
  • 39. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 39 Refinery Gas 104 t 0.71 3.41 1.76 0.78 0 0 6.66 15.7 46055 176572 Natural Gas 108m3 0 0 0 0 0 3 3 15.3 38931 655209 Other Petroleum 4 10 t Products 0 0 0 0 00 0 0 20 38369 0 Other Coking 4 10 t Products 0 0 0 1.5 0 0 1.5 25.8 28435 40349 104tc Other Energy e 0 2.88 0 1.74 32.8 0 37.42 0 0 0 Total 360323575 Sources: China Energy Statistical Yearbook 2006 Table 6 Calculation of thermal power supply to Central China Grid, 2005 Electricity Auxiliary Supplied generation power ratio electricity Province (MWh) (%) (MWh) Jiangxi 30000000 6.48 28056000 Henan 131590000 7.32 121957612 Hubei 47700000 2.51 46502730 Hunan 39900000 5 37905000 Chongqin 17584000 8.05 16168488 g Sichuan 37202000 4.27 35613475 Total 286203305 Source:China Electric Power Yearbook 2006 EFGrid,OM,simple,2005=1.25898 Table 7 Calculation of the Operating Margin Emission Factor in Central China Grid, 2006
  • 40. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 40 Emission Average Low Fuel Unit Jiangxi Henan Hubei Hunan Chongqing Sichuan Total Factor Caloric Value CO2 Emission(tCO2e) (tc/TJ) (MJ/t,km3) K=G*H*I*44/12/10000 G=A+B+C (质量单位) A B C D E F H I +D+E+F K=G*H*I*44/12/1000 (体积单位) Raw Coal 104 t 1926.02 8098.01 3179.79 2454.48 1184.3 3285.22 20127.82 25.8 20908 398107508 4 Cleaned Coal 10 t 0 0 0 0 5.79 0 5.79 25.8 26344 144295 Other Washed 4 10 t Coal 4.51 104.12 0 8.59 79.21 0 196.43 25.8 8363 1554036 Brown Coal 4 10 t Briquettes 0 0 0 0 0 0.01 0.01 26.6 20908 204 4 Coke 10 t 0 17.23 0 0.32 0 0 17.55 29.2 28435 534299 8 3 Coke Oven Gas 10 m 0 0.52 1.07 4.24 0.38 0.01 6.22 12.1 16726 461572 8 3 Other Gas 10 m 12.69 3.95 0 1.7 4.36 0.01 22.71 12.1 5227 526655 4 Crude Oil 10 t 0 0.49 0 0 0 0 0.49 20 41816 15026 4 Gasoline 10 t 0 0.01 0 0 0 0 0.01 18.9 43070 298 4 Diesel Oil 10 t 0.91 2.23 1.41 1.78 0.96 0 7.29 20.2 42652 230298 4 Fuel Oil 10 t 0.51 1.26 1.31 0.8 0.57 3.49 7.94 21.1 41816 256872 4 PLG 10 t 0 0 0 0 0 0 0 17.2 50179 0 Refinery Gas 104 t 0.86 8.1 1 0.97 0 0 10.93 15.7 46055 289780 Natural Gas 108m3 0 0 0.28 0 0.16 18.63 19.07 15.3 38931 4164943 Other Petroleum 4 10 t Products 0 0 0 0 0 0 0 20 38369 0 Other Coking 4 10 t Products 0 0 0 0 0 0.01 0.01 25.8 28435 269 104tc Other Energy e 17.45 37.36 31.55 18.29 29.35 0 134 0 0 0 Total 406286055
  • 41. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board page 41 Sources: China Energy Statistical Yearbook 2007 Table 8 Calculation of thermal power supply to Central China Grid, 2006 Auxiliary Supplied Electricity generation power ratio electricity Province (MWh) (%) (MWh) Jiangxi 34449000 6.17 32323497 Henan 151235000 7.06 140557809 Hubei 54841000 2.75 53332873 Hunan 46408000 4.95 44110804 Chongqing 23487000 8.45 21502349 Sichuan 44193000 4.51 42199896 Net Electricity imported from 3028950 Northwest China Grid Total 337056176 Source:China Electric Power Yearbook 2007 Table 9 Calculation of the Operating Margin Emission Factor in Northwest China Grid, 2006 Emission Average Low Fuel Unit Shanxi Gansu Qinghai Ningxia Xinjiang Total Factor Caloric Value CO2 Emission(tCO2e) (tc/TJ) (MJ/t,km3) I=F*G*H*44/12/10000 F=A+B+C (质量单位) A B C D E G H +D+E I=F*G*H*44/12/1000 (体积单位)