The Potential of
Different Capture
  Technologies
               Olav Bolland
                       Professor
Norwegian U...
Current status – post-combustion
                                                              N₂/O₂
                     ...
Post-combustion
          Low-medium CO2
           partial pressure                               High CO2
              ...
Absorption process
                                       Treated
                                                        ...
Absorption
CO2
         Energy
partial
pressure consumption
         0.6 GJ/t CO2
                              Physical s...
Absorption - challenges
Energy consumption (heat and power)
 8-12 %-points reduction in efficiency
    Coal: 43-45%       ...
Current status – pre-combustion
                                                              N₂/O₂
                      ...
IGCC without CO2 capture
Integrated Gasification Combined Cycle
 Quench
 water                                      Partic...
IGCC with CO2 capture
Integrated Gasification Combined Cycle
 Quench
 water                                      Particula...
Pre-combustion
Coal: H2-rich fuel to GT – how to dilute?
Cost reduction and efficiency improvement
requires new technology...
Pre-combustion – SEWGS
      Sorption Enhanced Water Gas Shift
                                             H2            ...
Current status – oxy-combustion
                                                              N₂/O₂
                      ...
Oxy-combustion - challenges
Air separation
 – Cryogenic distillation dominating for the
   foreseeable future
 – Ceramic m...
Oxy-combustion coal 30 MWthermal
Schwarze Pumpe



                                                Commissioning Sept 9, 2...
High
   Technology status                                                             Medium
   CO2 capture in power plant...
High
   Technology status                                                             Medium
   CO2 capture in power plant...
Thank you!

  Gas Technology Centre NTNU – SINTEF
                                        17
              Olav Bolland
Upcoming SlideShare
Loading in...5
×

The potential of different capture technologies

1,116

Published on

Presentasjon av professor Olav Bolland på ZEROs labutslippskonferanse 2008

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,116
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "The potential of different capture technologies"

  1. 1. The Potential of Different Capture Technologies Olav Bolland Professor Norwegian University of Science and Technology – NTNU Gas Technology Centre NTNU – SINTEF Trondheim, Norway Lavutslippskonferansen 2008 Oslo, October 13, 2008 Gas Technology Centre NTNU – SINTEF 1 Olav Bolland
  2. 2. Current status – post-combustion N₂/O₂ CO₂ CO₂ Power separation Post-combustion plant CO₂ Coal, Oil, Natural Gas, Biomass CO/H₂ Gasification H₂ H₂ Power N₂/O₂ CO₂ CO₂ compression Shift CO₂ separation plant & conditioning Reforming CO/H₂ CO₂ Power plant O₂ N₂ separation Air Air seperation Air/O₂ Process +CO₂ Sep. Product: Natural gas, ammonia, steel Raw materials Gas Technology Centre NTNU – SINTEF 2 Olav Bolland
  3. 3. Post-combustion Low-medium CO2 partial pressure High CO2 partial pressure Medium-high CO2 partial pressure CO2 partial pressure = concentration*flue gas pressure Gas Technology Centre NTNU – SINTEF 3 Olav Bolland
  4. 4. Absorption process Treated C.W. gas CO2 C.W. C.W. Stripper/desorber Absorber Fan Gas cooler C.W. steam Feed gas Reboiler Rich solvent Lean solvent Gas Technology Centre NTNU – SINTEF 4 Olav Bolland
  5. 5. Absorption CO2 Energy partial pressure consumption 0.6 GJ/t CO2 Physical solvents MDEA Selexol, Rectisol, Purisol,… Medium 1.5 GJ/t CO2 -high Benfield/K2CO3 2.4 GJ/t CO2 Ammonia 3.3 GJ/t CO2 Phase-change MEA+, KS-1 Low- Amine mix medium 4.2 GJ/t CO2 State-of-the-art MEA Power plant flue gas Gas Technology Centre NTNU – SINTEF 5 Olav Bolland
  6. 6. Absorption - challenges Energy consumption (heat and power) 8-12 %-points reduction in efficiency Coal: 43-45% 30-35% – 28-38% additional fuel consumption per kWhel Natural gas: 56-60 46-52% – 20-27% additional consumption fuel per kWhel Corrosion Amine degradation, oxidation (SOx, COS, C2S, NO2, O2, fly ash) Amine/ammonia emission to air Gas Technology Centre NTNU – SINTEF 6 Olav Bolland
  7. 7. Current status – pre-combustion N₂/O₂ CO₂ CO₂ Power separation plant CO₂ Coal, Oil, Natural Gas, Biomass CO/H₂ Gasification H₂ H₂ Power N₂/O₂ CO₂ CO₂ compression Shift CO₂ separation plant & conditioning Pre-combustion Reforming CO/H₂ CO₂ Power plant O₂ N₂ separation Air Air seperation Air/O₂ Process +CO₂ Sep. Product: Natural gas, ammonia, steel Raw materials Gas Technology Centre NTNU – SINTEF 7 Olav Bolland
  8. 8. IGCC without CO2 capture Integrated Gasification Combined Cycle Quench water Particulate Sulfur Quench/ removal removal heat Recovered heat recovery H2 S Raw syngas Coal feed Gasifier O2 Hydrogen-rich gas N2 Air Recovered heat Separation Unit HRSG Compressed air GT ST Air Generator Gas Technology Centre NTNU – SINTEF 8 Olav Bolland
  9. 9. IGCC with CO2 capture Integrated Gasification Combined Cycle Quench water Particulate Shift Sulfur CO2 capture Quench/ removal reaction removal heat Recovered heat recovery CO2 H2 S Raw syngas Steam Coal feed Gasifier CO2 storage O2 Hydrogen rich gas N2 Air Recovered heat Separation Unit HRSG Compressed air GT ST Air Generator Gas Technology Centre NTNU – SINTEF 9 Olav Bolland
  10. 10. Pre-combustion Coal: H2-rich fuel to GT – how to dilute? Cost reduction and efficiency improvement requires new technology – Sorption enhancement Reformer reactor Water-gas shift reactor – Membranes for transport H2, O2, CO2 Reforming reactor Oxygen separation from air in GT Water-gas shift reactor Gas Technology Centre NTNU – SINTEF 10 Olav Bolland
  11. 11. Pre-combustion – SEWGS Sorption Enhanced Water Gas Shift H2 H2 H2 CO CO2 Water Fuel H2O Gasifier CO2 gas-shift CO2 Reformer capture (WGS) H2 CO WGS + H2O Fuel Gasifier gas separation H2 Reformer CO + H 2O H 2 + CO2 CO2 + sorbent → sorbent × CO2 Sorbent sorbent × CO2 & Calcium carbonate (CaCO3) Q Regeneration Dolomite (CaCO3×MgCO3) CO2 Hydrotalcite (Mg6Al2(OH)16[CO3]×4H2O/K2CO3 of sorbent Lithium orthosilicate (Li4SiO4) Gas Technology Centre NTNU – SINTEF 11 Olav Bolland
  12. 12. Current status – oxy-combustion N₂/O₂ CO₂ CO₂ Power separation plant CO₂ Coal, Oil, Natural Gas, Biomass CO/H₂ Gasification H₂ H₂ Power N₂/O₂ CO₂ CO₂ compression Shift CO₂ separation plant & conditioning Reforming CO/H₂ CO₂ Power plant Oxy-combustion O₂ N₂ separation Air Air seperation Air/O₂ Process +CO₂ Sep. Product: Natural gas, ammonia, steel Raw materials Gas Technology Centre NTNU – SINTEF 12 Olav Bolland
  13. 13. Oxy-combustion - challenges Air separation – Cryogenic distillation dominating for the foreseeable future – Ceramic mixed ion/electron conducting membranes – progress? Natural gas: oxy-combustion gas turbines less likely Coal: seems promising Purification of CO2 before transport/storage – Depends on CO2 quality requirements Gas Technology Centre NTNU – SINTEF 13 Olav Bolland
  14. 14. Oxy-combustion coal 30 MWthermal Schwarze Pumpe Commissioning Sept 9, 2008 Vattenfall Germany Gas Technology Centre NTNU – SINTEF 14 Olav Bolland
  15. 15. High Technology status Medium CO2 capture in power plants -high Medium -low Low Commercial readiness Natural gas Improvement potential Post-combustion Pre-combustion Oxy-combustion Gas Technology Centre NTNU – SINTEF 15 Olav Bolland
  16. 16. High Technology status Medium CO2 capture in power plants -high Medium -low Low Commercial readiness Coal Improvement potential Commercial readiness Natural gas Improvement potential Post-combustion Pre-combustion Oxy-combustion Gas Technology Centre NTNU – SINTEF 16 Olav Bolland
  17. 17. Thank you! Gas Technology Centre NTNU – SINTEF 17 Olav Bolland

×