SlideShare a Scribd company logo
1 of 10
Download to read offline
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 1 of 10
Motion of an Embedded Footing
Fz
Fy
2B
D
Compressor Properties and Characteristics
Wcomp 100000 lb g 32.17
ft
sec
2

mcomp
Wcomp
g

Radius of compressor
(assumed to be
cylindrical in shape)
rcomp 8 ft
f
450
60
1
sec
 f 7.5s
1

Ω 2 π f Ω 47.124 s
1

Fz 4000 lb Fy 3000 lb
Foundation Geometry and Properties
B 5 ft L 10 ft
L
B
2 D 2.5 ft
D
B
0.5
Assume partial contact of sidewall: d 2.0 ft
γconcrete 150
lb
ft
3

Wfound 4 B L D γconcrete mfound
Wfound
g
 m mcomp mfound
Soil Properties and Characteristics
Vs 600
ft
sec
 ν 0.48 γsoil 110
lb
ft
3
 G
γsoil
g
Vs
2

Determine parameters needed to calculate the foundation stiffness
Ab 4 B L Area of the base in contact with the soil
χ
Ab
4 L
2

 Shape factor
VLa
3.4
π 1 ν( )
Vs Lysmer's analog velocity
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 2 of 10
Area moment of inertia of the
foundation-soil contact area about
the x axis
Ibx
2 L( ) 2 B( )
3

12

Area moment of inertia of the
foundation-soil contact area about
the y axis
Iby
2 B( ) 2 L( )
3

12

Aw d 4 B 4 L( ) Area of the sidewall contact
Aws 2 d 2 B Area of sidewall in shear for horizontal motion
Awce 2 d 2 L Area of sidewall in compression for horizontal motion
a0
Ω B
Vs
 a0 0.393 Dimensionless frequency
Height of centroid of
foundation-compressor
system above the
ground surface
zc
mfound
D
2
 mcomp D rcomp 
mfound mcomp
 zc 78.429 in
Mass moment of inertia of
the foundation-compressor
system about the x axis
Iox
1
12
mfound 2 B( )
2
D
2
  mfound zc
D
2






2

1
2
mcomp rcomp
2
 mcomp D rcomp zc 2


Resolve the horizontal force into an equivalent horizontal force acting at the centroid of the
foundation-compressor system
Mx Fy D rcomp zc  Mx 1.427 10
5
 in lb
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 3 of 10
Stiffness and damping for vertical motion
Stiffness
Kzsur
2 G L
1 ν






0.73 1.54 χ
0.75
  Kzsur 6.493 10
6
 in
1
lb
Kzemb Kzsur 1
1
21
D
B
 1 1.3 χ( )





 1 0.2
Aw
Ab






2
3











 Kzemb 7.708 10
6
 in
1
lb
Kzemb
Kzsur
1.187
The dynamic stiffness and dashpot coefficients are frequency and foundation geometry (L/B)
dependent. Thus, they must be selected for each frequency and foundation geometry of interest.
kzsur 0.95 from Table 15.1, Gazetas (1991)
kzemb kzsur 1 0.09
D
B






3
4
 a0
2









 kzemb 0.942
kztre kzsur 1 0.09
D
B






3
4
 a0
2









 kztre 0.958
Interpolate to obtain the dynamic stiffness coefficient for partial embedment
kzpar kztre
d
D
kzemb kztre  kzpar 0.945
Damping
cz 1.0 from Table 15.1, Gazetas (1991)
Czsur
γsoil
g
VLa Ab cz Czsur 7.117 10
4
 in
1
s lb
Czemb Czsur
γsoil
g
Vs Aw Czemb 9.168 10
4
 in
1
s lb
Czemb
Czsur
1.288
κz Kzemb kzpar i Ω Czemb
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 4 of 10
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 5 of 10
Stiffness and damping for horizontal motion
Stiffness
Kysur
2 G L
2 ν






2.0 2.50 χ
0.85
  Kysur 4.572 10
6
 in
1
lb
Kyemb Kysur 1 0.15
D
B







 1 0.52
d
B
Aw
L
2







0.4









 Kyemb 7.017 10
6
 in
1
lb
Kyemb
Kysur
1.535
The dynamic stiffness and dashpot coefficients are frequency and foundation geometry (L/B)
dependent. Thus, they must be selected for each frequency and foundation geometry of interest.
kyemb 1.0 1.0 from Table 15.2, Gazetas (1991)
Damping
cysur 1.0 from Table 15.1, Gazetas (1991)
Cysur
γsoil
g
Vs Ab cysur Cysur 3.419 10
4
 in
1
s lb
Cyemb Cysur
γsoil
g
Vs Aws
γsoil
g
Vs Awce Cyemb 5.471 10
4
 in
1
s lb
Cyemb
Cysur
1.6
κy Kyemb kyemb i Ω Cyemb
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 6 of 10
Stiffness and damping for rocking
Stiffness
Krxsur
G
1 ν
Ibx
0.75

L
B






0.25
 2.4 0.5
B
L






 Krxsur 2.335 10
10
 in lb
Krxemb Krxsur 1 1.26
d
B
 1
d
B
d
D






0.2

B
L














 Krxemb 3.86 10
10
 in lb
Krxemb
Krxsur
1.653
The dynamic stiffness and dashpot coefficients are frequency and foundation geometry (L/B)
dependent. Thus, they must be selected for each frequency and foundation geometry of interest.
krxsur 1 0.20 a0
krxemb krxsur
Damping
crxsur 0.15 c1 0.25 0.65 a0
d
D






a0
2


D
B






1
4


Crxsur
γsoil
g
VLa Ibx crxsur
Crxemb
4
3
γsoil
g
 VLa B
3
 L crxsur
4
3
γsoil
g
 VLa d
3
 L c1
4
3
γsoil
g
 Vs B d B
2
d
2
  c1 4
γsoil
g
 Vs B
2
 d L c1
Crxemb 6.137 10
7
 in s lb Note: this is for a rectangular footing only
Crxemb
Crxsur
4.791
κrx Krxemb krxemb i Ω Crxemb
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 7 of 10
Coupled stiffness and damping between rocking and horizontal motion
Stiffness
Kyrxemb
1
3
d Kyemb Kyrxemb 5.613 10
7
 lb
kyrxemb 1.0
Damping
Cyrxemb
1
3
d Cyemb Cyrxemb 4.377 10
5
 s lb
κyrx Kyrxemb kyrxemb i Ω Cyrxemb
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 8 of 10
Stiffness and damping for torsion
Stiffness
Ktsur G Ibx Iby 0.75
 4 11 1
B
L






10







 Ktsur 5.167 10
10
 in lb
Ktemb Ktsur 1 1.4 1
B
L







d
B






0.9








Ktemb 9.924 10
10
 in lb
Ktemb
Ktsur
1.921
ktsur 1 0.14 a0
ktemb ktsur
Damping
ctsur 0.25 c2
d
D






0.5 a0
2
a0
2
0.5
L
B






1.5


Ctsur
γsoil
g
Vs Ibx Iby  ctsur
Ctemb
4
3
γsoil
g
 Vs B L B
2
L
2
  ctsur
4
3
γsoil
g
 VLa d L
3
B
3
  c2 4
γsoil
g
 Vs d B L B L( ) c2
Ctemb 2.083 10
8
 in s lb Note: this is for a rectangular footing only
Ctemb
Ctsur
4.061
κt Ktemb ktemb i Ω Ctemb
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 9 of 10
Form the complex stiffness matrix
Κ
κz Ω
2
m
0
0
0
κy Ω
2
m
κyrx κy zc
B
0
κyrx κy zc
B
κrx Ω
2
Iox 2 κyrx zc κy zc
2

B
2



















Form the force-moment vector Note that some of the terms in the stiffness
matrix and force-moment vector are divided
by a "characteristic length" to make the matrix
and vector dimensionally correct.
F
Fz
Fy
Mx
B













Solve the system of equations
u Κ
1
F
u
4.323 10
4
 2.974i 10
4

1.713 10
3
 4.649i 10
4

9.726 10
4
 1.603i 10
4













in
The magnitude and phase of the individual motions are:
uz u
0
 uz 5.248 10
4
 in
Vertical motion
ϕz arg u
0  ϕz 0.603
δy u
1
 δy 1.775 10
3
 in
Horizontal motion
ϕy arg u
1  ϕy 0.265
Dr. Glenn Rix Web Site
MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 10 of 10
θrx
u
2
B
 θrx 1.643 10
5

Rocking motion
ϕrx arg
u
2
B






 ϕrx 0.163
The natural frequency and fraction of critical damping for each motion are:
fz
1
2 π
Kzemb kzemb
m
 fz 20.144 s
1

Vertical motion
βz
Czemb
2 Kzemb kzemb m
 βz 0.799
fy
1
2 π
Kyemb kyemb
m
 fy 19.801 s
1

Horizontal motion
βy
Cyemb
2 Kyemb kyemb m
 βy 0.485
frx
1
2 π
Krxemb krxemb
Iox
 frx 17.909 s
1

Rocking motion
βrx
Crxemb
2 Krxemb krxemb Iox
 βrx 0.097
Dr. Glenn Rix Web Site

More Related Content

What's hot

OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo robertiOPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo robertiVincenzo Roberti
 
10-design of singly reinforced beams
10-design of singly reinforced beams10-design of singly reinforced beams
10-design of singly reinforced beamsyadipermadi
 
Gravity based foundations for the Rødsand 2 offshore wind farm, Denmark
Gravity based foundations for the Rødsand 2 offshore wind farm, DenmarkGravity based foundations for the Rødsand 2 offshore wind farm, Denmark
Gravity based foundations for the Rødsand 2 offshore wind farm, DenmarkJakob Hausgaard Lyngs
 
L16 : Slope Deflection Method for Analysis of Indeterminate Beams
L16 : Slope Deflection Method for Analysis of Indeterminate Beams L16 : Slope Deflection Method for Analysis of Indeterminate Beams
L16 : Slope Deflection Method for Analysis of Indeterminate Beams Dr. OmPrakash
 
-electrical machine design
-electrical machine design-electrical machine design
-electrical machine designPalak Ariwala
 
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -Prakash Rawal
 
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Make Mannan
 
137518876 bearing-capacity-from-spt
137518876 bearing-capacity-from-spt 137518876 bearing-capacity-from-spt
137518876 bearing-capacity-from-spt James Chan
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Muhammad Irfan
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missSHAMJITH KM
 
L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method Dr. OmPrakash
 

What's hot (19)

OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo robertiOPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
 
10-design of singly reinforced beams
10-design of singly reinforced beams10-design of singly reinforced beams
10-design of singly reinforced beams
 
Gravity based foundations for the Rødsand 2 offshore wind farm, Denmark
Gravity based foundations for the Rødsand 2 offshore wind farm, DenmarkGravity based foundations for the Rødsand 2 offshore wind farm, Denmark
Gravity based foundations for the Rødsand 2 offshore wind farm, Denmark
 
Lateral Earth pressure
Lateral Earth pressureLateral Earth pressure
Lateral Earth pressure
 
Drift control of RCC Building
Drift control of RCC BuildingDrift control of RCC Building
Drift control of RCC Building
 
L16 : Slope Deflection Method for Analysis of Indeterminate Beams
L16 : Slope Deflection Method for Analysis of Indeterminate Beams L16 : Slope Deflection Method for Analysis of Indeterminate Beams
L16 : Slope Deflection Method for Analysis of Indeterminate Beams
 
-electrical machine design
-electrical machine design-electrical machine design
-electrical machine design
 
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
Pile design summary of ø450, ø600, ø750 and ø900 12, 15 and 20m long -
 
influence line
 influence line influence line
influence line
 
statics
staticsstatics
statics
 
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
 
X10709 (me8693)
X10709 (me8693)X10709 (me8693)
X10709 (me8693)
 
8th Semester (December; January-2014 and 2015) Civil Engineering Question Papers
8th Semester (December; January-2014 and 2015) Civil Engineering Question Papers8th Semester (December; January-2014 and 2015) Civil Engineering Question Papers
8th Semester (December; January-2014 and 2015) Civil Engineering Question Papers
 
Lecture notes in influence lines
Lecture notes in influence linesLecture notes in influence lines
Lecture notes in influence lines
 
137518876 bearing-capacity-from-spt
137518876 bearing-capacity-from-spt 137518876 bearing-capacity-from-spt
137518876 bearing-capacity-from-spt
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
 
L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method L15: Analysis of Indeterminate Beams by Slope Deflection Method
L15: Analysis of Indeterminate Beams by Slope Deflection Method
 
8th Semester (June; July-2014) Civil Engineering Question Paper
8th Semester (June; July-2014) Civil Engineering Question Paper8th Semester (June; July-2014) Civil Engineering Question Paper
8th Semester (June; July-2014) Civil Engineering Question Paper
 

Similar to Math cad embedded footing - combined (jcb-edited)

10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paperEddy Ching
 
PLASTIC BEAM in design of stell beam design
PLASTIC BEAM in design of stell beam designPLASTIC BEAM in design of stell beam design
PLASTIC BEAM in design of stell beam designvijaykumar925207
 
Kachlakev_RC Control Beam MSC-Marc_wAppendix
Kachlakev_RC Control Beam MSC-Marc_wAppendixKachlakev_RC Control Beam MSC-Marc_wAppendix
Kachlakev_RC Control Beam MSC-Marc_wAppendixDavid Dearth
 
Free ebooks downloads
Free ebooks downloadsFree ebooks downloads
Free ebooks downloadsEdhole.com
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdfMaulikPandya25
 
Math cad soil bearing capacity, subgrade modulus, and soil stiffness
Math cad   soil bearing capacity, subgrade modulus, and soil stiffnessMath cad   soil bearing capacity, subgrade modulus, and soil stiffness
Math cad soil bearing capacity, subgrade modulus, and soil stiffnessJulio Banks
 
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Rajesh Prasad
 
diff_bwt_is_800_101.ppt
diff_bwt_is_800_101.pptdiff_bwt_is_800_101.ppt
diff_bwt_is_800_101.pptM RAVI KUMAR
 
Design and Development of Passive Magnetic Bearing
Design and Development of Passive Magnetic BearingDesign and Development of Passive Magnetic Bearing
Design and Development of Passive Magnetic BearingIJMER
 
Unit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptxUnit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptxRESHMAFEGADE
 
Technical article reprint turbo-abrasive maching
Technical article reprint turbo-abrasive machingTechnical article reprint turbo-abrasive maching
Technical article reprint turbo-abrasive machingDave Davidson
 
Design of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxDesign of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxmohammeed3
 
Explanatory Examples on Ductile Detailing of RC Buildings.pdf
Explanatory Examples on Ductile Detailing of RC Buildings.pdfExplanatory Examples on Ductile Detailing of RC Buildings.pdf
Explanatory Examples on Ductile Detailing of RC Buildings.pdfNagaManikantaTatikon
 
Mathcad 17-slab design
Mathcad   17-slab designMathcad   17-slab design
Mathcad 17-slab designmichael mutitu
 
AS4100 Steel Design Webinar Worked Examples
AS4100 Steel Design Webinar Worked ExamplesAS4100 Steel Design Webinar Worked Examples
AS4100 Steel Design Webinar Worked ExamplesClearCalcs
 
تصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdf
تصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdfتصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdf
تصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdfHUSAM63
 
Lecture 5.pdf
Lecture 5.pdfLecture 5.pdf
Lecture 5.pdfYesuf3
 

Similar to Math cad embedded footing - combined (jcb-edited) (20)

10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paper
 
PLASTIC BEAM in design of stell beam design
PLASTIC BEAM in design of stell beam designPLASTIC BEAM in design of stell beam design
PLASTIC BEAM in design of stell beam design
 
Kachlakev_RC Control Beam MSC-Marc_wAppendix
Kachlakev_RC Control Beam MSC-Marc_wAppendixKachlakev_RC Control Beam MSC-Marc_wAppendix
Kachlakev_RC Control Beam MSC-Marc_wAppendix
 
Free ebooks downloads
Free ebooks downloadsFree ebooks downloads
Free ebooks downloads
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdf
 
Math cad soil bearing capacity, subgrade modulus, and soil stiffness
Math cad   soil bearing capacity, subgrade modulus, and soil stiffnessMath cad   soil bearing capacity, subgrade modulus, and soil stiffness
Math cad soil bearing capacity, subgrade modulus, and soil stiffness
 
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
 
Column math
Column mathColumn math
Column math
 
diff_bwt_is_800_101.ppt
diff_bwt_is_800_101.pptdiff_bwt_is_800_101.ppt
diff_bwt_is_800_101.ppt
 
Design and Development of Passive Magnetic Bearing
Design and Development of Passive Magnetic BearingDesign and Development of Passive Magnetic Bearing
Design and Development of Passive Magnetic Bearing
 
Unit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptxUnit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptx
 
Technical article reprint turbo-abrasive maching
Technical article reprint turbo-abrasive machingTechnical article reprint turbo-abrasive maching
Technical article reprint turbo-abrasive maching
 
Design of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxDesign of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptx
 
Structural engineering ii
Structural engineering iiStructural engineering ii
Structural engineering ii
 
Explanatory Examples on Ductile Detailing of RC Buildings.pdf
Explanatory Examples on Ductile Detailing of RC Buildings.pdfExplanatory Examples on Ductile Detailing of RC Buildings.pdf
Explanatory Examples on Ductile Detailing of RC Buildings.pdf
 
EQ06.pdf
EQ06.pdfEQ06.pdf
EQ06.pdf
 
Mathcad 17-slab design
Mathcad   17-slab designMathcad   17-slab design
Mathcad 17-slab design
 
AS4100 Steel Design Webinar Worked Examples
AS4100 Steel Design Webinar Worked ExamplesAS4100 Steel Design Webinar Worked Examples
AS4100 Steel Design Webinar Worked Examples
 
تصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdf
تصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdfتصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdf
تصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdf
 
Lecture 5.pdf
Lecture 5.pdfLecture 5.pdf
Lecture 5.pdf
 

More from Julio Banks

Apologia - A Call for a Reformation of Christian Protestants Organizations.pdf
Apologia - A Call for a Reformation of Christian Protestants Organizations.pdfApologia - A Call for a Reformation of Christian Protestants Organizations.pdf
Apologia - A Call for a Reformation of Christian Protestants Organizations.pdfJulio Banks
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfJulio Banks
 
MathCAD - Synchronicity Algorithm.pdf
MathCAD - Synchronicity Algorithm.pdfMathCAD - Synchronicity Algorithm.pdf
MathCAD - Synchronicity Algorithm.pdfJulio Banks
 
Sharing the gospel with muslims
Sharing the gospel with muslimsSharing the gospel with muslims
Sharing the gospel with muslimsJulio Banks
 
Mathcad explicit solution cubic equation examples
Mathcad   explicit solution cubic equation examplesMathcad   explicit solution cubic equation examples
Mathcad explicit solution cubic equation examplesJulio Banks
 
Math cad prime the relationship between the cubit, meter, pi and the golden...
Math cad prime   the relationship between the cubit, meter, pi and the golden...Math cad prime   the relationship between the cubit, meter, pi and the golden...
Math cad prime the relationship between the cubit, meter, pi and the golden...Julio Banks
 
Mathcad day number in the year and solar declination angle
Mathcad   day number in the year and solar declination angleMathcad   day number in the year and solar declination angle
Mathcad day number in the year and solar declination angleJulio Banks
 
Transcript for abraham_lincoln_thanksgiving_proclamation_1863
Transcript for abraham_lincoln_thanksgiving_proclamation_1863Transcript for abraham_lincoln_thanksgiving_proclamation_1863
Transcript for abraham_lincoln_thanksgiving_proclamation_1863Julio Banks
 
Thanksgiving and lincolns calls to prayer
Thanksgiving and lincolns calls to prayerThanksgiving and lincolns calls to prayer
Thanksgiving and lincolns calls to prayerJulio Banks
 
Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...
Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...
Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...Julio Banks
 
Man's search-for-meaning-viktor-frankl
Man's search-for-meaning-viktor-franklMan's search-for-meaning-viktor-frankl
Man's search-for-meaning-viktor-franklJulio Banks
 
Love versus shadow self
Love versus shadow selfLove versus shadow self
Love versus shadow selfJulio Banks
 
Exposing the truth about the qur'an
Exposing the truth about the qur'anExposing the truth about the qur'an
Exposing the truth about the qur'anJulio Banks
 
NASA-TM-X-74335 --U.S. Standard Atmosphere 1976
NASA-TM-X-74335 --U.S. Standard Atmosphere 1976NASA-TM-X-74335 --U.S. Standard Atmosphere 1976
NASA-TM-X-74335 --U.S. Standard Atmosphere 1976Julio Banks
 
Mathcad P-elements linear versus nonlinear stress 2014-t6
Mathcad   P-elements linear versus nonlinear stress 2014-t6Mathcad   P-elements linear versus nonlinear stress 2014-t6
Mathcad P-elements linear versus nonlinear stress 2014-t6Julio Banks
 
Apologia - The martyrs killed for clarifying the bible
Apologia - The martyrs killed for clarifying the bibleApologia - The martyrs killed for clarifying the bible
Apologia - The martyrs killed for clarifying the bibleJulio Banks
 
Apologia - Always be prepared to give a reason for the hope that is within yo...
Apologia - Always be prepared to give a reason for the hope that is within yo...Apologia - Always be prepared to give a reason for the hope that is within yo...
Apologia - Always be prepared to give a reason for the hope that is within yo...Julio Banks
 
Spontaneous creation of the universe ex nihil by maya lincoln and avi wasser
Spontaneous creation of the universe ex nihil by maya lincoln and avi wasserSpontaneous creation of the universe ex nihil by maya lincoln and avi wasser
Spontaneous creation of the universe ex nihil by maya lincoln and avi wasserJulio Banks
 
The “necessary observer” that quantum mechanics require is described in the b...
The “necessary observer” that quantum mechanics require is described in the b...The “necessary observer” that quantum mechanics require is described in the b...
The “necessary observer” that quantum mechanics require is described in the b...Julio Banks
 
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaAdvances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaJulio Banks
 

More from Julio Banks (20)

Apologia - A Call for a Reformation of Christian Protestants Organizations.pdf
Apologia - A Call for a Reformation of Christian Protestants Organizations.pdfApologia - A Call for a Reformation of Christian Protestants Organizations.pdf
Apologia - A Call for a Reformation of Christian Protestants Organizations.pdf
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
 
MathCAD - Synchronicity Algorithm.pdf
MathCAD - Synchronicity Algorithm.pdfMathCAD - Synchronicity Algorithm.pdf
MathCAD - Synchronicity Algorithm.pdf
 
Sharing the gospel with muslims
Sharing the gospel with muslimsSharing the gospel with muslims
Sharing the gospel with muslims
 
Mathcad explicit solution cubic equation examples
Mathcad   explicit solution cubic equation examplesMathcad   explicit solution cubic equation examples
Mathcad explicit solution cubic equation examples
 
Math cad prime the relationship between the cubit, meter, pi and the golden...
Math cad prime   the relationship between the cubit, meter, pi and the golden...Math cad prime   the relationship between the cubit, meter, pi and the golden...
Math cad prime the relationship between the cubit, meter, pi and the golden...
 
Mathcad day number in the year and solar declination angle
Mathcad   day number in the year and solar declination angleMathcad   day number in the year and solar declination angle
Mathcad day number in the year and solar declination angle
 
Transcript for abraham_lincoln_thanksgiving_proclamation_1863
Transcript for abraham_lincoln_thanksgiving_proclamation_1863Transcript for abraham_lincoln_thanksgiving_proclamation_1863
Transcript for abraham_lincoln_thanksgiving_proclamation_1863
 
Thanksgiving and lincolns calls to prayer
Thanksgiving and lincolns calls to prayerThanksgiving and lincolns calls to prayer
Thanksgiving and lincolns calls to prayer
 
Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...
Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...
Jannaf 10 1986 paper by julio c. banks, et. al.-ballistic performance of lpg ...
 
Man's search-for-meaning-viktor-frankl
Man's search-for-meaning-viktor-franklMan's search-for-meaning-viktor-frankl
Man's search-for-meaning-viktor-frankl
 
Love versus shadow self
Love versus shadow selfLove versus shadow self
Love versus shadow self
 
Exposing the truth about the qur'an
Exposing the truth about the qur'anExposing the truth about the qur'an
Exposing the truth about the qur'an
 
NASA-TM-X-74335 --U.S. Standard Atmosphere 1976
NASA-TM-X-74335 --U.S. Standard Atmosphere 1976NASA-TM-X-74335 --U.S. Standard Atmosphere 1976
NASA-TM-X-74335 --U.S. Standard Atmosphere 1976
 
Mathcad P-elements linear versus nonlinear stress 2014-t6
Mathcad   P-elements linear versus nonlinear stress 2014-t6Mathcad   P-elements linear versus nonlinear stress 2014-t6
Mathcad P-elements linear versus nonlinear stress 2014-t6
 
Apologia - The martyrs killed for clarifying the bible
Apologia - The martyrs killed for clarifying the bibleApologia - The martyrs killed for clarifying the bible
Apologia - The martyrs killed for clarifying the bible
 
Apologia - Always be prepared to give a reason for the hope that is within yo...
Apologia - Always be prepared to give a reason for the hope that is within yo...Apologia - Always be prepared to give a reason for the hope that is within yo...
Apologia - Always be prepared to give a reason for the hope that is within yo...
 
Spontaneous creation of the universe ex nihil by maya lincoln and avi wasser
Spontaneous creation of the universe ex nihil by maya lincoln and avi wasserSpontaneous creation of the universe ex nihil by maya lincoln and avi wasser
Spontaneous creation of the universe ex nihil by maya lincoln and avi wasser
 
The “necessary observer” that quantum mechanics require is described in the b...
The “necessary observer” that quantum mechanics require is described in the b...The “necessary observer” that quantum mechanics require is described in the b...
The “necessary observer” that quantum mechanics require is described in the b...
 
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinkaAdvances in fatigue and fracture mechanics by grzegorz (greg) glinka
Advances in fatigue and fracture mechanics by grzegorz (greg) glinka
 

Math cad embedded footing - combined (jcb-edited)

  • 1. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 1 of 10 Motion of an Embedded Footing Fz Fy 2B D Compressor Properties and Characteristics Wcomp 100000 lb g 32.17 ft sec 2  mcomp Wcomp g  Radius of compressor (assumed to be cylindrical in shape) rcomp 8 ft f 450 60 1 sec  f 7.5s 1  Ω 2 π f Ω 47.124 s 1  Fz 4000 lb Fy 3000 lb Foundation Geometry and Properties B 5 ft L 10 ft L B 2 D 2.5 ft D B 0.5 Assume partial contact of sidewall: d 2.0 ft γconcrete 150 lb ft 3  Wfound 4 B L D γconcrete mfound Wfound g  m mcomp mfound Soil Properties and Characteristics Vs 600 ft sec  ν 0.48 γsoil 110 lb ft 3  G γsoil g Vs 2  Determine parameters needed to calculate the foundation stiffness Ab 4 B L Area of the base in contact with the soil χ Ab 4 L 2   Shape factor VLa 3.4 π 1 ν( ) Vs Lysmer's analog velocity Dr. Glenn Rix Web Site
  • 2. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 2 of 10 Area moment of inertia of the foundation-soil contact area about the x axis Ibx 2 L( ) 2 B( ) 3  12  Area moment of inertia of the foundation-soil contact area about the y axis Iby 2 B( ) 2 L( ) 3  12  Aw d 4 B 4 L( ) Area of the sidewall contact Aws 2 d 2 B Area of sidewall in shear for horizontal motion Awce 2 d 2 L Area of sidewall in compression for horizontal motion a0 Ω B Vs  a0 0.393 Dimensionless frequency Height of centroid of foundation-compressor system above the ground surface zc mfound D 2  mcomp D rcomp  mfound mcomp  zc 78.429 in Mass moment of inertia of the foundation-compressor system about the x axis Iox 1 12 mfound 2 B( ) 2 D 2   mfound zc D 2       2  1 2 mcomp rcomp 2  mcomp D rcomp zc 2   Resolve the horizontal force into an equivalent horizontal force acting at the centroid of the foundation-compressor system Mx Fy D rcomp zc  Mx 1.427 10 5  in lb Dr. Glenn Rix Web Site
  • 3. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 3 of 10 Stiffness and damping for vertical motion Stiffness Kzsur 2 G L 1 ν       0.73 1.54 χ 0.75   Kzsur 6.493 10 6  in 1 lb Kzemb Kzsur 1 1 21 D B  1 1.3 χ( )       1 0.2 Aw Ab       2 3             Kzemb 7.708 10 6  in 1 lb Kzemb Kzsur 1.187 The dynamic stiffness and dashpot coefficients are frequency and foundation geometry (L/B) dependent. Thus, they must be selected for each frequency and foundation geometry of interest. kzsur 0.95 from Table 15.1, Gazetas (1991) kzemb kzsur 1 0.09 D B       3 4  a0 2           kzemb 0.942 kztre kzsur 1 0.09 D B       3 4  a0 2           kztre 0.958 Interpolate to obtain the dynamic stiffness coefficient for partial embedment kzpar kztre d D kzemb kztre  kzpar 0.945 Damping cz 1.0 from Table 15.1, Gazetas (1991) Czsur γsoil g VLa Ab cz Czsur 7.117 10 4  in 1 s lb Czemb Czsur γsoil g Vs Aw Czemb 9.168 10 4  in 1 s lb Czemb Czsur 1.288 κz Kzemb kzpar i Ω Czemb Dr. Glenn Rix Web Site
  • 4. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 4 of 10 Dr. Glenn Rix Web Site
  • 5. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 5 of 10 Stiffness and damping for horizontal motion Stiffness Kysur 2 G L 2 ν       2.0 2.50 χ 0.85   Kysur 4.572 10 6  in 1 lb Kyemb Kysur 1 0.15 D B         1 0.52 d B Aw L 2        0.4           Kyemb 7.017 10 6  in 1 lb Kyemb Kysur 1.535 The dynamic stiffness and dashpot coefficients are frequency and foundation geometry (L/B) dependent. Thus, they must be selected for each frequency and foundation geometry of interest. kyemb 1.0 1.0 from Table 15.2, Gazetas (1991) Damping cysur 1.0 from Table 15.1, Gazetas (1991) Cysur γsoil g Vs Ab cysur Cysur 3.419 10 4  in 1 s lb Cyemb Cysur γsoil g Vs Aws γsoil g Vs Awce Cyemb 5.471 10 4  in 1 s lb Cyemb Cysur 1.6 κy Kyemb kyemb i Ω Cyemb Dr. Glenn Rix Web Site
  • 6. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 6 of 10 Stiffness and damping for rocking Stiffness Krxsur G 1 ν Ibx 0.75  L B       0.25  2.4 0.5 B L        Krxsur 2.335 10 10  in lb Krxemb Krxsur 1 1.26 d B  1 d B d D       0.2  B L                Krxemb 3.86 10 10  in lb Krxemb Krxsur 1.653 The dynamic stiffness and dashpot coefficients are frequency and foundation geometry (L/B) dependent. Thus, they must be selected for each frequency and foundation geometry of interest. krxsur 1 0.20 a0 krxemb krxsur Damping crxsur 0.15 c1 0.25 0.65 a0 d D       a0 2   D B       1 4   Crxsur γsoil g VLa Ibx crxsur Crxemb 4 3 γsoil g  VLa B 3  L crxsur 4 3 γsoil g  VLa d 3  L c1 4 3 γsoil g  Vs B d B 2 d 2   c1 4 γsoil g  Vs B 2  d L c1 Crxemb 6.137 10 7  in s lb Note: this is for a rectangular footing only Crxemb Crxsur 4.791 κrx Krxemb krxemb i Ω Crxemb Dr. Glenn Rix Web Site
  • 7. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 7 of 10 Coupled stiffness and damping between rocking and horizontal motion Stiffness Kyrxemb 1 3 d Kyemb Kyrxemb 5.613 10 7  lb kyrxemb 1.0 Damping Cyrxemb 1 3 d Cyemb Cyrxemb 4.377 10 5  s lb κyrx Kyrxemb kyrxemb i Ω Cyrxemb Dr. Glenn Rix Web Site
  • 8. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 8 of 10 Stiffness and damping for torsion Stiffness Ktsur G Ibx Iby 0.75  4 11 1 B L       10         Ktsur 5.167 10 10  in lb Ktemb Ktsur 1 1.4 1 B L        d B       0.9         Ktemb 9.924 10 10  in lb Ktemb Ktsur 1.921 ktsur 1 0.14 a0 ktemb ktsur Damping ctsur 0.25 c2 d D       0.5 a0 2 a0 2 0.5 L B       1.5   Ctsur γsoil g Vs Ibx Iby  ctsur Ctemb 4 3 γsoil g  Vs B L B 2 L 2   ctsur 4 3 γsoil g  VLa d L 3 B 3   c2 4 γsoil g  Vs d B L B L( ) c2 Ctemb 2.083 10 8  in s lb Note: this is for a rectangular footing only Ctemb Ctsur 4.061 κt Ktemb ktemb i Ω Ctemb Dr. Glenn Rix Web Site
  • 9. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 9 of 10 Form the complex stiffness matrix Κ κz Ω 2 m 0 0 0 κy Ω 2 m κyrx κy zc B 0 κyrx κy zc B κrx Ω 2 Iox 2 κyrx zc κy zc 2  B 2                    Form the force-moment vector Note that some of the terms in the stiffness matrix and force-moment vector are divided by a "characteristic length" to make the matrix and vector dimensionally correct. F Fz Fy Mx B              Solve the system of equations u Κ 1 F u 4.323 10 4  2.974i 10 4  1.713 10 3  4.649i 10 4  9.726 10 4  1.603i 10 4              in The magnitude and phase of the individual motions are: uz u 0  uz 5.248 10 4  in Vertical motion ϕz arg u 0  ϕz 0.603 δy u 1  δy 1.775 10 3  in Horizontal motion ϕy arg u 1  ϕy 0.265 Dr. Glenn Rix Web Site
  • 10. MathCAD - Embedded Footing - Combined (JCB-edited).xmcd Page 10 of 10 θrx u 2 B  θrx 1.643 10 5  Rocking motion ϕrx arg u 2 B        ϕrx 0.163 The natural frequency and fraction of critical damping for each motion are: fz 1 2 π Kzemb kzemb m  fz 20.144 s 1  Vertical motion βz Czemb 2 Kzemb kzemb m  βz 0.799 fy 1 2 π Kyemb kyemb m  fy 19.801 s 1  Horizontal motion βy Cyemb 2 Kyemb kyemb m  βy 0.485 frx 1 2 π Krxemb krxemb Iox  frx 17.909 s 1  Rocking motion βrx Crxemb 2 Krxemb krxemb Iox  βrx 0.097 Dr. Glenn Rix Web Site