SlideShare a Scribd company logo
1 of 57
Study of the transport of heavy metal ions 
through cation-exchange membranes applied 
to the treatment of industrial effluents 
Manuel César Martí Calatayud 
Dr. D. Valentín Pérez Herranz 
Dra. Dª. Montserrat García Gabaldón
Programa Oficial de posgrado en Ingeniería y Producción Industrial 
FUNDING 
Predoctoral funding 
 Ayuda predoctoral: Formación de Personal Investigador de la Universitat Politècnica de València 
(Ref. FPI-UPV 2010-12) 
 Ayuda para la realización de estancias en centros de investigación 
de prestigio de la Universitat Politècnica de València: (PAID-00-12) 
Projects 
 Proyecto del Ministerio de Economía y Competitividad: “Caracterización electroquímica de 
membranas cerámicas nanoestructuradas de intercambio iónico para su aplicación en reactores 
electroquímicos y sistemas electrodialíticos” (CTQ2012-37450-C02-01/PPQ) 
 Proyecto del Ministerio de Ciencia e Innovación: “Desarrollo de nuevos reactores electroquímicos 
basados en membranas cerámicas para la recuperación de cromo hexavalente de los efluentes 
de las industrias de tratamiento de superficies” (CTQ2008-06750-C02-01/PPQ)
RESEARCH ARTICLES IN SCIENTIFIC JOURNALS 
Results related to the Doctoral Thesis 
 Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in 
chromic acid solutions. 
M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, E. Ortega 
Journal of Membrane Science, 379 (2011) 449-458. 
 Study of the effects of the applied current regime and the concentration of chromic acid on the 
transport of Ni2+ ions through Nafion 117 membranes. 
M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz 
Journal of Membrane Science, 392-393 (2012) 137-149. 
 Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange 
membranes at different current regimes. 
M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz 
Journal of Membrane Science, 443 (2013) 181-192. 
 Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and 
multicomponent electrolyte solutions. 
M.C. Martí-Calatayud, D.C. Buzzi, M. García-Gabaldón, A.M. Bernardes, J.A.S. Tenório, V. Pérez- 
Herranz 
Journal of Membrane Science, 466 (2014) 45-57.
Research stay at Chemische Verfahrenstechnik – RWTH Aachen University 
(Germany) 
 Layer-by-Layer modification of cation exchange membranes controls ion selectivity and water 
splitting. 
S. Abdu, M.C. Martí-Calatayud, J.E. Wong, M. García-Gabaldón, M. Wessling 
ACS Applied Materials & Interfaces, 6 (2014) 1843-1854. 
Collaboration with the Instituto de Tecnología Cerámica – UJI Castelló 
 Synthesis and electrochemical behavior of ceramic cation-exchange membranes based on 
zirconium phosphate. 
M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, S. Sales, S. Mestre 
Ceramics International, 39 (2013) 4045-4054. 
 Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium 
phosphate in contact with nickel sulfate solutions. 
M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, S. Sales, S. Mestre 
Desalination and Water Treatment, 51 (2013) 597-605. 
Collaboration with the Departamento de Ingeniería de Materiales – 
Universidade do Rio Grande do Sul (Brasil) 
 Sulfuric acid recovery from acid mine drainage by means of electrodialysis. 
M.C. Martí-Calatayud, D.C. Buzzi, M. García-Gabaldón, E. Ortega, A.M. Bernardes, J.A.S. Tenório, V. 
Pérez-Herranz 
Desalination, 343 (2014) 120-127.
CONTRIBUTIONS IN CONFERENCES 
 10th European Symposium on Electrochemical Engineering, 2014, Sardinia (Italy) 
 65th Annual Meeting of the International Society of Electrochemistry, 2014, Lausanne 
(Switzerland) 
 IX Ibero-americal Congress on Membrane Science and Technology, 2014, Santander. 
 13th International Conference on Environmental Science and Technology (CEST 2013), Atenas 
 XXXIV Reunión bienal de la RSEQ 2013, Santander 
 2 contribuciones XXXIV Reunión de electroquímica de la RSEQ, 2013, València 
 1st International Conference on Desalination using Membrane Technology, 2013, Sitges (Spain) 
 63rd Annual Meeting of the International Society of Electrochemistry, 2013, Prague (Czech 
Republic) 
 VIII Simposio Internacional de Qualidade Ambiental, 2012, Porto Alegre (Brazil) 
 Conference on Desalination for the Environment, Clean Water and Energy, 2012, Barcelona. 
 13 Network of Young Membrains, 2011, Enschede (The Netherlands) 
 9th European Symposium on Electrochemical Engineering, 2011, Chania (Greece) 
 2nd Regional Symposium on Electrochemistry, 2011, Belgrade (Serbia) 
AWARDS 
 Premio en el VII Certamen València Idea 2013, sección Energía y Medio Ambiente 
“Desarrollo de membranas de intercambio iónico con funcionalidad óptima para su utilización en 
baterías de flujo redox de elevada eficiencia energética”.
LIST OF CONTENTS 
1. INTRODUCTION 
2. OBJECTIVE 
3. EXPERIMENTAL TECHNIQUES 
4. RESULTS & DISCUSSION 
Transport of single salt solutions 
Transport of multicomponent mixtures 
Mechanisms of transport at overlimiting currents 
Galvanostatic electrodialysis experiments 
5. CONCLUSIONS
1.1 Scope / Background 
Heavy metals have high specific density (>5), and are 
highly persistent. Most of them (Cr, Ni, Cd, …) are 
carcinogenic. 
 Effects on the environment 
 Effects on the human health 
They have multitude of applications. Their extraction, use 
and price are continuously growing. 
 Effects on the economy. Unsustainable growth. 
 Geopolitical problems. 
Metals imports Mineral depletion 
2. Objetive 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Results and discussion 
1.Introduction 1
2 
1.2 Electromembrane processes 
The presence of heavy metals in natural watercourses 
is mainly consequence of mining activities and due to 
the discharge of industrial effluents. 
Electromembrane processes, such as electrodialysis, 
represent a sustainable alternative for the treatment 
of these effluents, since they allow the selective 
recovery and reuse of valuable metals. 
They permit the separation of ions from aqueous 
solutions by using: 
Driving force: an electric field 
Selective barriers: ion-exchange membranes 
Principle of electromembrane 
processes 
Structure of a cation-exchange 
membrane 
2. Objetive 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Results and discussion 
1.Introduction
3 
1.3 Characteristics / Limitations 
They are selective processes which allow the 
separation of cationic and anionic species. 
The addition of reagents is not required. 
Continuous and modular processes (stacks) 
Membrane fouling. 
Concentration polarization phenomena: The 
mass transfer becomes limited with the increase 
in the driving force 
0.8 
0.6 
0.4 
0.2 
0.0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Um (V) 
i (mA·cm-2) 
ilim 
Overlimiting 
current densities 
2. Objetive 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Results and discussion 
1.Introduction
LIST OF CONTENTS 
1. INTRODUCTION 
2. OBJECTIVE 
3. EXPERIMENTAL TECHNIQUES 
4. RESULTS & DISCUSSION 
Transport of single salt solutions 
Transport of multicomponent mixtures 
Mechanisms of transport at overlimiting currents 
Galvanostatic electrodialysis experiments 
5. CONCLUSIONS
2. Objective and structure of the Thesis 
To identify and investigate the mass transfer phenomena involved in electromembrane 
processes in order to optimize the treatment of industrial effluents containing heavy metals. 
Identificar e investigar los fenómenos de transferencia de materia implicados en procesos 
electroquímicos de membrana con el fin de optimizar el tratamiento de efluentes industriales 
que contienen metales pesados 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Results and discussion 
1.Introduction 4
LIST OF CONTENTS 
1. INTRODUCTION 
2. OBJECTIVE 
3. EXPERIMENTAL TECHNIQUES 
4. RESULTS & DISCUSSION 
Transport of single salt solutions 
Transport of multicomponent mixtures 
Mechanisms of transport at overlimiting currents 
Galvanostatic electrodialysis experiments 
5. CONCLUSIONS
3. Experimental techniques 
Cation-exchange membranes  NAFION 117 
Properties: 
 High conductivity (low electrical resistance) 
 High selectivity 
 High mechanical and chemical resistance (durability). 
2. Objective 3. Techniques Single salt 
solutions 
IEC (ion exchange capacity) : 
0.90 meq. SO3 
Multicomponent 
solutions 
- / g membrane 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Results and discussion 
1.Introduction 5
6 
3. Experimental techniques 
A) Ion sorption experiments 
B) Chronopotentiometry 
Electrochemical technique used to analyze the dynamics of ion transport processes through a system 
composed by a membrane and an electrolyte: Concentration polarization 
2 
2 
ö 
Sand’s equation: t p + 
0 1 
æ 
D c z F 
÷ ÷ 
ö çè 
4 T t i 
ø 
ç ç 
è 
- 
÷ø 
=æ 
+ + 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Results and discussion 
1.Introduction
7 
A) Ion sorption experiments 
C) Polarization curves: i vs. Um 
They provide an idea about the membrane behavior at different current regimes: 
1. Quasi-ohmic region: 
linear dependence between i and Um 
2. Plateau region: 
mass transfer limitations 
3. Region of overlimiting currents: 
The transfer of current carriers 
toward the membrane surface is 
activated 
z Dc F 
+ 
- 
( ) lim 
+ + 
= 
T t 
i 
d 
0 
Peers’ equation: 
3. Experimental techniques 
B) Chronopotentiometry 
0.8 
0.6 
0.4 
0.2 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Results and discussion 
1.Introduction 
0.0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Um (V) 
i (mA·cm-2) 
ilim 
Overlimiting 
region 
quasi-ohmic 
region 
plateau
(%) 
(%) 
( ) (kW·h·kg-1) 
8 
A) Ion sorption experiments 
B) Chronopotentiometry 
D) Galvanostatic experiments in 3-compartment electrochemical cell 
Parameters to evaluate the efficiency in the 
mass transfer and energy usage in an 
electromembrane reactor: 
100 
= c 0 - c 
´ 
X(t ) t 
0 
c 
( ) 100 
= - t 
nFV c c 
0 ´ 
ò 
0 
t 
Idt 
f(t ) 
( ) 
t 
M c - c 
h( t )= 0 
t 
ò × = 
U I dt 
M V c X 
E t 
t 
cell 
s × × × × 
0 
0 
3600 
(g·l-1·h-1) 
3. Experimental techniques 
C) Polarization curves: i vs. Um 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Results and discussion 
1.Introduction
LIST OF CONTENTS 
1. INTRODUCTION 
2. OBJECTIVE 
3. EXPERIMENTAL TECHNIQUES 
4. RESULTS & DISCUSSION 
Transport of single salt solutions 
Transport of multicomponent mixtures 
Mechanisms of transport at overlimiting currents 
Galvanostatic electrodialysis experiments 
5. CONCLUSIONS
4. Results and discussion 
4.1. Transport in single salt solutions 
Tabla 1. Electrolyte compositions used for the experiments conducted with single salt solutions. 
[M+n] Na2SO4 NiSO4 Cr2(SO4)3 Fe2(SO4)3 
10-3M 5·10-4M 10-3M 5·10-4M 5·10-4M 
5·10-3M 2.5·10-3M 5·10-3M 2.5·10-3M 2.5·10-3M 
10-2M 5·10-3M 10-2M 5·10-3M 5·10-3M 
2·10-2M 10-2M 2·10-2M 10-2M 10-2M 
Monovalent metal: 
Na+ 
Present in effluents 
generated in leather 
2. Objective 3. Techniques Single salt 
solutions 
Cr(III) 
tanneries 
Present in acid 
mine drainage 
solutions 
Results and d disicsucusssiioónn 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Fe(III) 
Galvanostatic 
experiments 
Ni(II), Cr(III) y Fe(III) 
Present in spent baths 
generated in the metal 
finishing industry 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 9
10 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 
[M+n] (mol/L) 
cm (mmol/g) 
Na(I) 
Ni(II) 
Fe(III) 
Cr(III) 
4.1. Transport in single salt solutions 
Ni2+ Cr3+ Fe3+ 
10-3M 
5·10-3M 
10-2M 
2·10-2M 
The membrane becomes saturated in counterions 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
11 
Na2SO4 
5·10-4M 
2.5·10-3M 
5·10-3M 
10-2M 
0.75 
0.30 
0.75 
0.25 
0.60 
0.20 
0.45 
0.15 
0.30 
0.10 
0.05 
0.044 mA·cm-2 
t (s) 
Um (V) 
0.028 mA·cm-2 
0.014 mA·cm-2 
0.051 mA·cm-2 
0.054 mA·cm-2 
0.00 
0.055 mA·2 
0 100 200 300 400 500 
0.15 
0.059 mA·cm-2 
0.055 mA·cm-2 
t 
0.071 mA·cm-2 
0.085 mA·cm-2 
0.113 mA·cm-2 
i < ilim 
> 4.1. Transport in single salt solutions 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
12 
æ 
t p + 
ö çè 
D c z F 
ö 
÷ ÷ 
Sand’s equation: 2 
1.0 
Indicates the fraction of current associated with the transport of a specific 
ion with respect to the total current passed through the membrane 
 Agreement with the Sand’s eq. 
y1 = 7.252x - 7.405 
R2 = 0.999 
y2 = 5.132x + 3.209 
R2 = 0.994 
y3 = 4.717x - 5.445 
R2 = 0.995 
y4 = 3.058x - 0.815 
R2 = 0.990 
120 
100 
80 
60 
40 
20 
0 
0 5 10 15 20 25 
(c0/I)2 (mol/L·A)2 
t (s) 
10-2M Na2SO4 
5·10-3M Na2SO4 
2.5·10-3M Na2SO4 
5·10-4M Na2SO4 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
4.E-02 
3.E-02 
2.E-02 
1.E-02 
0.8 
 Calculation of the transition time 
0.6 
0.4 
0.2 
0 100 200 300 400 
t (s) 
Um (V) 
0.E+00 
DUm/Dt 
0.99 mA·cm-2 
0.71 mA·cm-2 
0.62 mA·cm-2 
0.58 mA·cm-2 
2 
0 1 
4 T t i 
ø 
ç ç 
è 
- 
÷ø 
=æ 
+ + 
T+ 
4.1. Transport in single salt solutions 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
44.. RReessuullttas daonsd d disicsucusssiioónn 
0.0 
0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 
[M+n] (mol/L) 
T+ 
Na+ 
Ni2+
13 
4.1. Transport in single salt solutions 
0.8 
0.6 
0.4 
0.2 
0.0 
0.015 
0.010 
0.005 
1.346 mA·cm-2 
1.133 mA·cm-2 
0.992 mA·cm-2 
0.878 mA·cm-2 
0 100 200 300 400 
t (s) 
Um (V) 
0.000 
DUm/Dt 
0.538 mA·cm-2 
t1 
t1 
t1 
t2 
t2 
t2 
Cr2(SO4)3 
2.5·10-3M 
Multiple transition times 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
14 
4.1. Transport in single salt solutions 
CrSO4 
+ 
Cr3+ 
pHeq 
pH ai 
CrOH2+ 
Speciation diagram of 2.5·10-3M Cr2(SO4)3 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
Cr(OH)2 
+ 
0 1 2 3 4 5 6 7 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
Plateau in the 
relaxation of Um 
15 
NiSO4 ilim (mA·cm-2) 
10-2M 0.85 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
2.27 mA·cm-2 
1.56 mA·cm-2 
1.70 mA·cm-2 
0 100 200 300 400 500 
t (s) 
Um (V) 
0.99 mA·cm-2 
0.57 mA·cm-2 
1.98 mA·cm-2 
Fe2(SO4)3 ilim (mA·cm-2) 
10-2M 7.08 
4.1. Transport in single salt solutions 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
0.4 
Um (V) 
5. Conclusions 
5 
4 
3 
2 
1 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
Formation of 
precipitates 
Plateau in the 
relaxation of Um 
0 
0 100 200 300 400 500 
t (s) 
Um (V) 
7.79 mA·cm-2 
7.37 mA·cm-2 
7.08 mA·cm-2 
5.67 mA·cm-2 
Formation of 
precipitates 
0.0 
300 t (s) 350
The formation of precipitates is 
due to pH changes in the 
vicinities of the membrane 
The difference between 
pHeq - pH↓ is low for the 
solutions of Fe(III) 
The difference between 
pHeq - pH↓ is higher in the case 
of Cr(III) 
16 
4.1. Transport in single salt solutions 
1.E+00 
1.E-01 
1.E-02 
1.E-03 
1.E-04 
1.E-05 
1.E-06 
1.E-07 
1.E-08 
1.E-09 
pH 
0 2 4 6 8 10 12 14 
s (mol/L) 
pHeq pHeq 
NiSO4 2·10-2M 
Cr2(SO4)3 10-2 M 
Fe2(SO4)3 10-2 M 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
44.. RReessuullttas daonsd d disicsucusssiioónn
17 
300 
250 
200 
150 
100 
50 
0 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 
[Na(I)] (mol/L) 
R1 (W·cm2) 
0.0 
ilim (mA·cm-2) 
3 regions of membrane behavior: 
 Quasi-ohmic regime 
 Plateau ilim 
 Region of overlimiting currents 
 Good agreement with the Peers’ equation 
 R1 decreases with the electrolyte 
concentration. 
4.1. Transport in single salt solutions 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
0.8 
0.6 
0.4 
0.2 
1.Introduction 
Results and d disicsucusssiioónn 
0.0 
0.0 0.2 0.4 0.6 0.8 1.0 
Um (V) 
i (mA·cm-2) 
2.5·10-3M Na2SO4 
5·10-4M Na2SO4 
1/R1 
ilim 
Quasi-ohmic 
region 
Plateau 
Overlimiting 
region
18 
2.0 
1.5 
1.0 
0.5 
0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Um (V) 
i (mA·cm-2) 
ilim1 
2.5·10-3M Cr2(SO4)3 
5·10-4M Cr2(SO4)3 
ilim2 
4.1. Transport in single salt solutions 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
LIST OF CONTENTS 
1. INTRODUCTION 
2. OBJECTIVE 
3. EXPERIMENTAL TECHNIQUES 
4. RESULTS & DISCUSSION 
Transport of single salt solutions 
Transport of multicomponent mixtures 
Mechanisms of transport at overlimiting currents 
Galvanostatic electrodialysis experiments 
5. CONCLUSIONS
4. Results and discussion 
4.2. Transport in multicomponent mixture solutions 
NiSO4 
CrO3 + H2O  H2CrO4 ↔ 2H+ + CrO4 
100% 
75% 
50% 
25% 
Fraction of membrane 
fixed charges 
0M CrO3 
10-3M CrO3 
10-2M CrO3 0% 
0.00E+00 2.50E-03 5.00E-03 7.50E-03 1.00E-02 1.25E-02 
[Ni(II)] (mol/L) 
2. Objective 3. Techniques Single salt 
solutions 
5·10-4M NiSO4 
5·10-4M NiSO4 
5·10-3M NiSO4 
5·10-3M NiSO4 
5·10-3M NiSO4 
10-3M NiSO4 
10-3M NiSO4 
10-3M NiSO4 
10-2M NiSO4 
10-2M NiSO4 
10-2M NiSO4 
10-3M CrO3 10-2M CrO3 0M CrO3 
5·10-4M NiSO4 
Results and d disicsucusssiioónn 
2- 
Multicomponent 
solutions 
Baths from the metal finishing industry: 
Mechanisms 
i>ilim 
H+ vs. Ni2+ 
Acid mine drainage solutions: 
Na+ vs. Fe(III) 
Electrolyte composition 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
cm (mmol/g) 
H+ 
Ni2+ 
1.Introduction 19
4.2. Transport in multicomponent mixture solutions Baths from the metal finishing industry: 
20 
CrO3 NiSO4 
10-3M 
5·10-4M 
10-3M 
5·10-3M 
10-2M 
10-2M 
5·10-4M 
10-3M 
5·10-3M 
10-2M 
Analogous behavior to that 
obtained with single salt solutions 
of NiSO4 (without CrO3) 
H+ vs. Ni2+ 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
0.0 
0 100 200 300 400 500 
t (s) 
Um (V) 
3.12 mA·cm-2 
2.83 mA·cm-2 
2.55 mA·cm-2 
2.27 mA·cm-2 
1.35 mA·cm-2 
1.16 mA·cm-2 
Formation of 
precipitates 
Plateau in the 
relaxation of Um
Baths from the metal finishing industry: 
21 
H+ vs. Ni2+ 4.2. Transport in multicomponent mixture solutions 
CrO3 NiSO4 
10-3M 
5·10-4M 
10-3M 
5·10-3M 
10-2M 
10-2M 
5·10-4M 
10-3M 
5·10-3M 
10-2M 
0.8 
0.6 
0.4 
0.2 
With 10-2M CrO3 solutions the 
formation of precipitates did 
not occur. 0.0 
0 100 200 300 400 
t (s) 
Um (V) 
5.38 mA·cm-2 
8.50 mA·cm-2 
4.25 mA·cm-2 
3.97 mA·cm-2 
3.26 mA·cm-2 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
4.2. Transport in multicomponent mixture solutions Baths from the metal finishing industry: 
22 
H+ vs. Ni2+ 
1.0E+00 
1.0E-01 
1.0E-02 
1.0E-03 
1.0E-04 
1.0E-05 
1.0E-06 
Increasing current densities 
2. Objective 3. Techniques Single salt 
solutions 
pH 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
1.0E-07 
0 2 4 6 8 10 12 14 
s (mol/L) 
The formation of 
precipitates starts 
pHeq 
10-2M CrO3 pHeq 
10-3M CrO3 
pHeq 
0M CrO3
4.2. Transport in multicomponent mixture solutions Baths from the metal finishing industry: 
23 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
16 
14 
12 
10 
8 
6 
4 
2 
0.00E+00 2.50E-03 5.00E-03 7.50E-03 1.00E-02 1.25E-02 
[Ni(II)] (mol/L) 
2+ 
TNi 
0M CrO3 
10-3M CrO3 
10-2M CrO3 
3.5 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Um (V) 
i (mA·cm-2) 
10-2M NiSO4 
5·10-3M NiSO4 
10-3M NiSO4 
5·10-4M NiSO4 
0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Um (V) 
i (mA·cm-2) 
10-2M NiSO4 
5·10-3M NiSO4 
10-3M NiSO4 
5·10-4M NiSO4 
H+ vs. Ni2+ 
10-3 M CrO3 10-2 M CrO3 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
24 
4.2. Transport in multicomponent mixture solutions Acid mine drainage solutions: 
The attractive forces between the SO3 
- 
groups and Fe3+ are higher than those 
with Na+ 
Fe2(SO4)3 Na2SO4 
2·10-2M 
0M 
10-2M 
2·10-2M 
100% 
75% 
50% 
25% 
0% 
Electrolyte composition 
Fraction of membrane 
fixed charges 
0.02M 
Fe2(SO4)3 
0.02M 
Fe2(SO4)3 
+ 
0.01M Na2SO4 
0.02M 
Fe2(SO4)3 
+ 
0.02M Na2SO4 
0.01M 
Na2SO4 
FeSO4 
+ 
Fe3+ 
Na+ 
Na+ vs. Fe(III) 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
25 
4.2. Transport in multicomponent mixture solutions Acid mine drainage solutions: 
Fe2(SO4)3 Na2SO4 
2·10-2M 
0M 
10-2M 
2·10-2M 
0.15 
3.0 
0.10 
2.0 
0.05 
1.0 
0.00 
Na+ vs. Fe(III) 
formation of Fe(OH)3 
precipitates 
0 100 200 300 400 500 
t (s) 
Um (V) 
8.50 mA·cm-2 
5.67 mA·cm-2 
11.33 mA·cm-2 
14.16 mA·cm-2 
17.00 mA·cm-2 
i < ilim 
> 2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
0.0 
0 100 200 t (s) 300 400 500 
Um (V) 
17.28 mA·cm-2 
17.14 mA·cm-2 
t t 
17.56 mA·cm-2 
depletion of 
Fe3+ ions
4.2. Transport in multicomponent mixture solutions Acid mine drainage solutions: 
Change in electrical resistance 
ilim associated with the 
26 
depletion of Na+ 
18 
15 
12 
9 
6 
3 
0 
20 
15 
10 
5 
0 
0.0 0.1 0.2 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Um (V) 
i (mA·cm-2) 
0.02M Fe2(SO4)3 
0.02M Fe2(SO4)3 + 0.01M Na2SO4 
0.02M Fe2(SO4)3 + 0.02M Na2SO4 
Um (V) 
i (mA·cm-2) 
1/R1 
1/R2 
1/R1 
1/R2 
0.02M Fe2(SO4)3 
ilim1 
ilim2 
Na+ vs. Fe(III) 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
27 
4.2. Transport in multicomponent mixture solutions Acid mine drainage solutions: 
Table 6. Diffusion coefficients and ionic conductivities at 
infinite dilution for various species present in solutions of 
Fe2(SO4)3 + Na2SO4. 
Di (m2·s-1) li (mS·m2·mol-1) 
Na+ 1.334 5.01 
Fe3+ 0.604 20.40 
SO2- 1.065 16.00 
4 
FeSO4 
+ 0.201 0.76 
Na+ vs. Fe(III) 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
LIST OF CONTENTS 
1. INTRODUCTION 
2. OBJECTIVE 
3. EXPERIMENTAL TECHNIQUES 
4. RESULTS & DISCUSSION 
Transport of single salt solutions 
Transport of multicomponent mixtures 
Mechanisms of transport at overlimiting currents 
Galvanostatic electrodialysis experiments 
5. CONCLUSIONS
4.3. Mechanisms of overlimiting current transfer 
Transmembrane pressure, DP 
Investigate the origin of the overlimiting currents 
Overlimiting 
current 
densities 
Transmembrane voltage drop, Um 
Current density, i 
ilim 
Evaluate the role of heavy metals and electrolyte composition on the overlimiting currents 
2. Objective 3. Techniques Single salt 
solutions 
Results and d disicsucusssiioónn 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
Permeate flux, J 
Jlim 
1.Introduction 28
29 
GWraatveitra stpiolitntainl cgonvection 
H2O ⇄ H+ + OH-Exaltation 
Mass transfer driven by density differences within the fluid: 
Bulk solution  membrane depleting surface (reduction of the 
thickness of the diffusion boundary layer) 
0 100 200 300 
Maximum in Um 
Decrease of the 
thickness of the 
diffusion boundary layer 
effect 
AH + H2O ⇄ A- + H3O+ 
A- + H2O ⇄ AH + OH-Protons 
are transferred 
through the CEM 
Hidroxyls remain in the 
diffusion boundary layer 
Electroconvection 
Hydrodynamic instabilities generated due to the 
coexistence of intense electric fields with very diluted 
electrolytes 
Vortex generation  Distortion of the diffusion 
boundary layer 
0 100 200 300 
t (s) 
Um (V) 
R. Kwak, G. Guan, W.K. Peng, J. Han, Desalination 308 (2013) 138-146 
4.3. Mechanisms of overlimiting current transfer 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
44.. RReessuullttas daonsd d disicsucusssiioónn 
t (s) 
Um (V) 
0 100 200 300 
t (s) 
Um (V)
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
30 
Water dissociation 
NiSO4 
10-3M 
5·10-3M 
10-2M 
2·10-2M 
NiSO4 
10-3M 
5·10-3M 
10-2M 
2·10-2M 
4.3. Mechanisms of overlimiting current transfer 
2. Objective 3. Techniques Single salt 
solutions 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
Multicomponent 
solutions 
pHcentral 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
6 
5 
4 
3 
2 
1 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
1.8 
1.6 
1.4 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
0.0 0.2 0.4 0.6 0.8 1.0 
Um (V) 
i (mA·cm-2) 
0 
pH 
pHcathode 
pHanode 
pHcentral 
overlimiting region 
due to convective 
phenomena 
0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 
Um (V) 
i (mA·cm-2) 
0 
pH 
pHcathode 
pHanode 
catalyzed water 
splitting 
overlimiting region 
due to enhanced 
water splitting
0 0.5 1 1.5 2 
31 
4.3. Mechanisms of overlimiting current transfer 
Ni(OH)2 precipitates are not compact, at the 
membrane surface. 
Transport of OH- and H+ 
Fe(OH)3 precipitates are more dense, they 
are formed inside the membrane. 
Transport blockage 
2. Objective 3. Techniques Single salt 
solutions 
3 
2 
1 
0 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
Um (V) 
i/ilim 
Catalyzed water 
splitting 
Formation of a blocking 
layer of precipitates
32 
Convective phenomena 
1.6 
1.4 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
0.40 mA·cm-2 
overlimiting 
instabilities 
0.99 mA·cm-2 
0 100 200 300 400 
t (s) 
Um (V) 
0.32 mA·cm-2 
0.85 mA·cm-2 
1.28 mA·cm-2 
0.64 mA·cm-2 
0.60 mA·cm-2 
intensification 
of concentration 
polarization 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
coupled gravitational convection 
and electroconvection 
0 100 200 300 400 
t (s) 
Um (V) 
5.10 mA·cm-2 
4.53 mA·cm-2 
3.12 mA·cm-2 
2.69 mA·cm-2 
2.34 mA·cm-2 
2.13 mA·cm-2 
Cr2(SO4)3 
5·10-4M 
2.5·10-3M 
5·10-3M 
10-2M 
Cr2(SO4)3 
5·10-4M 
2.5·10-3M 
5·10-3M 
10-2M 
4.3. Mechanisms of overlimiting current transfer 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
33 
4.3. Mechanisms of overlimiting current transfer 
1.4 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0 100 200 300 
t (s) 
Um (V) 
increasing current 
densities 
NiSO4 CrO3 
5·10-4M 10-3M 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
34 
Convective phenomena favor the transport of ions at i>ilim: they imply a reduction in lplateau 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
0.0 
l[M+n] plateau [H lplateau +] 
2.5·10-3M Cr2(SO4)3 
10-2M Cr2(SO4)3 
0.0 0.2 0.4 0.6 0.8 1.0 
Um (V) 
i/ilim 
lplateau1 
lplateau2 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
0.0 
0 0.2 0.4 0.6 0.8 1 1.2 
Um (V) 
i/ilim 
0M CrO3 
10-3M CrO3 
10-2M CrO3 
lplateau1 
lplateau2 
lplateau3 
4.3. Mechanisms of overlimiting current transfer 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
44.. RReessuullttas daonsd d disicsucusssiioónn
35 
4.3. Mechanisms of overlimiting current transfer 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
0.000 0.005 0.010 0.015 0.020 0.025 
[M+n] (mol/L) 
lplateau (V) 
Na(I) 
Ni(II) 
Fe(III) 
Cr(III) 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
0.000 0.002 0.004 0.006 0.008 0.010 0.012 
Ni(II) (mol/L) 
lplateau (V) 
0M CrO3 
10-3M CrO3 
10-2M CrO3 
Gravitational convection is 
favored at high concentrations 
of heavy metals. 
The height of electroconvective 
vortices increases with the size 
of the involved cations. 
The Grotthuss mechanism of H+ 
ions does not involve the 
distortion of the diffusion 
boundary layer. 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
LIST OF CONTENTS 
1. INTRODUCTION 
2. OBJECTIVE 
3. EXPERIMENTAL TECHNIQUES 
4. RESULTS & DISCUSSION 
Transport of single salt solutions 
Transport of multicomponent mixtures 
Mechanisms of transport at overlimiting currents 
Galvanostatic electrodialysis experiments 
5. CONCLUSIONS
4. Results and discussion 
4.4. Galvanostatic electrodialysis experiments 
Table 7. Compositions tested and applied current densities selected for conducting the galvanostatic 
[NiSO4] [CrO3] ilim (mA·cm-2) Applied current densities 
10-3M 
0 M 0.064 
10-3M 0.255 75%·ilim 100%·ilim 125%·ilim 
10-2M 3.260 75%·ilim 100%·ilim 125%·ilim 
10-2M 
0M 0.850 
10-3M 1.130 75%·ilim 100%·ilim 125%·ilim 
10-2M 4.240 75%·ilim 100%·ilim 125%·ilim 
Effect of CrO3 
Effect of CrO3 
and i 
2. Objective 3. Techniques Single salt 
solutions 
Evaluate the membrane selectivity in 
long-term experiments 
Evaluate the effect of the applied current 
density in long-term experiments 
Objetives 
electrodialysis experiments. 
75%·ilim 
(10-3M NiSO4) 
75%·ilim 100%·ilim 125%·ilim 
75%·ilim 
(10-2M NiSO4) 
75%·ilim 100%·ilim 125%·ilim 
Effect of the range of 
applied current 
Results and d disicsucusssiioónn 
Multicomponent 
solutions 
density 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 36
37 
4.4. Galvanostatic electrodialysis experiments 
Effect of CrO3 
i = 0.048 mA·cm-2 
50 
40 
30 
20 
10 
0 
0 1 2 3 4 5 6 7 
t (h) 
X (%) 
0M CrO3 
10-3M CrO3 
10-2M CrO3 
100 
80 
60 
40 
20 
0 
0 1 2 3 4 5 6 7 
t (h) 
f (%) 
0 M CrO3 
10-3 M CrO3 
10-2 M CrO3 
NiSO4 CrO3 
10-3M 
0M 
10-3M 
10-2M 
Effect of CrO3 and i 
100 
80 
60 
40 
20 
0 
0 1 2 3 4 5 6 7 
t (h) 
X (%) 
0M CrO3 
10-3M CrO3 
10-2M CrO3 
50 
40 
30 
20 
10 
0 
0 1 2 3 4 5 6 7 
t (h) 
f (%) 
0M CrO3 
10-3M CrO3 
10-2M CrO3 
NiSO4 CrO3 75%·ilim 
10-2M 
0M 0.64 mA·cm-2 
10-3M 0.85 mA·cm-2 
10-2M 3.18 mA·cm-2 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn
38 
4.4. Galvanostatic electrodialysis experiments 
Ni2+ transport is improved 
General improvement in all 
parameters 
100 
80 
60 
40 
20 
0 
0 1 2 3 4 5 6 7 
t (h) 
X (%) 
125% ilim 
100% ilim 
75% ilim 
Effect of the range of applied 
26 
22 
18 
14 
10 
0 1 2 3 4 5 6 7 
t (h) 
Ucell (V) 
125% ilim 
100% ilim 
75% ilim 
Development of 
concentration polarization 
Onset of 
electroconvection 
70 
60 
50 
40 
30 
20 
10 
0 
0 1 2 3 4 5 6 7 
t (h) 
f (%) 
125% ilim 
100% ilim 
75% ilim 
100 
80 
60 
40 
20 
0 
0 1 2 3 4 5 6 7 
t (h) 
Es (kW·h/kg) 
125% ilim 
100% ilim 
75% ilim 
NiSO4 CrO3 iaplicada 
10-2M 0M 
75%·ilim 
100%·ilim 
125%·ilim 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
currents
39 
4.4. Galvanostatic electrodialysis experiments 
Ni2+ transport is improved 
The energy consumption increases 
100 
80 
60 
40 
20 
0 
Effect of the range of applied 
0 1 2 3 4 5 6 7 
t (h) 
X (%) 
125% ilim 
100% ilim 
75% ilim 
40 
35 
30 
25 
20 
15 
10 
5 
0 1 2 3 4 5 6 7 
t (h) 
Ucell (V) 
125% ilim 
100% ilim 
75% ilim 
35 
30 
25 
20 
15 
10 
5 
0 
0 1 2 3 4 5 6 7 
t (h) 
f (%) 
125% ilim 
100% ilim 
75% ilim 
120 
100 
80 
60 
40 
20 
0 
0 1 2 3 4 5 6 7 
t (h) 
Es (kW·h/kg) 
125% ilim 
100% ilim 
75% ilim 
NiSO4 CrO3 iaplicada 
10-3M 10-3M 
75%·ilim 
100%·ilim 
125%·ilim 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
currents
40 
Effect of the range of applied 
currents 
4.4. Galvanostatic electrodialysis experiments 
70 
60 
50 
40 
30 
20 
10 
100% ilim 
2. Objective 3. Techniques Single salt 
solutions 
100% ilim 
75% ilim 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and d disicsucusssiioónn 
0 
0 0.1 0.2 0.3 0.4 0.5 0.6 
lplateau (V) 
f (%) 
10-3M NiSO4 
10-2M NiSO4 
10-3M NiSO4 + 10-3M CrO3 
10-2M NiSO4 + 10-3M CrO3 
10-2M NiSO4 + 10-2M CrO3 
100% ilim 
100% ilim 
125% ilim 
125% ilim 
125% ilim 
75% i 125% ilim lim 
75% ilim 
75% ilim 
125% ilim 
75% ilim 
100% ilim
LIST OF CONTENTS 
1. INTRODUCTION 
2. OBJECTIVE 
3. EXPERIMENTAL TECHNIQUES 
4. RESULTS & DISCUSSION 
Transport of single salt solutions 
Transport of multicomponent mixtures 
Mechanisms of transport at overlimiting currents 
Galvanostatic electrodialysis experiments 
5. CONCLUSIONS
5. Conclusions 
Single salt solutions 
 The membrane fixed charges become saturated in solution counterions (Na+, Ni2+, Cr3+, Fe3+). 
 The chronopotentiometric curves obtained with multivalent metals show various transition times, which 
evidence the depletion of positively charged complex species (NiOH+, FeSO4 
 In systems with NiSO4 and Fe2(SO4)3 after surpassing the ilim the formation of precipitates could take place 
due to an increase of the local pH at the depleting membrane surface. This originates an increased 
membrane resistance and extended plateaus in the current-voltage curves. 
 In general, the current-voltage curves obtained show the three characteristic regions of membrane 
behavior. However, two ilim appear with diluted Cr2(SO4)3 solutions due to the depletion of different species. 
2. Objective 3. Techniques Single salt 
solutions 
Results and discussi0n 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
+, CrSO4 
+, etc.) 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 41
42 
5. Conclusions 
Multicomponent solutions 
 When immersed in mixtures of NiSOand CrO, the membrane fixed charges are preferentially balanced 
4 3with multicharged Ni2+ ions. 
 The chronopotentiometric and current-voltage curves obtained for the mixtures are similar to those 
obtained for single salt solutions. However, the H+ provided by CrOcompete with the Ni2+ ions for the 
3 transport through the membranes. 
 The transport number of Ni2+ through the membrane is significantly high in single salt solutions of 
NiSO, reaching values around 0.9. In the mixture solutions, the T2+ decreases for increasing 
4Ni 
concentrations of CrO3. 
 The membrane fixed charges show a higher affinity for Fe(III) with respect to that for Na+ ions. 
 At low underlimiting currents the concentration of FeSO4 
+ ions is predominant in the electrolyte. 
However, as the polarization of the membrane is intensified, they dissociate into Fe3+ and SO4 
2- ions, 
which implies a reduction in the electrical resistance of the membrane system. 
 The curves obtained for mixtures of Fe2(SO4)3 and Na2SO4 denote a preferential transport of Na+ ions at 
low current densities, whereas the transport of Fe3+ is favored at higher currents, when the depletion of 
Na+ ions has already occurred. 
NiSO4 
+ 
CrO3 
Na2SO4 
+ 
Fe2(SO4)3 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and discussi0n
43 
5. Conclusions 
Mechanisms of overlimiting current densities 
 The dissociation of water is the main mechanism originating the overlimiting currents when the 
formation of precipitates occurs at the anodic membrane surface. 
 Electroconvection is the main mechanism of overlimiting current densities in diluted solutions of all 
the metals tested. The magnitude of the oscillations in Um increases with the applied current density. 
 The role of gravitational convection becomes important in concentrated solutions of Cr2(SO4)3 and 
NiSO4. At high current densities gravitational convection and electroconvection have a synergic effect 
on the reduction of the electrical resistance of the membrane system. 
 The length of the plateau region of the current-voltage curves decreases for high concentrations of 
multivalent metals due to their participation on the motion of large volumes of fluid when coupled 
convection is initiated. On the contrary, H+ ions are transported via the Grotthuss mechanism and 
hamper electroconvection. 
 Overlimiting current densities lead to higher nickel transport rates. In terms of energy consumption, 
this increased transfer of Ni2+ is positive when the concentration of Ni2+ is relatively higher than that of 
H+ ions. On the contrary, for high concentrations of CrO3, the increased Ni2+ transfer rates are achieved 
at the cost of an important increase in the specific energy consumption. 
Electrochemical 
techniques 
Galvanostatic 
experiments 
2. Objective 3. Techniques Single salt 
solutions 
Multicomponent 
solutions 
Mechanisms 
i>ilim 
Galvanostatic 
experiments 
5. Conclusions 
4. Resultados y discusión 
1.Introduction 
Results and discussi0n
¡Thank you very much for 
your attention!

More Related Content

What's hot

A review on graphene based light emitting functional devices
A review on graphene based light emitting functional devicesA review on graphene based light emitting functional devices
A review on graphene based light emitting functional devicesJournal Papers
 
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...Journal Papers
 
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...Journal Papers
 
Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...
Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...
Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...Journal Papers
 
Vapor growth of binary and ternary phosphorusbased semiconductors into TiO2 n...
Vapor growth of binary and ternary phosphorusbased semiconductors into TiO2 n...Vapor growth of binary and ternary phosphorusbased semiconductors into TiO2 n...
Vapor growth of binary and ternary phosphorusbased semiconductors into TiO2 n...Pawan Kumar
 
Electrochemically reduced graphene oxide (ergo) as humidity sensor effect o...
Electrochemically reduced graphene oxide (ergo) as humidity sensor   effect o...Electrochemically reduced graphene oxide (ergo) as humidity sensor   effect o...
Electrochemically reduced graphene oxide (ergo) as humidity sensor effect o...Journal Papers
 
PVSC2015 final paper
PVSC2015 final paperPVSC2015 final paper
PVSC2015 final paperAbhishek Iyer
 
Surface modification and properties modulation of r go film by short duration...
Surface modification and properties modulation of r go film by short duration...Surface modification and properties modulation of r go film by short duration...
Surface modification and properties modulation of r go film by short duration...Journal Papers
 
Comparative study of rates of biosorption for selected single and mixed metal...
Comparative study of rates of biosorption for selected single and mixed metal...Comparative study of rates of biosorption for selected single and mixed metal...
Comparative study of rates of biosorption for selected single and mixed metal...Alexander Decker
 
An Attempt to Study MoO3-Like TCO Nanolayered Compound in Terms of structural...
An Attempt to Study MoO3-Like TCO Nanolayered Compound in Terms of structural...An Attempt to Study MoO3-Like TCO Nanolayered Compound in Terms of structural...
An Attempt to Study MoO3-Like TCO Nanolayered Compound in Terms of structural...CrimsonPublishersRDMS
 
Image reversal resist photolithography of silicon based platinum and silver m...
Image reversal resist photolithography of silicon based platinum and silver m...Image reversal resist photolithography of silicon based platinum and silver m...
Image reversal resist photolithography of silicon based platinum and silver m...Journal Papers
 
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO 2...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO 2...Vapor growth of binary and ternary phosphorus-based semiconductors into TiO 2...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO 2...Pawan Kumar
 

What's hot (20)

1-s2.0-S1369800114001711-main
1-s2.0-S1369800114001711-main1-s2.0-S1369800114001711-main
1-s2.0-S1369800114001711-main
 
A review on graphene based light emitting functional devices
A review on graphene based light emitting functional devicesA review on graphene based light emitting functional devices
A review on graphene based light emitting functional devices
 
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
 
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
Energy level tuning of cd se colloidal quantum dots in ternary 0d 2d-2d cdse ...
 
Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...
Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...
Preliminary study of poly (tetrahydrofurturyl acrylate) thin film as a potent...
 
Study of Energy by charles-delacourt
Study of Energy by charles-delacourtStudy of Energy by charles-delacourt
Study of Energy by charles-delacourt
 
A novel approach for Zeolite-based Materials for Gas Sensors
A novel approach for Zeolite-based Materials for Gas Sensors A novel approach for Zeolite-based Materials for Gas Sensors
A novel approach for Zeolite-based Materials for Gas Sensors
 
1-s2.0-S1369800114000055-main
1-s2.0-S1369800114000055-main1-s2.0-S1369800114000055-main
1-s2.0-S1369800114000055-main
 
Rodulfo-Baechler, S. 13
Rodulfo-Baechler, S. 13Rodulfo-Baechler, S. 13
Rodulfo-Baechler, S. 13
 
Vapor growth of binary and ternary phosphorusbased semiconductors into TiO2 n...
Vapor growth of binary and ternary phosphorusbased semiconductors into TiO2 n...Vapor growth of binary and ternary phosphorusbased semiconductors into TiO2 n...
Vapor growth of binary and ternary phosphorusbased semiconductors into TiO2 n...
 
Electrochemically reduced graphene oxide (ergo) as humidity sensor effect o...
Electrochemically reduced graphene oxide (ergo) as humidity sensor   effect o...Electrochemically reduced graphene oxide (ergo) as humidity sensor   effect o...
Electrochemically reduced graphene oxide (ergo) as humidity sensor effect o...
 
Ad044203208
Ad044203208Ad044203208
Ad044203208
 
PVSC2015 final paper
PVSC2015 final paperPVSC2015 final paper
PVSC2015 final paper
 
Surface modification and properties modulation of r go film by short duration...
Surface modification and properties modulation of r go film by short duration...Surface modification and properties modulation of r go film by short duration...
Surface modification and properties modulation of r go film by short duration...
 
Comparative study of rates of biosorption for selected single and mixed metal...
Comparative study of rates of biosorption for selected single and mixed metal...Comparative study of rates of biosorption for selected single and mixed metal...
Comparative study of rates of biosorption for selected single and mixed metal...
 
An Attempt to Study MoO3-Like TCO Nanolayered Compound in Terms of structural...
An Attempt to Study MoO3-Like TCO Nanolayered Compound in Terms of structural...An Attempt to Study MoO3-Like TCO Nanolayered Compound in Terms of structural...
An Attempt to Study MoO3-Like TCO Nanolayered Compound in Terms of structural...
 
Image reversal resist photolithography of silicon based platinum and silver m...
Image reversal resist photolithography of silicon based platinum and silver m...Image reversal resist photolithography of silicon based platinum and silver m...
Image reversal resist photolithography of silicon based platinum and silver m...
 
ELECTRODEPOSITION OF SILVER NANOPARTICLES ON CARBON SPHERE SURFACES BY PULSE ...
ELECTRODEPOSITION OF SILVER NANOPARTICLES ON CARBON SPHERE SURFACES BY PULSE ...ELECTRODEPOSITION OF SILVER NANOPARTICLES ON CARBON SPHERE SURFACES BY PULSE ...
ELECTRODEPOSITION OF SILVER NANOPARTICLES ON CARBON SPHERE SURFACES BY PULSE ...
 
Quantum dots
Quantum dots Quantum dots
Quantum dots
 
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO 2...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO 2...Vapor growth of binary and ternary phosphorus-based semiconductors into TiO 2...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO 2...
 

Viewers also liked

Viewers also liked (6)

RECOVERY OF METALS FROM EFFLUENT
RECOVERY OF METALS FROM EFFLUENTRECOVERY OF METALS FROM EFFLUENT
RECOVERY OF METALS FROM EFFLUENT
 
Extraction
ExtractionExtraction
Extraction
 
Steroid power point
Steroid power pointSteroid power point
Steroid power point
 
Extraction of plant contituents
Extraction of plant contituentsExtraction of plant contituents
Extraction of plant contituents
 
PHYTOCHEMICAL EXTRACTION
PHYTOCHEMICAL EXTRACTIONPHYTOCHEMICAL EXTRACTION
PHYTOCHEMICAL EXTRACTION
 
How to Create a Slideshare Account
How to Create a Slideshare AccountHow to Create a Slideshare Account
How to Create a Slideshare Account
 

Similar to Presentación3 def

The use of montmorillonite organoclay in preparation of uv cured dgba epoxy a...
The use of montmorillonite organoclay in preparation of uv cured dgba epoxy a...The use of montmorillonite organoclay in preparation of uv cured dgba epoxy a...
The use of montmorillonite organoclay in preparation of uv cured dgba epoxy a...Jenaro L. VARELA CASELIS
 
Innovation Technology for Water Desalination Based on RO-NF Membrane
Innovation Technology for Water Desalination Based on RO-NF MembraneInnovation Technology for Water Desalination Based on RO-NF Membrane
Innovation Technology for Water Desalination Based on RO-NF MembraneAbdallah M. Ashraf
 
Walker Electrochemical Paper
Walker Electrochemical PaperWalker Electrochemical Paper
Walker Electrochemical PaperPatrick Walker
 
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...Mahdi Robat Sarpoushi
 
2011 UQ Engineering Postgraduate Research Conference
2011 UQ Engineering Postgraduate Research Conference2011 UQ Engineering Postgraduate Research Conference
2011 UQ Engineering Postgraduate Research ConferenceKelly Lipiec
 
Overview of carbon nanotubes cnts novelof applications as microelectronics op...
Overview of carbon nanotubes cnts novelof applications as microelectronics op...Overview of carbon nanotubes cnts novelof applications as microelectronics op...
Overview of carbon nanotubes cnts novelof applications as microelectronics op...IAEME Publication
 
Structural, Magnetic and Transport Properties of Magnetically Ordered (Fe95Cu...
Structural, Magnetic and Transport Properties of Magnetically Ordered (Fe95Cu...Structural, Magnetic and Transport Properties of Magnetically Ordered (Fe95Cu...
Structural, Magnetic and Transport Properties of Magnetically Ordered (Fe95Cu...IRJET Journal
 
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solutionMagnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solutionhbrothers
 
Synthesis, Ultrasonic Characterization and Comparative Studies of Silver and ...
Synthesis, Ultrasonic Characterization and Comparative Studies of Silver and ...Synthesis, Ultrasonic Characterization and Comparative Studies of Silver and ...
Synthesis, Ultrasonic Characterization and Comparative Studies of Silver and ...IRJET Journal
 
Ion exchange chromatoghraphy
Ion exchange chromatoghraphyIon exchange chromatoghraphy
Ion exchange chromatoghraphyPankaj Maurya
 
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...SJ BASHA
 
Fabrication and studying the dielectric properties of (polystyrene-copper oxi...
Fabrication and studying the dielectric properties of (polystyrene-copper oxi...Fabrication and studying the dielectric properties of (polystyrene-copper oxi...
Fabrication and studying the dielectric properties of (polystyrene-copper oxi...journalBEEI
 

Similar to Presentación3 def (20)

The use of montmorillonite organoclay in preparation of uv cured dgba epoxy a...
The use of montmorillonite organoclay in preparation of uv cured dgba epoxy a...The use of montmorillonite organoclay in preparation of uv cured dgba epoxy a...
The use of montmorillonite organoclay in preparation of uv cured dgba epoxy a...
 
Innovation Technology for Water Desalination Based on RO-NF Membrane
Innovation Technology for Water Desalination Based on RO-NF MembraneInnovation Technology for Water Desalination Based on RO-NF Membrane
Innovation Technology for Water Desalination Based on RO-NF Membrane
 
Paper 1
Paper 1Paper 1
Paper 1
 
Walker Electrochemical Paper
Walker Electrochemical PaperWalker Electrochemical Paper
Walker Electrochemical Paper
 
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
10.1016-j.synthmet.2014.12.031-Graphite nanosheets_nanoporous carbon black_ce...
 
Cv panagiotis september_2016
Cv panagiotis september_2016Cv panagiotis september_2016
Cv panagiotis september_2016
 
FARAMARZI_Vina_2011
FARAMARZI_Vina_2011FARAMARZI_Vina_2011
FARAMARZI_Vina_2011
 
2011 UQ Engineering Postgraduate Research Conference
2011 UQ Engineering Postgraduate Research Conference2011 UQ Engineering Postgraduate Research Conference
2011 UQ Engineering Postgraduate Research Conference
 
Overview of carbon nanotubes cnts novelof applications as microelectronics op...
Overview of carbon nanotubes cnts novelof applications as microelectronics op...Overview of carbon nanotubes cnts novelof applications as microelectronics op...
Overview of carbon nanotubes cnts novelof applications as microelectronics op...
 
Structural, Magnetic and Transport Properties of Magnetically Ordered (Fe95Cu...
Structural, Magnetic and Transport Properties of Magnetically Ordered (Fe95Cu...Structural, Magnetic and Transport Properties of Magnetically Ordered (Fe95Cu...
Structural, Magnetic and Transport Properties of Magnetically Ordered (Fe95Cu...
 
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solutionMagnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
Magnetic chitosan nanoparticles for removal of cr(vi) from aqueous solution
 
Amity jaipur ppp fabrication and characterization of nanowire devices
Amity jaipur ppp fabrication and characterization of nanowire devicesAmity jaipur ppp fabrication and characterization of nanowire devices
Amity jaipur ppp fabrication and characterization of nanowire devices
 
Synthesis, Ultrasonic Characterization and Comparative Studies of Silver and ...
Synthesis, Ultrasonic Characterization and Comparative Studies of Silver and ...Synthesis, Ultrasonic Characterization and Comparative Studies of Silver and ...
Synthesis, Ultrasonic Characterization and Comparative Studies of Silver and ...
 
Ion exchange chromatoghraphy
Ion exchange chromatoghraphyIon exchange chromatoghraphy
Ion exchange chromatoghraphy
 
Term report_nanotechnology
Term report_nanotechnologyTerm report_nanotechnology
Term report_nanotechnology
 
COMPARATIVE STUDY OF DOUBLE CHAMBER MICROBIAL FUEL CELLS (DC-MFCS) USING MFEN...
COMPARATIVE STUDY OF DOUBLE CHAMBER MICROBIAL FUEL CELLS (DC-MFCS) USING MFEN...COMPARATIVE STUDY OF DOUBLE CHAMBER MICROBIAL FUEL CELLS (DC-MFCS) USING MFEN...
COMPARATIVE STUDY OF DOUBLE CHAMBER MICROBIAL FUEL CELLS (DC-MFCS) USING MFEN...
 
Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...
Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...
Pore scale dynamics and the interpretation of flow processes - Martin Blunt, ...
 
Microstructure analysis of the carbon nano tubes aluminum composite with diff...
Microstructure analysis of the carbon nano tubes aluminum composite with diff...Microstructure analysis of the carbon nano tubes aluminum composite with diff...
Microstructure analysis of the carbon nano tubes aluminum composite with diff...
 
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...
EFFECT OF DIFFERENT NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF CO...
 
Fabrication and studying the dielectric properties of (polystyrene-copper oxi...
Fabrication and studying the dielectric properties of (polystyrene-copper oxi...Fabrication and studying the dielectric properties of (polystyrene-copper oxi...
Fabrication and studying the dielectric properties of (polystyrene-copper oxi...
 

Presentación3 def

  • 1. Study of the transport of heavy metal ions through cation-exchange membranes applied to the treatment of industrial effluents Manuel César Martí Calatayud Dr. D. Valentín Pérez Herranz Dra. Dª. Montserrat García Gabaldón
  • 2. Programa Oficial de posgrado en Ingeniería y Producción Industrial FUNDING Predoctoral funding  Ayuda predoctoral: Formación de Personal Investigador de la Universitat Politècnica de València (Ref. FPI-UPV 2010-12)  Ayuda para la realización de estancias en centros de investigación de prestigio de la Universitat Politècnica de València: (PAID-00-12) Projects  Proyecto del Ministerio de Economía y Competitividad: “Caracterización electroquímica de membranas cerámicas nanoestructuradas de intercambio iónico para su aplicación en reactores electroquímicos y sistemas electrodialíticos” (CTQ2012-37450-C02-01/PPQ)  Proyecto del Ministerio de Ciencia e Innovación: “Desarrollo de nuevos reactores electroquímicos basados en membranas cerámicas para la recuperación de cromo hexavalente de los efluentes de las industrias de tratamiento de superficies” (CTQ2008-06750-C02-01/PPQ)
  • 3. RESEARCH ARTICLES IN SCIENTIFIC JOURNALS Results related to the Doctoral Thesis  Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, E. Ortega Journal of Membrane Science, 379 (2011) 449-458.  Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz Journal of Membrane Science, 392-393 (2012) 137-149.  Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz Journal of Membrane Science, 443 (2013) 181-192.  Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. M.C. Martí-Calatayud, D.C. Buzzi, M. García-Gabaldón, A.M. Bernardes, J.A.S. Tenório, V. Pérez- Herranz Journal of Membrane Science, 466 (2014) 45-57.
  • 4. Research stay at Chemische Verfahrenstechnik – RWTH Aachen University (Germany)  Layer-by-Layer modification of cation exchange membranes controls ion selectivity and water splitting. S. Abdu, M.C. Martí-Calatayud, J.E. Wong, M. García-Gabaldón, M. Wessling ACS Applied Materials & Interfaces, 6 (2014) 1843-1854. Collaboration with the Instituto de Tecnología Cerámica – UJI Castelló  Synthesis and electrochemical behavior of ceramic cation-exchange membranes based on zirconium phosphate. M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, S. Sales, S. Mestre Ceramics International, 39 (2013) 4045-4054.  Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions. M.C. Martí-Calatayud, M. García-Gabaldón, V. Pérez-Herranz, S. Sales, S. Mestre Desalination and Water Treatment, 51 (2013) 597-605. Collaboration with the Departamento de Ingeniería de Materiales – Universidade do Rio Grande do Sul (Brasil)  Sulfuric acid recovery from acid mine drainage by means of electrodialysis. M.C. Martí-Calatayud, D.C. Buzzi, M. García-Gabaldón, E. Ortega, A.M. Bernardes, J.A.S. Tenório, V. Pérez-Herranz Desalination, 343 (2014) 120-127.
  • 5. CONTRIBUTIONS IN CONFERENCES  10th European Symposium on Electrochemical Engineering, 2014, Sardinia (Italy)  65th Annual Meeting of the International Society of Electrochemistry, 2014, Lausanne (Switzerland)  IX Ibero-americal Congress on Membrane Science and Technology, 2014, Santander.  13th International Conference on Environmental Science and Technology (CEST 2013), Atenas  XXXIV Reunión bienal de la RSEQ 2013, Santander  2 contribuciones XXXIV Reunión de electroquímica de la RSEQ, 2013, València  1st International Conference on Desalination using Membrane Technology, 2013, Sitges (Spain)  63rd Annual Meeting of the International Society of Electrochemistry, 2013, Prague (Czech Republic)  VIII Simposio Internacional de Qualidade Ambiental, 2012, Porto Alegre (Brazil)  Conference on Desalination for the Environment, Clean Water and Energy, 2012, Barcelona.  13 Network of Young Membrains, 2011, Enschede (The Netherlands)  9th European Symposium on Electrochemical Engineering, 2011, Chania (Greece)  2nd Regional Symposium on Electrochemistry, 2011, Belgrade (Serbia) AWARDS  Premio en el VII Certamen València Idea 2013, sección Energía y Medio Ambiente “Desarrollo de membranas de intercambio iónico con funcionalidad óptima para su utilización en baterías de flujo redox de elevada eficiencia energética”.
  • 6. LIST OF CONTENTS 1. INTRODUCTION 2. OBJECTIVE 3. EXPERIMENTAL TECHNIQUES 4. RESULTS & DISCUSSION Transport of single salt solutions Transport of multicomponent mixtures Mechanisms of transport at overlimiting currents Galvanostatic electrodialysis experiments 5. CONCLUSIONS
  • 7. 1.1 Scope / Background Heavy metals have high specific density (>5), and are highly persistent. Most of them (Cr, Ni, Cd, …) are carcinogenic.  Effects on the environment  Effects on the human health They have multitude of applications. Their extraction, use and price are continuously growing.  Effects on the economy. Unsustainable growth.  Geopolitical problems. Metals imports Mineral depletion 2. Objetive 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Results and discussion 1.Introduction 1
  • 8. 2 1.2 Electromembrane processes The presence of heavy metals in natural watercourses is mainly consequence of mining activities and due to the discharge of industrial effluents. Electromembrane processes, such as electrodialysis, represent a sustainable alternative for the treatment of these effluents, since they allow the selective recovery and reuse of valuable metals. They permit the separation of ions from aqueous solutions by using: Driving force: an electric field Selective barriers: ion-exchange membranes Principle of electromembrane processes Structure of a cation-exchange membrane 2. Objetive 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Results and discussion 1.Introduction
  • 9. 3 1.3 Characteristics / Limitations They are selective processes which allow the separation of cationic and anionic species. The addition of reagents is not required. Continuous and modular processes (stacks) Membrane fouling. Concentration polarization phenomena: The mass transfer becomes limited with the increase in the driving force 0.8 0.6 0.4 0.2 0.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Um (V) i (mA·cm-2) ilim Overlimiting current densities 2. Objetive 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Results and discussion 1.Introduction
  • 10. LIST OF CONTENTS 1. INTRODUCTION 2. OBJECTIVE 3. EXPERIMENTAL TECHNIQUES 4. RESULTS & DISCUSSION Transport of single salt solutions Transport of multicomponent mixtures Mechanisms of transport at overlimiting currents Galvanostatic electrodialysis experiments 5. CONCLUSIONS
  • 11. 2. Objective and structure of the Thesis To identify and investigate the mass transfer phenomena involved in electromembrane processes in order to optimize the treatment of industrial effluents containing heavy metals. Identificar e investigar los fenómenos de transferencia de materia implicados en procesos electroquímicos de membrana con el fin de optimizar el tratamiento de efluentes industriales que contienen metales pesados 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Results and discussion 1.Introduction 4
  • 12. LIST OF CONTENTS 1. INTRODUCTION 2. OBJECTIVE 3. EXPERIMENTAL TECHNIQUES 4. RESULTS & DISCUSSION Transport of single salt solutions Transport of multicomponent mixtures Mechanisms of transport at overlimiting currents Galvanostatic electrodialysis experiments 5. CONCLUSIONS
  • 13. 3. Experimental techniques Cation-exchange membranes  NAFION 117 Properties:  High conductivity (low electrical resistance)  High selectivity  High mechanical and chemical resistance (durability). 2. Objective 3. Techniques Single salt solutions IEC (ion exchange capacity) : 0.90 meq. SO3 Multicomponent solutions - / g membrane Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Results and discussion 1.Introduction 5
  • 14. 6 3. Experimental techniques A) Ion sorption experiments B) Chronopotentiometry Electrochemical technique used to analyze the dynamics of ion transport processes through a system composed by a membrane and an electrolyte: Concentration polarization 2 2 ö Sand’s equation: t p + 0 1 æ D c z F ÷ ÷ ö çè 4 T t i ø ç ç è - ÷ø =æ + + 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Results and discussion 1.Introduction
  • 15. 7 A) Ion sorption experiments C) Polarization curves: i vs. Um They provide an idea about the membrane behavior at different current regimes: 1. Quasi-ohmic region: linear dependence between i and Um 2. Plateau region: mass transfer limitations 3. Region of overlimiting currents: The transfer of current carriers toward the membrane surface is activated z Dc F + - ( ) lim + + = T t i d 0 Peers’ equation: 3. Experimental techniques B) Chronopotentiometry 0.8 0.6 0.4 0.2 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Results and discussion 1.Introduction 0.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Um (V) i (mA·cm-2) ilim Overlimiting region quasi-ohmic region plateau
  • 16. (%) (%) ( ) (kW·h·kg-1) 8 A) Ion sorption experiments B) Chronopotentiometry D) Galvanostatic experiments in 3-compartment electrochemical cell Parameters to evaluate the efficiency in the mass transfer and energy usage in an electromembrane reactor: 100 = c 0 - c ´ X(t ) t 0 c ( ) 100 = - t nFV c c 0 ´ ò 0 t Idt f(t ) ( ) t M c - c h( t )= 0 t ò × = U I dt M V c X E t t cell s × × × × 0 0 3600 (g·l-1·h-1) 3. Experimental techniques C) Polarization curves: i vs. Um 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Results and discussion 1.Introduction
  • 17. LIST OF CONTENTS 1. INTRODUCTION 2. OBJECTIVE 3. EXPERIMENTAL TECHNIQUES 4. RESULTS & DISCUSSION Transport of single salt solutions Transport of multicomponent mixtures Mechanisms of transport at overlimiting currents Galvanostatic electrodialysis experiments 5. CONCLUSIONS
  • 18. 4. Results and discussion 4.1. Transport in single salt solutions Tabla 1. Electrolyte compositions used for the experiments conducted with single salt solutions. [M+n] Na2SO4 NiSO4 Cr2(SO4)3 Fe2(SO4)3 10-3M 5·10-4M 10-3M 5·10-4M 5·10-4M 5·10-3M 2.5·10-3M 5·10-3M 2.5·10-3M 2.5·10-3M 10-2M 5·10-3M 10-2M 5·10-3M 5·10-3M 2·10-2M 10-2M 2·10-2M 10-2M 10-2M Monovalent metal: Na+ Present in effluents generated in leather 2. Objective 3. Techniques Single salt solutions Cr(III) tanneries Present in acid mine drainage solutions Results and d disicsucusssiioónn Multicomponent solutions Mechanisms i>ilim Fe(III) Galvanostatic experiments Ni(II), Cr(III) y Fe(III) Present in spent baths generated in the metal finishing industry 5. Conclusions 4. Resultados y discusión 1.Introduction 9
  • 19. 10 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 [M+n] (mol/L) cm (mmol/g) Na(I) Ni(II) Fe(III) Cr(III) 4.1. Transport in single salt solutions Ni2+ Cr3+ Fe3+ 10-3M 5·10-3M 10-2M 2·10-2M The membrane becomes saturated in counterions 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 20. 11 Na2SO4 5·10-4M 2.5·10-3M 5·10-3M 10-2M 0.75 0.30 0.75 0.25 0.60 0.20 0.45 0.15 0.30 0.10 0.05 0.044 mA·cm-2 t (s) Um (V) 0.028 mA·cm-2 0.014 mA·cm-2 0.051 mA·cm-2 0.054 mA·cm-2 0.00 0.055 mA·2 0 100 200 300 400 500 0.15 0.059 mA·cm-2 0.055 mA·cm-2 t 0.071 mA·cm-2 0.085 mA·cm-2 0.113 mA·cm-2 i < ilim > 4.1. Transport in single salt solutions 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 21. 12 æ t p + ö çè D c z F ö ÷ ÷ Sand’s equation: 2 1.0 Indicates the fraction of current associated with the transport of a specific ion with respect to the total current passed through the membrane  Agreement with the Sand’s eq. y1 = 7.252x - 7.405 R2 = 0.999 y2 = 5.132x + 3.209 R2 = 0.994 y3 = 4.717x - 5.445 R2 = 0.995 y4 = 3.058x - 0.815 R2 = 0.990 120 100 80 60 40 20 0 0 5 10 15 20 25 (c0/I)2 (mol/L·A)2 t (s) 10-2M Na2SO4 5·10-3M Na2SO4 2.5·10-3M Na2SO4 5·10-4M Na2SO4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 4.E-02 3.E-02 2.E-02 1.E-02 0.8  Calculation of the transition time 0.6 0.4 0.2 0 100 200 300 400 t (s) Um (V) 0.E+00 DUm/Dt 0.99 mA·cm-2 0.71 mA·cm-2 0.62 mA·cm-2 0.58 mA·cm-2 2 0 1 4 T t i ø ç ç è - ÷ø =æ + + T+ 4.1. Transport in single salt solutions 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction 44.. RReessuullttas daonsd d disicsucusssiioónn 0.0 0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 [M+n] (mol/L) T+ Na+ Ni2+
  • 22. 13 4.1. Transport in single salt solutions 0.8 0.6 0.4 0.2 0.0 0.015 0.010 0.005 1.346 mA·cm-2 1.133 mA·cm-2 0.992 mA·cm-2 0.878 mA·cm-2 0 100 200 300 400 t (s) Um (V) 0.000 DUm/Dt 0.538 mA·cm-2 t1 t1 t1 t2 t2 t2 Cr2(SO4)3 2.5·10-3M Multiple transition times 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 23. 14 4.1. Transport in single salt solutions CrSO4 + Cr3+ pHeq pH ai CrOH2+ Speciation diagram of 2.5·10-3M Cr2(SO4)3 1.0 0.8 0.6 0.4 0.2 0.0 Cr(OH)2 + 0 1 2 3 4 5 6 7 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 24. Plateau in the relaxation of Um 15 NiSO4 ilim (mA·cm-2) 10-2M 0.85 1.0 0.8 0.6 0.4 0.2 0.0 2.27 mA·cm-2 1.56 mA·cm-2 1.70 mA·cm-2 0 100 200 300 400 500 t (s) Um (V) 0.99 mA·cm-2 0.57 mA·cm-2 1.98 mA·cm-2 Fe2(SO4)3 ilim (mA·cm-2) 10-2M 7.08 4.1. Transport in single salt solutions 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 0.4 Um (V) 5. Conclusions 5 4 3 2 1 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn Formation of precipitates Plateau in the relaxation of Um 0 0 100 200 300 400 500 t (s) Um (V) 7.79 mA·cm-2 7.37 mA·cm-2 7.08 mA·cm-2 5.67 mA·cm-2 Formation of precipitates 0.0 300 t (s) 350
  • 25. The formation of precipitates is due to pH changes in the vicinities of the membrane The difference between pHeq - pH↓ is low for the solutions of Fe(III) The difference between pHeq - pH↓ is higher in the case of Cr(III) 16 4.1. Transport in single salt solutions 1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 pH 0 2 4 6 8 10 12 14 s (mol/L) pHeq pHeq NiSO4 2·10-2M Cr2(SO4)3 10-2 M Fe2(SO4)3 10-2 M 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction 44.. RReessuullttas daonsd d disicsucusssiioónn
  • 26. 17 300 250 200 150 100 50 0 1.2 1.0 0.8 0.6 0.4 0.2 0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 [Na(I)] (mol/L) R1 (W·cm2) 0.0 ilim (mA·cm-2) 3 regions of membrane behavior:  Quasi-ohmic regime  Plateau ilim  Region of overlimiting currents  Good agreement with the Peers’ equation  R1 decreases with the electrolyte concentration. 4.1. Transport in single salt solutions 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 0.8 0.6 0.4 0.2 1.Introduction Results and d disicsucusssiioónn 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Um (V) i (mA·cm-2) 2.5·10-3M Na2SO4 5·10-4M Na2SO4 1/R1 ilim Quasi-ohmic region Plateau Overlimiting region
  • 27. 18 2.0 1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Um (V) i (mA·cm-2) ilim1 2.5·10-3M Cr2(SO4)3 5·10-4M Cr2(SO4)3 ilim2 4.1. Transport in single salt solutions 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 28. LIST OF CONTENTS 1. INTRODUCTION 2. OBJECTIVE 3. EXPERIMENTAL TECHNIQUES 4. RESULTS & DISCUSSION Transport of single salt solutions Transport of multicomponent mixtures Mechanisms of transport at overlimiting currents Galvanostatic electrodialysis experiments 5. CONCLUSIONS
  • 29. 4. Results and discussion 4.2. Transport in multicomponent mixture solutions NiSO4 CrO3 + H2O  H2CrO4 ↔ 2H+ + CrO4 100% 75% 50% 25% Fraction of membrane fixed charges 0M CrO3 10-3M CrO3 10-2M CrO3 0% 0.00E+00 2.50E-03 5.00E-03 7.50E-03 1.00E-02 1.25E-02 [Ni(II)] (mol/L) 2. Objective 3. Techniques Single salt solutions 5·10-4M NiSO4 5·10-4M NiSO4 5·10-3M NiSO4 5·10-3M NiSO4 5·10-3M NiSO4 10-3M NiSO4 10-3M NiSO4 10-3M NiSO4 10-2M NiSO4 10-2M NiSO4 10-2M NiSO4 10-3M CrO3 10-2M CrO3 0M CrO3 5·10-4M NiSO4 Results and d disicsucusssiioónn 2- Multicomponent solutions Baths from the metal finishing industry: Mechanisms i>ilim H+ vs. Ni2+ Acid mine drainage solutions: Na+ vs. Fe(III) Electrolyte composition Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 0.5 0.4 0.3 0.2 0.1 0.0 cm (mmol/g) H+ Ni2+ 1.Introduction 19
  • 30. 4.2. Transport in multicomponent mixture solutions Baths from the metal finishing industry: 20 CrO3 NiSO4 10-3M 5·10-4M 10-3M 5·10-3M 10-2M 10-2M 5·10-4M 10-3M 5·10-3M 10-2M Analogous behavior to that obtained with single salt solutions of NiSO4 (without CrO3) H+ vs. Ni2+ 1.2 1.0 0.8 0.6 0.4 0.2 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn 0.0 0 100 200 300 400 500 t (s) Um (V) 3.12 mA·cm-2 2.83 mA·cm-2 2.55 mA·cm-2 2.27 mA·cm-2 1.35 mA·cm-2 1.16 mA·cm-2 Formation of precipitates Plateau in the relaxation of Um
  • 31. Baths from the metal finishing industry: 21 H+ vs. Ni2+ 4.2. Transport in multicomponent mixture solutions CrO3 NiSO4 10-3M 5·10-4M 10-3M 5·10-3M 10-2M 10-2M 5·10-4M 10-3M 5·10-3M 10-2M 0.8 0.6 0.4 0.2 With 10-2M CrO3 solutions the formation of precipitates did not occur. 0.0 0 100 200 300 400 t (s) Um (V) 5.38 mA·cm-2 8.50 mA·cm-2 4.25 mA·cm-2 3.97 mA·cm-2 3.26 mA·cm-2 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 32. 4.2. Transport in multicomponent mixture solutions Baths from the metal finishing industry: 22 H+ vs. Ni2+ 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 Increasing current densities 2. Objective 3. Techniques Single salt solutions pH Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn 1.0E-07 0 2 4 6 8 10 12 14 s (mol/L) The formation of precipitates starts pHeq 10-2M CrO3 pHeq 10-3M CrO3 pHeq 0M CrO3
  • 33. 4.2. Transport in multicomponent mixture solutions Baths from the metal finishing industry: 23 1.0 0.8 0.6 0.4 0.2 0.0 16 14 12 10 8 6 4 2 0.00E+00 2.50E-03 5.00E-03 7.50E-03 1.00E-02 1.25E-02 [Ni(II)] (mol/L) 2+ TNi 0M CrO3 10-3M CrO3 10-2M CrO3 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Um (V) i (mA·cm-2) 10-2M NiSO4 5·10-3M NiSO4 10-3M NiSO4 5·10-4M NiSO4 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Um (V) i (mA·cm-2) 10-2M NiSO4 5·10-3M NiSO4 10-3M NiSO4 5·10-4M NiSO4 H+ vs. Ni2+ 10-3 M CrO3 10-2 M CrO3 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 34. 24 4.2. Transport in multicomponent mixture solutions Acid mine drainage solutions: The attractive forces between the SO3 - groups and Fe3+ are higher than those with Na+ Fe2(SO4)3 Na2SO4 2·10-2M 0M 10-2M 2·10-2M 100% 75% 50% 25% 0% Electrolyte composition Fraction of membrane fixed charges 0.02M Fe2(SO4)3 0.02M Fe2(SO4)3 + 0.01M Na2SO4 0.02M Fe2(SO4)3 + 0.02M Na2SO4 0.01M Na2SO4 FeSO4 + Fe3+ Na+ Na+ vs. Fe(III) 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 35. 25 4.2. Transport in multicomponent mixture solutions Acid mine drainage solutions: Fe2(SO4)3 Na2SO4 2·10-2M 0M 10-2M 2·10-2M 0.15 3.0 0.10 2.0 0.05 1.0 0.00 Na+ vs. Fe(III) formation of Fe(OH)3 precipitates 0 100 200 300 400 500 t (s) Um (V) 8.50 mA·cm-2 5.67 mA·cm-2 11.33 mA·cm-2 14.16 mA·cm-2 17.00 mA·cm-2 i < ilim > 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn 0.0 0 100 200 t (s) 300 400 500 Um (V) 17.28 mA·cm-2 17.14 mA·cm-2 t t 17.56 mA·cm-2 depletion of Fe3+ ions
  • 36. 4.2. Transport in multicomponent mixture solutions Acid mine drainage solutions: Change in electrical resistance ilim associated with the 26 depletion of Na+ 18 15 12 9 6 3 0 20 15 10 5 0 0.0 0.1 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Um (V) i (mA·cm-2) 0.02M Fe2(SO4)3 0.02M Fe2(SO4)3 + 0.01M Na2SO4 0.02M Fe2(SO4)3 + 0.02M Na2SO4 Um (V) i (mA·cm-2) 1/R1 1/R2 1/R1 1/R2 0.02M Fe2(SO4)3 ilim1 ilim2 Na+ vs. Fe(III) 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 37. 27 4.2. Transport in multicomponent mixture solutions Acid mine drainage solutions: Table 6. Diffusion coefficients and ionic conductivities at infinite dilution for various species present in solutions of Fe2(SO4)3 + Na2SO4. Di (m2·s-1) li (mS·m2·mol-1) Na+ 1.334 5.01 Fe3+ 0.604 20.40 SO2- 1.065 16.00 4 FeSO4 + 0.201 0.76 Na+ vs. Fe(III) 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 38. LIST OF CONTENTS 1. INTRODUCTION 2. OBJECTIVE 3. EXPERIMENTAL TECHNIQUES 4. RESULTS & DISCUSSION Transport of single salt solutions Transport of multicomponent mixtures Mechanisms of transport at overlimiting currents Galvanostatic electrodialysis experiments 5. CONCLUSIONS
  • 39. 4.3. Mechanisms of overlimiting current transfer Transmembrane pressure, DP Investigate the origin of the overlimiting currents Overlimiting current densities Transmembrane voltage drop, Um Current density, i ilim Evaluate the role of heavy metals and electrolyte composition on the overlimiting currents 2. Objective 3. Techniques Single salt solutions Results and d disicsucusssiioónn Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión Permeate flux, J Jlim 1.Introduction 28
  • 40. 29 GWraatveitra stpiolitntainl cgonvection H2O ⇄ H+ + OH-Exaltation Mass transfer driven by density differences within the fluid: Bulk solution  membrane depleting surface (reduction of the thickness of the diffusion boundary layer) 0 100 200 300 Maximum in Um Decrease of the thickness of the diffusion boundary layer effect AH + H2O ⇄ A- + H3O+ A- + H2O ⇄ AH + OH-Protons are transferred through the CEM Hidroxyls remain in the diffusion boundary layer Electroconvection Hydrodynamic instabilities generated due to the coexistence of intense electric fields with very diluted electrolytes Vortex generation  Distortion of the diffusion boundary layer 0 100 200 300 t (s) Um (V) R. Kwak, G. Guan, W.K. Peng, J. Han, Desalination 308 (2013) 138-146 4.3. Mechanisms of overlimiting current transfer 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction 44.. RReessuullttas daonsd d disicsucusssiioónn t (s) Um (V) 0 100 200 300 t (s) Um (V)
  • 41. 10 9 8 7 6 5 4 3 2 1 30 Water dissociation NiSO4 10-3M 5·10-3M 10-2M 2·10-2M NiSO4 10-3M 5·10-3M 10-2M 2·10-2M 4.3. Mechanisms of overlimiting current transfer 2. Objective 3. Techniques Single salt solutions 10 9 8 7 6 5 4 3 2 1 Multicomponent solutions pHcentral Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 6 5 4 3 2 1 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Um (V) i (mA·cm-2) 0 pH pHcathode pHanode pHcentral overlimiting region due to convective phenomena 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Um (V) i (mA·cm-2) 0 pH pHcathode pHanode catalyzed water splitting overlimiting region due to enhanced water splitting
  • 42. 0 0.5 1 1.5 2 31 4.3. Mechanisms of overlimiting current transfer Ni(OH)2 precipitates are not compact, at the membrane surface. Transport of OH- and H+ Fe(OH)3 precipitates are more dense, they are formed inside the membrane. Transport blockage 2. Objective 3. Techniques Single salt solutions 3 2 1 0 Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn Um (V) i/ilim Catalyzed water splitting Formation of a blocking layer of precipitates
  • 43. 32 Convective phenomena 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.40 mA·cm-2 overlimiting instabilities 0.99 mA·cm-2 0 100 200 300 400 t (s) Um (V) 0.32 mA·cm-2 0.85 mA·cm-2 1.28 mA·cm-2 0.64 mA·cm-2 0.60 mA·cm-2 intensification of concentration polarization 1.0 0.8 0.6 0.4 0.2 0.0 coupled gravitational convection and electroconvection 0 100 200 300 400 t (s) Um (V) 5.10 mA·cm-2 4.53 mA·cm-2 3.12 mA·cm-2 2.69 mA·cm-2 2.34 mA·cm-2 2.13 mA·cm-2 Cr2(SO4)3 5·10-4M 2.5·10-3M 5·10-3M 10-2M Cr2(SO4)3 5·10-4M 2.5·10-3M 5·10-3M 10-2M 4.3. Mechanisms of overlimiting current transfer 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 44. 33 4.3. Mechanisms of overlimiting current transfer 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 100 200 300 t (s) Um (V) increasing current densities NiSO4 CrO3 5·10-4M 10-3M 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 45. 34 Convective phenomena favor the transport of ions at i>ilim: they imply a reduction in lplateau 3.0 2.5 2.0 1.5 1.0 0.5 0.0 l[M+n] plateau [H lplateau +] 2.5·10-3M Cr2(SO4)3 10-2M Cr2(SO4)3 0.0 0.2 0.4 0.6 0.8 1.0 Um (V) i/ilim lplateau1 lplateau2 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 0.2 0.4 0.6 0.8 1 1.2 Um (V) i/ilim 0M CrO3 10-3M CrO3 10-2M CrO3 lplateau1 lplateau2 lplateau3 4.3. Mechanisms of overlimiting current transfer 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction 44.. RReessuullttas daonsd d disicsucusssiioónn
  • 46. 35 4.3. Mechanisms of overlimiting current transfer 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.000 0.005 0.010 0.015 0.020 0.025 [M+n] (mol/L) lplateau (V) Na(I) Ni(II) Fe(III) Cr(III) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.000 0.002 0.004 0.006 0.008 0.010 0.012 Ni(II) (mol/L) lplateau (V) 0M CrO3 10-3M CrO3 10-2M CrO3 Gravitational convection is favored at high concentrations of heavy metals. The height of electroconvective vortices increases with the size of the involved cations. The Grotthuss mechanism of H+ ions does not involve the distortion of the diffusion boundary layer. 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 47. LIST OF CONTENTS 1. INTRODUCTION 2. OBJECTIVE 3. EXPERIMENTAL TECHNIQUES 4. RESULTS & DISCUSSION Transport of single salt solutions Transport of multicomponent mixtures Mechanisms of transport at overlimiting currents Galvanostatic electrodialysis experiments 5. CONCLUSIONS
  • 48. 4. Results and discussion 4.4. Galvanostatic electrodialysis experiments Table 7. Compositions tested and applied current densities selected for conducting the galvanostatic [NiSO4] [CrO3] ilim (mA·cm-2) Applied current densities 10-3M 0 M 0.064 10-3M 0.255 75%·ilim 100%·ilim 125%·ilim 10-2M 3.260 75%·ilim 100%·ilim 125%·ilim 10-2M 0M 0.850 10-3M 1.130 75%·ilim 100%·ilim 125%·ilim 10-2M 4.240 75%·ilim 100%·ilim 125%·ilim Effect of CrO3 Effect of CrO3 and i 2. Objective 3. Techniques Single salt solutions Evaluate the membrane selectivity in long-term experiments Evaluate the effect of the applied current density in long-term experiments Objetives electrodialysis experiments. 75%·ilim (10-3M NiSO4) 75%·ilim 100%·ilim 125%·ilim 75%·ilim (10-2M NiSO4) 75%·ilim 100%·ilim 125%·ilim Effect of the range of applied current Results and d disicsucusssiioónn Multicomponent solutions density Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction 36
  • 49. 37 4.4. Galvanostatic electrodialysis experiments Effect of CrO3 i = 0.048 mA·cm-2 50 40 30 20 10 0 0 1 2 3 4 5 6 7 t (h) X (%) 0M CrO3 10-3M CrO3 10-2M CrO3 100 80 60 40 20 0 0 1 2 3 4 5 6 7 t (h) f (%) 0 M CrO3 10-3 M CrO3 10-2 M CrO3 NiSO4 CrO3 10-3M 0M 10-3M 10-2M Effect of CrO3 and i 100 80 60 40 20 0 0 1 2 3 4 5 6 7 t (h) X (%) 0M CrO3 10-3M CrO3 10-2M CrO3 50 40 30 20 10 0 0 1 2 3 4 5 6 7 t (h) f (%) 0M CrO3 10-3M CrO3 10-2M CrO3 NiSO4 CrO3 75%·ilim 10-2M 0M 0.64 mA·cm-2 10-3M 0.85 mA·cm-2 10-2M 3.18 mA·cm-2 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn
  • 50. 38 4.4. Galvanostatic electrodialysis experiments Ni2+ transport is improved General improvement in all parameters 100 80 60 40 20 0 0 1 2 3 4 5 6 7 t (h) X (%) 125% ilim 100% ilim 75% ilim Effect of the range of applied 26 22 18 14 10 0 1 2 3 4 5 6 7 t (h) Ucell (V) 125% ilim 100% ilim 75% ilim Development of concentration polarization Onset of electroconvection 70 60 50 40 30 20 10 0 0 1 2 3 4 5 6 7 t (h) f (%) 125% ilim 100% ilim 75% ilim 100 80 60 40 20 0 0 1 2 3 4 5 6 7 t (h) Es (kW·h/kg) 125% ilim 100% ilim 75% ilim NiSO4 CrO3 iaplicada 10-2M 0M 75%·ilim 100%·ilim 125%·ilim 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn currents
  • 51. 39 4.4. Galvanostatic electrodialysis experiments Ni2+ transport is improved The energy consumption increases 100 80 60 40 20 0 Effect of the range of applied 0 1 2 3 4 5 6 7 t (h) X (%) 125% ilim 100% ilim 75% ilim 40 35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 t (h) Ucell (V) 125% ilim 100% ilim 75% ilim 35 30 25 20 15 10 5 0 0 1 2 3 4 5 6 7 t (h) f (%) 125% ilim 100% ilim 75% ilim 120 100 80 60 40 20 0 0 1 2 3 4 5 6 7 t (h) Es (kW·h/kg) 125% ilim 100% ilim 75% ilim NiSO4 CrO3 iaplicada 10-3M 10-3M 75%·ilim 100%·ilim 125%·ilim 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn currents
  • 52. 40 Effect of the range of applied currents 4.4. Galvanostatic electrodialysis experiments 70 60 50 40 30 20 10 100% ilim 2. Objective 3. Techniques Single salt solutions 100% ilim 75% ilim Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and d disicsucusssiioónn 0 0 0.1 0.2 0.3 0.4 0.5 0.6 lplateau (V) f (%) 10-3M NiSO4 10-2M NiSO4 10-3M NiSO4 + 10-3M CrO3 10-2M NiSO4 + 10-3M CrO3 10-2M NiSO4 + 10-2M CrO3 100% ilim 100% ilim 125% ilim 125% ilim 125% ilim 75% i 125% ilim lim 75% ilim 75% ilim 125% ilim 75% ilim 100% ilim
  • 53. LIST OF CONTENTS 1. INTRODUCTION 2. OBJECTIVE 3. EXPERIMENTAL TECHNIQUES 4. RESULTS & DISCUSSION Transport of single salt solutions Transport of multicomponent mixtures Mechanisms of transport at overlimiting currents Galvanostatic electrodialysis experiments 5. CONCLUSIONS
  • 54. 5. Conclusions Single salt solutions  The membrane fixed charges become saturated in solution counterions (Na+, Ni2+, Cr3+, Fe3+).  The chronopotentiometric curves obtained with multivalent metals show various transition times, which evidence the depletion of positively charged complex species (NiOH+, FeSO4  In systems with NiSO4 and Fe2(SO4)3 after surpassing the ilim the formation of precipitates could take place due to an increase of the local pH at the depleting membrane surface. This originates an increased membrane resistance and extended plateaus in the current-voltage curves.  In general, the current-voltage curves obtained show the three characteristic regions of membrane behavior. However, two ilim appear with diluted Cr2(SO4)3 solutions due to the depletion of different species. 2. Objective 3. Techniques Single salt solutions Results and discussi0n Multicomponent solutions Mechanisms i>ilim +, CrSO4 +, etc.) Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction 41
  • 55. 42 5. Conclusions Multicomponent solutions  When immersed in mixtures of NiSOand CrO, the membrane fixed charges are preferentially balanced 4 3with multicharged Ni2+ ions.  The chronopotentiometric and current-voltage curves obtained for the mixtures are similar to those obtained for single salt solutions. However, the H+ provided by CrOcompete with the Ni2+ ions for the 3 transport through the membranes.  The transport number of Ni2+ through the membrane is significantly high in single salt solutions of NiSO, reaching values around 0.9. In the mixture solutions, the T2+ decreases for increasing 4Ni concentrations of CrO3.  The membrane fixed charges show a higher affinity for Fe(III) with respect to that for Na+ ions.  At low underlimiting currents the concentration of FeSO4 + ions is predominant in the electrolyte. However, as the polarization of the membrane is intensified, they dissociate into Fe3+ and SO4 2- ions, which implies a reduction in the electrical resistance of the membrane system.  The curves obtained for mixtures of Fe2(SO4)3 and Na2SO4 denote a preferential transport of Na+ ions at low current densities, whereas the transport of Fe3+ is favored at higher currents, when the depletion of Na+ ions has already occurred. NiSO4 + CrO3 Na2SO4 + Fe2(SO4)3 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and discussi0n
  • 56. 43 5. Conclusions Mechanisms of overlimiting current densities  The dissociation of water is the main mechanism originating the overlimiting currents when the formation of precipitates occurs at the anodic membrane surface.  Electroconvection is the main mechanism of overlimiting current densities in diluted solutions of all the metals tested. The magnitude of the oscillations in Um increases with the applied current density.  The role of gravitational convection becomes important in concentrated solutions of Cr2(SO4)3 and NiSO4. At high current densities gravitational convection and electroconvection have a synergic effect on the reduction of the electrical resistance of the membrane system.  The length of the plateau region of the current-voltage curves decreases for high concentrations of multivalent metals due to their participation on the motion of large volumes of fluid when coupled convection is initiated. On the contrary, H+ ions are transported via the Grotthuss mechanism and hamper electroconvection.  Overlimiting current densities lead to higher nickel transport rates. In terms of energy consumption, this increased transfer of Ni2+ is positive when the concentration of Ni2+ is relatively higher than that of H+ ions. On the contrary, for high concentrations of CrO3, the increased Ni2+ transfer rates are achieved at the cost of an important increase in the specific energy consumption. Electrochemical techniques Galvanostatic experiments 2. Objective 3. Techniques Single salt solutions Multicomponent solutions Mechanisms i>ilim Galvanostatic experiments 5. Conclusions 4. Resultados y discusión 1.Introduction Results and discussi0n
  • 57. ¡Thank you very much for your attention!