SlideShare a Scribd company logo
1 of 35
Download to read offline
Master	
  APE	
   	
   September	
  2014	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Long-­‐term	
  contracts	
  and	
  entry	
  deterrence	
  
in	
  the	
  French	
  electricity	
  market	
  
Author:	
  	
   REID,	
  Christopher	
  
	
  
Supervisor:	
  	
   SPECTOR,	
  David	
  	
  
	
  
Referee:	
  	
   TROPEANO,	
  Jean-­‐Philippe	
  
JEL	
  codes:	
  	
   D43,	
  L94	
  
	
  
Keywords:	
   Electricity,	
  contracts,	
  market	
  entry,	
  simulation	
  
  1	
  
	
  
Abstract	
  
	
  
Motivated	
  by	
  recent	
  EU	
  case	
  law,	
  we	
  investigate	
  how	
  long-­‐term	
  contracts	
  may	
  be	
  used	
  as	
  a	
  
means	
  of	
  entry	
  deterrence	
  in	
  the	
  French	
  electricity	
  market.	
  In	
  our	
  model	
  this	
  market	
  consists	
  of	
  
two	
  segments:	
  a	
  conventional	
  (e.g.	
  gas,	
  coal)	
  segment	
  in	
  which	
  there	
  is	
  perfect	
  competition,	
  and	
  
a	
  nuclear	
  segment	
  dominated	
  by	
  one	
  producer.	
  Our	
  analysis	
  is	
  focused	
  on	
  market	
  entry	
  in	
  the	
  
nuclear	
  segment.	
  The	
  nuclear	
  capacity	
  that	
  maximises	
  the	
  monopoly	
  profit	
  also	
  minimizes	
  the	
  
total	
  cost	
  of	
  electricity	
  production.	
  Thus,	
  the	
  monopoly	
  capacity	
  is	
  efficient.	
  	
  When	
  there	
  is	
  
market	
  entry,	
  firms	
  compete	
  via	
  a	
  discriminatory	
  auction	
  mechanism.	
  We	
  simulate	
  the	
  model,	
  
calibrated	
  to	
  the	
  French	
  electricity	
  market.	
  In	
  the	
  absence	
  of	
  contracts,	
  market	
  entry	
  leads	
  to	
  
excess	
  capacity:	
  the	
  total	
  cost	
  of	
  electricity	
  production	
  increases,	
  while	
  total	
  profit	
  and	
  the	
  price	
  
of	
  electricity	
  decrease.	
  Long-­‐term	
  contracts	
  lead	
  to	
  reduced	
  entry,	
  but	
  cannot	
  eliminate	
  entry	
  
unless	
  the	
  rival	
  has	
  large	
  fixed	
  costs.	
  Using	
  contracts,	
  the	
  incumbent	
  can	
  increase	
  its	
  profit	
  
compared	
  to	
  free	
  entry,	
  but	
  cannot	
  recover	
  the	
  monopoly	
  profit.	
  The	
  price	
  of	
  electricity	
  on	
  the	
  
spot	
  market	
  is	
  not	
  significantly	
  affected	
  by	
  long-­‐term	
  contracts.	
  Overall,	
  the	
  welfare	
  effect	
  of	
  
long-­‐term	
  contracts	
  is	
  ambiguous.	
  
	
  
  2	
  
	
  
Table	
  of	
  Contents	
  
Abstract	
  ..............................................................................................................................................	
  1	
  
Introduction	
  .....................................................................................................................................	
  3	
  
1.	
   Literature	
  review	
  ....................................................................................................................	
  5	
  
2.	
   Monopoly:	
  optimal	
  capacity	
  ................................................................................................	
  8	
  
2.1.	
   Electricity	
  demand	
  .......................................................................................................................	
  8	
  
2.2.	
   Efficient	
  capacity	
  level	
  .............................................................................................................	
  10	
  
2.3.	
   Nuclear	
  capacity	
  under	
  monopoly	
  .......................................................................................	
  12	
  
3.	
   Duopoly:	
  optimal	
  capacity	
  and	
  contracts	
  ....................................................................	
  14	
  
3.1.	
   Auction	
  mechanism	
  ...................................................................................................................	
  14	
  
3.2.	
   Large	
  firm	
  profit	
  and	
  optimal	
  capacity	
  ...............................................................................	
  17	
  
3.3.	
   Small	
  firm	
  profit	
  and	
  optimal	
  capacity	
  ...............................................................................	
  18	
  
3.4.	
   Long-­‐term	
  contracts	
  ..................................................................................................................	
  19	
  
4.	
   Numerical	
  simulation	
  .........................................................................................................	
  22	
  
4.1.	
   Calibration	
  ....................................................................................................................................	
  22	
  
4.2.	
   Monopoly	
  ......................................................................................................................................	
  22	
  
4.3.	
   Duopoly	
  .........................................................................................................................................	
  23	
  
4.4.	
   Long-­‐term	
  contracts	
  ..................................................................................................................	
  25	
  
Conclusion	
  ......................................................................................................................................	
  29	
  
References	
  .....................................................................................................................................	
  31	
  
Appendix	
  –	
  selected	
  MATLAB	
  code	
  ........................................................................................	
  32	
  
	
  
  3	
  
	
  
Introduction	
  
	
  
On	
  17	
  March	
  2010,	
  the	
  European	
  Commission	
  (EC)	
  adopted	
  a	
  decision1	
  concerning	
  the	
  
French	
  market	
  for	
  the	
  supply	
  of	
  electricity	
  to	
  large	
  industrial	
  customers.	
  The	
  Commission	
  was	
  
concerned	
   that	
   EDF	
   (the	
   incumbent	
   operator)	
   may	
   have	
   abused	
   its	
   dominant	
   position	
   by	
  
concluding	
   long-­‐term	
   supply	
   contracts	
   which	
   had	
   the	
   effect	
   of	
   foreclosing	
   the	
   market.	
  
Aaccording	
   to	
   the	
   Commission,	
   the	
   volume	
   and	
   duration	
   of	
   EDF’s	
   contracts	
   did	
   not	
   provide	
  
sufficient	
  opportunities	
  for	
  alternative	
  suppliers	
  to	
  compete	
  “for	
  the	
  contracts”.	
  In	
  addition,	
  the	
  
exclusionary	
  nature	
  of	
  the	
  contracts	
  (whether	
  through	
  explicit	
  provisions	
  in	
  the	
  contract	
  or	
  de	
  
facto	
  exclusivity)	
   may	
   have	
   restricted	
   competition	
   “during	
   the	
   contracts”.	
   The	
   contracts	
   also	
  
prohibited	
   clients	
   from	
   reselling	
   electricity,	
   limiting	
   customers’	
   ability	
   to	
   manage	
   their	
  
consumption.	
  
In	
   response	
   to	
   these	
   objections,	
   EDF	
   proposed	
   a	
   set	
   of	
   commitments,	
   which	
   the	
  
Commission	
   made	
   legally	
   binding	
   in	
   its	
   March	
   2010	
   decision.	
   Firstly,	
   65%	
   of	
   the	
   electricity	
  
supplied	
   to	
   large	
   industrial	
   customers	
   would	
   return	
   to	
   the	
   market	
   each	
   year.	
   Secondly,	
   the	
  
duration	
  of	
  contracts	
  without	
  free	
  opt-­‐out	
  would	
  be	
  limited	
  to	
  five	
  years.	
  Finally,	
  EDF	
  would	
  
allow	
   competition	
   during	
   the	
   contract	
   period	
   by	
   systematically	
   proposing	
   an	
   alternative	
  
supplier,	
  enabling	
  customers	
  to	
  source	
  electricity	
  simultaneously	
  from	
  two	
  suppliers.	
  EDF	
  also	
  
made	
  a	
  commitment	
  to	
  end	
  restrictions	
  on	
  the	
  resale	
  of	
  electricity	
  by	
  clients	
  under	
  contract.	
  
This	
  decision	
  by	
  the	
  EC	
  forms	
  the	
  motivation	
  for	
  our	
  research.	
  We	
  investigate	
  the	
  impact	
  
of	
  long-­‐term	
  supply	
  contracts	
  in	
  a	
  simple	
  model	
  of	
  the	
  French	
  electricity	
  market.	
  This	
  market	
  is	
  
characterized	
  by	
  the	
  fact	
  that	
  nuclear	
  power	
  stations	
  constitute	
  a	
  large	
  proportion	
  of	
  installed	
  
generating	
  capacity.	
  Although	
  in	
  practice	
  EDF	
  must	
  guarantee	
  competitors	
  access	
  to	
  low-­‐cost	
  
nuclear	
   electricity,	
   the	
   nuclear	
   capacity	
   remains	
   under	
   the	
   control	
   of	
   EDF,	
   the	
   incumbent	
  
operator.	
  We	
  consider	
  here	
  that	
  EDF	
  has	
  exclusive	
  rights	
  over	
  its	
  nuclear	
  capacity,	
  and	
  we	
  focus	
  
our	
  analysis	
  on	
  competition	
  in	
  this	
  segment	
  of	
  the	
  market.	
  
Compared	
  to	
  coal	
  and	
  gas	
  power	
  stations	
  where	
  fuel	
  costs	
  are	
  high,	
  nuclear	
  power	
  has	
  
low	
  operating	
  costs.	
  However,	
  the	
  investment	
  costs	
  for	
  nuclear	
  are	
  much	
  higher	
  and	
  must	
  be	
  
accounted	
   for	
   throughout	
   the	
   lifetime	
   of	
   the	
   power	
   station.	
   This	
   feature	
   of	
   nuclear	
   energy	
  
makes	
   market	
   entry	
   particularly	
   difficult.	
   We	
   model	
   the	
   French	
   electricity	
   market	
   as	
   two	
  
segments:	
   a	
   conventional	
   (coal	
   and	
   gas)	
   segment	
   with	
   high	
   operating	
   costs,	
   and	
   a	
   nuclear	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  see	
  press	
  release	
  IP/10/290	
  of	
  17	
  March	
  2010	
  and	
  Bessot	
  et	
  al.	
  (2010)	
  
	
  
  4	
  
segment	
   dominated	
   by	
   EDF.	
   We	
   consider	
   that	
   the	
   conventional	
   segment	
   is	
   perfectly	
  
competitive:	
  as	
  a	
  result	
  of	
  market	
  entry,	
  firms	
  make	
  zero	
  profit	
  in	
  this	
  segment.	
  By	
  contrast,	
  the	
  
nuclear	
  segment	
  is	
  a	
  monopoly:	
  all	
  installed	
  capacity	
  is	
  controlled	
  by	
  EDF.	
  In	
  addition,	
  EDF	
  may	
  
sign	
  long-­‐term	
  supply	
  contracts	
  with	
  large	
  industrial	
  customers.	
  We	
  study	
  market	
  entry	
  in	
  the	
  
nuclear	
  segment	
  first	
  in	
  the	
  absence	
  of	
  contracts,	
  and	
  then	
  we	
  introduce	
  contracts	
  to	
  determine	
  
whether	
  they	
  may	
  be	
  used	
  to	
  dissuade	
  entry.	
  	
  
Our	
   findings	
   provide	
   a	
   theoretical	
   basis	
   for	
   the	
   EC’s	
   decision:	
   long-­‐term	
   contracts	
   do	
  
indeed	
  have	
  a	
  foreclosure	
  effect	
  on	
  the	
  market,	
  leading	
  to	
  reduced	
  entry	
  by	
  potential	
  rivals.	
  In	
  
the	
  presence	
  of	
  large	
  fixed	
  costs	
  or	
  a	
  minimum	
  efficient	
  scale,	
  a	
  sufficient	
  volume	
  of	
  long-­‐term	
  
contracts	
   may	
   even	
   exclude	
   rivals.	
   However,	
   the	
   welfare	
   effect	
   is	
   ambiguous.	
   The	
   capacity	
  
installed	
   by	
   the	
   monopoly	
   is	
   optimal	
   from	
   the	
   point	
   of	
   view	
   of	
   production	
   efficiency.	
   Hence,	
  
market	
   entry	
   leads	
   to	
   excess	
   capacity,	
   increasing	
   the	
   cost	
   of	
   producing	
   electricity.	
   However,	
  
market	
  entry	
  also	
  leads	
  to	
  lower	
  total	
  profits	
  for	
  electricity	
  suppliers	
  and	
  reduces	
  the	
  average	
  
price	
  of	
  electricity.	
  This	
  decrease	
  in	
  price	
  may	
  be	
  viewed	
  as	
  beneficial	
  from	
  the	
  point	
  of	
  view	
  of	
  
consumers,	
  although	
  lower	
  profits	
  may	
  lead	
  to	
  insufficient	
  investment	
  in	
  the	
  future	
  (this	
  time	
  
dimension	
  is	
  absent	
  from	
  our	
  model).	
  	
  
By	
   decreasing	
   excess	
   entry,	
   long-­‐term	
   contracts	
   help	
   to	
   minimize	
   the	
   total	
   cost	
   of	
  
producing	
  electricity.	
  Furthermore,	
  their	
  effect	
  on	
  spot	
  market	
  price	
  is	
  very	
  limited	
  (compared	
  
to	
  the	
  spot	
  market	
  price	
  after	
  market	
  entry,	
  in	
  the	
  absence	
  of	
  contracts).	
  However,	
  customers	
  
who	
  have	
  signed	
  a	
  long-­‐term	
  contract	
  are	
  committed	
  to	
  paying	
  a	
  high	
  price	
  for	
  electricity	
  and	
  
cannot	
  benefit	
  from	
  the	
  reduced	
  spot	
  market	
  price.	
  
The	
  paper	
  is	
  structured	
  as	
  follows:	
  we	
  begin	
  by	
  reviewing	
  the	
  literature	
  on	
  contracts	
  as	
  
a	
  means	
  of	
  entry	
  deterrence.	
  In	
  section	
  two,	
  we	
  calculate	
  the	
  capacity	
  that	
  minimizes	
  the	
  total	
  
cost	
  of	
  electricity	
  production,	
  and	
  the	
  capacity	
  that	
  maximizes	
  monopoly	
  profit.	
  In	
  section	
  three,	
  
we	
  introduce	
  a	
  second	
  producer	
  and	
  derive	
  analytical	
  expressions	
  for	
  the	
  two	
  firms’	
  profits	
  and	
  
capacity	
  choices,	
  with	
  and	
  without	
  contracts.	
  In	
  section	
  four,	
  we	
  simulate	
  the	
  model	
  (calibrated	
  
to	
  the	
  French	
  electricity	
  market)	
  and	
  discuss	
  the	
  results.	
  	
  
	
  
	
  
	
  
	
  
	
  
  5	
  
	
  
1. Literature	
  review	
  
	
  
Historically,	
  exclusionary	
  contracts	
  have	
  been	
  a	
  contentious	
  issue	
  in	
  antitrust	
  law	
  and	
  
scholarship.	
  Rasmusen,	
  Ramseyer	
  and	
  Wiley	
  (1991)	
  cite	
  several	
  cases	
  in	
  which	
  US	
  judges	
  found	
  
such	
   contracts	
   to	
   be	
   anticompetitive	
   and	
   illegal 1 .	
   However,	
   Chicago	
   School	
   academics	
  
responded	
   to	
   such	
   cases	
   with	
   scepticism.	
   Director	
   and	
   Levi	
   (1956)	
   argued	
   that	
   customers	
  
would	
   not	
   agree	
   to	
   sign	
   exclusionary	
   contracts	
   with	
   a	
   company	
   unless	
   it	
   offered	
   them	
  
compensation	
   for	
   lost	
   customer	
   surplus.	
   Such	
   compensation	
   would	
   exceed	
   monopoly	
   profits,	
  
making	
  exclusion	
  too	
  costly	
  for	
  the	
  incumbent	
  firm.	
  	
  	
  
In	
  a	
  seminal	
  paper,	
  Aghion	
  and	
  Bolton	
  (1987)	
  show	
  that	
  exclusionary	
  contracts	
  may	
  in	
  
fact	
   be	
   used	
   profitably	
   for	
   entry	
   deterrence.	
   In	
   their	
   model,	
   two	
   buyers	
   agree	
   to	
   sign	
   an	
  
exclusionary	
   agreement	
   despite	
   jointly	
   preferring	
   to	
   refuse.	
   The	
   model	
   depends	
   on	
   three	
  
assumptions:	
  first,	
  the	
  excluding	
  firm	
  can	
  commit	
  to	
  a	
  future	
  price	
  level,	
  and	
  each	
  customer	
  can	
  
escape	
   the	
   contract	
   by	
   paying	
   liquidated	
   damages.	
   Second,	
   the	
   entrant’s	
   marginal	
   cost	
   is	
  
unknown	
   and	
   may	
   be	
   different	
   from	
   the	
   incumbent	
   firm’s	
   marginal	
   cost,	
   which	
   is	
   constant.	
  
Third,	
  active	
  producers	
  incur	
  a	
  fixed	
  cost,	
  leading	
  to	
  economies	
  of	
  scale.	
  Aghion	
  and	
  Bolton	
  also	
  
allow	
   the	
   incumbent	
   to	
   make	
   an	
   offer	
   to	
   one	
   buyer	
   that	
   is	
   conditional	
   on	
   the	
   other	
   buyer’s	
  
decision	
  to	
  accept	
  the	
  offer.	
  
Rasmusen,	
  Ramseyer,	
  and	
  Wiley	
  (1991	
  –	
  we	
  refer	
  to	
  this	
  paper	
  as	
  “RRW”)	
  show	
  that	
  the	
  
incumbent	
  may	
  exclude	
  rivals	
  by	
  exploiting	
  buyers’	
  lack	
  of	
  coordination,	
  without	
  requiring	
  the	
  
previous	
  assumptions.	
  Specifically,	
  if	
  there	
  is	
  a	
  minimum	
  efficient	
  scale2,	
  the	
  incumbent	
  need	
  
only	
  lock	
  up	
  a	
  proportion	
  of	
  the	
  customers	
  to	
  forestall	
  entry.	
  “If	
  each	
  customer	
  believes	
  that	
  the	
  
others	
   will	
   sign,	
   each	
   also	
   believes	
   that	
   no	
   rival	
   seller	
   will	
   enter.	
   Hence,	
   a	
   customer	
   loses	
  
nothing	
  by	
  signing	
  the	
  exclusionary	
  agreement	
  and	
  will	
  indeed	
  sign.”	
  	
  
Segal	
  and	
  Whinston	
  (2000)	
  correct	
  some	
  errors	
  in	
  RRW	
  and	
  refine	
  the	
  analysis,	
  focusing	
  
on	
   how	
   an	
   incumbent	
   can	
   use	
   discriminatory	
   offers	
   to	
   exploit	
   externalities	
   that	
   exist	
   among	
  
buyers.	
   The	
   model	
   has	
   three	
   periods,	
   featuring	
   three	
   sets	
   of	
   agents:	
   an	
   incumbent	
   firm,	
   a	
  
potential	
  rival,	
  and	
  a	
  set	
  of	
   	
  buyers.	
  In	
  period	
  one,	
  the	
  incumbent	
  offers	
  buyers	
  exclusionary	
  
contracts.	
  In	
  period	
  two,	
  the	
  rival	
  decides	
  whether	
  to	
  enter,	
  and	
  in	
  period	
  three,	
  active	
  firms	
  
compete	
   à	
   la	
   Bertrand.	
   	
   The	
   authors	
   examine	
   two	
   different	
   settings	
   for	
   period	
   one:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Examples	
  include:	
  U.S.	
  v.	
  Aluminum	
  Co.	
  of	
  America	
  (1945),	
  Lorain	
  Journal	
  Co.	
  v.	
  U.S.	
  (1951),	
  and	
  United	
  
Shoe	
  Machinery	
  Corp.	
  v.	
  U.S.	
  (1922).	
  
2	
  RRW	
  assume	
  a	
  minimum	
  efficient	
  scale,	
  but	
  no	
  economies	
  of	
  scale	
  beyond	
  that.	
  Hence,	
  exclusion	
  is	
  not	
  
simply	
  the	
  result	
  of	
  a	
  natural	
  monopoly.	
  
  6	
  
simultaneous	
   offers	
   and	
   sequential	
   offers.	
   When	
   the	
   incumbent	
   deals	
   with	
   buyers	
  
simultaneously	
   without	
   the	
   ability	
   to	
   discriminate,	
   profitable	
   exclusion	
   relies	
   on	
   a	
   lack	
   of	
  
coordination	
  among	
  buyers.	
  This	
  is	
  not	
  the	
  case	
  when	
  the	
  incumbent	
  can	
  discriminate	
  between	
  
buyers:	
   discrimination	
   allows	
   the	
   incumbent	
   to	
   exclude	
   rivals	
   profitably	
   by	
   exploiting	
  
externalities	
  across	
  buyers.	
  When	
  the	
  incumbent	
  deals	
  with	
  buyers	
  sequentially,	
  its	
  ability	
  to	
  
exclude	
  is	
  strengthened.	
  Segal	
  and	
  Whinston	
  show	
  that	
  when	
  the	
  number	
  of	
  buyers	
  is	
  large,	
  the	
  
incumbent	
  is	
  able	
  to	
  exclude	
  for	
  free.	
  
	
   A	
   related	
   literature	
   deals	
   with	
   financial	
   forward	
   contracts.	
   Unlike	
   exclusionary	
  
contracts,	
  forward	
  contracts	
  do	
  not	
  forbid	
  consumers	
  from	
  dealing	
  with	
  entrants	
  and	
  do	
  not	
  
directly	
  restrict	
  a	
  producer’s	
  choice	
  of	
   output	
  and	
  price.	
  Instead	
  of	
  making	
  legal	
  restrictions,	
  
they	
  influence	
  behaviour	
  on	
  the	
  spot	
  market	
  by	
  altering	
  incentives	
  for	
  firms.	
  Provided	
  they	
  are	
  
observable,	
   forward	
   contracts	
   may	
   be	
   used	
   as	
   a	
   signal	
   of	
   commitment	
   to	
   future	
   aggressive	
  
behaviour	
  on	
  the	
  spot	
  market.	
  In	
  this	
  way,	
  they	
  may	
  have	
  an	
  entry	
  deterrence	
  effect	
  similar	
  to	
  
that	
   of	
   exclusionary	
   contracts.	
   However,	
   the	
   effect	
   is	
   strongly	
   dependent	
   on	
   whether	
   firms	
  
compete	
  in	
  quantity	
  (Cournot	
  competition)	
  or	
  price	
  (Bertrand)	
  on	
  the	
  spot	
  market.	
  
Allaz	
   and	
   Vila	
   (1993)	
   show	
   that	
   forward	
   markets	
   can	
   improve	
   the	
   efficiency	
   of	
  
production	
  decisions	
  in	
  a	
  Cournot	
  duopoly.	
  They	
  begin	
  by	
  noting	
  that	
  “usually	
  appearance	
  of	
  
forward	
  markets	
  is	
  justified	
  by	
  agents’	
  desire	
  to	
  hedge	
  risk”,	
  requiring	
  uncertainty	
  over	
  some	
  
variable.	
   Allaz	
   and	
   Vila	
   show	
   that	
   this	
   is	
   not	
   necessary:	
   forward	
   markets	
   can	
   be	
   used	
   under	
  
certainty	
  and	
  perfect	
  foresight.	
  Producers	
  use	
  forward	
  transactions	
  as	
  strategic	
  variables.	
  The	
  
authors	
   first	
   consider	
   a	
   two-­‐period	
   model	
   of	
   duopoly	
   with	
   linear	
   costs	
   and	
   demand,	
   under	
  
perfect	
  foresight	
  and	
  certainty.	
  Firms	
  choose	
  forward	
  positions	
  in	
  period	
  one	
  and	
  produce	
  in	
  
period	
  two.	
  The	
  firm	
  with	
  access	
  to	
  the	
  forward	
  market	
  gains	
  first-­‐mover	
  advantage	
  (becomes	
  
Stackelberg	
  leader	
  on	
  the	
  spot	
  market).	
  However,	
  a	
  prisoner’s	
  dilemma	
  arises	
  when	
  both	
  firms	
  
have	
  access	
  to	
  the	
  forward	
  market:	
  a	
  firm	
  greatly	
  benefits	
  from	
  being	
  the	
  only	
  producer	
  to	
  trade	
  
forward,	
  but	
  if	
  both	
  firms	
  trade	
  forward,	
  they	
  end	
  up	
  worse	
  off.	
  The	
  authors	
  then	
  extend	
  the	
  
model	
   to	
   	
  trading	
   periods,	
   and	
   show	
   that	
   when	
   tends	
   to	
   infinity,	
   the	
   competitive	
  
outcome	
  is	
  obtained.	
  	
  
Mahenc	
   and	
   Salanié	
   (2004)	
   investigate	
   a	
   model	
   in	
   which	
   duopolists	
   producing	
   two	
  
differentiated	
   goods	
   can	
   trade	
   forward	
   before	
   competing	
   à	
   la	
   Bertrand	
   on	
   spot	
   markets.	
  
Similarly	
  to	
  Allaz-­‐Vila,	
  the	
  model	
  features	
  two	
  periods:	
  in	
  period	
  one	
  each	
  firm	
  takes	
  a	
  position	
  
on	
   the	
   forward	
   market,	
   and	
   in	
   period	
   two	
   they	
   compete	
   on	
   the	
   spot	
   market.	
   However,	
   the	
  
crucial	
  difference	
  is	
  that	
  competition	
  on	
  the	
  spot	
  market	
  is	
  à	
  la	
  Bertrand:	
  firms	
  choose	
  prices,	
  
not	
  quantities,	
  and	
  the	
  goods	
  are	
  not	
  perfect	
  substitutes.	
  Mahenc	
  and	
  Salanié	
  reach	
  a	
  conclusion	
  
that	
  is	
  opposite	
  to	
  that	
  of	
  Allaz	
  and	
  Vila:	
  in	
  equilibrium	
  firms	
  buy	
  forward	
  their	
  own	
  production,	
  
leading	
   to	
   higher	
   spot	
   prices	
   than	
   in	
   the	
   static	
   case	
   (no	
   forward	
   market).	
   Hence,	
   forward	
  
  7	
  
markets	
  have	
  a	
  softening	
  effect	
  on	
  competition	
  in	
  this	
  case.	
  This	
  competition-­‐softening	
  effect	
  is	
  
stronger	
  when	
  competition	
  increases,	
  that	
  is	
  when	
  goods	
  are	
  more	
  substitutable.	
  	
  
Lien	
  (2000)	
  analyses	
  the	
  role	
  of	
  forward	
  contracts	
  in	
  the	
  electricity	
  market.	
  He	
  argues	
  
that	
  there	
  is	
  a	
  “curse	
  of	
  market	
  power”:	
  in	
  the	
  short	
  term,	
  large	
  firms	
  have	
  an	
  incentive	
  to	
  hold	
  
back	
  output	
  in	
  order	
  to	
  push	
  up	
  prices.	
  However,	
  this	
  leads	
  to	
  excess	
  entry	
  by	
  small	
  producers,	
  
who	
  benefit	
  from	
  high	
  prices	
  without	
  incurring	
  the	
  costs	
  of	
  restricted	
  output.	
  As	
  a	
  result,	
  long-­‐
term	
  profits	
  of	
  large	
  firms	
  are	
  reduced.	
  Lien	
  shows	
  that	
  forward	
  sales	
  can	
  eliminate	
  this	
  curse	
  
by	
  deterring	
  excess	
  entry.	
  
Our	
  analysis	
  differs	
  from	
  that	
  of	
  Lien	
  in	
  two	
  important	
  ways:	
  firstly,	
  we	
  concentrate	
  on	
  
the	
  French	
  electricity	
  market	
  and	
  in	
  particular	
  the	
  nuclear	
  segment	
  of	
  this	
  market.	
  The	
  French	
  
market	
  is	
  characterised	
  by	
  the	
  high	
  proportion	
  of	
  electricity	
  that	
  is	
  provided	
  by	
  nuclear	
  power	
  
stations.	
  Given	
  the	
  high	
  investment	
  costs	
  associated	
  with	
  nuclear	
  energy,	
  entry	
  is	
  particularly	
  
difficult	
  in	
  this	
  segment	
  of	
  the	
  market.	
  Nuclear	
  power	
  stations	
  typically	
  provide	
  baseload	
  power	
  
and	
   are	
   operational	
   most	
   of	
   the	
   time,	
   which	
   makes	
   the	
   use	
   of	
   long-­‐term	
   supply	
   contracts	
  
particularly	
  convenient.	
  	
  
Secondly,	
  we	
  model	
  competition	
  in	
  the	
  electricity	
  market	
  using	
  an	
  auction	
  mechanism	
  
studied	
  by	
  Fabra,	
  von	
  der	
  Fehr,	
  and	
  Harbord	
  (2006).	
  There	
  are	
  two	
  producers	
  in	
  this	
  model.	
  
Each	
  producer	
  submits	
  a	
  bid	
  (offer	
  price)	
  to	
  a	
  central	
  auctioneer,	
  who	
  then	
  allocates	
  production	
  
in	
  order	
  to	
  meet	
  demand.	
  Fabra	
  et	
  al.	
  study	
  two	
  mechanisms:	
  a	
  uniform	
  auction,	
  in	
  which	
  all	
  
active	
  producers	
  (those	
  whose	
  bid	
  is	
  wholly	
  or	
  partly	
  accepted)	
  are	
  paid	
  the	
  same	
  price,	
  and	
  a	
  
discriminatory	
  auction,	
  in	
  which	
  active	
  producers	
  are	
  paid	
  their	
  offer	
  price.	
  The	
  authors	
  find	
  
that	
  uniform	
  auctions	
  result	
  in	
  higher	
  prices	
  than	
  discriminatory	
  auctions.	
  In	
  a	
  related	
  paper,	
  
Fabra,	
  von	
  der	
  Fehr,	
  and	
  de	
  Frutos	
  (2011)	
  study	
  the	
  impact	
  of	
  the	
  auction	
  format	
  on	
  investment	
  
incentives.	
   They	
   find	
   that	
   investment	
   incentives	
   are	
   (weakly)	
   stronger	
   under	
   discriminatory	
  
auctions	
  than	
  under	
  uniform	
  auctions.	
  For	
  this	
  reason,	
  we	
  focus	
  on	
  discriminatory	
  auctions.	
  
  8	
  
	
  
2. Monopoly:	
  optimal	
  capacity	
  
	
  
In	
   our	
   model,	
   the	
   French	
   electricity	
   market	
   consists	
   of	
   two	
   segments:	
   a	
   perfectly	
  
competitive	
   conventional	
   segment,	
   and	
   a	
   nuclear	
   segment	
   dominated	
   by	
   one	
   firm.	
   Marginal	
  
costs	
   are	
   constant:	
   conventional	
   electricity	
   costs	
   	
  to	
   produce,	
   and	
   nuclear	
   electricity	
   costs	
   .	
  
Operating	
  costs	
  for	
  conventional	
  generation	
  are	
  higher	
  than	
  for	
  nuclear	
  generation,	
  so	
   .	
  
The	
  conventional	
  sector	
  is	
  perfectly	
  competitive,	
  so	
  firms	
  make	
  zero	
  profit.	
  However,	
  
the	
   nuclear	
   sector	
   is	
   run	
   by	
   a	
   monopoly.	
   Before	
   considering	
   entry	
   by	
   potential	
   rivals	
   in	
   the	
  
nuclear	
   sector,	
   we	
   determine	
   the	
   optimal	
   nuclear	
   capacity	
   from	
   the	
   point	
   of	
   view	
   of	
   social	
  
welfare	
  and	
  from	
  the	
  monopoly’s	
  point	
  of	
  view.	
  
2.1. 	
  Electricity	
  demand	
  
	
  
In	
   order	
   to	
   calculate	
   optimal	
   capacity,	
   we	
   need	
   to	
   characterise	
   electricity	
   demand.	
  
Compared	
  to	
  demand	
  in	
  markets	
  for	
  goods,	
  electricity	
  demand	
  is	
  unusual.	
  Firstly,	
  demand	
  is	
  not	
  
in	
  terms	
  of	
  quantity	
  but	
  in	
  terms	
  of	
  rate.	
  Indeed,	
  quantity	
  is	
  expressed	
  in	
  terms	
  of	
  energy,	
  with	
  
units	
  of	
  GWh	
  (gigawatt-­‐hour)	
  for	
  example,	
  whereas	
  demand	
  and	
  supply	
  are	
  expressed	
  in	
  terms	
  
of	
   power,	
   with	
   units	
   of	
   GW	
   (gigawatt).	
   This	
   is	
   because	
   of	
   a	
   physical	
   property	
   of	
   the	
   system:	
  
unlike	
  goods,	
  electricity	
  cannot	
  be	
  stored.	
  Hence,	
  the	
  rate	
  at	
  which	
  electricity	
  is	
  provided	
  to	
  the	
  
network	
   must	
   equal	
   the	
   rate	
   at	
   which	
   it	
   is	
   consumed	
   by	
   customers.	
   Secondly,	
   it	
   is	
   almost	
  
perfectly	
  inelastic.	
  That	
  is,	
  demand	
  does	
  not	
  change	
  in	
  response	
  to	
  price.	
  
The	
   costs	
   	
  and	
   	
  given	
   above	
   are	
   expressed	
   in	
   monetary	
   units	
   per	
   quantity	
   of	
  
electricity,	
  for	
  example	
  million	
  euros	
  per	
  GWh	
  (€m/GWh).	
  However,	
  this	
  is	
  equivalent	
  to	
  paying	
  
for	
  capacity	
  for	
  a	
  certain	
  time:	
  if	
  a	
  firm	
  supplies	
  10	
  GW	
  for	
  2	
  hours	
  at	
  a	
  cost	
  of	
  0.03	
  €m/GWh,	
  it	
  
will	
  incur	
  a	
  cost	
  of	
  €	
  600,000.	
  	
  
We	
   use	
   data	
   on	
   electricity	
   consumption	
   in	
   2012	
   obtained	
   from	
   RTE,	
   the	
   electricity	
  
transmission	
  system	
  operator	
  of	
  France1.	
  The	
  data	
  describes	
  electricity	
  consumption	
  in	
  MW	
  for	
  
every	
  half	
  hour	
  period	
  of	
  the	
  year	
  (the	
  data	
  is	
  described	
  in	
  greater	
  depth	
  in	
  Appendix	
  A).	
  Figure	
  
1	
  shows	
  the	
  distribution	
  of	
  electricity	
  demand	
  as	
  a	
  histogram.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Source:	
  http://clients.rte-­‐france.com/lang/fr/clients_producteurs/vie/vie_stats_conso_inst.jsp,	
  last	
  
accessed	
  on	
  21/08/2014.	
  
  9	
  
30 40 50 60 70 80 90 100 110
0
10
20
30
40
50
60
70
Electricity demand (GW)
Frequency(days)
	
  
Figure	
  1	
  –	
  Distribution	
  of	
  electricity	
  demand	
  in	
  2012:	
  histogram	
  
	
   	
  	
  
In	
  order	
  to	
  proceed	
  with	
  the	
  analysis,	
  we	
  need	
  to	
  fit	
  a	
  known	
  distribution	
  function	
  to	
  the	
  
data.	
  It	
  is	
  important	
  to	
  note	
  that	
  electricity	
  demand	
  is	
  not	
  random;	
  indeed,	
  it	
  can	
  be	
  accurately	
  
forecast.	
  However,	
  we	
  use	
  a	
  probability	
  distribution	
  function	
  (pdf)	
  in	
  our	
  analysis	
  because	
  we	
  
want	
  to	
  calculate	
  quantities	
  such	
  as	
  profit	
  analytically.	
  In	
  what	
  follows,	
  we	
  normalize	
  everything	
  
by	
   time:	
   quantities	
   are	
   expressed	
   per	
   year,	
   and	
   we	
   consider	
   2012	
   as	
   a	
   typical	
   year.	
   For	
  
convenience,	
  we	
  use	
  a	
  uniform	
  probability	
  distribution.	
  	
  
Figure	
  2	
  shows	
  a	
  kernel	
  estimate	
  of	
  the	
  pdf	
  as	
  well	
  as	
  the	
  “best	
  fit”	
  uniform	
  pdf.	
  The	
  
parameters	
  of	
  the	
  uniform	
  pdf	
  are	
   	
  and	
   .	
  We	
  choose	
  these	
  in	
  order	
  to	
  match	
  the	
  mean	
  
and	
  standard	
  deviation	
  of	
  observed	
  demand,	
  as	
  given	
  in	
  table	
  1	
  (rounded	
  to	
  the	
  nearest	
  GW).	
  
	
  
Name	
   Value	
  (GW)	
  
	
  	
   33	
  
	
   78	
  
Mean	
  	
   55.5	
  
Standard	
  deviation	
   13	
  
Table	
  1	
  -­‐	
  Electricity	
  demand	
  parameters	
  
  10	
  
	
  
Figure	
  2	
  –	
  Distribution	
  of	
  electricity	
  demand	
  in	
  2012:	
  kernel	
  density	
  and	
  “best	
  fit”	
  uniform	
  pdf	
  
2.2. Efficient	
  capacity	
  level	
  
	
  
We	
  begin	
  by	
  determining	
  the	
  level	
  of	
  nuclear	
  capacity	
  that	
  is	
  optimal	
  from	
  the	
  point	
  of	
  
view	
  of	
  social	
  welfare.	
  We	
  call	
  this	
  the	
  efficient	
  capacity	
  level,	
  and	
  it	
  maximizes	
  total	
  surplus:	
  
	
  
	
  
	
  
Roughly	
  speaking,	
  consumer	
  surplus	
  is	
  the	
  difference	
  between	
  indirect	
  utility	
  derived	
  
from	
  consumption	
  of	
  electricity	
  and	
  the	
  cost	
  of	
  purchasing	
  electricity.	
  Usually,	
  we	
  would	
  have	
  to	
  
integrate	
  over	
  price	
  or	
  capacity	
  (since	
  capacity	
  has	
  an	
  impact	
  on	
  price).	
  However,	
  demand	
  for	
  
electricity	
   is	
   perfectly	
   inelastic,	
   and	
   we	
   assume	
   that	
   conventional	
   producers	
   have	
   an	
   infinite	
  
capacity,	
  meaning	
  that	
  it	
  is	
  large	
  enough	
  to	
  supply	
  any	
  level	
  of	
  consumer	
  demand.	
  Hence,	
  there	
  
is	
   no	
   need	
   for	
   demand	
   rationing.	
   As	
   a	
   result,	
   the	
   indirect	
   utility	
   does	
   not	
   vary	
   with	
   price	
   or	
  
nuclear	
  capacity.	
  	
  
Producer	
  surplus	
  is	
  equal	
  to	
  the	
  sum	
  of	
  profits	
  of	
  electricity	
  producers	
  (conventional	
  
and	
  nuclear):	
  the	
  difference	
  between	
  total	
  revenue	
  and	
  the	
  total	
  cost	
  of	
  producing	
  electricity.	
  
Total	
  revenue	
  of	
  firms	
  is	
  equal	
  to	
  total	
  expenditure	
  by	
  consumers,	
  so	
  we	
  have:	
  
	
  
	
  
  11	
  
	
  
As	
  noted	
  above,	
  the	
  indirect	
  utility	
  is	
  constant,	
  so	
  maximizing	
  total	
  surplus	
  is	
  equivalent	
  
to	
   minimizing	
   the	
   total	
   cost	
   of	
   producing	
   electricity.	
   We	
   denote	
   nuclear	
   capacity	
   by	
   ,	
   and	
  
electricity	
  demand	
  by	
   .	
  When	
  demand	
  is	
  less	
  than	
  nuclear	
  capacity	
  ( ,	
  then	
  demand	
  is	
  
met	
   entirely	
   by	
   electricity	
   from	
   nuclear	
   power	
   stations,	
   which	
   have	
   operating	
   cost	
   .	
   When	
  
demand	
  exceeds	
  nuclear	
  capacity	
  ( ),	
  conventional	
  power	
  stations	
  are	
  required	
  to	
  supply	
  
the	
  excess	
  ( ),	
  with	
  an	
  operating	
  cost	
  of	
   .	
  
In	
  addition,	
  nuclear	
  capacity	
  has	
  a	
  yearly	
  investment	
  cost	
  of	
   	
  per	
  GW.	
  Nuclear	
  power	
  
stations	
  require	
  significant	
  capital	
  to	
  build.	
  This	
  capital	
  usually	
  takes	
  the	
  form	
  of	
  a	
  loan,	
  which	
  is	
  
reimbursed	
   in	
   instalments	
   during	
   the	
   lifetime	
   of	
   the	
   power	
   station.	
   The	
   investment	
   cost	
   	
  
represents	
  capital	
  cost	
  repayments,	
  and	
  also	
  includes	
  yearly	
  maintenance	
  and	
  fuel	
  costs.	
  Capital	
  
costs	
  for	
  conventional	
  power	
  stations	
  are	
  less	
  significant	
  than	
  for	
  nuclear,	
  whereas	
  operating	
  
costs	
  are	
  higher.	
  For	
  this	
  reason,	
  we	
  ignore	
  investment	
  costs	
  for	
  conventional	
  power.	
  
The	
   total	
   cost	
   of	
   producing	
   electricity	
   includes	
   operating	
   costs	
   for	
   nuclear	
   and	
  
conventional	
  power,	
  and	
  investment	
  costs	
  for	
  nuclear	
  power.	
  We	
  use	
  the	
  uniform	
  distribution	
  
for	
   electricity	
   demand	
   described	
   above	
   to	
   calculate	
   the	
   total	
   cost	
   over	
   the	
   year,	
   which	
   we	
  
denote	
  by	
   :	
  
	
  
	
  
Where	
   	
  denotes	
  the	
  pdf	
  of	
  electricity	
  demand,	
  setting	
   :	
  
	
  
	
  
Evaluating	
  the	
  integrals	
  and	
  setting	
   ,	
  we	
  have:	
  
	
  
	
  
The	
  efficient	
  capacity,	
   ,	
  minimizes	
  this	
  cost.	
  Differentiating	
  with	
  respect	
  to	
   ,	
  we	
  have:	
  
	
  
	
  
Setting	
   ,	
  we	
  find	
  the	
  efficient	
  nuclear	
  capacity	
  level:	
  
	
  
  12	
  
	
  
The	
   efficient	
   capacity	
   depends	
   on	
   the	
   ratio	
   .	
   The	
   denominator	
   is	
   the	
   difference	
  
between	
  conventional	
  and	
  nuclear	
  operating	
  costs;	
  as	
  we	
  will	
  see	
  in	
  the	
  next	
  section,	
  it	
  is	
  also	
  
the	
   difference	
   between	
   the	
   electricity	
   price	
   under	
   monopoly	
   (in	
   the	
   nuclear	
   sector)	
   and	
   the	
  
nuclear	
   operating	
   cost.	
   If	
   ,	
   then	
   	
  and	
   :	
   in	
   the	
   absence	
   of	
  
investment	
  costs,	
  the	
  least	
  costly	
  option	
  is	
  for	
  all	
  electricity	
  to	
  be	
  produced	
  from	
  nuclear	
  energy.	
  
On	
  the	
  other	
  hand,	
  if	
   ,	
  then	
   	
  and	
   :	
  nuclear	
  capacity	
  is	
  always	
  in	
  
use	
   providing	
   baseload	
   power,	
   while	
   conventional	
   capacity	
   is	
   used	
   to	
   supply	
   ,	
   the	
  
variable	
  part	
  of	
  demand.	
  	
  
2.3. Nuclear	
  capacity	
  under	
  monopoly	
  
	
  
We	
  now	
  calculate	
  the	
  capacity	
  that	
  maximizes	
  the	
  profit	
  of	
  a	
  nuclear	
  producer	
  with	
  a	
  
monopoly.	
  The	
  conventional	
  sector	
  remains	
  perfectly	
  competitive,	
  but	
  there	
  is	
  a	
  single	
  producer	
  
of	
  nuclear	
  electricity.	
  
The	
   profit	
   of	
   a	
   nuclear	
   monopolist,	
   which	
   we	
   denote	
   ,	
   is	
   given	
   by	
   the	
   following	
  
expression,	
  taking	
  into	
  account	
  both	
  operating	
  costs	
  and	
  investment	
  costs:	
  
	
  
	
  
When	
   ,	
   nuclear	
   capacity	
   can	
   cover	
   consumer	
   demand	
   entirely.	
   When	
   demand	
  
exceeds	
  nuclear	
  capacity	
  	
  ( ),	
  nuclear	
  capacity	
  is	
  saturated.	
  Since	
  the	
  conventional	
  sector	
  is	
  
perfectly	
   competitive,	
   the	
   price	
   of	
   electricity	
   produced	
   by	
   conventional	
   means	
   equals	
   its	
  
marginal	
   cost,	
   .	
   Hence,	
   the	
   nuclear	
   monopolist	
   can	
   charge	
   up	
   to	
   	
  for	
   its	
   electricity,	
   and	
   to	
  
maximize	
   profit,	
   it	
   will	
   charge	
   exactly	
   .	
   In	
   theory,	
   consumers	
   would	
   be	
   indifferent	
   between	
  
purchasing	
  nuclear	
  and	
  purchasing	
  conventional	
  electricity	
  if	
  their	
  prices	
  are	
  equal.	
  However,	
  
the	
  network	
  operator	
  prioritizes	
  electricity	
  produced	
  with	
  least	
  marginal	
  cost,	
  so	
  conventional	
  
power	
  stations	
  produce	
  only	
  when	
  nuclear	
  capacity	
  is	
  saturated.	
  
	
  
Evaluating	
  the	
  integrals,	
  we	
  find	
  the	
  following	
  expression	
  for	
  monopoly	
  profit:	
  
	
  
	
  
Differentiating,	
  we	
  have:	
  
  13	
  
	
  
	
  
Setting	
  the	
  derivative	
  to	
  zero,	
  we	
  find	
  the	
  monopoly	
  profit-­‐maximizing	
  nuclear	
  capacity:	
  
	
  
	
  
	
   We	
  notice	
  that	
  the	
  nuclear	
  capacity	
  chosen	
  by	
  a	
  profit-­‐maximizing	
  monopolist	
  is	
  equal	
  
to	
  the	
  efficient	
  generating	
  capacity.	
  In	
  other	
  words,	
  the	
  monopoly	
  chooses	
  a	
  nuclear	
  capacity	
  
that	
  minimizes	
  the	
  total	
  cost	
  of	
  producing	
  electricity	
  (including	
  both	
  nuclear	
  and	
  conventional).	
  
The	
   profits	
   earned	
   by	
   the	
   nuclear	
   monopolist	
   and	
   the	
   total	
   cost	
   of	
   producing	
   electricity	
   are	
  
related	
  by:	
  
	
  
	
  
The	
  sum	
  of	
  monopoly	
  profit	
  and	
  the	
  total	
  cost	
  of	
  producing	
  electricity	
  is	
   ,	
  a	
  constant.	
  Hence,	
  
maximizing	
   	
  is	
   equivalent	
   to	
   minimizing	
   .	
   	
  is	
   the	
   total	
   payment	
   from	
  
electricity	
  consumers	
  to	
  electricity	
  producers.	
  Since	
  the	
  nuclear	
  producer	
  charges	
   ,	
  the	
  price	
  of	
  
power	
  is	
   	
  whether	
  its	
  source	
  is	
  nuclear	
  or	
  conventional.	
  The	
  payment	
   	
  covers	
  the	
  total	
  cost	
  of	
  
production	
  plus	
  a	
  monopoly	
  rent	
  for	
  the	
  nuclear	
  generator	
  (conventional	
  generators	
  make	
  zero	
  
profit).	
  	
  
	
  
We	
  evaluate	
  monopoly	
  profit	
  when	
   ,	
  and	
  let	
   .	
  We	
  call	
  this	
  “optimal	
  
profit”.	
  Normalizing	
  by	
   ,	
  we	
  have:	
  
	
  
	
  
Setting	
   ,	
  one	
  can	
  see	
  that	
  maximal	
  profit	
  is	
  a	
  quadratic	
  function	
  of	
  the	
  ratio	
   ,	
  which	
  
we	
  call	
  “cost	
  ratio”	
  and	
  denote	
  by	
   .	
  Figure	
  4	
  displays	
  this	
  function.	
  As	
  discussed	
  previously,	
  
optimal	
  capacity	
   	
  is	
  a	
  linear	
  decreasing	
  function	
  of	
   .	
  When	
  investment	
  costs	
  are	
  nil	
  ( ,	
  
then	
   ,	
   and	
   optimal	
   profit	
   is	
   maximized	
   (optimal	
   cost	
   	
  is	
   minimized).	
   	
  is	
   the	
  
cost	
  of	
  adding	
  a	
  marginal	
  unit	
  of	
  capacity,	
  and	
   	
  is	
  the	
  maximum	
  profit	
  that	
  may	
  be	
  derived	
  
from	
   it	
   (i.e.	
   if	
   the	
   unit	
   operates	
   permanently).	
   Optimal	
   profit	
   is	
   zero	
   when	
   these	
   are	
   equal	
  
  14	
  
( ),	
   and	
   .	
   Optimal	
   nuclear	
   capacity	
   is	
   zero	
   ( )	
   when	
   .	
  
Then	
  optimal	
  cost	
  is	
  maximal1.	
  
3. Duopoly:	
  optimal	
  capacity	
  and	
  contracts	
  
3.1. 	
  Auction	
  mechanism	
  
	
  
We	
   now	
   introduce	
   two	
   firms	
   in	
   the	
   nuclear	
   sector.	
   Unlike	
   typical	
   markets	
   (e.g.	
   for	
  
goods),	
  they	
  do	
  not	
  compete	
  directly,	
  whether	
  by	
  price	
  or	
  by	
  quantity.	
  Instead,	
  they	
  compete	
  via	
  
a	
  centralized	
  auction	
  mechanism.	
  Fabra,	
  von	
  der	
  Fehr,	
  and	
  Harbord	
  (2006)	
  study	
  two	
  auction	
  
mechanisms	
  for	
  the	
  electricity	
  market:	
  uniform	
  and	
  discriminatory	
  auctions.	
  
The	
   duopoly	
   comprises	
   a	
   large	
   supplier,	
   with	
   capacity	
   ,	
   and	
   a	
   small	
   supplier,	
   with	
  
capacity	
   	
  ( ).	
  We	
  assume	
  capacity	
  is	
  perfectly	
  divisible.	
  The	
  two	
  suppliers	
  compete	
  by	
  
submitting	
  bids,	
  or	
  offer	
  prices,	
  to	
  the	
  auctioneer.	
  The	
  suppliers	
  incur	
  the	
  same	
  marginal	
  cost	
   	
  
for	
   production	
   below	
   capacity,	
   and	
   cannot	
   produce	
   above	
   capacity.	
   We	
   denote	
   their	
   bids	
   by	
  
.	
  As	
  before,	
  there	
  is	
  a	
  perfectly	
  competitive	
  conventional	
  sector	
  with	
  marginal	
  cost	
  
,	
  so	
  prices	
  in	
  the	
  nuclear	
  sector	
  cannot	
  exceed	
   .	
  The	
  level	
  of	
  demand	
  is	
   ,	
  and	
  total	
  nuclear	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Optimal	
  profit	
  is	
  negative	
  when	
   	
  and	
  jumps	
  to	
  zero	
  when	
   	
  	
  ( .	
  
Figure	
  3	
  -­‐	
  Optimal	
  profit	
  as	
  a	
  function	
  of	
  the	
  cost	
  ratio	
   	
  
  15	
  
capacity	
   is	
   .	
   We	
   let	
   .	
   The	
   auctioneer	
   allocates	
   	
  between	
   the	
   two	
  
nuclear	
  producers.	
  If	
  demand	
  exceeds	
  the	
  total	
  nuclear	
  capacity	
  ( )	
  then	
   ,	
  and	
  the	
  
excess	
   ( )	
   is	
   dispatched	
   to	
   conventional	
   power	
   stations.	
   Output	
   allocated	
   to	
   nuclear	
  
supplier	
   ,	
   ,	
  is	
  denoted	
  by	
   .	
  It	
  is	
  determined	
  as	
  follows:	
  
	
  
	
  
	
  
	
   If	
   firms	
   submit	
   different	
   bids,	
   the	
   lower-­‐bidding	
   firm’s	
   capacity	
   is	
   dispatched	
   first.	
   If	
  
demand	
  is	
  in	
  excess	
  of	
  this	
  capacity,	
  then	
  the	
  higher-­‐bidding	
  firm	
  serves	
  residual	
  demand.	
  If	
  
both	
  firms	
  submit	
  the	
  same	
  bid,	
  then	
  demand	
  is	
  split	
  between	
  them.	
  Fabra	
  et	
  al.	
  (2006)	
  study	
  
two	
  types	
  of	
  auction	
  mechanisms,	
  which	
  differ	
  in	
  the	
  payments	
  received	
  by	
  firms	
  but	
  not	
  in	
  the	
  
quantities	
  dispatched:	
  in	
  a	
  uniform	
  auction,	
  the	
  price	
  received	
  by	
  an	
  active	
  supplier	
  is	
  equal	
  to	
  
the	
  highest	
  accepted	
  bid	
  in	
  the	
  auction.	
  In	
  a	
  discriminatory	
  auction,	
  the	
  price	
  received	
  by	
  an	
  
active	
  supplier	
  is	
  equal	
  to	
  its	
  own	
  offer	
  price,	
  so	
  supplier	
   ’s	
  profit	
  is	
  given	
  by	
  
.	
  
	
  
	
   The	
  equilibrium	
  outcomes	
  of	
  the	
  auction	
  are	
  summarized	
  in	
  Proposition	
  3	
  of	
  Fabra,	
  von	
  
der	
  Fehr,	
  and	
  de	
  Frutos	
  (2011)1.	
  The	
  authors	
  distinguish	
  three	
  regions	
  of	
  demand:	
  	
  
	
  
• Low	
  demand:	
   .	
  In	
  this	
  region,	
  either	
  producer	
  is	
  able	
  to	
  supply	
  the	
  market	
  fully.	
  In	
  
other	
  words,	
  there	
  is	
  no	
  residual	
  demand.	
  The	
  result	
  is	
  equivalent	
  to	
  Bertrand	
  competition	
  
with	
   perfectly	
   substitutable	
   goods	
   (indeed,	
   electricity	
   produced	
   by	
   supplier	
   	
  is	
  
indistinguishable	
   from	
   that	
   produced	
   by	
   ).	
   The	
   suppliers	
   undercut	
   each	
   other	
   until	
   they	
  
reach	
   their	
   marginal	
   cost	
   of	
   production,	
   .	
   In	
   equilibrium,	
   both	
   suppliers	
   place	
   bids	
   at	
   .	
  
They	
  produce	
  a	
  quantity	
   	
  each	
  and	
  earn	
  zero	
  profits.	
  
	
  
• High	
  demand:	
   .	
  In	
  this	
  region,	
  at	
  least	
  one	
  of	
  the	
  suppliers	
  is	
  unable	
  to	
  supply	
  the	
  
market	
  fully.	
  The	
  authors	
  distinguish	
  two	
  regions	
  within	
  high	
  demand:	
  when	
   	
  
(region	
  I),	
  producer	
  1	
  can	
  supply	
  the	
  market	
  fully,	
  but	
  producer	
  2	
  cannot.	
  When	
   	
  
(region	
   II),	
   neither	
   producer’s	
   capacity	
   is	
   sufficient	
   to	
   cover	
   demand	
   entirely,	
   so	
   there	
   is	
  
always	
  residual	
  demand	
  for	
  the	
  other.	
  When	
  demand	
  is	
  high	
  ( ),	
  there	
  is	
  no	
  pure-­‐
strategy	
  equilibrium.	
  Instead	
  there	
  is	
  a	
  unique	
  mixed-­‐strategy	
  equilibrium,	
  in	
  which	
  the	
  two	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Proofs	
  and	
  equilibrium	
  strategies	
  are	
  given	
  in	
  Fabra,	
  von	
  der	
  Fehr,	
  and	
  Harbord	
  (2006)	
  
  16	
  
firms	
  mix	
  over	
  a	
  common	
  support	
  that	
  lies	
  above	
  marginal	
  costs	
  and	
  includes	
   .	
  The	
  firms	
  
mix	
  according	
  to	
  different	
  probability	
  distributions:	
  in	
  particular,	
  the	
  large	
  firm	
  has	
  a	
  mass	
  
point	
  at	
   ,	
  the	
  upper	
  bound.	
  The	
  small	
  firm	
  bids	
  below	
   	
  with	
  probability	
  1,	
  so	
  profits	
  of	
  the	
  
large	
  firm	
  are	
  the	
  same	
  as	
  if	
  it	
  offered	
  to	
  sell	
  residual	
  demand	
  at	
   .	
  	
  
	
  
• Very	
   high	
   demand:	
   .	
   Nuclear	
   capacity	
   is	
   insufficient	
   to	
   supply	
   the	
   market,	
   so	
  
conventional	
   producers	
   must	
   supply	
   residual	
   demand.	
   In	
   equilibrium,	
   both	
   nuclear	
   firms	
  
place	
  bids	
  at	
   	
  and	
  produce	
  at	
  full	
  capacity.	
  
	
  
Intuitively,	
  it	
  is	
  easy	
  to	
  understand	
  why	
  there	
  is	
  no	
  pure-­‐strategy	
  equilibrium	
  in	
  the	
  high	
  
demand	
  region.	
  Consider	
  an	
  initial	
  situation	
  where	
  both	
  firms	
  bid	
   .	
  Then	
  either	
  of	
  the	
  suppliers	
  
can	
   increase	
   its	
   profit	
   by	
   placing	
   a	
   bid	
   just	
   below	
   :	
   the	
   increase	
   in	
   output	
   outweighs	
   the	
  
decrease	
  in	
  price.	
  Let	
  firm	
   	
  place	
  a	
  bid	
  just	
  below	
   .	
  Then	
  the	
  other	
  supplier	
  (firm	
   ),	
  serving	
  
residual	
  demand	
  (which	
  may	
  be	
  zero),	
  would	
  benefit	
  by	
  placing	
  a	
  bid	
  just	
  below	
  that	
  of	
  firm	
   .	
  
The	
  firms	
  place	
  subsequently	
  lower	
  bids,	
  until	
  the	
  large	
  firm	
  would	
  profit	
  more	
  from	
  serving	
  
residual	
  demand	
  at	
   	
  than	
  undercutting	
  the	
  small	
  firm.	
  But	
  if	
  the	
  large	
  firm	
  places	
  a	
  bid	
  at	
   ,	
  the	
  
small	
  firm	
  will	
  place	
  a	
  bid	
  just	
  below	
   ,	
  and	
  so	
  on.	
  
The	
   equilibrium	
   profits	
   are	
   summarized	
   in	
   table	
   2.	
   We	
   denote	
   firm	
   ’s	
   instantaneous	
  
profit	
   by	
   .	
   This	
   is	
   the	
   profit	
   obtained	
   for	
   a	
   given	
   realisation	
   of	
   demand,	
   per	
   unit	
   time,	
   not	
  
including	
  investment	
  costs.	
  Both	
  firms’	
  profit	
  functions	
  are	
  continuous	
  and	
  increasing	
  in	
   .	
  The	
  
large	
  firm’s	
  profit	
  is	
  linear	
  in	
   	
  and	
  goes	
  from	
  zero	
  (when	
   )	
  to	
   ,	
  when	
   .	
  
The	
  small	
  firm’s	
  profit	
  is	
  always	
  less	
  than	
  firm	
  1	
  profit.	
  When	
  demand	
  is	
  high,	
  firm	
  2	
  is	
  concave	
  
hyperbolic	
  (region	
  I)	
  then	
  linear	
  (region	
  II).	
  
	
  
Region	
   Demand	
   Profits	
  
Low	
  demand	
   	
  
	
  
	
  
High	
  demand	
  I	
   	
  
	
  
	
  
High	
  demand	
  II	
   	
  
	
  
	
  
Very	
  high	
  demand	
   	
  
	
  
	
  
Table	
  2	
  -­‐	
  Instantaneous	
  profits	
  as	
  a	
  function	
  of	
  demand	
  
  17	
  
3.2. Large	
  firm	
  profit	
  and	
  optimal	
  capacity	
  
	
  
Having	
   described	
   the	
   auction	
   mechanism	
   and	
   instantaneous	
   profits,	
   we	
   turn	
   our	
  
attention	
  to	
  each	
  firm’s	
  total	
  profit	
  and	
  optimal	
  capacity	
  choice	
  under	
  duopoly.	
  Both	
  firms	
  have	
  
constant	
  marginal	
  costs	
  of	
  investment	
  with	
  a	
  value	
  of	
   .	
  
	
  
• If	
   ,	
  firm	
  1’s	
  profit	
  over	
  the	
  year	
  is	
  given	
  by:	
  
	
  
	
  
	
  
	
  
• If	
   ,	
  the	
  expression	
  for	
  firm	
  1	
  profit	
  is	
  different:	
  
	
  
	
  
	
  
The	
  expression	
  is	
  different	
  in	
  that	
  the	
  lower	
  bound	
  of	
  the	
  first	
  integral	
  is	
   	
  instead	
  of	
   .	
  This	
  
arises	
   because	
   firm	
   1	
   profit	
   is	
   zero	
   when	
   demand	
   is	
   in	
   the	
   low	
   region	
   ( ).	
   When	
  
,	
  demand	
  is	
  never	
  in	
  this	
  region	
  (we	
  always	
  have	
   ).	
  
	
  
To	
  summarize,	
  firm	
  1	
  profit	
  is	
  given	
  by	
  the	
  following	
  function:	
  
	
  
	
  
If	
  we	
  fix	
   ,	
  one	
  can	
  see	
  that	
   	
  is	
  a	
  continuous	
  function	
  of	
   	
  that	
  is	
  quadratic	
  when	
   	
  
and	
  linear	
  when	
   .	
  	
  
	
  
In	
  order	
  to	
  determine	
  firm	
  1’s	
  optimal	
  choice	
  of	
  capacity,	
  we	
  differentiate	
   	
  with	
  respect	
  to	
   :	
  
	
  
	
  
  18	
  
Capacity	
  is	
  optimal	
  for	
  firm	
  1	
  when	
  its	
  marginal	
  benefit	
   	
  equals	
  its	
  marginal	
  cost	
   .	
  
We	
  assume	
   ,	
  which	
  ensures	
  that	
  firm	
  1	
  makes	
  positive	
  profit	
  when	
  it	
  has	
  a	
  monopoly.	
  
Setting	
   ,	
  we	
  find:	
  
	
  
	
  
We	
   have	
   .	
   In	
   other	
   words,	
   when	
   	
  we	
   recover	
   the	
   monopoly	
  
capacity,	
   which	
   we	
   denote	
   by	
   .	
   Interestingly,	
   it	
   is	
   optimal	
   for	
   firm	
   1	
   to	
   keep	
   aggregate	
  
capacity	
  at	
  the	
  efficient	
  level,	
   .	
  If	
  we	
  assume	
  that	
  firm	
  1	
  has	
  the	
  monopoly	
  capacity	
  (as	
  we	
  will	
  
do	
  when	
  we	
  introduce	
  contracts),	
  any	
  entry	
  by	
  firm	
  2	
  would	
  lead	
  to	
  excess	
  capacity,	
  which	
  is	
  
suboptimal	
  for	
  firm1.	
  So	
  firm	
  1	
  would	
  prefer	
  to	
  give	
  some	
  of	
  its	
  capacity	
  to	
  firm	
  2	
  (along	
  with	
  
the	
  associated	
  investment	
  costs)	
  rather	
  than	
  suffer	
  the	
  costs	
  of	
  excess	
  capacity.	
  
	
  
Indeed,	
   we	
   find	
   that	
   .	
   Evaluating	
   this	
   expression	
   when	
  
	
  and	
   ,	
  we	
  find:	
  
	
  
	
  
	
  
Since	
   ,	
   both	
   expressions	
   are	
   negative:	
   firm	
   1	
   profit	
   decreases	
   whenever	
   there	
   is	
  
entry	
  by	
  firm	
  2.	
  However,	
  firm	
  1	
  profit	
  decreases	
  faster	
  when	
  entry	
  leads	
  to	
  excess	
  capacity:	
  
when	
   ,	
  firm	
  1	
  gives	
  capacity	
  to	
  firm	
  2.	
  Total	
  capacity	
  is	
  constant,	
  and	
  firm	
  1	
  profit	
  
decreases	
  linearly.	
  In	
  contrast,	
  when	
   ,	
  total	
  capacity	
  increases	
  when	
  firm	
  2	
  enters,	
  and	
  
firm	
  1	
  profit	
  decreases	
  quadratically.	
  
3.3. Small	
  firm	
  profit	
  and	
  optimal	
  capacity	
  
	
  
In	
  order	
  to	
  analyse	
  market	
  entry	
  by	
  the	
  small	
  firm,	
  we	
  calculate	
  its	
  profit	
  function	
  and	
  
optimal	
  capacity	
  choice.	
  As	
  before,	
  we	
  distinguish	
  two	
  cases.	
  
	
  
• If	
   ,	
  firm	
  2’s	
  profit	
  over	
  the	
  year	
  is	
  given	
  by:	
  
  
  19	
  
	
  
  
If  we  fix   ,  firm  2  profit  is  a  cubic  function  of   .  Differentiating  with  respect  to   ,  we  find:  
	
  
	
  
Setting	
   ,	
   firm	
   2’s	
   optimal	
   capacity	
   choice	
   is	
   the	
   solution	
   to	
   the	
   following	
  
quadratic	
  equation:	
  
	
   	
  
	
  
• If	
   ,	
  the	
  expression	
  for	
  firm	
  2	
  profit	
  is:	
  
  
	
  
As	
  before,	
  the	
  lower	
  bound	
  of	
  the	
  first	
  integral	
  is	
   	
  instead	
  of	
   .	
  Evaluating	
  this	
  expression,	
  
we	
  find:	
  
	
  
	
  
This	
   expression	
   is	
   similar	
   to	
   the	
   one	
   found	
   previously,	
   but	
   the	
   term	
   multiplying	
   	
  is	
   	
  
instead	
  of	
   .	
  More	
  importantly,	
  the	
  term	
  multiplying	
   	
  is	
  now	
  a	
  logarithmic	
  function	
  of	
   :	
  
.	
  This	
  makes	
  it	
  impossible	
  to	
  solve	
  analytically	
  for	
   	
  such	
  that	
   .	
  This	
  
will	
  have	
  to	
  be	
  done	
  numerically.	
  
	
  
As	
  for	
  firm	
  1,	
  firm	
  2’s	
  profit	
  is	
  a	
  continuous	
  function	
  of	
   	
  and	
   ,	
  which	
  we	
  denote	
  by:	
  
	
  
3.4. Long-­‐term	
  contracts	
  
	
  
We	
  now	
  introduce	
  long-­‐term	
  contracts	
  to	
  the	
  model.	
  We	
  assume	
  that	
  firm	
  1	
  has	
  had	
  a	
  
monopoly	
  in	
  the	
  nuclear	
  sector	
  for	
  a	
  long	
  time.	
  Hence,	
  it	
  has	
  had	
  time	
  to	
  build	
  capacity	
  up	
  to	
  a	
  
  20	
  
level	
  that	
  maximises	
  its	
  profit.	
  Hence,	
  we	
  let	
   	
  from	
  now	
  on.	
  The	
  timing	
  of	
  the	
  model	
  is	
  as	
  
follows:	
  
1. Firm	
  1	
  has	
  a	
  monopoly	
  and	
  chooses	
  a	
  volume	
   	
  of	
  long-­‐term	
  contracts.	
  
2. Firm	
  2	
  observes	
  these	
  contracts,	
  and	
  chooses	
  how	
  much	
  capacity	
  to	
  build.	
  
3. The	
   two	
   firms	
   compete	
   on	
   the	
   spot	
   market	
   using	
   the	
   discriminatory	
   auction	
   mechanism	
  
described	
  previously.	
  
The	
  contracts	
  are	
  “long	
  term”	
  in	
  the	
  sense	
  that	
  they	
  are	
  still	
  in	
  effect	
  at	
  the	
  time	
  of	
  entry.	
  
	
   	
  
The	
   contracts	
   stipulate	
   that	
   firm	
   1	
   supplies	
   a	
   constant	
   level	
   of	
   power	
   to	
   customers	
  
throughout	
  the	
  year	
  at	
  a	
  price	
   .	
  The	
  total	
  capacity	
  supplied	
  to	
  customers	
  under	
  contract	
  
is	
   	
  (we	
  call	
  this	
  the	
  “volume	
  of	
  contracts”).	
  Hence,	
  firm	
  1	
  has	
  a	
  capacity	
   	
  available	
  to	
  
compete	
   on	
   the	
   market.	
   As	
   a	
   result,	
   total	
   nuclear	
   capacity	
   on	
   the	
   spot	
   market	
   is	
   reduced	
   to	
  
.	
  
As	
  before,	
  demand	
  is	
  uniformly	
  distributed	
  between	
   	
  and	
   .	
  This	
  is	
  equivalent	
  
to	
  saying	
  that	
  demand	
  is	
  the	
  sum	
  of	
  two	
  components:	
  a	
  constant	
  component	
   	
  and	
  a	
  variable	
  
part	
  ( )	
  uniformly	
  distributed	
  between	
   	
  and	
   .	
  The	
  constant	
  component	
  represents	
  
baseload	
   power:	
   for	
   example,	
   industrial	
   consumers	
   who	
   use	
   electricity	
   at	
   a	
   constant	
   rate	
  
throughout	
  the	
  year.	
  	
  
Long-­‐term	
  supply	
  contracts	
  are	
  signed	
  between	
  such	
  industrial	
  consumers	
  and	
  firm	
  1.	
  
This	
   removes	
   a	
   volume	
   	
  of	
   capacity	
   from	
   the	
   spot	
   market,	
   so	
   spot	
   market	
   demand	
   is	
   now	
  
distributed	
   between	
   	
  and	
   .	
   We	
   place	
   the	
   following	
  
restrictions	
   on	
   the	
   volume	
   of	
   contracts:	
   	
  must	
   be	
   non-­‐negative	
   ( )	
   and	
   cannot	
   exceed	
  
baseload	
  power	
  ( ).	
  This	
  ensures,	
  respectively,	
  that	
  firm	
  1	
  always	
  supplies	
  electricity	
  to	
  
contract	
   customers	
   (never	
   the	
   other	
   way	
   round),	
   and	
   that	
   spot	
   market	
   demand	
   is	
   always	
  
positive.	
  
	
   	
  
Firm	
  1’s	
  profit,	
  taking	
  into	
  account	
  long-­‐term	
  contracts	
  and	
  investment	
  costs,	
  is	
  given	
  by:	
  
	
  
	
  
The	
   function	
   	
  represents	
   operating	
   profits	
   from	
   spot	
   market	
   competition.	
   Its	
  
expression	
  is	
  the	
  same	
  as	
  the	
  expression	
  for	
   	
  given	
  previously,	
  except	
  that	
   ,	
   ,	
  
and	
   	
  are	
  replaced	
  with	
   ,	
   ,	
  and	
   .	
  
	
  	
  
Hence,	
  when	
   ,	
  we	
  have:	
  
	
  
  21	
  
Developing	
  this	
  expression,	
  we	
  find:	
  
	
  
	
  
We	
  note	
  that	
   	
  when	
   .	
  One	
  can	
  see	
  that	
  if	
  firm	
  1	
  anticipates	
  
that	
   	
  will	
   be	
   small	
   ( ),	
   then	
   firm	
   1’s	
   motive	
   to	
   sell	
   supply	
   contracts	
   is	
   purely	
  
strategic.	
   Indeed,	
   if	
   we	
   ignore	
   the	
   impact	
   of	
   	
  on	
   firm	
   2’s	
   choice	
   of	
   capacity	
   (taking	
   	
  as	
  
constant),	
  then	
  firm	
  1	
  cannot	
  increase	
  its	
  profit	
  by	
  selling	
  contracts.	
  In	
  fact,	
  its	
  profit	
  will	
  be	
  
reduced	
  if	
   .	
  However,	
  firm	
  1	
  may	
  have	
  an	
  incentive	
  to	
  sell	
  contracts	
  if	
  it	
  reduces	
  entry	
  by	
  
firm	
  2	
  –	
  this	
  is	
  what	
  we	
  seek	
  to	
  find	
  out.	
  
	
  
Similarly	
  to	
  firm	
  1,	
  firm	
  2’s	
  profit	
  function,	
  including	
  contracts	
  and	
  investment	
  costs,	
  is:	
  
	
  
The	
  expression	
  of	
   	
  is	
  found	
  by	
  replacing	
   ,	
   ,	
  and	
   	
  with	
   ,	
   ,	
  and	
   	
  
in	
  the	
  expression	
  of	
   .	
  
	
  
We	
  define	
  firm	
  2’s	
  optimal	
  capacity	
  choice,	
  taking	
  into	
  account	
  contracts,	
  as	
  follows:	
  
	
  
	
  
Finally,	
  we	
  define	
   	
  and	
   :	
  
	
  
	
  
  22	
  
	
  
4. Numerical	
  simulation	
  
4.1. Calibration	
  
	
  
We	
  calibrate	
  the	
  model	
  using	
  data	
  for	
  the	
  French	
  electricity	
  market,	
  then	
  simulate	
  using	
  
MATLAB.	
  We	
  have	
  already	
  determined	
   	
  and	
   ,	
  the	
  parameters	
  of	
  the	
  electricity	
  demand	
  
distribution.	
  The	
  total	
  nuclear	
  capacity	
  installed	
  in	
  France	
  is	
  63,130	
  MW	
  (source:	
  RTE1).	
  We	
  
assume	
  that	
  this	
  capacity	
  was	
  chosen	
  optimally	
  by	
  the	
  monopoly:	
  
	
  GW	
  
	
  
We	
  set	
   ,	
  using	
  the	
  investment	
  cost	
  as	
  a	
  numéraire,	
  and	
  solve	
  the	
  previous	
  equation	
  to	
  find	
  
.	
  These	
  numbers	
  are	
  summarized	
  in	
  table	
  3.	
  
	
  
Name	
   Value	
  
	
   33	
  GW	
  
	
   78	
  GW	
  
	
   63	
  GW	
  
	
   3	
  
	
   1	
  (numéraire)	
  
Table	
  3	
  –	
  Parameters	
  of	
  the	
  calibrated	
  model	
  
	
  
4.2. Monopoly	
  
	
  
The	
  monopoly	
  profit	
  (after	
  investment	
  costs)	
  is	
  displayed	
  in	
  figure	
  4	
  as	
  a	
  function	
  of	
  
nuclear	
  capacity.	
  It	
  is	
  at	
  a	
  maximum	
  when	
  the	
  monopoly	
  has	
  a	
  capacity	
  of	
  63	
  GW.	
  Interestingly,	
  
monopoly	
  is	
  negative	
  when	
  capacity	
  is	
  less	
  than	
  9.5	
  GW.	
  This	
  suggests	
  that	
  there	
  is	
  a	
  minimum	
  
efficient	
  scale	
  for	
  nuclear	
  power.	
  When	
   	
  GW,	
  the	
  value	
  of	
  monopoly	
  profit	
  is	
   	
  GW.	
  
As	
  discussed	
  in	
  the	
  previous	
  section,	
  the	
  monopoly	
  capacity	
  is	
  efficient	
  in	
  that	
  it	
  minimizes	
  the	
  
total	
  cost	
  of	
  producing	
  electricity.	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  http://clients.rte-­‐france.com/lang/an/clients_producteurs/vie/prod/parc_reference.jsp,	
  last	
  accessed	
  
on	
  21/08/2014	
  
  23	
  
	
  
4.3.Duopoly	
  
	
  
Firm	
  1,	
  the	
  ex-­‐monopoly,	
  has	
  capacity	
   	
  GW.	
  When	
  firm	
  2	
  enters	
  the	
  market,	
  the	
  
two	
  producers	
  compete	
  via	
  the	
  discriminatory	
  auction	
  mechanism	
  described	
  in	
  the	
  previous	
  
section.	
  Figure	
  5	
  displays	
  both	
  firms’	
  profit	
  as	
  a	
  function	
  of	
   ,	
  firm	
  2’s	
  capacity.	
  
	
  
	
  
Figure	
  5	
  –	
  Firm	
  1	
  and	
  firm	
  2	
  profit	
  (after	
  investment	
  cost)	
  when	
   ,	
  as	
  a	
  function	
  of	
   	
  
Figure	
  4	
  -­‐	
  Monopoly	
  profit	
  (after	
  investment	
  costs)	
  as	
  a	
  function	
  of	
  nuclear	
  capacity	
  
  24	
  
Firm	
  1	
  profit	
  is	
  strictly	
  decreasing	
  in	
   ,	
  and	
  becomes	
  negative	
  when	
   	
  GW.	
  In	
  
the	
  absence	
  of	
  contracts,	
  firm	
  2	
  profit	
  is	
  maximum	
  when	
   	
  GW,	
  so	
  we	
  have	
   	
  GW.	
  
At	
  this	
  point,	
  firm	
  1	
  makes	
  a	
  profit	
  of	
  51,	
  about	
  half	
  of	
  monopoly	
  profit.	
  We	
  notice	
  that	
  firm	
  2	
  
makes	
   non-­‐negative	
   profit	
   as	
   long	
   as	
   ,	
   which	
   implies	
   that	
   there	
   is	
   no	
   minimum	
  
efficient	
  scale	
  for	
  firm	
  2.	
  This	
  is	
  because	
  we	
  have	
  not	
  given	
  firm	
  2	
  any	
  fixed	
  costs	
  –	
  investment	
  
costs	
  are	
  proportional	
  to	
  capacity.	
  However,	
  if	
  firm	
  2	
  had	
  fixed	
  costs	
  of	
  say	
  10,	
  then	
  capacity	
  
below	
  5	
  GW	
  would	
  not	
  be	
  profitable.	
  	
  
Figure	
   6	
   shows	
   the	
   total	
   profit	
   	
  of	
   nuclear	
   firms	
   and	
   the	
   total	
  
cost	
   of	
   electricity	
   production.	
   It	
   also	
   displays	
   total	
   revenue	
   earned	
   by	
   both	
   nuclear	
   and	
  
conventional	
  power	
  producers,	
  given	
  by	
  the	
  following	
  expression:	
  
	
  
We	
  denote	
  total	
  revenue	
   .	
  As	
  conventional	
  power	
  producers	
  make	
  zero	
  profit,	
  we	
  have:	
  
	
  
	
  
	
  
Figure	
  6	
  –	
  Total	
  profit,	
  cost,	
  and	
  revenue	
  for	
  electricity	
  producers	
  (both	
  nuclear	
  and	
  conventional)	
  when	
  
,	
  as	
  a	
  function	
  of	
  firm	
  2	
  capacity	
  ( )	
  
	
  
Total	
  profit	
  begins	
  at	
  96	
  (monopoly	
  profit)	
  and	
  decreases	
  with	
   .	
  When	
   	
  GW,	
  
total	
  profit	
  is	
  70.	
  In	
  layman	
  terms,	
  the	
  two	
  producers	
  must	
  share	
  a	
  pie	
  that	
  decreases	
  in	
  size	
  as	
  
firm	
   2	
   enters	
   the	
   market.	
   Total	
   cost	
   increases	
   with	
   .	
   Since	
   the	
   monopoly	
   capacity	
   also	
  
minimises	
  total	
  cost,	
  entry	
  by	
  firm	
  2	
  leads	
  to	
  excess	
  capacity	
  and	
  higher	
  total	
  cost.	
  	
  
  25	
  
Total	
  revenue	
  decreases	
  with	
   ,	
  which	
  implies	
  that	
  the	
  decrease	
  in	
  total	
  profit	
  is	
  not	
  
only	
   associated	
   with	
   increased	
   cost	
   of	
   electricity	
   production.	
   There	
   is	
   also	
   a	
   price	
   effect.	
   We	
  
define	
  a	
  price	
  index	
   	
  by	
  the	
  following	
  expression:	
   .	
  
This	
   index	
   of	
   the	
   wholesale	
   price	
   of	
   electricity	
   is	
   proportional	
   to	
   total	
   revenue.	
   	
  
when	
   ,	
  and	
   	
  when	
   	
  GW.	
  	
  Hence,	
  market	
  entry	
  by	
  firm	
  2	
  
leads	
   to	
   higher	
   total	
   cost	
   of	
   electricity,	
   and	
   lower	
   total	
   profit	
   and	
   revenue.	
   The	
   price	
   of	
  
electricity	
  decreases	
  by	
  approximately	
  10%.	
  
4.4. Long-­‐term	
  contracts	
  
	
  
We	
   now	
   allow	
   firm	
   1	
   to	
   hold	
   a	
   volume	
   	
  of	
   long-­‐term	
   supply	
   contracts,	
   according	
   to	
  
which	
  firm	
  1	
  supplies	
  electricity	
  at	
  a	
  price	
   .	
  At	
  the	
  time	
  of	
  signing	
  the	
  contracts,	
  firm	
  1	
  
has	
   a	
   monopoly	
   and	
   the	
   price	
   of	
   electricity	
   is	
   ,	
   so	
   customers	
   are	
   indifferent	
   between	
  
purchasing	
  electricity	
  on	
  the	
  market	
  and	
  a	
  contract	
  where	
   .	
  We	
  set	
   	
  and	
  calculate	
  
,	
  firm	
  2’s	
  optimal	
  choice	
  of	
  capacity	
  as	
  a	
  function	
  of	
  the	
  volume	
  of	
  contracts	
  held	
  by	
  firm	
  1.	
  
In	
  order	
  to	
  do	
  so,	
  we	
  use	
  the	
  following	
  program	
  for	
  every	
  value	
  of	
   :	
  
1. We	
  calculate	
   )	
  for	
  a	
  range	
  of	
  values	
  of	
   	
  taken	
  in	
  the	
  interval	
   .	
  
2. We	
  find	
   ,	
  the	
  value	
  of	
   	
  corresponding	
  to	
  the	
  maximum	
   .	
  
3. If	
   ,	
   we	
   return	
   the	
   analytical	
   solution.	
   If	
   not,	
   we	
   return	
   the	
   numerical	
   solution,	
  
.	
  
	
  
	
  
Figure	
  7	
  –	
  Capacity	
  chosen	
  by	
  firm	
  2	
  as	
  a	
  function	
  of	
  the	
  volume	
  of	
  contracts	
  held	
  by	
  firm	
  1	
  
  26	
  
Figure	
   7	
   displays	
   	
  for	
   .	
   The	
   capacity	
   chosen	
   by	
   firm	
   2	
   is	
   strictly	
  
decreasing	
  in	
   .	
  There	
  is	
  a	
  change	
  in	
  slope	
  when	
   	
  GW.	
  Beyond	
  this	
  point,	
   .	
  
As	
  discussed	
  in	
  the	
  previous	
  section,	
  the	
  profit	
  functions	
  of	
  the	
  firms	
  change	
  when	
   .	
  
As	
  a	
  result,	
  the	
  slope	
  of	
  	
   	
  changes.	
  
We	
  note	
  that	
  the	
  reduction	
  in	
  firm	
  2’s	
  capacity	
  is	
  approximately	
  proportional	
  to	
   ,	
  
the	
   volume	
   of	
   contracts	
   expressed	
   as	
   a	
   proportion	
   of	
   firm	
   1	
   capacity.	
   Indeed,	
   when	
  
,	
  firm	
  2’s	
  capacity	
  is	
  reduced	
  by	
  58%.	
  
	
  
	
  
Figure	
  8	
  –	
  Profit	
  of	
  each	
  firm	
  as	
  a	
  function	
  of	
  the	
  volume	
  of	
  contracts	
  held	
  by	
  firm	
  1	
  
	
  
Figure	
   8	
   displays	
   	
  and	
   .	
   Firm	
   2	
   profit	
   is	
   decreasing	
   in	
   ,	
   but	
   it	
   remains	
  
positive,	
  so	
  although	
  contracts	
  decrease	
  entry,	
  firm	
  1	
  cannot	
  exclude	
  firm	
  2	
  completely	
  using	
  
contracts.	
   However,	
   if	
   firm	
   2	
   had	
   large	
   fixed	
   costs,	
   total	
   exclusion	
   would	
   be	
   possible.	
   For	
  
example,	
  if	
  firm	
  2	
  had	
  fixed	
  costs	
  of	
  10,	
  then	
  it	
  would	
  not	
  enter	
  the	
  market	
  if	
   	
  GW.	
  Firm	
  1	
  
profit,	
   including	
   income	
   from	
   contracts,	
   is	
   increasing	
   in	
   ,	
   but	
   remains	
   less	
   than	
   monopoly	
  
profit.	
   In	
   order	
   to	
   maximize	
   its	
   profit,	
   firm	
   1	
   should	
   choose	
   a	
   volume	
   of	
   contracts	
  
	
  GW.	
  At	
  this	
  point,	
  firm	
  1	
  makes	
  a	
  profit	
  of	
  82,	
  just	
  14	
  less	
  than	
  monopoly	
  profit.	
  
	
   	
  
Figure	
   9	
   displays	
   total	
   profit	
   	
  and	
   total	
   cost	
   as	
   a	
   function	
   of	
   .	
   Because	
  
contracts	
   lead	
   to	
   decreased	
   entry	
   by	
   firm	
   2	
   (hence,	
   less	
   excess	
   capacity),	
   the	
   total	
   cost	
   of	
  
electricity	
   production	
   decreases	
   with	
   .	
   Total	
   profit	
   increases	
   with	
   :	
   the	
   increase	
   in	
   firm	
   1	
  
profit	
  outweighs	
  the	
  decrease	
  in	
  firm	
  2	
  profit.	
  
  27	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
	
  
	
  
Figure	
   10	
   displays	
   total	
   revenue,	
   with	
   and	
   without	
   income	
   from	
   contracts.	
   	
   The	
  
difference	
  is	
  striking.	
  Total	
  revenue,	
  excluding	
  contracts,	
  is	
  sharply	
  decreasing.	
  This	
  represents	
  
revenue	
  from	
  the	
  spot	
  market,	
  whose	
  size	
  is	
  being	
  reduced	
  as	
  the	
  volume	
  of	
  contracts	
  increases	
  
(peak	
   demand	
   in	
   the	
   spot	
   market	
   decreases	
   from	
   	
  to	
   ).	
   However,	
   total	
   revenue	
   from	
  
electricity	
  production,	
  including	
  contract	
  income,	
  is	
  increasing.	
  
	
  
	
  
Figure	
  10	
  –	
  Total	
  revenue,	
  including	
  and	
  excluding	
  contract	
  income,	
  as	
  a	
  function	
  of	
   .	
  
Figure	
  9	
  –	
  Total	
  profit	
  and	
  total	
  cost	
  as	
  a	
  function	
  of	
  the	
  volume	
  of	
  contracts	
  held	
  by	
  firm	
  1	
  
  28	
  
Finally,	
  we	
  define	
  a	
  spot	
  market	
  price	
  index	
  by	
  the	
  following	
  expression:	
  
	
  
	
  
We	
   are	
   interested	
   in	
   the	
   impact	
   of	
   contracts	
   on	
   the	
   average	
   price	
   of	
   electricity	
   in	
   the	
   spot	
  
market.	
  Spot	
  market	
  revenue	
  is	
  given	
  by	
  total	
  revenue	
  minus	
  contract	
  income,	
  and	
  market	
  size	
  
is	
   ,	
  the	
  average	
  demand	
  for	
  electricity	
  in	
  the	
  spot	
  market.	
  Figure	
  11	
  displays	
   	
  as	
  
a	
  function	
  of	
   .	
  
	
  
	
  
Figure	
  11	
  –	
  Spot	
  market	
  price	
  index	
   	
  as	
  a	
  function	
  of	
   .	
  
	
  
The	
  evolution	
  of	
  the	
  price	
  index	
  is	
  unusual:	
  it	
  begins	
  at	
  2.71	
  and	
  decreases	
  until	
  it	
  
reaches	
  a	
  local	
  minimum	
  of	
  2.70	
  when	
   	
  GW.	
  Then	
  it	
  increases,	
  reaching	
  a	
  maximum	
  of	
  
2.72	
  when	
   	
  GW	
  (at	
  this	
  point,	
   ).	
  Then	
  it	
  decreases	
  again,	
  reaching	
  a	
  global	
  
minimum	
  of	
  2.865	
  when	
   	
  Finally	
  the	
  price	
  index	
  increases	
  a	
  little,	
  reaching	
  2.695	
  when	
  
	
  GW.	
  
	
   If	
  we	
  look	
  at	
  the	
  expression	
  of	
  the	
  price	
  index,	
  its	
  behaviour	
  can	
  be	
  explained	
  partly	
  by	
  
the	
  fact	
  that	
  total	
  spot	
  market	
  revenue	
  (the	
  numerator)	
  as	
  well	
  as	
  the	
  size	
  of	
  the	
  spot	
  market	
  
(the	
  denominator)	
  are	
  decreasing.	
  The	
  rest	
  is	
  explained	
  by	
  the	
  change	
  in	
  slope	
  of	
  total	
  revenue	
  
when	
   	
  exceeds	
  23.7	
  GW.	
  However,	
  it	
  should	
  be	
  noted	
  that	
  these	
  changes	
  in	
  spot	
  market	
  price	
  
are	
  small:	
  the	
  price	
  index	
  always	
  remains	
  within	
  1%	
  of	
  its	
  original	
  value.	
  In	
  conclusion,	
  the	
  
contracts	
  have	
  little	
  effect	
  on	
  the	
  average	
  price	
  of	
  electricity	
  on	
  the	
  spot	
  market.
  29	
  
	
  
Conclusion	
  	
  
	
  
In	
   our	
   model,	
   the	
   French	
   electricity	
   market	
   is	
   made	
   up	
   of	
   two	
   sectors:	
   a	
   perfectly	
  
competitive	
   conventional	
   sector	
   and	
   a	
   nuclear	
   sector.	
   Electricity	
   demand	
   is	
   uniformly	
  
distributed.	
   We	
   focus	
   our	
   analysis	
   on	
   market	
   entry	
   in	
   the	
   nuclear	
   sector.	
   We	
   begin	
   by	
  
determining	
  the	
  nuclear	
  capacity	
  that	
  a	
  monopoly	
  would	
  choose	
  in	
  order	
  to	
  maximize	
  its	
  profit.	
  
This	
  capacity	
  also	
  minimizes	
  the	
  total	
  cost	
  of	
  producing	
  electricity	
  (from	
  both	
  conventional	
  and	
  
nuclear	
  sources)	
  to	
  meet	
  consumer	
  demand.	
  
We	
  then	
  consider	
  what	
  happens	
  when	
  there	
  are	
  two	
  nuclear	
  producers:	
  a	
  large	
  firm,	
  the	
  
incumbent,	
  and	
  a	
  small	
  firm,	
  the	
  entrant.	
  The	
  two	
  firms	
  compete	
  via	
  a	
  discriminatory	
  auction	
  
mechanism	
  described	
  in	
  Fabra	
  et	
  al.	
  (2006).	
  When	
  demand	
  is	
  less	
  than	
  the	
  small	
  firm	
  capacity,	
  
both	
  firms	
  sell	
  capacity	
  at	
  marginal	
  cost	
   and	
  make	
  zero	
  profit.	
  When	
  demand	
  exceeds	
  total	
  
nuclear	
  capacity,	
  each	
  firm	
  supplies	
  its	
  whole	
  capacity	
  at	
  the	
  marginal	
  cost	
   	
  of	
  conventional	
  
producers.	
  When	
  demand	
  is	
  between	
  these	
  two	
  regions,	
  there	
  is	
  a	
  mixed	
  strategy	
  equilibrium.	
  
We	
  find	
  expressions	
  for	
  each	
  firm’s	
  yearly	
  profit	
  by	
  integrating	
  over	
  the	
  distribution	
  of	
  
demand.	
  We	
  then	
  calibrate	
  the	
  model	
  to	
  the	
  French	
  market,	
  assuming	
  that	
  the	
  nuclear	
  capacity	
  
installed	
  on	
  the	
  market	
  (63	
  GW)	
  is	
  the	
  monopoly	
  profit-­‐maximizing	
  capacity.	
  In	
  the	
  absence	
  of	
  
contracts,	
   the	
   small	
   firm	
   maximizes	
   its	
   profit	
   by	
   installing	
   a	
   capacity	
   of	
   17.5	
   GW.	
   Since	
   the	
  
monopoly	
  capacity	
  is	
  efficient,	
  market	
  entry	
  leads	
  to	
  excess	
  capacity:	
  the	
  total	
  cost	
  of	
  producing	
  
electricity	
   increases.	
   Total	
   profit	
   and	
   revenue	
   decrease,	
   and	
   the	
   average	
   price	
   of	
   electricity	
  
drops	
  by	
  10%.	
  
We	
   then	
   allow	
   the	
   incumbent	
   to	
   sign	
   long-­‐term	
   contracts	
   with	
   industrial	
   consumers	
  
before	
  the	
  small	
  firm	
  enters	
  the	
  market.	
  According	
  to	
  these	
  contracts,	
  the	
  incumbent	
  supplies	
  a	
  
constant	
  capacity	
  at	
  a	
  price	
   .	
  We	
  assume	
  that	
   	
  –	
  the	
  contract	
  price	
  is	
  equal	
  to	
  the	
  price	
  
of	
  electricity	
  at	
  the	
  time	
  the	
  contracts	
  are	
  signed	
  (when	
  the	
  incumbent	
  has	
  a	
  monopoly).	
  	
  As	
  the	
  
volume	
  of	
  contracts	
  increases,	
  market	
  entry	
  by	
  the	
  small	
  firm	
  is	
  reduced.	
  Its	
  profit	
  decreases,	
  
while	
   the	
   incumbent’s	
   profit	
   increases.	
   However,	
   the	
   incumbent	
   cannot	
   recover	
   monopoly	
  
profit	
   entirely.	
   Furthermore,	
   contracts	
   reduce	
   market	
   entry,	
   but	
   they	
   cannot	
   exclude	
   rivals	
  
entirely	
  unless	
  the	
  entrant	
  has	
  large	
  fixed	
  costs.	
  	
  
From	
  a	
  welfare	
  point	
  of	
  view,	
  the	
  effect	
  of	
  long-­‐term	
  contracts	
  is	
  ambiguous.	
  On	
  the	
  one	
  
hand,	
  market	
  entry	
  leads	
  to	
  excess	
  capacity,	
  so	
  by	
  limiting	
  entry	
  the	
  contracts	
  help	
  to	
  minimize	
  
the	
  cost	
  of	
  electricity	
  production.	
  However,	
  market	
  entry	
  reduces	
  the	
  price	
  of	
  electricity,	
  which	
  
may	
   be	
   viewed	
   as	
   beneficial	
   for	
   consumers.	
   Interestingly,	
   long-­‐term	
   contracts	
   do	
   not	
   have	
   a	
  
significant	
  effect	
  on	
  the	
  price	
  of	
  electricity	
  on	
  the	
  spot	
  market:	
  it	
  remains	
  near	
  the	
  level	
  it	
  would	
  
  30	
  
have	
   had	
   with	
   unrestricted	
   market	
   entry.	
   However,	
   customers	
   who	
   have	
   signed	
   long-­‐term	
  
contracts	
  continue	
  to	
  pay	
  the	
  monopoly	
  price	
  for	
  electricity.	
  As	
  a	
  result,	
  they	
  have	
  an	
  incentive	
  
to	
  escape	
  the	
  contract	
  in	
  order	
  to	
  purchase	
  electricity	
  on	
  the	
  spot	
  market	
  instead.	
  
	
  An	
  important	
  extension	
  of	
  this	
  work	
  would	
  be	
  to	
  consider	
  customers’	
  incentives	
  to	
  sign	
  
contracts.	
  We	
  have	
  assumed	
  that	
  at	
  the	
  time	
  of	
  signing,	
  customers	
  do	
  not	
  anticipate	
  that	
  there	
  
will	
  be	
  market	
  entry,	
  or	
  they	
  do	
  not	
  internalize	
  the	
  consequences	
  that	
  the	
  contracts	
  will	
  have	
  on	
  
a	
  rival	
  producer’s	
  decision	
  to	
  enter	
  the	
  market.	
  If	
  they	
  were	
  to	
  anticipate	
  this,	
  how	
  could	
  the	
  
incumbent	
  producer	
  incentivise	
  them	
  to	
  sign	
  the	
  contract?	
  A	
  possible	
  answer	
  would	
  be	
  to	
  look	
  
at	
  the	
  contract	
  price	
   .	
  Perhaps	
  the	
  incumbent	
  could	
  offer	
  customers	
  a	
  discount	
  at	
  the	
  time	
  of	
  
signing	
   (setting	
   ),	
   but	
   in	
   that	
   case	
   would	
   the	
   incumbent	
   still	
   benefit	
   from	
   having	
   the	
  
contracts?	
   Similarly,	
   one	
   could	
   look	
   at	
   how	
   the	
   contracts	
   should	
   be	
   structured	
   in	
   order	
   to	
  
dissuade	
  customers	
  from	
  ending	
  them	
  after	
  they	
  observe	
  market	
  entry	
  and	
  the	
  resulting	
  lower	
  
prices.	
  A	
  first	
  step	
  would	
  be	
  to	
  examine	
  the	
  penalty	
  that	
  firms	
  would	
  be	
  required	
  to	
  pay	
  in	
  the	
  
event	
  of	
  a	
  premature	
  termination	
  of	
  the	
  contract.	
  
  31	
  
	
  
References	
  
	
  
Aghion,	
  Philippe,	
  and	
  Patrick	
  Bolton.	
  "Contracts	
  as	
  a	
  Barrier	
  to	
  Entry."	
  American	
  Economic	
  
Review	
  (1987):	
  388-­‐401.	
  
	
  
Allaz,	
  Blaise,	
  and	
  Jean-­‐Luc	
  Vila.	
  "Cournot	
  competition,	
  forward	
  markets	
  and	
  efficiency."	
  Journal	
  
of	
  Economic	
  Theory	
  59,	
  no.	
  1	
  (1993):	
  1-­‐16.	
  
	
  
Bessot,	
  Nicolas,	
  Maciej	
  Ciszewski,	
  and	
  Augustijn	
  Van	
  Haasteren.	
  "The	
  EDF	
  long	
  term	
  contracts	
  
case:	
  addressing	
  foreclosure	
  for	
  the	
  long	
  term	
  benefit	
  of	
  industrial	
  customers."	
  Competition	
  
Policy	
  Newsletter	
  2	
  (2010):	
  10-­‐13.	
  
	
  
Director,	
  Aaron,	
  and	
  Edward	
  H.	
  Levi.	
  "Law	
  and	
  the	
  future:	
  Trade	
  regulation."	
  Northwestern	
  
University	
  Law	
  Review	
  51	
  (1956):	
  281.	
  
	
  
Lien,	
  J.	
  “Forward	
  Contracts	
  and	
  the	
  Curse	
  of	
  Market	
  Power”,	
  University	
  of	
  Maryland	
  Working	
  
Paper	
  (2000)	
  
	
  
Mahenc,	
  Philippe,	
  and	
  François	
  Salanié.	
  "Softening	
  competition	
  through	
  forward	
  trading."	
  
Journal	
  of	
  Economic	
  Theory	
  116,	
  no.	
  2	
  (2004):	
  282-­‐293.	
  
	
  
Fabra,	
  Natalia,	
  Nils-­‐Henrik	
  von	
  der	
  Fehr,	
  and	
  David	
  Harbord.	
  "Designing	
  electricity	
  auctions."	
  
RAND	
  Journal	
  of	
  Economics	
  37,	
  no.	
  1	
  (2006):	
  23-­‐46.	
  
	
  
Fabra,	
  Natalia,	
  Nils-­‐Henrik	
  von	
  der	
  Fehr,	
  and	
  María-­‐Ángeles	
  de	
  Frutos.	
  "Market	
  Design	
  and	
  
Investment	
  Incentives."	
  Economic	
  Journal	
  121,	
  no.	
  557	
  (2011):	
  1340-­‐1360.	
  
	
  
Rasmusen,	
  Eric	
  B.,	
  J.	
  Mark	
  Ramseyer,	
  and	
  John	
  S.	
  Wiley	
  Jr.	
  "Naked	
  Exclusion."	
  American	
  
Economic	
  Review	
  (1991):	
  1137-­‐1145.	
  
	
  
Segal,	
  Ilya	
  R.,	
  and	
  Michael	
  D.	
  Whinston.	
  "Naked	
  Exclusion:	
  Comment."	
  American	
  Economic	
  
Review	
  (2000):	
  296-­‐309.	
  
	
  
  32	
  
	
  
Appendix	
  –	
  selected	
  MATLAB	
  code	
  
	
  
Function	
  
function [k2opt,profit2] = maxprofit2(f)
%MAXPROFIT2 Returns the level of capacity that maximizes firm 2's profit,
%when firm 1 has capacity k1m and holds a volume of contract f
Dmin = 33 - f;
Dmax = 78 - f;
DeltaD = Dmax - Dmin;
% k1 is the monopoly capacity, given by k1 = Dmax - b*DeltaD/(P-c)
k1 = 63 - f;
% investment cost (numeraire price)
b = 1;
% NetPrice = P - c
NetPrice = b*DeltaD/(Dmax - k1);
% maximum capacity of firm 2 - we do not want k2 to exceed k1
k2max = Dmax;
% step size (number of data points = k2max/step + 1)
step = 0.01;
% capacity of firm 2
k2vector = 0:step:k2max;
% initializing
Profit2 = zeros(size(k2vector));
NetProfit2 = zeros(size(k2vector));
for i = 1:length(k2vector)
k2 = k2vector(i);
K = k1 + k2;
% parameters for firm 2 profit
A = 3/(2*k1);
B1 = 2*log(k1/Dmin); % B1 and B2 are minus infty if f = 63
B2 = 1 + log(k1/k2);
C = -(1-b/NetPrice)*DeltaD;
if k2 <= Dmin
% profit of firm 2, before and after fixed costs
Profit2(i) = NetPrice/DeltaD*(DeltaD*k2 - B1/2*k2^2 - A/3*k2^3);
NetProfit2(i) = Profit2(i) - b*k2; % net of fixed cost
else
% profit of firm 2, before and after fixed costs
Profit2(i) = NetPrice/DeltaD*(Dmax*k2 - B2*k2^2 - A/3*k2^3);
NetProfit2(i) = Profit2(i) - b*k2; % net of fixed cost
end
end
profit2 = max(NetProfit2);
k2opt = k2vector(NetProfit2 == profit2);
  33	
  
if k2opt <= Dmin
% overwrite k2opt and profit2 with analytical solution (more precise)
k2opt = (-B1 + sqrt(B1^2-4*A*C))/(2*A);
profit2 = NetPrice/DeltaD*(DeltaD*k2opt - B1/2*k2opt^2 - A/3*k2opt^3)...
- b*k2opt;
end
end
	
  
Main	
  script	
  (calls	
  the	
  previous	
  function)	
  
% calculates the optimal capacity chosen by firm 2 as a function of the
% volume of contracts held by firm 1, where firm 1 has the monopoly
% capacity. Also calculates resulting profit of both firms.
Dmin = 33;
Dmax = 78;
DeltaD = Dmax - Dmin;
Davg = (Dmax + Dmin)/2;
% k1 is the monopoly capacity, given by k1 = Dmax - b*DeltaD/(P-c)
k1 = 63;
% Investment cost (numeraire price)
b = 1;
% NetPrice = P - c
NetPrice = b*DeltaD/(Dmax - k1);
% Discount = (pf - c)/(P - c)
Discount = 1;
ContractPrice = Discount*NetPrice;
% maximum volume of contracts (must be < 63)
fmax = 33;
% step size (number of data points = fmax/step + 1)
step = 0.2;
% volume of contracts
fvector = 0:step:fmax;
% initializing
k2vector = zeros(size(fvector));
Profit1 = zeros(size(fvector));
NetProfit1 = zeros(size(fvector));
Profit2 = zeros(size(fvector));
NetProfit2 = zeros(size(fvector));
TotalCost = zeros(size(fvector));
for i = 1:length(fvector)
% volume of contracts
f = fvector(i);
% updated quantities
Dmaxp = Dmax - f;
Dminp = Dmin - f;
k1p = k1 - f;
  34	
  
% firm 2 capacity and profits
[k2,NetProfit2(i)] = maxprofit2(f);
k2vector(i) = k2;
Profit2(i) = NetProfit2(i) + b*k2;
% total capacity
K = k1 + k2;
Kp = K - f;
% profit of firm 1, before and after fixed costs
if k2 < Dminp
Profit1(i) = NetPrice/DeltaD*(k1p*Dmaxp + k2*Dminp...
- 1/2*Kp^2 -1/2*Dminp^2) + ContractPrice*f;
else
Profit1(i) = NetPrice/DeltaD*(k1p*(Dmaxp-k2) - 1/2*k1p^2)...
+ ContractPrice*f;
end
NetProfit1(i) = Profit1(i) - b*k1; % net of fixed cost
% total production cost minus c*Davg
TotalCost(i) = b*K + NetPrice/DeltaD*0.5*(Dmax-K)^2;
end
% total profit = firm 1 + firm 2 + coal (zero profit)
TotalProfit = NetProfit1 + NetProfit2; % after investment costs
% PriceAvg = Pavg - c (retail price index net of operating cost)
PriceAvg = (TotalProfit + TotalCost - ContractPrice*fvector)./(Davg - fvector);
	
  
	
  
	
  
	
  
	
  	
  

More Related Content

Similar to Economics Masters Thesis

American chamber of_commerce
American chamber of_commerceAmerican chamber of_commerce
American chamber of_commerceAhmad Eid
 
The role of electricity in heating and cooling
The role of electricity in heating and coolingThe role of electricity in heating and cooling
The role of electricity in heating and coolingLeonardo ENERGY
 
Alliance eii
Alliance eiiAlliance eii
Alliance eiiAhmad Eid
 
National grid
National gridNational grid
National gridAhmad Eid
 
Utilities opportunities and betterment
Utilities opportunities and bettermentUtilities opportunities and betterment
Utilities opportunities and bettermentSagar Zilpe
 
7 years of EU energy and climate policy: “Age of reason or of divorce?”
7 years of EU energy and climate policy: “Age of reason or of divorce?”7 years of EU energy and climate policy: “Age of reason or of divorce?”
7 years of EU energy and climate policy: “Age of reason or of divorce?” European University Institute
 
2007-2014/ 7 years of EU energy & climate policy:"Age of reason or of divorce?"
2007-2014/ 7 years of EU energy & climate policy:"Age of reason or of divorce?"2007-2014/ 7 years of EU energy & climate policy:"Age of reason or of divorce?"
2007-2014/ 7 years of EU energy & climate policy:"Age of reason or of divorce?"Herve MATHIASIN
 
Le système électrique européen confronté à l’accord de Pari
Le système électrique européen confronté à l’accord de PariLe système électrique européen confronté à l’accord de Pari
Le système électrique européen confronté à l’accord de PariFrance Stratégie
 
Sales of Spanish green certificates in the EU
Sales of Spanish green certificates in the EUSales of Spanish green certificates in the EU
Sales of Spanish green certificates in the EUAlejo Etchart Ortiz
 
Hydrogen and power system
Hydrogen and power systemHydrogen and power system
Hydrogen and power systemIEA-ETSAP
 
External energy dependency
External energy dependencyExternal energy dependency
External energy dependencySomerco Research
 
Manifesto: a new Energy policy for the new European Commission
Manifesto: a new Energy policy for the new European CommissionManifesto: a new Energy policy for the new European Commission
Manifesto: a new Energy policy for the new European CommissionEuropean University Institute
 
Future of solar_power
Future of solar_powerFuture of solar_power
Future of solar_powerLuiz Cruz
 
Cotrel capiel
Cotrel capielCotrel capiel
Cotrel capielAhmad Eid
 

Similar to Economics Masters Thesis (20)

Eurometaux
EurometauxEurometaux
Eurometaux
 
Eaa
EaaEaa
Eaa
 
CBI Energy Conference: Simon Cotterell
CBI Energy Conference: Simon CotterellCBI Energy Conference: Simon Cotterell
CBI Energy Conference: Simon Cotterell
 
American chamber of_commerce
American chamber of_commerceAmerican chamber of_commerce
American chamber of_commerce
 
The role of electricity in heating and cooling
The role of electricity in heating and coolingThe role of electricity in heating and cooling
The role of electricity in heating and cooling
 
Ifiec
IfiecIfiec
Ifiec
 
Efet
EfetEfet
Efet
 
Alliance eii
Alliance eiiAlliance eii
Alliance eii
 
National grid
National gridNational grid
National grid
 
Utilities opportunities and betterment
Utilities opportunities and bettermentUtilities opportunities and betterment
Utilities opportunities and betterment
 
7 years of EU energy and climate policy: “Age of reason or of divorce?”
7 years of EU energy and climate policy: “Age of reason or of divorce?”7 years of EU energy and climate policy: “Age of reason or of divorce?”
7 years of EU energy and climate policy: “Age of reason or of divorce?”
 
2007-2014/ 7 years of EU energy & climate policy:"Age of reason or of divorce?"
2007-2014/ 7 years of EU energy & climate policy:"Age of reason or of divorce?"2007-2014/ 7 years of EU energy & climate policy:"Age of reason or of divorce?"
2007-2014/ 7 years of EU energy & climate policy:"Age of reason or of divorce?"
 
Le système électrique européen confronté à l’accord de Pari
Le système électrique européen confronté à l’accord de PariLe système électrique européen confronté à l’accord de Pari
Le système électrique européen confronté à l’accord de Pari
 
Sales of Spanish green certificates in the EU
Sales of Spanish green certificates in the EUSales of Spanish green certificates in the EU
Sales of Spanish green certificates in the EU
 
Cefic
CeficCefic
Cefic
 
Hydrogen and power system
Hydrogen and power systemHydrogen and power system
Hydrogen and power system
 
External energy dependency
External energy dependencyExternal energy dependency
External energy dependency
 
Manifesto: a new Energy policy for the new European Commission
Manifesto: a new Energy policy for the new European CommissionManifesto: a new Energy policy for the new European Commission
Manifesto: a new Energy policy for the new European Commission
 
Future of solar_power
Future of solar_powerFuture of solar_power
Future of solar_power
 
Cotrel capiel
Cotrel capielCotrel capiel
Cotrel capiel
 

Recently uploaded

The Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfThe Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfGale Pooley
 
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...Call Girls in Nagpur High Profile
 
Malad Call Girl in Services 9892124323 | ₹,4500 With Room Free Delivery
Malad Call Girl in Services  9892124323 | ₹,4500 With Room Free DeliveryMalad Call Girl in Services  9892124323 | ₹,4500 With Room Free Delivery
Malad Call Girl in Services 9892124323 | ₹,4500 With Room Free DeliveryPooja Nehwal
 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...ssifa0344
 
The Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfThe Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfGale Pooley
 
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Pooja Nehwal
 
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikHigh Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignHenry Tapper
 
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Delhi Call girls
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptxFinTech Belgium
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxanshikagoel52
 
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure serviceWhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure servicePooja Nehwal
 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfGale Pooley
 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spiritegoetzinger
 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Pooja Nehwal
 
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...ssifa0344
 

Recently uploaded (20)

The Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfThe Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdf
 
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
 
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
 
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
 
Malad Call Girl in Services 9892124323 | ₹,4500 With Room Free Delivery
Malad Call Girl in Services  9892124323 | ₹,4500 With Room Free DeliveryMalad Call Girl in Services  9892124323 | ₹,4500 With Room Free Delivery
Malad Call Girl in Services 9892124323 | ₹,4500 With Room Free Delivery
 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
 
The Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfThe Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdf
 
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
Independent Call Girl Number in Kurla Mumbai📲 Pooja Nehwal 9892124323 💞 Full ...
 
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service NashikHigh Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
High Class Call Girls Nashik Maya 7001305949 Independent Escort Service Nashik
 
Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaign
 
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Commercial Bank Economic Capsule - April 2024
Commercial Bank Economic Capsule - April 2024Commercial Bank Economic Capsule - April 2024
Commercial Bank Economic Capsule - April 2024
 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
 
00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx00_Main ppt_MeetupDORA&CyberSecurity.pptx
00_Main ppt_MeetupDORA&CyberSecurity.pptx
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptx
 
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure serviceWhatsApp 📞 Call : 9892124323  ✅Call Girls In Chembur ( Mumbai ) secure service
WhatsApp 📞 Call : 9892124323 ✅Call Girls In Chembur ( Mumbai ) secure service
 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdf
 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spirit
 
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
Dharavi Russian callg Girls, { 09892124323 } || Call Girl In Mumbai ...
 
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
Solution Manual for Financial Accounting, 11th Edition by Robert Libby, Patri...
 

Economics Masters Thesis

  • 1. Master  APE     September  2014                                                       Long-­‐term  contracts  and  entry  deterrence   in  the  French  electricity  market   Author:     REID,  Christopher     Supervisor:     SPECTOR,  David       Referee:     TROPEANO,  Jean-­‐Philippe   JEL  codes:     D43,  L94     Keywords:   Electricity,  contracts,  market  entry,  simulation  
  • 2.   1     Abstract     Motivated  by  recent  EU  case  law,  we  investigate  how  long-­‐term  contracts  may  be  used  as  a   means  of  entry  deterrence  in  the  French  electricity  market.  In  our  model  this  market  consists  of   two  segments:  a  conventional  (e.g.  gas,  coal)  segment  in  which  there  is  perfect  competition,  and   a  nuclear  segment  dominated  by  one  producer.  Our  analysis  is  focused  on  market  entry  in  the   nuclear  segment.  The  nuclear  capacity  that  maximises  the  monopoly  profit  also  minimizes  the   total  cost  of  electricity  production.  Thus,  the  monopoly  capacity  is  efficient.    When  there  is   market  entry,  firms  compete  via  a  discriminatory  auction  mechanism.  We  simulate  the  model,   calibrated  to  the  French  electricity  market.  In  the  absence  of  contracts,  market  entry  leads  to   excess  capacity:  the  total  cost  of  electricity  production  increases,  while  total  profit  and  the  price   of  electricity  decrease.  Long-­‐term  contracts  lead  to  reduced  entry,  but  cannot  eliminate  entry   unless  the  rival  has  large  fixed  costs.  Using  contracts,  the  incumbent  can  increase  its  profit   compared  to  free  entry,  but  cannot  recover  the  monopoly  profit.  The  price  of  electricity  on  the   spot  market  is  not  significantly  affected  by  long-­‐term  contracts.  Overall,  the  welfare  effect  of   long-­‐term  contracts  is  ambiguous.    
  • 3.   2     Table  of  Contents   Abstract  ..............................................................................................................................................  1   Introduction  .....................................................................................................................................  3   1.   Literature  review  ....................................................................................................................  5   2.   Monopoly:  optimal  capacity  ................................................................................................  8   2.1.   Electricity  demand  .......................................................................................................................  8   2.2.   Efficient  capacity  level  .............................................................................................................  10   2.3.   Nuclear  capacity  under  monopoly  .......................................................................................  12   3.   Duopoly:  optimal  capacity  and  contracts  ....................................................................  14   3.1.   Auction  mechanism  ...................................................................................................................  14   3.2.   Large  firm  profit  and  optimal  capacity  ...............................................................................  17   3.3.   Small  firm  profit  and  optimal  capacity  ...............................................................................  18   3.4.   Long-­‐term  contracts  ..................................................................................................................  19   4.   Numerical  simulation  .........................................................................................................  22   4.1.   Calibration  ....................................................................................................................................  22   4.2.   Monopoly  ......................................................................................................................................  22   4.3.   Duopoly  .........................................................................................................................................  23   4.4.   Long-­‐term  contracts  ..................................................................................................................  25   Conclusion  ......................................................................................................................................  29   References  .....................................................................................................................................  31   Appendix  –  selected  MATLAB  code  ........................................................................................  32    
  • 4.   3     Introduction     On  17  March  2010,  the  European  Commission  (EC)  adopted  a  decision1  concerning  the   French  market  for  the  supply  of  electricity  to  large  industrial  customers.  The  Commission  was   concerned   that   EDF   (the   incumbent   operator)   may   have   abused   its   dominant   position   by   concluding   long-­‐term   supply   contracts   which   had   the   effect   of   foreclosing   the   market.   Aaccording   to   the   Commission,   the   volume   and   duration   of   EDF’s   contracts   did   not   provide   sufficient  opportunities  for  alternative  suppliers  to  compete  “for  the  contracts”.  In  addition,  the   exclusionary  nature  of  the  contracts  (whether  through  explicit  provisions  in  the  contract  or  de   facto  exclusivity)   may   have   restricted   competition   “during   the   contracts”.   The   contracts   also   prohibited   clients   from   reselling   electricity,   limiting   customers’   ability   to   manage   their   consumption.   In   response   to   these   objections,   EDF   proposed   a   set   of   commitments,   which   the   Commission   made   legally   binding   in   its   March   2010   decision.   Firstly,   65%   of   the   electricity   supplied   to   large   industrial   customers   would   return   to   the   market   each   year.   Secondly,   the   duration  of  contracts  without  free  opt-­‐out  would  be  limited  to  five  years.  Finally,  EDF  would   allow   competition   during   the   contract   period   by   systematically   proposing   an   alternative   supplier,  enabling  customers  to  source  electricity  simultaneously  from  two  suppliers.  EDF  also   made  a  commitment  to  end  restrictions  on  the  resale  of  electricity  by  clients  under  contract.   This  decision  by  the  EC  forms  the  motivation  for  our  research.  We  investigate  the  impact   of  long-­‐term  supply  contracts  in  a  simple  model  of  the  French  electricity  market.  This  market  is   characterized  by  the  fact  that  nuclear  power  stations  constitute  a  large  proportion  of  installed   generating  capacity.  Although  in  practice  EDF  must  guarantee  competitors  access  to  low-­‐cost   nuclear   electricity,   the   nuclear   capacity   remains   under   the   control   of   EDF,   the   incumbent   operator.  We  consider  here  that  EDF  has  exclusive  rights  over  its  nuclear  capacity,  and  we  focus   our  analysis  on  competition  in  this  segment  of  the  market.   Compared  to  coal  and  gas  power  stations  where  fuel  costs  are  high,  nuclear  power  has   low  operating  costs.  However,  the  investment  costs  for  nuclear  are  much  higher  and  must  be   accounted   for   throughout   the   lifetime   of   the   power   station.   This   feature   of   nuclear   energy   makes   market   entry   particularly   difficult.   We   model   the   French   electricity   market   as   two   segments:   a   conventional   (coal   and   gas)   segment   with   high   operating   costs,   and   a   nuclear                                                                                                                   1  see  press  release  IP/10/290  of  17  March  2010  and  Bessot  et  al.  (2010)    
  • 5.   4   segment   dominated   by   EDF.   We   consider   that   the   conventional   segment   is   perfectly   competitive:  as  a  result  of  market  entry,  firms  make  zero  profit  in  this  segment.  By  contrast,  the   nuclear  segment  is  a  monopoly:  all  installed  capacity  is  controlled  by  EDF.  In  addition,  EDF  may   sign  long-­‐term  supply  contracts  with  large  industrial  customers.  We  study  market  entry  in  the   nuclear  segment  first  in  the  absence  of  contracts,  and  then  we  introduce  contracts  to  determine   whether  they  may  be  used  to  dissuade  entry.     Our   findings   provide   a   theoretical   basis   for   the   EC’s   decision:   long-­‐term   contracts   do   indeed  have  a  foreclosure  effect  on  the  market,  leading  to  reduced  entry  by  potential  rivals.  In   the  presence  of  large  fixed  costs  or  a  minimum  efficient  scale,  a  sufficient  volume  of  long-­‐term   contracts   may   even   exclude   rivals.   However,   the   welfare   effect   is   ambiguous.   The   capacity   installed   by   the   monopoly   is   optimal   from   the   point   of   view   of   production   efficiency.   Hence,   market   entry   leads   to   excess   capacity,   increasing   the   cost   of   producing   electricity.   However,   market  entry  also  leads  to  lower  total  profits  for  electricity  suppliers  and  reduces  the  average   price  of  electricity.  This  decrease  in  price  may  be  viewed  as  beneficial  from  the  point  of  view  of   consumers,  although  lower  profits  may  lead  to  insufficient  investment  in  the  future  (this  time   dimension  is  absent  from  our  model).     By   decreasing   excess   entry,   long-­‐term   contracts   help   to   minimize   the   total   cost   of   producing  electricity.  Furthermore,  their  effect  on  spot  market  price  is  very  limited  (compared   to  the  spot  market  price  after  market  entry,  in  the  absence  of  contracts).  However,  customers   who  have  signed  a  long-­‐term  contract  are  committed  to  paying  a  high  price  for  electricity  and   cannot  benefit  from  the  reduced  spot  market  price.   The  paper  is  structured  as  follows:  we  begin  by  reviewing  the  literature  on  contracts  as   a  means  of  entry  deterrence.  In  section  two,  we  calculate  the  capacity  that  minimizes  the  total   cost  of  electricity  production,  and  the  capacity  that  maximizes  monopoly  profit.  In  section  three,   we  introduce  a  second  producer  and  derive  analytical  expressions  for  the  two  firms’  profits  and   capacity  choices,  with  and  without  contracts.  In  section  four,  we  simulate  the  model  (calibrated   to  the  French  electricity  market)  and  discuss  the  results.              
  • 6.   5     1. Literature  review     Historically,  exclusionary  contracts  have  been  a  contentious  issue  in  antitrust  law  and   scholarship.  Rasmusen,  Ramseyer  and  Wiley  (1991)  cite  several  cases  in  which  US  judges  found   such   contracts   to   be   anticompetitive   and   illegal 1 .   However,   Chicago   School   academics   responded   to   such   cases   with   scepticism.   Director   and   Levi   (1956)   argued   that   customers   would   not   agree   to   sign   exclusionary   contracts   with   a   company   unless   it   offered   them   compensation   for   lost   customer   surplus.   Such   compensation   would   exceed   monopoly   profits,   making  exclusion  too  costly  for  the  incumbent  firm.       In  a  seminal  paper,  Aghion  and  Bolton  (1987)  show  that  exclusionary  contracts  may  in   fact   be   used   profitably   for   entry   deterrence.   In   their   model,   two   buyers   agree   to   sign   an   exclusionary   agreement   despite   jointly   preferring   to   refuse.   The   model   depends   on   three   assumptions:  first,  the  excluding  firm  can  commit  to  a  future  price  level,  and  each  customer  can   escape   the   contract   by   paying   liquidated   damages.   Second,   the   entrant’s   marginal   cost   is   unknown   and   may   be   different   from   the   incumbent   firm’s   marginal   cost,   which   is   constant.   Third,  active  producers  incur  a  fixed  cost,  leading  to  economies  of  scale.  Aghion  and  Bolton  also   allow   the   incumbent   to   make   an   offer   to   one   buyer   that   is   conditional   on   the   other   buyer’s   decision  to  accept  the  offer.   Rasmusen,  Ramseyer,  and  Wiley  (1991  –  we  refer  to  this  paper  as  “RRW”)  show  that  the   incumbent  may  exclude  rivals  by  exploiting  buyers’  lack  of  coordination,  without  requiring  the   previous  assumptions.  Specifically,  if  there  is  a  minimum  efficient  scale2,  the  incumbent  need   only  lock  up  a  proportion  of  the  customers  to  forestall  entry.  “If  each  customer  believes  that  the   others   will   sign,   each   also   believes   that   no   rival   seller   will   enter.   Hence,   a   customer   loses   nothing  by  signing  the  exclusionary  agreement  and  will  indeed  sign.”     Segal  and  Whinston  (2000)  correct  some  errors  in  RRW  and  refine  the  analysis,  focusing   on   how   an   incumbent   can   use   discriminatory   offers   to   exploit   externalities   that   exist   among   buyers.   The   model   has   three   periods,   featuring   three   sets   of   agents:   an   incumbent   firm,   a   potential  rival,  and  a  set  of    buyers.  In  period  one,  the  incumbent  offers  buyers  exclusionary   contracts.  In  period  two,  the  rival  decides  whether  to  enter,  and  in  period  three,  active  firms   compete   à   la   Bertrand.     The   authors   examine   two   different   settings   for   period   one:                                                                                                                   1  Examples  include:  U.S.  v.  Aluminum  Co.  of  America  (1945),  Lorain  Journal  Co.  v.  U.S.  (1951),  and  United   Shoe  Machinery  Corp.  v.  U.S.  (1922).   2  RRW  assume  a  minimum  efficient  scale,  but  no  economies  of  scale  beyond  that.  Hence,  exclusion  is  not   simply  the  result  of  a  natural  monopoly.  
  • 7.   6   simultaneous   offers   and   sequential   offers.   When   the   incumbent   deals   with   buyers   simultaneously   without   the   ability   to   discriminate,   profitable   exclusion   relies   on   a   lack   of   coordination  among  buyers.  This  is  not  the  case  when  the  incumbent  can  discriminate  between   buyers:   discrimination   allows   the   incumbent   to   exclude   rivals   profitably   by   exploiting   externalities  across  buyers.  When  the  incumbent  deals  with  buyers  sequentially,  its  ability  to   exclude  is  strengthened.  Segal  and  Whinston  show  that  when  the  number  of  buyers  is  large,  the   incumbent  is  able  to  exclude  for  free.     A   related   literature   deals   with   financial   forward   contracts.   Unlike   exclusionary   contracts,  forward  contracts  do  not  forbid  consumers  from  dealing  with  entrants  and  do  not   directly  restrict  a  producer’s  choice  of   output  and  price.  Instead  of  making  legal  restrictions,   they  influence  behaviour  on  the  spot  market  by  altering  incentives  for  firms.  Provided  they  are   observable,   forward   contracts   may   be   used   as   a   signal   of   commitment   to   future   aggressive   behaviour  on  the  spot  market.  In  this  way,  they  may  have  an  entry  deterrence  effect  similar  to   that   of   exclusionary   contracts.   However,   the   effect   is   strongly   dependent   on   whether   firms   compete  in  quantity  (Cournot  competition)  or  price  (Bertrand)  on  the  spot  market.   Allaz   and   Vila   (1993)   show   that   forward   markets   can   improve   the   efficiency   of   production  decisions  in  a  Cournot  duopoly.  They  begin  by  noting  that  “usually  appearance  of   forward  markets  is  justified  by  agents’  desire  to  hedge  risk”,  requiring  uncertainty  over  some   variable.   Allaz   and   Vila   show   that   this   is   not   necessary:   forward   markets   can   be   used   under   certainty  and  perfect  foresight.  Producers  use  forward  transactions  as  strategic  variables.  The   authors   first   consider   a   two-­‐period   model   of   duopoly   with   linear   costs   and   demand,   under   perfect  foresight  and  certainty.  Firms  choose  forward  positions  in  period  one  and  produce  in   period  two.  The  firm  with  access  to  the  forward  market  gains  first-­‐mover  advantage  (becomes   Stackelberg  leader  on  the  spot  market).  However,  a  prisoner’s  dilemma  arises  when  both  firms   have  access  to  the  forward  market:  a  firm  greatly  benefits  from  being  the  only  producer  to  trade   forward,  but  if  both  firms  trade  forward,  they  end  up  worse  off.  The  authors  then  extend  the   model   to    trading   periods,   and   show   that   when   tends   to   infinity,   the   competitive   outcome  is  obtained.     Mahenc   and   Salanié   (2004)   investigate   a   model   in   which   duopolists   producing   two   differentiated   goods   can   trade   forward   before   competing   à   la   Bertrand   on   spot   markets.   Similarly  to  Allaz-­‐Vila,  the  model  features  two  periods:  in  period  one  each  firm  takes  a  position   on   the   forward   market,   and   in   period   two   they   compete   on   the   spot   market.   However,   the   crucial  difference  is  that  competition  on  the  spot  market  is  à  la  Bertrand:  firms  choose  prices,   not  quantities,  and  the  goods  are  not  perfect  substitutes.  Mahenc  and  Salanié  reach  a  conclusion   that  is  opposite  to  that  of  Allaz  and  Vila:  in  equilibrium  firms  buy  forward  their  own  production,   leading   to   higher   spot   prices   than   in   the   static   case   (no   forward   market).   Hence,   forward  
  • 8.   7   markets  have  a  softening  effect  on  competition  in  this  case.  This  competition-­‐softening  effect  is   stronger  when  competition  increases,  that  is  when  goods  are  more  substitutable.     Lien  (2000)  analyses  the  role  of  forward  contracts  in  the  electricity  market.  He  argues   that  there  is  a  “curse  of  market  power”:  in  the  short  term,  large  firms  have  an  incentive  to  hold   back  output  in  order  to  push  up  prices.  However,  this  leads  to  excess  entry  by  small  producers,   who  benefit  from  high  prices  without  incurring  the  costs  of  restricted  output.  As  a  result,  long-­‐ term  profits  of  large  firms  are  reduced.  Lien  shows  that  forward  sales  can  eliminate  this  curse   by  deterring  excess  entry.   Our  analysis  differs  from  that  of  Lien  in  two  important  ways:  firstly,  we  concentrate  on   the  French  electricity  market  and  in  particular  the  nuclear  segment  of  this  market.  The  French   market  is  characterised  by  the  high  proportion  of  electricity  that  is  provided  by  nuclear  power   stations.  Given  the  high  investment  costs  associated  with  nuclear  energy,  entry  is  particularly   difficult  in  this  segment  of  the  market.  Nuclear  power  stations  typically  provide  baseload  power   and   are   operational   most   of   the   time,   which   makes   the   use   of   long-­‐term   supply   contracts   particularly  convenient.     Secondly,  we  model  competition  in  the  electricity  market  using  an  auction  mechanism   studied  by  Fabra,  von  der  Fehr,  and  Harbord  (2006).  There  are  two  producers  in  this  model.   Each  producer  submits  a  bid  (offer  price)  to  a  central  auctioneer,  who  then  allocates  production   in  order  to  meet  demand.  Fabra  et  al.  study  two  mechanisms:  a  uniform  auction,  in  which  all   active  producers  (those  whose  bid  is  wholly  or  partly  accepted)  are  paid  the  same  price,  and  a   discriminatory  auction,  in  which  active  producers  are  paid  their  offer  price.  The  authors  find   that  uniform  auctions  result  in  higher  prices  than  discriminatory  auctions.  In  a  related  paper,   Fabra,  von  der  Fehr,  and  de  Frutos  (2011)  study  the  impact  of  the  auction  format  on  investment   incentives.   They   find   that   investment   incentives   are   (weakly)   stronger   under   discriminatory   auctions  than  under  uniform  auctions.  For  this  reason,  we  focus  on  discriminatory  auctions.  
  • 9.   8     2. Monopoly:  optimal  capacity     In   our   model,   the   French   electricity   market   consists   of   two   segments:   a   perfectly   competitive   conventional   segment,   and   a   nuclear   segment   dominated   by   one   firm.   Marginal   costs   are   constant:   conventional   electricity   costs    to   produce,   and   nuclear   electricity   costs   .   Operating  costs  for  conventional  generation  are  higher  than  for  nuclear  generation,  so   .   The  conventional  sector  is  perfectly  competitive,  so  firms  make  zero  profit.  However,   the   nuclear   sector   is   run   by   a   monopoly.   Before   considering   entry   by   potential   rivals   in   the   nuclear   sector,   we   determine   the   optimal   nuclear   capacity   from   the   point   of   view   of   social   welfare  and  from  the  monopoly’s  point  of  view.   2.1.  Electricity  demand     In   order   to   calculate   optimal   capacity,   we   need   to   characterise   electricity   demand.   Compared  to  demand  in  markets  for  goods,  electricity  demand  is  unusual.  Firstly,  demand  is  not   in  terms  of  quantity  but  in  terms  of  rate.  Indeed,  quantity  is  expressed  in  terms  of  energy,  with   units  of  GWh  (gigawatt-­‐hour)  for  example,  whereas  demand  and  supply  are  expressed  in  terms   of   power,   with   units   of   GW   (gigawatt).   This   is   because   of   a   physical   property   of   the   system:   unlike  goods,  electricity  cannot  be  stored.  Hence,  the  rate  at  which  electricity  is  provided  to  the   network   must   equal   the   rate   at   which   it   is   consumed   by   customers.   Secondly,   it   is   almost   perfectly  inelastic.  That  is,  demand  does  not  change  in  response  to  price.   The   costs    and    given   above   are   expressed   in   monetary   units   per   quantity   of   electricity,  for  example  million  euros  per  GWh  (€m/GWh).  However,  this  is  equivalent  to  paying   for  capacity  for  a  certain  time:  if  a  firm  supplies  10  GW  for  2  hours  at  a  cost  of  0.03  €m/GWh,  it   will  incur  a  cost  of  €  600,000.     We   use   data   on   electricity   consumption   in   2012   obtained   from   RTE,   the   electricity   transmission  system  operator  of  France1.  The  data  describes  electricity  consumption  in  MW  for   every  half  hour  period  of  the  year  (the  data  is  described  in  greater  depth  in  Appendix  A).  Figure   1  shows  the  distribution  of  electricity  demand  as  a  histogram.                                                                                                                   1  Source:  http://clients.rte-­‐france.com/lang/fr/clients_producteurs/vie/vie_stats_conso_inst.jsp,  last   accessed  on  21/08/2014.  
  • 10.   9   30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 Electricity demand (GW) Frequency(days)   Figure  1  –  Distribution  of  electricity  demand  in  2012:  histogram         In  order  to  proceed  with  the  analysis,  we  need  to  fit  a  known  distribution  function  to  the   data.  It  is  important  to  note  that  electricity  demand  is  not  random;  indeed,  it  can  be  accurately   forecast.  However,  we  use  a  probability  distribution  function  (pdf)  in  our  analysis  because  we   want  to  calculate  quantities  such  as  profit  analytically.  In  what  follows,  we  normalize  everything   by   time:   quantities   are   expressed   per   year,   and   we   consider   2012   as   a   typical   year.   For   convenience,  we  use  a  uniform  probability  distribution.     Figure  2  shows  a  kernel  estimate  of  the  pdf  as  well  as  the  “best  fit”  uniform  pdf.  The   parameters  of  the  uniform  pdf  are    and   .  We  choose  these  in  order  to  match  the  mean   and  standard  deviation  of  observed  demand,  as  given  in  table  1  (rounded  to  the  nearest  GW).     Name   Value  (GW)       33     78   Mean     55.5   Standard  deviation   13   Table  1  -­‐  Electricity  demand  parameters  
  • 11.   10     Figure  2  –  Distribution  of  electricity  demand  in  2012:  kernel  density  and  “best  fit”  uniform  pdf   2.2. Efficient  capacity  level     We  begin  by  determining  the  level  of  nuclear  capacity  that  is  optimal  from  the  point  of   view  of  social  welfare.  We  call  this  the  efficient  capacity  level,  and  it  maximizes  total  surplus:         Roughly  speaking,  consumer  surplus  is  the  difference  between  indirect  utility  derived   from  consumption  of  electricity  and  the  cost  of  purchasing  electricity.  Usually,  we  would  have  to   integrate  over  price  or  capacity  (since  capacity  has  an  impact  on  price).  However,  demand  for   electricity   is   perfectly   inelastic,   and   we   assume   that   conventional   producers   have   an   infinite   capacity,  meaning  that  it  is  large  enough  to  supply  any  level  of  consumer  demand.  Hence,  there   is   no   need   for   demand   rationing.   As   a   result,   the   indirect   utility   does   not   vary   with   price   or   nuclear  capacity.     Producer  surplus  is  equal  to  the  sum  of  profits  of  electricity  producers  (conventional   and  nuclear):  the  difference  between  total  revenue  and  the  total  cost  of  producing  electricity.   Total  revenue  of  firms  is  equal  to  total  expenditure  by  consumers,  so  we  have:      
  • 12.   11     As  noted  above,  the  indirect  utility  is  constant,  so  maximizing  total  surplus  is  equivalent   to   minimizing   the   total   cost   of   producing   electricity.   We   denote   nuclear   capacity   by   ,   and   electricity  demand  by   .  When  demand  is  less  than  nuclear  capacity  ( ,  then  demand  is   met   entirely   by   electricity   from   nuclear   power   stations,   which   have   operating   cost   .   When   demand  exceeds  nuclear  capacity  ( ),  conventional  power  stations  are  required  to  supply   the  excess  ( ),  with  an  operating  cost  of   .   In  addition,  nuclear  capacity  has  a  yearly  investment  cost  of    per  GW.  Nuclear  power   stations  require  significant  capital  to  build.  This  capital  usually  takes  the  form  of  a  loan,  which  is   reimbursed   in   instalments   during   the   lifetime   of   the   power   station.   The   investment   cost     represents  capital  cost  repayments,  and  also  includes  yearly  maintenance  and  fuel  costs.  Capital   costs  for  conventional  power  stations  are  less  significant  than  for  nuclear,  whereas  operating   costs  are  higher.  For  this  reason,  we  ignore  investment  costs  for  conventional  power.   The   total   cost   of   producing   electricity   includes   operating   costs   for   nuclear   and   conventional  power,  and  investment  costs  for  nuclear  power.  We  use  the  uniform  distribution   for   electricity   demand   described   above   to   calculate   the   total   cost   over   the   year,   which   we   denote  by   :       Where    denotes  the  pdf  of  electricity  demand,  setting   :       Evaluating  the  integrals  and  setting   ,  we  have:       The  efficient  capacity,   ,  minimizes  this  cost.  Differentiating  with  respect  to   ,  we  have:       Setting   ,  we  find  the  efficient  nuclear  capacity  level:    
  • 13.   12     The   efficient   capacity   depends   on   the   ratio   .   The   denominator   is   the   difference   between  conventional  and  nuclear  operating  costs;  as  we  will  see  in  the  next  section,  it  is  also   the   difference   between   the   electricity   price   under   monopoly   (in   the   nuclear   sector)   and   the   nuclear   operating   cost.   If   ,   then    and   :   in   the   absence   of   investment  costs,  the  least  costly  option  is  for  all  electricity  to  be  produced  from  nuclear  energy.   On  the  other  hand,  if   ,  then    and   :  nuclear  capacity  is  always  in   use   providing   baseload   power,   while   conventional   capacity   is   used   to   supply   ,   the   variable  part  of  demand.     2.3. Nuclear  capacity  under  monopoly     We  now  calculate  the  capacity  that  maximizes  the  profit  of  a  nuclear  producer  with  a   monopoly.  The  conventional  sector  remains  perfectly  competitive,  but  there  is  a  single  producer   of  nuclear  electricity.   The   profit   of   a   nuclear   monopolist,   which   we   denote   ,   is   given   by   the   following   expression,  taking  into  account  both  operating  costs  and  investment  costs:       When   ,   nuclear   capacity   can   cover   consumer   demand   entirely.   When   demand   exceeds  nuclear  capacity    ( ),  nuclear  capacity  is  saturated.  Since  the  conventional  sector  is   perfectly   competitive,   the   price   of   electricity   produced   by   conventional   means   equals   its   marginal   cost,   .   Hence,   the   nuclear   monopolist   can   charge   up   to    for   its   electricity,   and   to   maximize   profit,   it   will   charge   exactly   .   In   theory,   consumers   would   be   indifferent   between   purchasing  nuclear  and  purchasing  conventional  electricity  if  their  prices  are  equal.  However,   the  network  operator  prioritizes  electricity  produced  with  least  marginal  cost,  so  conventional   power  stations  produce  only  when  nuclear  capacity  is  saturated.     Evaluating  the  integrals,  we  find  the  following  expression  for  monopoly  profit:       Differentiating,  we  have:  
  • 14.   13       Setting  the  derivative  to  zero,  we  find  the  monopoly  profit-­‐maximizing  nuclear  capacity:         We  notice  that  the  nuclear  capacity  chosen  by  a  profit-­‐maximizing  monopolist  is  equal   to  the  efficient  generating  capacity.  In  other  words,  the  monopoly  chooses  a  nuclear  capacity   that  minimizes  the  total  cost  of  producing  electricity  (including  both  nuclear  and  conventional).   The   profits   earned   by   the   nuclear   monopolist   and   the   total   cost   of   producing   electricity   are   related  by:       The  sum  of  monopoly  profit  and  the  total  cost  of  producing  electricity  is   ,  a  constant.  Hence,   maximizing    is   equivalent   to   minimizing   .    is   the   total   payment   from   electricity  consumers  to  electricity  producers.  Since  the  nuclear  producer  charges   ,  the  price  of   power  is    whether  its  source  is  nuclear  or  conventional.  The  payment    covers  the  total  cost  of   production  plus  a  monopoly  rent  for  the  nuclear  generator  (conventional  generators  make  zero   profit).       We  evaluate  monopoly  profit  when   ,  and  let   .  We  call  this  “optimal   profit”.  Normalizing  by   ,  we  have:       Setting   ,  one  can  see  that  maximal  profit  is  a  quadratic  function  of  the  ratio   ,  which   we  call  “cost  ratio”  and  denote  by   .  Figure  4  displays  this  function.  As  discussed  previously,   optimal  capacity    is  a  linear  decreasing  function  of   .  When  investment  costs  are  nil  ( ,   then   ,   and   optimal   profit   is   maximized   (optimal   cost    is   minimized).    is   the   cost  of  adding  a  marginal  unit  of  capacity,  and    is  the  maximum  profit  that  may  be  derived   from   it   (i.e.   if   the   unit   operates   permanently).   Optimal   profit   is   zero   when   these   are   equal  
  • 15.   14   ( ),   and   .   Optimal   nuclear   capacity   is   zero   ( )   when   .   Then  optimal  cost  is  maximal1.   3. Duopoly:  optimal  capacity  and  contracts   3.1.  Auction  mechanism     We   now   introduce   two   firms   in   the   nuclear   sector.   Unlike   typical   markets   (e.g.   for   goods),  they  do  not  compete  directly,  whether  by  price  or  by  quantity.  Instead,  they  compete  via   a  centralized  auction  mechanism.  Fabra,  von  der  Fehr,  and  Harbord  (2006)  study  two  auction   mechanisms  for  the  electricity  market:  uniform  and  discriminatory  auctions.   The   duopoly   comprises   a   large   supplier,   with   capacity   ,   and   a   small   supplier,   with   capacity    ( ).  We  assume  capacity  is  perfectly  divisible.  The  two  suppliers  compete  by   submitting  bids,  or  offer  prices,  to  the  auctioneer.  The  suppliers  incur  the  same  marginal  cost     for   production   below   capacity,   and   cannot   produce   above   capacity.   We   denote   their   bids   by   .  As  before,  there  is  a  perfectly  competitive  conventional  sector  with  marginal  cost   ,  so  prices  in  the  nuclear  sector  cannot  exceed   .  The  level  of  demand  is   ,  and  total  nuclear                                                                                                                   1  Optimal  profit  is  negative  when    and  jumps  to  zero  when      ( .   Figure  3  -­‐  Optimal  profit  as  a  function  of  the  cost  ratio    
  • 16.   15   capacity   is   .   We   let   .   The   auctioneer   allocates    between   the   two   nuclear  producers.  If  demand  exceeds  the  total  nuclear  capacity  ( )  then   ,  and  the   excess   ( )   is   dispatched   to   conventional   power   stations.   Output   allocated   to   nuclear   supplier   ,   ,  is  denoted  by   .  It  is  determined  as  follows:           If   firms   submit   different   bids,   the   lower-­‐bidding   firm’s   capacity   is   dispatched   first.   If   demand  is  in  excess  of  this  capacity,  then  the  higher-­‐bidding  firm  serves  residual  demand.  If   both  firms  submit  the  same  bid,  then  demand  is  split  between  them.  Fabra  et  al.  (2006)  study   two  types  of  auction  mechanisms,  which  differ  in  the  payments  received  by  firms  but  not  in  the   quantities  dispatched:  in  a  uniform  auction,  the  price  received  by  an  active  supplier  is  equal  to   the  highest  accepted  bid  in  the  auction.  In  a  discriminatory  auction,  the  price  received  by  an   active  supplier  is  equal  to  its  own  offer  price,  so  supplier   ’s  profit  is  given  by   .       The  equilibrium  outcomes  of  the  auction  are  summarized  in  Proposition  3  of  Fabra,  von   der  Fehr,  and  de  Frutos  (2011)1.  The  authors  distinguish  three  regions  of  demand:       • Low  demand:   .  In  this  region,  either  producer  is  able  to  supply  the  market  fully.  In   other  words,  there  is  no  residual  demand.  The  result  is  equivalent  to  Bertrand  competition   with   perfectly   substitutable   goods   (indeed,   electricity   produced   by   supplier    is   indistinguishable   from   that   produced   by   ).   The   suppliers   undercut   each   other   until   they   reach   their   marginal   cost   of   production,   .   In   equilibrium,   both   suppliers   place   bids   at   .   They  produce  a  quantity    each  and  earn  zero  profits.     • High  demand:   .  In  this  region,  at  least  one  of  the  suppliers  is  unable  to  supply  the   market  fully.  The  authors  distinguish  two  regions  within  high  demand:  when     (region  I),  producer  1  can  supply  the  market  fully,  but  producer  2  cannot.  When     (region   II),   neither   producer’s   capacity   is   sufficient   to   cover   demand   entirely,   so   there   is   always  residual  demand  for  the  other.  When  demand  is  high  ( ),  there  is  no  pure-­‐ strategy  equilibrium.  Instead  there  is  a  unique  mixed-­‐strategy  equilibrium,  in  which  the  two                                                                                                                   1  Proofs  and  equilibrium  strategies  are  given  in  Fabra,  von  der  Fehr,  and  Harbord  (2006)  
  • 17.   16   firms  mix  over  a  common  support  that  lies  above  marginal  costs  and  includes   .  The  firms   mix  according  to  different  probability  distributions:  in  particular,  the  large  firm  has  a  mass   point  at   ,  the  upper  bound.  The  small  firm  bids  below    with  probability  1,  so  profits  of  the   large  firm  are  the  same  as  if  it  offered  to  sell  residual  demand  at   .       • Very   high   demand:   .   Nuclear   capacity   is   insufficient   to   supply   the   market,   so   conventional   producers   must   supply   residual   demand.   In   equilibrium,   both   nuclear   firms   place  bids  at    and  produce  at  full  capacity.     Intuitively,  it  is  easy  to  understand  why  there  is  no  pure-­‐strategy  equilibrium  in  the  high   demand  region.  Consider  an  initial  situation  where  both  firms  bid   .  Then  either  of  the  suppliers   can   increase   its   profit   by   placing   a   bid   just   below   :   the   increase   in   output   outweighs   the   decrease  in  price.  Let  firm    place  a  bid  just  below   .  Then  the  other  supplier  (firm   ),  serving   residual  demand  (which  may  be  zero),  would  benefit  by  placing  a  bid  just  below  that  of  firm   .   The  firms  place  subsequently  lower  bids,  until  the  large  firm  would  profit  more  from  serving   residual  demand  at    than  undercutting  the  small  firm.  But  if  the  large  firm  places  a  bid  at   ,  the   small  firm  will  place  a  bid  just  below   ,  and  so  on.   The   equilibrium   profits   are   summarized   in   table   2.   We   denote   firm   ’s   instantaneous   profit   by   .   This   is   the   profit   obtained   for   a   given   realisation   of   demand,   per   unit   time,   not   including  investment  costs.  Both  firms’  profit  functions  are  continuous  and  increasing  in   .  The   large  firm’s  profit  is  linear  in    and  goes  from  zero  (when   )  to   ,  when   .   The  small  firm’s  profit  is  always  less  than  firm  1  profit.  When  demand  is  high,  firm  2  is  concave   hyperbolic  (region  I)  then  linear  (region  II).     Region   Demand   Profits   Low  demand         High  demand  I         High  demand  II         Very  high  demand         Table  2  -­‐  Instantaneous  profits  as  a  function  of  demand  
  • 18.   17   3.2. Large  firm  profit  and  optimal  capacity     Having   described   the   auction   mechanism   and   instantaneous   profits,   we   turn   our   attention  to  each  firm’s  total  profit  and  optimal  capacity  choice  under  duopoly.  Both  firms  have   constant  marginal  costs  of  investment  with  a  value  of   .     • If   ,  firm  1’s  profit  over  the  year  is  given  by:           • If   ,  the  expression  for  firm  1  profit  is  different:         The  expression  is  different  in  that  the  lower  bound  of  the  first  integral  is    instead  of   .  This   arises   because   firm   1   profit   is   zero   when   demand   is   in   the   low   region   ( ).   When   ,  demand  is  never  in  this  region  (we  always  have   ).     To  summarize,  firm  1  profit  is  given  by  the  following  function:       If  we  fix   ,  one  can  see  that    is  a  continuous  function  of    that  is  quadratic  when     and  linear  when   .       In  order  to  determine  firm  1’s  optimal  choice  of  capacity,  we  differentiate    with  respect  to   :      
  • 19.   18   Capacity  is  optimal  for  firm  1  when  its  marginal  benefit    equals  its  marginal  cost   .   We  assume   ,  which  ensures  that  firm  1  makes  positive  profit  when  it  has  a  monopoly.   Setting   ,  we  find:       We   have   .   In   other   words,   when    we   recover   the   monopoly   capacity,   which   we   denote   by   .   Interestingly,   it   is   optimal   for   firm   1   to   keep   aggregate   capacity  at  the  efficient  level,   .  If  we  assume  that  firm  1  has  the  monopoly  capacity  (as  we  will   do  when  we  introduce  contracts),  any  entry  by  firm  2  would  lead  to  excess  capacity,  which  is   suboptimal  for  firm1.  So  firm  1  would  prefer  to  give  some  of  its  capacity  to  firm  2  (along  with   the  associated  investment  costs)  rather  than  suffer  the  costs  of  excess  capacity.     Indeed,   we   find   that   .   Evaluating   this   expression   when    and   ,  we  find:         Since   ,   both   expressions   are   negative:   firm   1   profit   decreases   whenever   there   is   entry  by  firm  2.  However,  firm  1  profit  decreases  faster  when  entry  leads  to  excess  capacity:   when   ,  firm  1  gives  capacity  to  firm  2.  Total  capacity  is  constant,  and  firm  1  profit   decreases  linearly.  In  contrast,  when   ,  total  capacity  increases  when  firm  2  enters,  and   firm  1  profit  decreases  quadratically.   3.3. Small  firm  profit  and  optimal  capacity     In  order  to  analyse  market  entry  by  the  small  firm,  we  calculate  its  profit  function  and   optimal  capacity  choice.  As  before,  we  distinguish  two  cases.     • If   ,  firm  2’s  profit  over  the  year  is  given  by:    
  • 20.   19       If  we  fix   ,  firm  2  profit  is  a  cubic  function  of   .  Differentiating  with  respect  to   ,  we  find:       Setting   ,   firm   2’s   optimal   capacity   choice   is   the   solution   to   the   following   quadratic  equation:         • If   ,  the  expression  for  firm  2  profit  is:       As  before,  the  lower  bound  of  the  first  integral  is    instead  of   .  Evaluating  this  expression,   we  find:       This   expression   is   similar   to   the   one   found   previously,   but   the   term   multiplying    is     instead  of   .  More  importantly,  the  term  multiplying    is  now  a  logarithmic  function  of   :   .  This  makes  it  impossible  to  solve  analytically  for    such  that   .  This   will  have  to  be  done  numerically.     As  for  firm  1,  firm  2’s  profit  is  a  continuous  function  of    and   ,  which  we  denote  by:     3.4. Long-­‐term  contracts     We  now  introduce  long-­‐term  contracts  to  the  model.  We  assume  that  firm  1  has  had  a   monopoly  in  the  nuclear  sector  for  a  long  time.  Hence,  it  has  had  time  to  build  capacity  up  to  a  
  • 21.   20   level  that  maximises  its  profit.  Hence,  we  let    from  now  on.  The  timing  of  the  model  is  as   follows:   1. Firm  1  has  a  monopoly  and  chooses  a  volume    of  long-­‐term  contracts.   2. Firm  2  observes  these  contracts,  and  chooses  how  much  capacity  to  build.   3. The   two   firms   compete   on   the   spot   market   using   the   discriminatory   auction   mechanism   described  previously.   The  contracts  are  “long  term”  in  the  sense  that  they  are  still  in  effect  at  the  time  of  entry.       The   contracts   stipulate   that   firm   1   supplies   a   constant   level   of   power   to   customers   throughout  the  year  at  a  price   .  The  total  capacity  supplied  to  customers  under  contract   is    (we  call  this  the  “volume  of  contracts”).  Hence,  firm  1  has  a  capacity    available  to   compete   on   the   market.   As   a   result,   total   nuclear   capacity   on   the   spot   market   is   reduced   to   .   As  before,  demand  is  uniformly  distributed  between    and   .  This  is  equivalent   to  saying  that  demand  is  the  sum  of  two  components:  a  constant  component    and  a  variable   part  ( )  uniformly  distributed  between    and   .  The  constant  component  represents   baseload   power:   for   example,   industrial   consumers   who   use   electricity   at   a   constant   rate   throughout  the  year.     Long-­‐term  supply  contracts  are  signed  between  such  industrial  consumers  and  firm  1.   This   removes   a   volume    of   capacity   from   the   spot   market,   so   spot   market   demand   is   now   distributed   between    and   .   We   place   the   following   restrictions   on   the   volume   of   contracts:    must   be   non-­‐negative   ( )   and   cannot   exceed   baseload  power  ( ).  This  ensures,  respectively,  that  firm  1  always  supplies  electricity  to   contract   customers   (never   the   other   way   round),   and   that   spot   market   demand   is   always   positive.       Firm  1’s  profit,  taking  into  account  long-­‐term  contracts  and  investment  costs,  is  given  by:       The   function    represents   operating   profits   from   spot   market   competition.   Its   expression  is  the  same  as  the  expression  for    given  previously,  except  that   ,   ,   and    are  replaced  with   ,   ,  and   .       Hence,  when   ,  we  have:    
  • 22.   21   Developing  this  expression,  we  find:       We  note  that    when   .  One  can  see  that  if  firm  1  anticipates   that    will   be   small   ( ),   then   firm   1’s   motive   to   sell   supply   contracts   is   purely   strategic.   Indeed,   if   we   ignore   the   impact   of    on   firm   2’s   choice   of   capacity   (taking    as   constant),  then  firm  1  cannot  increase  its  profit  by  selling  contracts.  In  fact,  its  profit  will  be   reduced  if   .  However,  firm  1  may  have  an  incentive  to  sell  contracts  if  it  reduces  entry  by   firm  2  –  this  is  what  we  seek  to  find  out.     Similarly  to  firm  1,  firm  2’s  profit  function,  including  contracts  and  investment  costs,  is:     The  expression  of    is  found  by  replacing   ,   ,  and    with   ,   ,  and     in  the  expression  of   .     We  define  firm  2’s  optimal  capacity  choice,  taking  into  account  contracts,  as  follows:       Finally,  we  define    and   :      
  • 23.   22     4. Numerical  simulation   4.1. Calibration     We  calibrate  the  model  using  data  for  the  French  electricity  market,  then  simulate  using   MATLAB.  We  have  already  determined    and   ,  the  parameters  of  the  electricity  demand   distribution.  The  total  nuclear  capacity  installed  in  France  is  63,130  MW  (source:  RTE1).  We   assume  that  this  capacity  was  chosen  optimally  by  the  monopoly:    GW     We  set   ,  using  the  investment  cost  as  a  numéraire,  and  solve  the  previous  equation  to  find   .  These  numbers  are  summarized  in  table  3.     Name   Value     33  GW     78  GW     63  GW     3     1  (numéraire)   Table  3  –  Parameters  of  the  calibrated  model     4.2. Monopoly     The  monopoly  profit  (after  investment  costs)  is  displayed  in  figure  4  as  a  function  of   nuclear  capacity.  It  is  at  a  maximum  when  the  monopoly  has  a  capacity  of  63  GW.  Interestingly,   monopoly  is  negative  when  capacity  is  less  than  9.5  GW.  This  suggests  that  there  is  a  minimum   efficient  scale  for  nuclear  power.  When    GW,  the  value  of  monopoly  profit  is    GW.   As  discussed  in  the  previous  section,  the  monopoly  capacity  is  efficient  in  that  it  minimizes  the   total  cost  of  producing  electricity.                                                                                                                     1  http://clients.rte-­‐france.com/lang/an/clients_producteurs/vie/prod/parc_reference.jsp,  last  accessed   on  21/08/2014  
  • 24.   23     4.3.Duopoly     Firm  1,  the  ex-­‐monopoly,  has  capacity    GW.  When  firm  2  enters  the  market,  the   two  producers  compete  via  the  discriminatory  auction  mechanism  described  in  the  previous   section.  Figure  5  displays  both  firms’  profit  as  a  function  of   ,  firm  2’s  capacity.       Figure  5  –  Firm  1  and  firm  2  profit  (after  investment  cost)  when   ,  as  a  function  of     Figure  4  -­‐  Monopoly  profit  (after  investment  costs)  as  a  function  of  nuclear  capacity  
  • 25.   24   Firm  1  profit  is  strictly  decreasing  in   ,  and  becomes  negative  when    GW.  In   the  absence  of  contracts,  firm  2  profit  is  maximum  when    GW,  so  we  have    GW.   At  this  point,  firm  1  makes  a  profit  of  51,  about  half  of  monopoly  profit.  We  notice  that  firm  2   makes   non-­‐negative   profit   as   long   as   ,   which   implies   that   there   is   no   minimum   efficient  scale  for  firm  2.  This  is  because  we  have  not  given  firm  2  any  fixed  costs  –  investment   costs  are  proportional  to  capacity.  However,  if  firm  2  had  fixed  costs  of  say  10,  then  capacity   below  5  GW  would  not  be  profitable.     Figure   6   shows   the   total   profit    of   nuclear   firms   and   the   total   cost   of   electricity   production.   It   also   displays   total   revenue   earned   by   both   nuclear   and   conventional  power  producers,  given  by  the  following  expression:     We  denote  total  revenue   .  As  conventional  power  producers  make  zero  profit,  we  have:         Figure  6  –  Total  profit,  cost,  and  revenue  for  electricity  producers  (both  nuclear  and  conventional)  when   ,  as  a  function  of  firm  2  capacity  ( )     Total  profit  begins  at  96  (monopoly  profit)  and  decreases  with   .  When    GW,   total  profit  is  70.  In  layman  terms,  the  two  producers  must  share  a  pie  that  decreases  in  size  as   firm   2   enters   the   market.   Total   cost   increases   with   .   Since   the   monopoly   capacity   also   minimises  total  cost,  entry  by  firm  2  leads  to  excess  capacity  and  higher  total  cost.    
  • 26.   25   Total  revenue  decreases  with   ,  which  implies  that  the  decrease  in  total  profit  is  not   only   associated   with   increased   cost   of   electricity   production.   There   is   also   a   price   effect.   We   define  a  price  index    by  the  following  expression:   .   This   index   of   the   wholesale   price   of   electricity   is   proportional   to   total   revenue.     when   ,  and    when    GW.    Hence,  market  entry  by  firm  2   leads   to   higher   total   cost   of   electricity,   and   lower   total   profit   and   revenue.   The   price   of   electricity  decreases  by  approximately  10%.   4.4. Long-­‐term  contracts     We   now   allow   firm   1   to   hold   a   volume    of   long-­‐term   supply   contracts,   according   to   which  firm  1  supplies  electricity  at  a  price   .  At  the  time  of  signing  the  contracts,  firm  1   has   a   monopoly   and   the   price   of   electricity   is   ,   so   customers   are   indifferent   between   purchasing  electricity  on  the  market  and  a  contract  where   .  We  set    and  calculate   ,  firm  2’s  optimal  choice  of  capacity  as  a  function  of  the  volume  of  contracts  held  by  firm  1.   In  order  to  do  so,  we  use  the  following  program  for  every  value  of   :   1. We  calculate   )  for  a  range  of  values  of    taken  in  the  interval   .   2. We  find   ,  the  value  of    corresponding  to  the  maximum   .   3. If   ,   we   return   the   analytical   solution.   If   not,   we   return   the   numerical   solution,   .       Figure  7  –  Capacity  chosen  by  firm  2  as  a  function  of  the  volume  of  contracts  held  by  firm  1  
  • 27.   26   Figure   7   displays    for   .   The   capacity   chosen   by   firm   2   is   strictly   decreasing  in   .  There  is  a  change  in  slope  when    GW.  Beyond  this  point,   .   As  discussed  in  the  previous  section,  the  profit  functions  of  the  firms  change  when   .   As  a  result,  the  slope  of      changes.   We  note  that  the  reduction  in  firm  2’s  capacity  is  approximately  proportional  to   ,   the   volume   of   contracts   expressed   as   a   proportion   of   firm   1   capacity.   Indeed,   when   ,  firm  2’s  capacity  is  reduced  by  58%.       Figure  8  –  Profit  of  each  firm  as  a  function  of  the  volume  of  contracts  held  by  firm  1     Figure   8   displays    and   .   Firm   2   profit   is   decreasing   in   ,   but   it   remains   positive,  so  although  contracts  decrease  entry,  firm  1  cannot  exclude  firm  2  completely  using   contracts.   However,   if   firm   2   had   large   fixed   costs,   total   exclusion   would   be   possible.   For   example,  if  firm  2  had  fixed  costs  of  10,  then  it  would  not  enter  the  market  if    GW.  Firm  1   profit,   including   income   from   contracts,   is   increasing   in   ,   but   remains   less   than   monopoly   profit.   In   order   to   maximize   its   profit,   firm   1   should   choose   a   volume   of   contracts    GW.  At  this  point,  firm  1  makes  a  profit  of  82,  just  14  less  than  monopoly  profit.       Figure   9   displays   total   profit    and   total   cost   as   a   function   of   .   Because   contracts   lead   to   decreased   entry   by   firm   2   (hence,   less   excess   capacity),   the   total   cost   of   electricity   production   decreases   with   .   Total   profit   increases   with   :   the   increase   in   firm   1   profit  outweighs  the  decrease  in  firm  2  profit.  
  • 28.   27                                   Figure   10   displays   total   revenue,   with   and   without   income   from   contracts.     The   difference  is  striking.  Total  revenue,  excluding  contracts,  is  sharply  decreasing.  This  represents   revenue  from  the  spot  market,  whose  size  is  being  reduced  as  the  volume  of  contracts  increases   (peak   demand   in   the   spot   market   decreases   from    to   ).   However,   total   revenue   from   electricity  production,  including  contract  income,  is  increasing.       Figure  10  –  Total  revenue,  including  and  excluding  contract  income,  as  a  function  of   .   Figure  9  –  Total  profit  and  total  cost  as  a  function  of  the  volume  of  contracts  held  by  firm  1  
  • 29.   28   Finally,  we  define  a  spot  market  price  index  by  the  following  expression:       We   are   interested   in   the   impact   of   contracts   on   the   average   price   of   electricity   in   the   spot   market.  Spot  market  revenue  is  given  by  total  revenue  minus  contract  income,  and  market  size   is   ,  the  average  demand  for  electricity  in  the  spot  market.  Figure  11  displays    as   a  function  of   .       Figure  11  –  Spot  market  price  index    as  a  function  of   .     The  evolution  of  the  price  index  is  unusual:  it  begins  at  2.71  and  decreases  until  it   reaches  a  local  minimum  of  2.70  when    GW.  Then  it  increases,  reaching  a  maximum  of   2.72  when    GW  (at  this  point,   ).  Then  it  decreases  again,  reaching  a  global   minimum  of  2.865  when    Finally  the  price  index  increases  a  little,  reaching  2.695  when    GW.     If  we  look  at  the  expression  of  the  price  index,  its  behaviour  can  be  explained  partly  by   the  fact  that  total  spot  market  revenue  (the  numerator)  as  well  as  the  size  of  the  spot  market   (the  denominator)  are  decreasing.  The  rest  is  explained  by  the  change  in  slope  of  total  revenue   when    exceeds  23.7  GW.  However,  it  should  be  noted  that  these  changes  in  spot  market  price   are  small:  the  price  index  always  remains  within  1%  of  its  original  value.  In  conclusion,  the   contracts  have  little  effect  on  the  average  price  of  electricity  on  the  spot  market.
  • 30.   29     Conclusion       In   our   model,   the   French   electricity   market   is   made   up   of   two   sectors:   a   perfectly   competitive   conventional   sector   and   a   nuclear   sector.   Electricity   demand   is   uniformly   distributed.   We   focus   our   analysis   on   market   entry   in   the   nuclear   sector.   We   begin   by   determining  the  nuclear  capacity  that  a  monopoly  would  choose  in  order  to  maximize  its  profit.   This  capacity  also  minimizes  the  total  cost  of  producing  electricity  (from  both  conventional  and   nuclear  sources)  to  meet  consumer  demand.   We  then  consider  what  happens  when  there  are  two  nuclear  producers:  a  large  firm,  the   incumbent,  and  a  small  firm,  the  entrant.  The  two  firms  compete  via  a  discriminatory  auction   mechanism  described  in  Fabra  et  al.  (2006).  When  demand  is  less  than  the  small  firm  capacity,   both  firms  sell  capacity  at  marginal  cost   and  make  zero  profit.  When  demand  exceeds  total   nuclear  capacity,  each  firm  supplies  its  whole  capacity  at  the  marginal  cost    of  conventional   producers.  When  demand  is  between  these  two  regions,  there  is  a  mixed  strategy  equilibrium.   We  find  expressions  for  each  firm’s  yearly  profit  by  integrating  over  the  distribution  of   demand.  We  then  calibrate  the  model  to  the  French  market,  assuming  that  the  nuclear  capacity   installed  on  the  market  (63  GW)  is  the  monopoly  profit-­‐maximizing  capacity.  In  the  absence  of   contracts,   the   small   firm   maximizes   its   profit   by   installing   a   capacity   of   17.5   GW.   Since   the   monopoly  capacity  is  efficient,  market  entry  leads  to  excess  capacity:  the  total  cost  of  producing   electricity   increases.   Total   profit   and   revenue   decrease,   and   the   average   price   of   electricity   drops  by  10%.   We   then   allow   the   incumbent   to   sign   long-­‐term   contracts   with   industrial   consumers   before  the  small  firm  enters  the  market.  According  to  these  contracts,  the  incumbent  supplies  a   constant  capacity  at  a  price   .  We  assume  that    –  the  contract  price  is  equal  to  the  price   of  electricity  at  the  time  the  contracts  are  signed  (when  the  incumbent  has  a  monopoly).    As  the   volume  of  contracts  increases,  market  entry  by  the  small  firm  is  reduced.  Its  profit  decreases,   while   the   incumbent’s   profit   increases.   However,   the   incumbent   cannot   recover   monopoly   profit   entirely.   Furthermore,   contracts   reduce   market   entry,   but   they   cannot   exclude   rivals   entirely  unless  the  entrant  has  large  fixed  costs.     From  a  welfare  point  of  view,  the  effect  of  long-­‐term  contracts  is  ambiguous.  On  the  one   hand,  market  entry  leads  to  excess  capacity,  so  by  limiting  entry  the  contracts  help  to  minimize   the  cost  of  electricity  production.  However,  market  entry  reduces  the  price  of  electricity,  which   may   be   viewed   as   beneficial   for   consumers.   Interestingly,   long-­‐term   contracts   do   not   have   a   significant  effect  on  the  price  of  electricity  on  the  spot  market:  it  remains  near  the  level  it  would  
  • 31.   30   have   had   with   unrestricted   market   entry.   However,   customers   who   have   signed   long-­‐term   contracts  continue  to  pay  the  monopoly  price  for  electricity.  As  a  result,  they  have  an  incentive   to  escape  the  contract  in  order  to  purchase  electricity  on  the  spot  market  instead.    An  important  extension  of  this  work  would  be  to  consider  customers’  incentives  to  sign   contracts.  We  have  assumed  that  at  the  time  of  signing,  customers  do  not  anticipate  that  there   will  be  market  entry,  or  they  do  not  internalize  the  consequences  that  the  contracts  will  have  on   a  rival  producer’s  decision  to  enter  the  market.  If  they  were  to  anticipate  this,  how  could  the   incumbent  producer  incentivise  them  to  sign  the  contract?  A  possible  answer  would  be  to  look   at  the  contract  price   .  Perhaps  the  incumbent  could  offer  customers  a  discount  at  the  time  of   signing   (setting   ),   but   in   that   case   would   the   incumbent   still   benefit   from   having   the   contracts?   Similarly,   one   could   look   at   how   the   contracts   should   be   structured   in   order   to   dissuade  customers  from  ending  them  after  they  observe  market  entry  and  the  resulting  lower   prices.  A  first  step  would  be  to  examine  the  penalty  that  firms  would  be  required  to  pay  in  the   event  of  a  premature  termination  of  the  contract.  
  • 32.   31     References     Aghion,  Philippe,  and  Patrick  Bolton.  "Contracts  as  a  Barrier  to  Entry."  American  Economic   Review  (1987):  388-­‐401.     Allaz,  Blaise,  and  Jean-­‐Luc  Vila.  "Cournot  competition,  forward  markets  and  efficiency."  Journal   of  Economic  Theory  59,  no.  1  (1993):  1-­‐16.     Bessot,  Nicolas,  Maciej  Ciszewski,  and  Augustijn  Van  Haasteren.  "The  EDF  long  term  contracts   case:  addressing  foreclosure  for  the  long  term  benefit  of  industrial  customers."  Competition   Policy  Newsletter  2  (2010):  10-­‐13.     Director,  Aaron,  and  Edward  H.  Levi.  "Law  and  the  future:  Trade  regulation."  Northwestern   University  Law  Review  51  (1956):  281.     Lien,  J.  “Forward  Contracts  and  the  Curse  of  Market  Power”,  University  of  Maryland  Working   Paper  (2000)     Mahenc,  Philippe,  and  François  Salanié.  "Softening  competition  through  forward  trading."   Journal  of  Economic  Theory  116,  no.  2  (2004):  282-­‐293.     Fabra,  Natalia,  Nils-­‐Henrik  von  der  Fehr,  and  David  Harbord.  "Designing  electricity  auctions."   RAND  Journal  of  Economics  37,  no.  1  (2006):  23-­‐46.     Fabra,  Natalia,  Nils-­‐Henrik  von  der  Fehr,  and  María-­‐Ángeles  de  Frutos.  "Market  Design  and   Investment  Incentives."  Economic  Journal  121,  no.  557  (2011):  1340-­‐1360.     Rasmusen,  Eric  B.,  J.  Mark  Ramseyer,  and  John  S.  Wiley  Jr.  "Naked  Exclusion."  American   Economic  Review  (1991):  1137-­‐1145.     Segal,  Ilya  R.,  and  Michael  D.  Whinston.  "Naked  Exclusion:  Comment."  American  Economic   Review  (2000):  296-­‐309.    
  • 33.   32     Appendix  –  selected  MATLAB  code     Function   function [k2opt,profit2] = maxprofit2(f) %MAXPROFIT2 Returns the level of capacity that maximizes firm 2's profit, %when firm 1 has capacity k1m and holds a volume of contract f Dmin = 33 - f; Dmax = 78 - f; DeltaD = Dmax - Dmin; % k1 is the monopoly capacity, given by k1 = Dmax - b*DeltaD/(P-c) k1 = 63 - f; % investment cost (numeraire price) b = 1; % NetPrice = P - c NetPrice = b*DeltaD/(Dmax - k1); % maximum capacity of firm 2 - we do not want k2 to exceed k1 k2max = Dmax; % step size (number of data points = k2max/step + 1) step = 0.01; % capacity of firm 2 k2vector = 0:step:k2max; % initializing Profit2 = zeros(size(k2vector)); NetProfit2 = zeros(size(k2vector)); for i = 1:length(k2vector) k2 = k2vector(i); K = k1 + k2; % parameters for firm 2 profit A = 3/(2*k1); B1 = 2*log(k1/Dmin); % B1 and B2 are minus infty if f = 63 B2 = 1 + log(k1/k2); C = -(1-b/NetPrice)*DeltaD; if k2 <= Dmin % profit of firm 2, before and after fixed costs Profit2(i) = NetPrice/DeltaD*(DeltaD*k2 - B1/2*k2^2 - A/3*k2^3); NetProfit2(i) = Profit2(i) - b*k2; % net of fixed cost else % profit of firm 2, before and after fixed costs Profit2(i) = NetPrice/DeltaD*(Dmax*k2 - B2*k2^2 - A/3*k2^3); NetProfit2(i) = Profit2(i) - b*k2; % net of fixed cost end end profit2 = max(NetProfit2); k2opt = k2vector(NetProfit2 == profit2);
  • 34.   33   if k2opt <= Dmin % overwrite k2opt and profit2 with analytical solution (more precise) k2opt = (-B1 + sqrt(B1^2-4*A*C))/(2*A); profit2 = NetPrice/DeltaD*(DeltaD*k2opt - B1/2*k2opt^2 - A/3*k2opt^3)... - b*k2opt; end end   Main  script  (calls  the  previous  function)   % calculates the optimal capacity chosen by firm 2 as a function of the % volume of contracts held by firm 1, where firm 1 has the monopoly % capacity. Also calculates resulting profit of both firms. Dmin = 33; Dmax = 78; DeltaD = Dmax - Dmin; Davg = (Dmax + Dmin)/2; % k1 is the monopoly capacity, given by k1 = Dmax - b*DeltaD/(P-c) k1 = 63; % Investment cost (numeraire price) b = 1; % NetPrice = P - c NetPrice = b*DeltaD/(Dmax - k1); % Discount = (pf - c)/(P - c) Discount = 1; ContractPrice = Discount*NetPrice; % maximum volume of contracts (must be < 63) fmax = 33; % step size (number of data points = fmax/step + 1) step = 0.2; % volume of contracts fvector = 0:step:fmax; % initializing k2vector = zeros(size(fvector)); Profit1 = zeros(size(fvector)); NetProfit1 = zeros(size(fvector)); Profit2 = zeros(size(fvector)); NetProfit2 = zeros(size(fvector)); TotalCost = zeros(size(fvector)); for i = 1:length(fvector) % volume of contracts f = fvector(i); % updated quantities Dmaxp = Dmax - f; Dminp = Dmin - f; k1p = k1 - f;
  • 35.   34   % firm 2 capacity and profits [k2,NetProfit2(i)] = maxprofit2(f); k2vector(i) = k2; Profit2(i) = NetProfit2(i) + b*k2; % total capacity K = k1 + k2; Kp = K - f; % profit of firm 1, before and after fixed costs if k2 < Dminp Profit1(i) = NetPrice/DeltaD*(k1p*Dmaxp + k2*Dminp... - 1/2*Kp^2 -1/2*Dminp^2) + ContractPrice*f; else Profit1(i) = NetPrice/DeltaD*(k1p*(Dmaxp-k2) - 1/2*k1p^2)... + ContractPrice*f; end NetProfit1(i) = Profit1(i) - b*k1; % net of fixed cost % total production cost minus c*Davg TotalCost(i) = b*K + NetPrice/DeltaD*0.5*(Dmax-K)^2; end % total profit = firm 1 + firm 2 + coal (zero profit) TotalProfit = NetProfit1 + NetProfit2; % after investment costs % PriceAvg = Pavg - c (retail price index net of operating cost) PriceAvg = (TotalProfit + TotalCost - ContractPrice*fvector)./(Davg - fvector);