SlideShare a Scribd company logo
1 of 48
AULA 1
MATEMÁTICA
Prof.º Luciano Pessanha
A Teoria dos Conjuntos foi formulada no fim do
século XIX pelo matemático russo Georg Cantor.
CONJUNTO: Lista de objetos (coleção, agrupamento, classe,
sistema) enumeráveis e descritivos.
CONCEITOS PRIMITIVOS: (Noções Intuitivas)
- CONJUNTO; (espaço observado)
- ELEMENTO; (objeto (s) do conjunto)
- Nº CARDINAL; (nº de elementos do conjunto)
- PERTINÊNCIA; ( relações entre os elementos e os conjuntos)
- INCLUSÃO; (relações entre conjuntos)
- SÍMBOLOS; (servem para simplificar as relações)
REPRESENTAÇÃO:
 Para escrever um conjunto usam-se chaves. Os elementos de um
conjunto são escritos separados por vírgula e a ordem em que são
escritos é irrelevante (Não importa). Por exemplo, { 5, 1 } = { 1, 5 }
 Elementos repetidos contam só uma única vez. Por exemplo:
A={a,l,g,a,z,a,r,r,a} = {a,l,g,z,r}
Ex1: Conjunto dos estados da Região Sudeste:
S= { Rio de Janeiro, São Paulo, Minas Gerais, Espírito Santo}
Ex2: Conjunto de todos os números naturais.
N={0,1,2,3, ...}
Ex3: Conjunto de todos os números reais tal que x²-4=0.
R={ 2, -2}
Finito
Infinito
Unitário
Vazio
Universo
 das Partes
Conjunto Unitário: É aquele que possui apenas um único elemento
Exemplo:
A={5} ou B={x|x é capital da França}
Conjunto Vazio: É um conjunto que não possui nenhum elemento. Ele
é representado pelo símbolo Ø ou por A={ }
Exemplo:
C= {x|x é conjunto das cidades mineiras que possuem praia} = Ø
D= {x|x ≠ x} = Ø
Questão 1
Observe os conjuntos abaixo e identifique aqueles que foram unitários ou vazios:
A={x|x =1 e x=3}
vazio
B={x|x é um número primo e par }
unitário
C={x|0< x <5 e
3𝑥+5
2
= 4 }
unitário
D={x|x é capital da Bahia }
unitário
E={x|x é mês com letra inicial p }
vazio
F= {x|
2
𝑥
= 0 }
vazio
Em matemática, principalmente na teoria dos conjuntos e nos
fundamentos da matemática, um Universo é uma classe (conjunto)
que contém (como elementos) todas as possibilidades que se deseja
considerar em uma certa situação problema.
Símbolo U= { ? }
Se meus elementos pertencem ao conjunto dos números naturais meu
conjunto Universo de trabalho serão os números naturais. U= {ℕ}
Exemplo:
U={x ∈ ℕ} = {0,1,2,3, ...}
U= {x é número primo} = {2,3,5,7,11,13,...}
Questão 1
Considerando os diferentes conjuntos universos, resolver a equação x+ 3 = 0
a) U é o conjunto dos números naturais:
S=Ø
b) U é o conjuntos dos números inteiros:
S={-3}
Questão 2
Enumere os seguintes conjuntos, considerando os conjuntos universos:
A= {-10 < x < 10} sendo U o conjunto dos números naturais:
B= {-10 < x < 10} sendo U o conjunto dos números inteiros:
+ SOMA
- SUBTRAÇÃO
x ou * MULTIPLICAÇÃO ou PRODUTO
/ DIVISÃO ou QUOCIENTE ou RAZÃO
> MAIOR QUE
< MENOR QUE
≥ MAIOR OU IGUAL
≤ MENOR OU IGUAL
< e > COMPARAÇÃO ( MENOR QUE E MAIOR
QUE)
... OUTROS ELEMENTOS ou INFINITO
A = {5, 50, 51, 52, ... , 100}
H = {0, 2, 4, 6, 8, 10, 12, ...}
L={ , } CONJUNTO
{ } ou ø CONJUNTOVAZIO
∞ LEMINSCATA (INFINITO)
∀x PARA TODO OU QUALQUER QUE SEJA
Ex: x > 0, ∀ x é positivo
|ou / TAL QUE
Ex: ℝ+= {x ∈ R | x ≥ 0}
∴ PORTANTO
Questão 1
Liste todos os elementos dos conjuntos abaixo:
a) A={x | x é vogal do alfabeto}
b) B={x | x é continente do planeta Terra}
c) C={x | x é nº par positivo menor que 100}
d) D={x | x é número primo}
e) E={x | x é nº impar maior que 6 e menor que 17 }
Questão 1
Liste todos os elementos dos conjuntos abaixo:
a) A={x | x é um número, tal que x² = 1}
b) B={x | x é um número inteiro positivo menor que 12}
c) C={x | x é o quadrado de um número inteiro e x < 100}
d) D={x | x é um número inteiro positivo, tal que x² = 2}
Use a notação de construção de conjuntos para dar uma
descrição de cada um dos conjuntos abaixo. Em seguida,
informe a cardinalidade de cada um dos conjuntos:
a) A={0, 3, 6, 9, 12} =
b) B={-3, -2, -1, 0, 1, 2, 3} =
c) C={…, -102, -101, -100} =
∈ PERTENCE (é elemento de)
∉ NÃO PERTENCE ( não é elemento de)
Pertinência é a característica associada a um elemento que faz parte
de um conjunto (e C= {e1,e2,e3})
OBS: Um conjunto pode ser elemento de um conjunto. Ex: {Ø}, {ℕ}
EXEMPLOS: Seja o conjunto C={1,3,5,7,9}
a) 1 ____ C
b) {1} ____C
c) 2 ____ C
∃x EXISTE x
Ex: ∃x ∈ ℤ | x > 3
∃x NÃO EXISTE x
Ex: ∃x ∈ ℕ | x < 0
1) Utilizar os símbolos  e , relacionando os elementos com os conjuntos
A = {a, e, i, o, u} e B = {b, c, d, f, g}.
a) a ..... A b) u ..... B c) c ..... B d) d ..... A e) f ...... b
Os quantificadores ∀x (para todo ou qualquer que seja) , ∃x (existe pelo menos um) e ∃|x
(existe apenas um) servem para transformar sentenças abertas em proposições, ou seja,
atribuem um valor lógico verdadeiro ou falso a proposição;
____________________________________________________________________
O Quantificador Universal: ∀x
𝐒í𝐦𝐛𝐨𝐥𝐨: ∀ (para todo ou qualquer que seja)
Exemplo:
Diga se as proposições são verdadeiras (V) ou falsas(F):
• A={∀x|x +1 = 7} ( F ) Lê-se: qualquer que seja o nº x, temos que x + 1=7
• B={∀𝑎|(𝑎 + 1)2
= 𝑎2
+ 2𝑎 +1} ( V )
• C={∀y| y2
+ 1 > 0} ( V )
• D={∀x| x3
= 2𝑥2
} ( V ) ; x=o ou x=2; mas x≠1
O Quantificador Existencial: ∃x
Símbolo: ∃x (existe pelo menos um) Obs.: Um no mínimo, mas podem ser
mais. Só não podem ser todos.
Exemplo:
Diga se as proposições são verdadeiras (V) ou falsas(F):
• A={∃x| x +1 = 7} ( V ) Lê-se: qualquer que seja o nº x, temos que x + 1=7
• B={∃y| 𝑦2+ 1 > 0} ( F )
• C={∃x| x3 = 2𝑥2} ( V ) ; x=o ou x=2; mas x≠1
Obs: O Quantificador ∀x é negado (~) pelo ∃x , ou seja (∀x) ↔ ~(∃x) e vice- versa
Exemplo
Sentença: Todo (∀x) losango é quadrado ( sentença falsa)
Negação: Existe pelo menos um (∃x) losango que (~)não é
quadrado (sentença verdadeira)
O Quantificador Existencial: ∃|x
Símbolo: ∃|x (existe apenas um ou existe um e somente um) Obs.: É só
provar que há duas possibilidades para x que a proposição será falsa.
Exemplo:
Diga se as proposições são verdadeiras (V) ou falsas(F):
• A={∃|x | x +1 = 7} ( V ) Lê-se: existe apenas um nº x, tal que x + 1=7
• B={∃|y | 𝑦2+ 1 > 0} ( F )
• C={∃|x | x3 = 2𝑥2} ( F ) ; x=o ou x=2; mas x≠1
= ≠
Dois conjuntos são iguais quando todo elemento do conjunto A
pertence ao conjunto B.
A=B ⇔ (∀x) ( x ∈ A ⇔ x ∈ B)
Exemplos:
Se A={a,b,c} e B={b,c,a} , temos que A=B
Se A={x|x-2=5} e B={7} , temos que A=B
Pense nisso:
Será que o conjunto formado pela palavra garra é igual ao da palavra
agarrar ?
Se A={g,a,r,r,a} e B={a,g,a,r,r,a,r} , temos que A=B ?
Se C={x|x é letra da palavra matemática} e D={m,a,t,e,á}, temos que
C≠D ?
= IGUALDADE
≠ DIFERENÇA
1) RELACIONE OS CONJUNTOS UTILIZANDO OS SÍMBOLOS = OU .
A = {1, 3, 5, 7} ........ B = {X  X É UM NÚMERO ÍMPAR, MENOR QUE 9}
A = {VERDE, AMARELO} ........ B = {X  X É UMA COR DA BANDEIRA DO BRASIL}
A = {0, -1, -2, -3} ......... B = {X  X É UM NÚMERO POSITIVO}
A = {O, H} ........... B = {X  X É ELEMENTO QUE COMPÕE A MOLÉCULA DA ÁGUA}
1) POR EXTENSO ou TABULAR, enumerando elemento por
elemento
LETRA MAIÚSCULA = { elementos separados por vírgulas }
Ex: Os elementos do conjunto A são divisores positivos de 24.
A representação entre chaves pode ser feita:
AS 4 REPRESENTAÇÕES
A = {1, 2, 3, 4, 6, 8, 12, 24}
Destacando uma propriedade comum apenas aos seus
elementos.
A = { x x tem a propriedade p}
Lê-se: A, é o conjunto de todos os elementos x, tal que x
tem a propriedade p
Ex: A = { x x > 0}
A = {1, 2, 3,...}
Destacando uma região comum apenas aos seus elementos.
Ex:
3) É a representação de um conjunto com auxílio de uma linha
fechada e não-entrelaçada. Permite simbolizar graficamente as
relações de pertinência entre conjuntos e seus elementos.
U
Imagine 2 conjuntos A e B. Se todo elemento de A for também
elemento de B, então A é subconjunto de B.
Exemplo:
Dados os conjuntos A = {1, 3, 5} e B = {0, 1, 2, 3, 4, 5}
A
B
U
A
B
U
OBS: O Conjunto U é o conjunto Universo (um conjunto que possui
todos os elementos que você deseja). Ex: O conjunto dos Inteiros
A não é
subconjunto
de B
A é
subconjunto
de B
⊂ Está Contido (é subconjunto de)
⊄ Não Está Contido ( não é subconjunto de)
⊃ B Contém A
⊃ A Não Contém B
Inclusão é a característica associada a um conjunto que faz
parte de um conjunto (A = { } B= { })
EXEMPLOS: Dados os conjuntos A = {1, 3, 5} e B = {0, 1, 2, 3, 4, 5},
temos {1, 3, 5}  {0, 1, 2, 3, 4, 5} ou A  B.
A
B
U
 O Conjunto Vazio C={ } ou Ø é subconjunto de todo
conjunto;
A ⊂ A , isto é, todo conjunto é sempre subconjunto dele
mesmo;
 Se A ⊂ B e B ⊂ A, então A = B;
 Se A ⊂ B e B ⊂ C, então A ⊂ C.
O conjunto de todos os subconjuntos de um conjunto dado A é chamado de CONJUNTO DE PARTES;
Se A é o conjunto de três elementos {x, y, z} a lista completa de subconjuntos de A é:
{ } (o conjunto vazio);
{x};
{y};
{z};
{x, y};
{x, z};
{y, z};
{x, y, z};
e portanto o conjunto de partes de A é o conjunto de 8 elementos:
P(A) = {{ }, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.
Fórmula:
P(A)= é o conjunto das partes de A
P(A) = 𝟐 𝒏 (𝑨)
, onde
n(A) = é o nº de elementos de A
UNIÃO INTERSECÇÃO DIFERENÇA COMPLEMENTAR
DIFERENÇA SIMÉTRICA
OPERAÇÃO CONECTIVO ESTRUTURA
LÓGICA
EXEMPLO
NEGAÇÃO não (~) não p A bicicleta NÃO é azul.
CONJUNÇÃO e (^) p e q Vou a praia E cinema.
Vou ganhar bicicleta E videogame
DISJUNÇÃO
INCLUSIVA
ou (v) p ou q Vai me dar uma calça OU uma camisa
Vai me dar o documento carimbado OU
assinado
DISJUNÇÃO
EXCLUSIVA
ou ... ou (v) ou p ou q Ou irei jogar basquete ou irei à casa de
João
CONDICIONAL
(implicação)
se... então (⇒) Se p então q Se nasci em Salvador , então sou Baiano.
Se sou inteligente, então passarei de série.
BICONDICIONAL
(equivalência)
se e somente
se (⇔)
p se e
somente se q
4 é maior que 2 se e somente se 2 for
menor que 4 .
1)UNIÃO DE CONJUNTOS:
O conjunto união de A em B é formado pelos elementos que pertencem ou a A, ou
a B ou a ambos.
Exemplo:
Dados os conjuntos A = {-3, -2, -1, 0} e B = {-1, 0, 1}, temos:
A  B = {-3, -2, -1, 0, 1}
A  B = {x  x  A ou x  B}
Exemplo
Dados os conjuntos A = {1, 2, 3, 4, 5, 6, 7} e
B = {2, 4, 6, 8, 10}, calcular A  B :
Resolução
A  B = {1, 2, 3, 4, 5, 6, 7, 8, 10}
Graficamente, teremos
Sejam A, B e C conjuntos. Então são válidas as seguintes
propriedades:
 A ∪ B = B ∪ A (Comutatividade)
( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (Associatividade)
A ∪ A = A
A ∪ ∅ = A (elemento neutro)
A ∪ U = U
1)INTERSECÇÃO DE CONJUNTOS:
O conjunto intersecção de A com B é formado pelos elementos comuns a A e a B
Exemplo: Dados os conjuntos A = {-3, -2, -1, 0} e B = {-1, 0, 1}, temos:
A  B = {-1, 0}
A  B = {x  x  A e x  B}
OBS: A∩B = ∅ , são denominados conjuntos disjuntos.
Exemplos
a) Sendo A = {2, 3, 5, 6, 8} e B = {3, 5, 8, 9} determinar A ∩ B :
Resolução:
A ∩ B = {3, 5, 8}, apenas os elementos comuns a A e B.
Sejam A, B e C conjuntos. Então são válidas as seguintes
propriedades:
A ∩ B = B ∩ A (Comutatividade)
( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (Associatividade)
A ∩ A = A
A ∩ ∅ = ∅
A ∩ U = A (elemento neutro)
Propriedades Comuns à União e à Interseção Sejam A, B e
C conjuntos. Então são válidas as seguintes propriedades:
A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ C = ( A ∩ C ) ∪ ( B ∩ C )
Propriedades Comuns à União e à Interseção Sejam A, B e
C conjuntos. Então são válidas as seguintes propriedades:
A ∩ (B ∪ C) = ( A ∩ B ) ∪ ( A ∩ C )
Propriedades Comuns à União e à Interseção Sejam A, B e
C conjuntos. Então são válidas as seguintes propriedades:
( A ∪ B ) ∩ A = A ∩ ( B ∪ A) = A
O número de elementos da união de :
2 conjuntos A e B será:
n(A∪B) = n(A) + n(B) - n(A∩B)
n(A∪B) = 4 + 4 – 2 = 6
O número de elementos da união de :
3 conjuntos A, B e C será:
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A∩B) - n(A∩C) - n(B∩C) + n(A∩B∩C)
1)DIFERENÇA DE CONJUNTOS:
O conjunto diferença de A e B é formado por elementos de A que não
pertencem a B.
Exemplo: Dados os conjuntos A = {-4, -3, -2, -1, 0} e B = {-2, -1, 0, 1}, temos:
A – B = {-4, -3}
A – B = {x  x  A e x  B}
A – B = {20, 20, 25}
4) COMPLEMENTAR DE CONJUNTOS: O conjunto
complementar de A em relação a B é dado pelos elementos que faltam ao
conjunto B para que ele fique igual ao conjunto A.
C 𝑨
𝑩
ou CAB =Lê-se Complementar de A em relação a B.
Exemplo: Dados os conjuntos A = {-4, -3, -2, -1, 0} e B = {-2, -1, 0}, temos:
CA
B
= A – B = {-4, -3}
CA
B
=A – B , com B ⊂ A C 𝑨
𝑩
= {x | x ∈ A e x ∉ B}
5) DIFERENÇA SIMÉTRICA: a diferença simétrica entre os conjuntos
A e B, é o conjunto dos elementos que pertencem a A e não pertencem a B ou, os
elementos que pertencem a B e não pertencem A.
Indicaremos a diferença simétrica entre A e b por: A ∆ B .
Exemplo: Sejam A = { 1, 2, 3 } e B = { 2, 3, 4 }. Então A ∆ B = { 1 } ∪ { 4 }
A ∆ B {x | x ∈ A - B ou x ∈ B - A} = (A - B) ∪ (B - A)
UNIÃO INTERSECÇÃO DIFERENÇA COMPLEMENTAR
DIFERENÇA SIMÉTRICA

More Related Content

What's hot (20)

Porcentagem
PorcentagemPorcentagem
Porcentagem
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
 
Plano cartesiano ppt
Plano cartesiano pptPlano cartesiano ppt
Plano cartesiano ppt
 
Matematica Basica
Matematica BasicaMatematica Basica
Matematica Basica
 
Slides- Progressão Geométrica
Slides- Progressão GeométricaSlides- Progressão Geométrica
Slides- Progressão Geométrica
 
Radiciaçâo
RadiciaçâoRadiciaçâo
Radiciaçâo
 
Matrizes
MatrizesMatrizes
Matrizes
 
Matematica Financeira
Matematica FinanceiraMatematica Financeira
Matematica Financeira
 
Razao e proporção
Razao e proporçãoRazao e proporção
Razao e proporção
 
Slide aula angulos
Slide aula angulosSlide aula angulos
Slide aula angulos
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Função afim
Função afimFunção afim
Função afim
 
Medidas de tendencia central
Medidas de tendencia centralMedidas de tendencia central
Medidas de tendencia central
 
Graficos de funcoes
Graficos de funcoesGraficos de funcoes
Graficos de funcoes
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
 
Aula 22 probabilidade - parte 1
Aula 22   probabilidade - parte 1Aula 22   probabilidade - parte 1
Aula 22 probabilidade - parte 1
 

Viewers also liked

Conjuntos numéricos versão mini
Conjuntos numéricos   versão miniConjuntos numéricos   versão mini
Conjuntos numéricos versão miniLuciano Pessanha
 
Teoria dos conjuntos 1º ANO - Ensino Médio
Teoria dos conjuntos 1º ANO - Ensino MédioTeoria dos conjuntos 1º ANO - Ensino Médio
Teoria dos conjuntos 1º ANO - Ensino MédioRosana Santos Quirino
 
Lógica e teoria de conjuntos ppt
Lógica e teoria de conjuntos  pptLógica e teoria de conjuntos  ppt
Lógica e teoria de conjuntos pptPedro Teixeira
 
Asia quadro humano e economico
Asia   quadro humano e economicoAsia   quadro humano e economico
Asia quadro humano e economicoLuciano Pessanha
 
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEIDLISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEIDCriativa Niterói
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricosandreilson18
 
Historias con silogismos y diagramas de venn
Historias con silogismos y diagramas de vennHistorias con silogismos y diagramas de venn
Historias con silogismos y diagramas de venndelckoh
 
Modren Skyscrapers (現代高樓).
Modren Skyscrapers (現代高樓).Modren Skyscrapers (現代高樓).
Modren Skyscrapers (現代高樓).Chung Yen Chang
 

Viewers also liked (20)

Teoria dos Conjuntos
Teoria dos Conjuntos   Teoria dos Conjuntos
Teoria dos Conjuntos
 
Conjuntos numéricos versão mini
Conjuntos numéricos   versão miniConjuntos numéricos   versão mini
Conjuntos numéricos versão mini
 
Matemática conjuntos
Matemática   conjuntosMatemática   conjuntos
Matemática conjuntos
 
Teoría de los conjuntos
Teoría de los conjuntosTeoría de los conjuntos
Teoría de los conjuntos
 
Blocos econômicos
Blocos econômicosBlocos econômicos
Blocos econômicos
 
Teoria dos conjuntos 1º ANO - Ensino Médio
Teoria dos conjuntos 1º ANO - Ensino MédioTeoria dos conjuntos 1º ANO - Ensino Médio
Teoria dos conjuntos 1º ANO - Ensino Médio
 
Lógica e teoria de conjuntos ppt
Lógica e teoria de conjuntos  pptLógica e teoria de conjuntos  ppt
Lógica e teoria de conjuntos ppt
 
Migrações no brasil
Migrações no brasilMigrações no brasil
Migrações no brasil
 
01 teoria-dos-conjuntos1
01 teoria-dos-conjuntos101 teoria-dos-conjuntos1
01 teoria-dos-conjuntos1
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Canadá
CanadáCanadá
Canadá
 
Asia quadro humano e economico
Asia   quadro humano e economicoAsia   quadro humano e economico
Asia quadro humano e economico
 
Aula 02 conjuntos
Aula 02   conjuntosAula 02   conjuntos
Aula 02 conjuntos
 
Diagrama de venn autocolante
Diagrama de venn autocolanteDiagrama de venn autocolante
Diagrama de venn autocolante
 
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEIDLISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
LISTA 02 E 03 - EXERCÍCIOS DE MATEMÁTICA 1º ANO - PROFª NEID
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Conjuntos básico cleiton pinto
Conjuntos básico   cleiton pintoConjuntos básico   cleiton pinto
Conjuntos básico cleiton pinto
 
Historias con silogismos y diagramas de venn
Historias con silogismos y diagramas de vennHistorias con silogismos y diagramas de venn
Historias con silogismos y diagramas de venn
 
# Conjuntos 2007
# Conjuntos 2007# Conjuntos 2007
# Conjuntos 2007
 
Modren Skyscrapers (現代高樓).
Modren Skyscrapers (現代高樓).Modren Skyscrapers (現代高樓).
Modren Skyscrapers (現代高樓).
 

Similar to TEORIA DE CONJUNTOS (20)

Aula 01 conjuntos
Aula 01   conjuntosAula 01   conjuntos
Aula 01 conjuntos
 
Matemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntosMatemática Discreta - Parte IV teoria dos-conjuntos
Matemática Discreta - Parte IV teoria dos-conjuntos
 
Aula02-teoConj.pptx
Aula02-teoConj.pptxAula02-teoConj.pptx
Aula02-teoConj.pptx
 
7463_APOSTILA_Matematica_Prof_Roberto.pdf
7463_APOSTILA_Matematica_Prof_Roberto.pdf7463_APOSTILA_Matematica_Prof_Roberto.pdf
7463_APOSTILA_Matematica_Prof_Roberto.pdf
 
Conjuntos Autor Antonio Carlos Carneiro Barroso
Conjuntos Autor Antonio Carlos Carneiro BarrosoConjuntos Autor Antonio Carlos Carneiro Barroso
Conjuntos Autor Antonio Carlos Carneiro Barroso
 
Slide teoria dos conjuntos e conjuntos numéricos terceirão 1
Slide teoria dos conjuntos e conjuntos numéricos terceirão 1Slide teoria dos conjuntos e conjuntos numéricos terceirão 1
Slide teoria dos conjuntos e conjuntos numéricos terceirão 1
 
00Capítulo 2-conjuntos (1)
00Capítulo 2-conjuntos (1)00Capítulo 2-conjuntos (1)
00Capítulo 2-conjuntos (1)
 
01 - Conjuntos
01 - Conjuntos01 - Conjuntos
01 - Conjuntos
 
3º ano
3º ano3º ano
3º ano
 
Nota aula 01
Nota aula 01Nota aula 01
Nota aula 01
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
# Conjuntos
# Conjuntos# Conjuntos
# Conjuntos
 
Conjuntos apostila i
Conjuntos apostila iConjuntos apostila i
Conjuntos apostila i
 
Conjuntos geisla
Conjuntos geislaConjuntos geisla
Conjuntos geisla
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
63161537 matematica
63161537 matematica63161537 matematica
63161537 matematica
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
1. conjuntos
1. conjuntos1. conjuntos
1. conjuntos
 
Wania regia 5º aula
Wania regia     5º aulaWania regia     5º aula
Wania regia 5º aula
 
Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4
 

More from Luciano Pessanha

Brasil construção do espaço
Brasil   construção do espaçoBrasil   construção do espaço
Brasil construção do espaçoLuciano Pessanha
 
Industrialização brasileira alterações no espaço
Industrialização brasileira   alterações no espaçoIndustrialização brasileira   alterações no espaço
Industrialização brasileira alterações no espaçoLuciano Pessanha
 
áSia localização e quadro natural final
áSia   localização e quadro natural finaláSia   localização e quadro natural final
áSia localização e quadro natural finalLuciano Pessanha
 
Europa quadro socioeconomico
Europa   quadro socioeconomicoEuropa   quadro socioeconomico
Europa quadro socioeconomicoLuciano Pessanha
 
Documentos cartográficos conceitos e representações
Documentos  cartográficos   conceitos e representaçõesDocumentos  cartográficos   conceitos e representações
Documentos cartográficos conceitos e representaçõesLuciano Pessanha
 
Escala geografica x cartografica aula 3
Escala geografica x cartografica   aula 3Escala geografica x cartografica   aula 3
Escala geografica x cartografica aula 3Luciano Pessanha
 
Orientação no espaço localização
Orientação no espaço   localizaçãoOrientação no espaço   localização
Orientação no espaço localizaçãoLuciano Pessanha
 
O continente americano localização
O continente americano   localizaçãoO continente americano   localização
O continente americano localizaçãoLuciano Pessanha
 
Sistemas Economicos E Sociais
Sistemas Economicos E SociaisSistemas Economicos E Sociais
Sistemas Economicos E SociaisLuciano Pessanha
 

More from Luciano Pessanha (20)

Brasil construção do espaço
Brasil   construção do espaçoBrasil   construção do espaço
Brasil construção do espaço
 
Industrialização brasileira alterações no espaço
Industrialização brasileira   alterações no espaçoIndustrialização brasileira   alterações no espaço
Industrialização brasileira alterações no espaço
 
México
MéxicoMéxico
México
 
áSia localização e quadro natural final
áSia   localização e quadro natural finaláSia   localização e quadro natural final
áSia localização e quadro natural final
 
Africa quadro humano
Africa   quadro humanoAfrica   quadro humano
Africa quadro humano
 
Africa quadro natural
Africa   quadro naturalAfrica   quadro natural
Africa quadro natural
 
Eua aula 1
Eua   aula 1Eua   aula 1
Eua aula 1
 
Transporte no brasil
Transporte no brasilTransporte no brasil
Transporte no brasil
 
Europa quadro socioeconomico
Europa   quadro socioeconomicoEuropa   quadro socioeconomico
Europa quadro socioeconomico
 
Documentos cartográficos conceitos e representações
Documentos  cartográficos   conceitos e representaçõesDocumentos  cartográficos   conceitos e representações
Documentos cartográficos conceitos e representações
 
Escala geografica x cartografica aula 3
Escala geografica x cartografica   aula 3Escala geografica x cartografica   aula 3
Escala geografica x cartografica aula 3
 
Orientação no espaço localização
Orientação no espaço   localizaçãoOrientação no espaço   localização
Orientação no espaço localização
 
O continente americano localização
O continente americano   localizaçãoO continente americano   localização
O continente americano localização
 
Globalização
GlobalizaçãoGlobalização
Globalização
 
Universo
UniversoUniverso
Universo
 
Sistemas Economicos E Sociais
Sistemas Economicos E SociaisSistemas Economicos E Sociais
Sistemas Economicos E Sociais
 
Coordenadas Geograficas
Coordenadas GeograficasCoordenadas Geograficas
Coordenadas Geograficas
 
Europa LocalizaçãO
Europa   LocalizaçãOEuropa   LocalizaçãO
Europa LocalizaçãO
 
Conceitos Da Geografia
Conceitos Da GeografiaConceitos Da Geografia
Conceitos Da Geografia
 
Introdução A Geografia
Introdução A GeografiaIntrodução A Geografia
Introdução A Geografia
 

Recently uploaded

QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxIsabellaGomes58
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxIsabelaRafael2
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptxthaisamaral9365923
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxleandropereira983288
 
Guia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfGuia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfEyshilaKelly1
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADOcarolinacespedes23
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Prova uniasselvi tecnologias da Informação.pdf
Prova uniasselvi tecnologias da Informação.pdfProva uniasselvi tecnologias da Informação.pdf
Prova uniasselvi tecnologias da Informação.pdfArthurRomanof1
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfEditoraEnovus
 
Governo Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 BrasilGoverno Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 Brasillucasp132400
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfHenrique Pontes
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBAline Santana
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfaulasgege
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Mary Alvarenga
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasRosalina Simão Nunes
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMVanessaCavalcante37
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
Regência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfRegência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfmirandadudu08
 

Recently uploaded (20)

QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptx
 
Guia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfGuia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdf
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
Prova uniasselvi tecnologias da Informação.pdf
Prova uniasselvi tecnologias da Informação.pdfProva uniasselvi tecnologias da Informação.pdf
Prova uniasselvi tecnologias da Informação.pdf
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdf
 
Governo Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 BrasilGoverno Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 Brasil
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdf
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
 
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
Regência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfRegência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdf
 

TEORIA DE CONJUNTOS

  • 2. A Teoria dos Conjuntos foi formulada no fim do século XIX pelo matemático russo Georg Cantor. CONJUNTO: Lista de objetos (coleção, agrupamento, classe, sistema) enumeráveis e descritivos. CONCEITOS PRIMITIVOS: (Noções Intuitivas) - CONJUNTO; (espaço observado) - ELEMENTO; (objeto (s) do conjunto) - Nº CARDINAL; (nº de elementos do conjunto) - PERTINÊNCIA; ( relações entre os elementos e os conjuntos) - INCLUSÃO; (relações entre conjuntos) - SÍMBOLOS; (servem para simplificar as relações)
  • 3. REPRESENTAÇÃO:  Para escrever um conjunto usam-se chaves. Os elementos de um conjunto são escritos separados por vírgula e a ordem em que são escritos é irrelevante (Não importa). Por exemplo, { 5, 1 } = { 1, 5 }  Elementos repetidos contam só uma única vez. Por exemplo: A={a,l,g,a,z,a,r,r,a} = {a,l,g,z,r} Ex1: Conjunto dos estados da Região Sudeste: S= { Rio de Janeiro, São Paulo, Minas Gerais, Espírito Santo} Ex2: Conjunto de todos os números naturais. N={0,1,2,3, ...} Ex3: Conjunto de todos os números reais tal que x²-4=0. R={ 2, -2}
  • 5. Conjunto Unitário: É aquele que possui apenas um único elemento Exemplo: A={5} ou B={x|x é capital da França} Conjunto Vazio: É um conjunto que não possui nenhum elemento. Ele é representado pelo símbolo Ø ou por A={ } Exemplo: C= {x|x é conjunto das cidades mineiras que possuem praia} = Ø D= {x|x ≠ x} = Ø
  • 6. Questão 1 Observe os conjuntos abaixo e identifique aqueles que foram unitários ou vazios: A={x|x =1 e x=3} vazio B={x|x é um número primo e par } unitário C={x|0< x <5 e 3𝑥+5 2 = 4 } unitário D={x|x é capital da Bahia } unitário E={x|x é mês com letra inicial p } vazio F= {x| 2 𝑥 = 0 } vazio
  • 7. Em matemática, principalmente na teoria dos conjuntos e nos fundamentos da matemática, um Universo é uma classe (conjunto) que contém (como elementos) todas as possibilidades que se deseja considerar em uma certa situação problema. Símbolo U= { ? } Se meus elementos pertencem ao conjunto dos números naturais meu conjunto Universo de trabalho serão os números naturais. U= {ℕ} Exemplo: U={x ∈ ℕ} = {0,1,2,3, ...} U= {x é número primo} = {2,3,5,7,11,13,...}
  • 8. Questão 1 Considerando os diferentes conjuntos universos, resolver a equação x+ 3 = 0 a) U é o conjunto dos números naturais: S=Ø b) U é o conjuntos dos números inteiros: S={-3} Questão 2 Enumere os seguintes conjuntos, considerando os conjuntos universos: A= {-10 < x < 10} sendo U o conjunto dos números naturais: B= {-10 < x < 10} sendo U o conjunto dos números inteiros:
  • 9. + SOMA - SUBTRAÇÃO x ou * MULTIPLICAÇÃO ou PRODUTO / DIVISÃO ou QUOCIENTE ou RAZÃO > MAIOR QUE < MENOR QUE ≥ MAIOR OU IGUAL ≤ MENOR OU IGUAL < e > COMPARAÇÃO ( MENOR QUE E MAIOR QUE) ... OUTROS ELEMENTOS ou INFINITO A = {5, 50, 51, 52, ... , 100} H = {0, 2, 4, 6, 8, 10, 12, ...} L={ , } CONJUNTO { } ou ø CONJUNTOVAZIO ∞ LEMINSCATA (INFINITO) ∀x PARA TODO OU QUALQUER QUE SEJA Ex: x > 0, ∀ x é positivo |ou / TAL QUE Ex: ℝ+= {x ∈ R | x ≥ 0} ∴ PORTANTO
  • 10. Questão 1 Liste todos os elementos dos conjuntos abaixo: a) A={x | x é vogal do alfabeto} b) B={x | x é continente do planeta Terra} c) C={x | x é nº par positivo menor que 100} d) D={x | x é número primo} e) E={x | x é nº impar maior que 6 e menor que 17 }
  • 11. Questão 1 Liste todos os elementos dos conjuntos abaixo: a) A={x | x é um número, tal que x² = 1} b) B={x | x é um número inteiro positivo menor que 12} c) C={x | x é o quadrado de um número inteiro e x < 100} d) D={x | x é um número inteiro positivo, tal que x² = 2}
  • 12.
  • 13. Use a notação de construção de conjuntos para dar uma descrição de cada um dos conjuntos abaixo. Em seguida, informe a cardinalidade de cada um dos conjuntos: a) A={0, 3, 6, 9, 12} = b) B={-3, -2, -1, 0, 1, 2, 3} = c) C={…, -102, -101, -100} =
  • 14. ∈ PERTENCE (é elemento de) ∉ NÃO PERTENCE ( não é elemento de) Pertinência é a característica associada a um elemento que faz parte de um conjunto (e C= {e1,e2,e3}) OBS: Um conjunto pode ser elemento de um conjunto. Ex: {Ø}, {ℕ} EXEMPLOS: Seja o conjunto C={1,3,5,7,9} a) 1 ____ C b) {1} ____C c) 2 ____ C ∃x EXISTE x Ex: ∃x ∈ ℤ | x > 3 ∃x NÃO EXISTE x Ex: ∃x ∈ ℕ | x < 0
  • 15. 1) Utilizar os símbolos  e , relacionando os elementos com os conjuntos A = {a, e, i, o, u} e B = {b, c, d, f, g}. a) a ..... A b) u ..... B c) c ..... B d) d ..... A e) f ...... b
  • 16. Os quantificadores ∀x (para todo ou qualquer que seja) , ∃x (existe pelo menos um) e ∃|x (existe apenas um) servem para transformar sentenças abertas em proposições, ou seja, atribuem um valor lógico verdadeiro ou falso a proposição; ____________________________________________________________________ O Quantificador Universal: ∀x 𝐒í𝐦𝐛𝐨𝐥𝐨: ∀ (para todo ou qualquer que seja) Exemplo: Diga se as proposições são verdadeiras (V) ou falsas(F): • A={∀x|x +1 = 7} ( F ) Lê-se: qualquer que seja o nº x, temos que x + 1=7 • B={∀𝑎|(𝑎 + 1)2 = 𝑎2 + 2𝑎 +1} ( V ) • C={∀y| y2 + 1 > 0} ( V ) • D={∀x| x3 = 2𝑥2 } ( V ) ; x=o ou x=2; mas x≠1
  • 17. O Quantificador Existencial: ∃x Símbolo: ∃x (existe pelo menos um) Obs.: Um no mínimo, mas podem ser mais. Só não podem ser todos. Exemplo: Diga se as proposições são verdadeiras (V) ou falsas(F): • A={∃x| x +1 = 7} ( V ) Lê-se: qualquer que seja o nº x, temos que x + 1=7 • B={∃y| 𝑦2+ 1 > 0} ( F ) • C={∃x| x3 = 2𝑥2} ( V ) ; x=o ou x=2; mas x≠1 Obs: O Quantificador ∀x é negado (~) pelo ∃x , ou seja (∀x) ↔ ~(∃x) e vice- versa Exemplo Sentença: Todo (∀x) losango é quadrado ( sentença falsa) Negação: Existe pelo menos um (∃x) losango que (~)não é quadrado (sentença verdadeira)
  • 18. O Quantificador Existencial: ∃|x Símbolo: ∃|x (existe apenas um ou existe um e somente um) Obs.: É só provar que há duas possibilidades para x que a proposição será falsa. Exemplo: Diga se as proposições são verdadeiras (V) ou falsas(F): • A={∃|x | x +1 = 7} ( V ) Lê-se: existe apenas um nº x, tal que x + 1=7 • B={∃|y | 𝑦2+ 1 > 0} ( F ) • C={∃|x | x3 = 2𝑥2} ( F ) ; x=o ou x=2; mas x≠1
  • 19. = ≠ Dois conjuntos são iguais quando todo elemento do conjunto A pertence ao conjunto B. A=B ⇔ (∀x) ( x ∈ A ⇔ x ∈ B) Exemplos: Se A={a,b,c} e B={b,c,a} , temos que A=B Se A={x|x-2=5} e B={7} , temos que A=B Pense nisso: Será que o conjunto formado pela palavra garra é igual ao da palavra agarrar ? Se A={g,a,r,r,a} e B={a,g,a,r,r,a,r} , temos que A=B ? Se C={x|x é letra da palavra matemática} e D={m,a,t,e,á}, temos que C≠D ?
  • 20. = IGUALDADE ≠ DIFERENÇA 1) RELACIONE OS CONJUNTOS UTILIZANDO OS SÍMBOLOS = OU . A = {1, 3, 5, 7} ........ B = {X  X É UM NÚMERO ÍMPAR, MENOR QUE 9} A = {VERDE, AMARELO} ........ B = {X  X É UMA COR DA BANDEIRA DO BRASIL} A = {0, -1, -2, -3} ......... B = {X  X É UM NÚMERO POSITIVO} A = {O, H} ........... B = {X  X É ELEMENTO QUE COMPÕE A MOLÉCULA DA ÁGUA}
  • 21. 1) POR EXTENSO ou TABULAR, enumerando elemento por elemento LETRA MAIÚSCULA = { elementos separados por vírgulas } Ex: Os elementos do conjunto A são divisores positivos de 24. A representação entre chaves pode ser feita: AS 4 REPRESENTAÇÕES A = {1, 2, 3, 4, 6, 8, 12, 24}
  • 22. Destacando uma propriedade comum apenas aos seus elementos. A = { x x tem a propriedade p} Lê-se: A, é o conjunto de todos os elementos x, tal que x tem a propriedade p Ex: A = { x x > 0} A = {1, 2, 3,...}
  • 23. Destacando uma região comum apenas aos seus elementos. Ex:
  • 24. 3) É a representação de um conjunto com auxílio de uma linha fechada e não-entrelaçada. Permite simbolizar graficamente as relações de pertinência entre conjuntos e seus elementos. U
  • 25. Imagine 2 conjuntos A e B. Se todo elemento de A for também elemento de B, então A é subconjunto de B. Exemplo: Dados os conjuntos A = {1, 3, 5} e B = {0, 1, 2, 3, 4, 5} A B U A B U OBS: O Conjunto U é o conjunto Universo (um conjunto que possui todos os elementos que você deseja). Ex: O conjunto dos Inteiros A não é subconjunto de B A é subconjunto de B
  • 26. ⊂ Está Contido (é subconjunto de) ⊄ Não Está Contido ( não é subconjunto de) ⊃ B Contém A ⊃ A Não Contém B Inclusão é a característica associada a um conjunto que faz parte de um conjunto (A = { } B= { }) EXEMPLOS: Dados os conjuntos A = {1, 3, 5} e B = {0, 1, 2, 3, 4, 5}, temos {1, 3, 5}  {0, 1, 2, 3, 4, 5} ou A  B. A B U
  • 27.  O Conjunto Vazio C={ } ou Ø é subconjunto de todo conjunto; A ⊂ A , isto é, todo conjunto é sempre subconjunto dele mesmo;  Se A ⊂ B e B ⊂ A, então A = B;  Se A ⊂ B e B ⊂ C, então A ⊂ C.
  • 28. O conjunto de todos os subconjuntos de um conjunto dado A é chamado de CONJUNTO DE PARTES; Se A é o conjunto de três elementos {x, y, z} a lista completa de subconjuntos de A é: { } (o conjunto vazio); {x}; {y}; {z}; {x, y}; {x, z}; {y, z}; {x, y, z}; e portanto o conjunto de partes de A é o conjunto de 8 elementos: P(A) = {{ }, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}. Fórmula: P(A)= é o conjunto das partes de A P(A) = 𝟐 𝒏 (𝑨) , onde n(A) = é o nº de elementos de A
  • 29. UNIÃO INTERSECÇÃO DIFERENÇA COMPLEMENTAR DIFERENÇA SIMÉTRICA
  • 30. OPERAÇÃO CONECTIVO ESTRUTURA LÓGICA EXEMPLO NEGAÇÃO não (~) não p A bicicleta NÃO é azul. CONJUNÇÃO e (^) p e q Vou a praia E cinema. Vou ganhar bicicleta E videogame DISJUNÇÃO INCLUSIVA ou (v) p ou q Vai me dar uma calça OU uma camisa Vai me dar o documento carimbado OU assinado DISJUNÇÃO EXCLUSIVA ou ... ou (v) ou p ou q Ou irei jogar basquete ou irei à casa de João CONDICIONAL (implicação) se... então (⇒) Se p então q Se nasci em Salvador , então sou Baiano. Se sou inteligente, então passarei de série. BICONDICIONAL (equivalência) se e somente se (⇔) p se e somente se q 4 é maior que 2 se e somente se 2 for menor que 4 .
  • 31. 1)UNIÃO DE CONJUNTOS: O conjunto união de A em B é formado pelos elementos que pertencem ou a A, ou a B ou a ambos. Exemplo: Dados os conjuntos A = {-3, -2, -1, 0} e B = {-1, 0, 1}, temos: A  B = {-3, -2, -1, 0, 1} A  B = {x  x  A ou x  B}
  • 32. Exemplo Dados os conjuntos A = {1, 2, 3, 4, 5, 6, 7} e B = {2, 4, 6, 8, 10}, calcular A  B : Resolução A  B = {1, 2, 3, 4, 5, 6, 7, 8, 10} Graficamente, teremos
  • 33. Sejam A, B e C conjuntos. Então são válidas as seguintes propriedades:  A ∪ B = B ∪ A (Comutatividade) ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (Associatividade) A ∪ A = A A ∪ ∅ = A (elemento neutro) A ∪ U = U
  • 34. 1)INTERSECÇÃO DE CONJUNTOS: O conjunto intersecção de A com B é formado pelos elementos comuns a A e a B Exemplo: Dados os conjuntos A = {-3, -2, -1, 0} e B = {-1, 0, 1}, temos: A  B = {-1, 0} A  B = {x  x  A e x  B}
  • 35. OBS: A∩B = ∅ , são denominados conjuntos disjuntos. Exemplos a) Sendo A = {2, 3, 5, 6, 8} e B = {3, 5, 8, 9} determinar A ∩ B : Resolução: A ∩ B = {3, 5, 8}, apenas os elementos comuns a A e B.
  • 36. Sejam A, B e C conjuntos. Então são válidas as seguintes propriedades: A ∩ B = B ∩ A (Comutatividade) ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (Associatividade) A ∩ A = A A ∩ ∅ = ∅ A ∩ U = A (elemento neutro)
  • 37. Propriedades Comuns à União e à Interseção Sejam A, B e C conjuntos. Então são válidas as seguintes propriedades: A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ C = ( A ∩ C ) ∪ ( B ∩ C )
  • 38. Propriedades Comuns à União e à Interseção Sejam A, B e C conjuntos. Então são válidas as seguintes propriedades: A ∩ (B ∪ C) = ( A ∩ B ) ∪ ( A ∩ C )
  • 39. Propriedades Comuns à União e à Interseção Sejam A, B e C conjuntos. Então são válidas as seguintes propriedades: ( A ∪ B ) ∩ A = A ∩ ( B ∪ A) = A
  • 40. O número de elementos da união de : 2 conjuntos A e B será: n(A∪B) = n(A) + n(B) - n(A∩B) n(A∪B) = 4 + 4 – 2 = 6
  • 41. O número de elementos da união de : 3 conjuntos A, B e C será: n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A∩B) - n(A∩C) - n(B∩C) + n(A∩B∩C)
  • 42. 1)DIFERENÇA DE CONJUNTOS: O conjunto diferença de A e B é formado por elementos de A que não pertencem a B. Exemplo: Dados os conjuntos A = {-4, -3, -2, -1, 0} e B = {-2, -1, 0, 1}, temos: A – B = {-4, -3} A – B = {x  x  A e x  B}
  • 43. A – B = {20, 20, 25}
  • 44. 4) COMPLEMENTAR DE CONJUNTOS: O conjunto complementar de A em relação a B é dado pelos elementos que faltam ao conjunto B para que ele fique igual ao conjunto A. C 𝑨 𝑩 ou CAB =Lê-se Complementar de A em relação a B. Exemplo: Dados os conjuntos A = {-4, -3, -2, -1, 0} e B = {-2, -1, 0}, temos: CA B = A – B = {-4, -3} CA B =A – B , com B ⊂ A C 𝑨 𝑩 = {x | x ∈ A e x ∉ B}
  • 45.
  • 46.
  • 47. 5) DIFERENÇA SIMÉTRICA: a diferença simétrica entre os conjuntos A e B, é o conjunto dos elementos que pertencem a A e não pertencem a B ou, os elementos que pertencem a B e não pertencem A. Indicaremos a diferença simétrica entre A e b por: A ∆ B . Exemplo: Sejam A = { 1, 2, 3 } e B = { 2, 3, 4 }. Então A ∆ B = { 1 } ∪ { 4 } A ∆ B {x | x ∈ A - B ou x ∈ B - A} = (A - B) ∪ (B - A)
  • 48. UNIÃO INTERSECÇÃO DIFERENÇA COMPLEMENTAR DIFERENÇA SIMÉTRICA