SlideShare a Scribd company logo
1 of 76
Download to read offline
2 Mechanical Equilibrium
An object in mechanical
equilibrium is stable, without
changes in motion.
2 Mechanical Equilibrium
Things that are in balance with one
another illustrate equilibrium.
Things in mechanical equilibrium are
stable, without changes of motion.
The rocks are in mechanical equilibrium.
An unbalanced external force would be
needed to change their resting state.
2 Mechanical Equilibrium
A force is needed to change an object’s
state of motion.
2.1 Force
2 Mechanical Equilibrium
Net Force
A force is a push or a pull.
A force of some kind is always required to change the
state of motion of an object.
The combination of all forces acting on an object is
called the net force. The net force on an object
changes its motion.
The scientific unit of force is the newton, abbreviated N.
2.1 Force
2 Mechanical Equilibrium
Net Force
The net force depends on
the magnitudes and
directions of the applied
forces.
2.1 Force
2 Mechanical Equilibrium
Net Force
The net force depends on
the magnitudes and
directions of the applied
forces.
2.1 Force
2 Mechanical Equilibrium
Net Force
The net force depends on
the magnitudes and
directions of the applied
forces.
2.1 Force
2 Mechanical Equilibrium
Net Force
The net force depends on
the magnitudes and
directions of the applied
forces.
2.1 Force
2 Mechanical Equilibrium
Net Force
The net force depends on
the magnitudes and
directions of the applied
forces.
2.1 Force
2 Mechanical Equilibrium
Net Force
The net force depends on
the magnitudes and
directions of the applied
forces.
2.1 Force
2 Mechanical Equilibrium
Net Force
When the girl holds the
rock with as much force
upward as gravity pulls
downward, the net force
on the rock is zero.
2.1 Force
2 Mechanical Equilibrium
Tension and Weight
A stretched spring is under a “stretching force”
called tension.
Pounds and newtons are units of weight, which
are units of force.
2.1 Force
2 Mechanical Equilibrium
Tension and Weight
The upward tension in the
string has the same magnitude
as the weight of the bag, so the
net force on the bag is zero.
The bag of sugar is attracted to
Earth with a gravitational force
of 2 pounds or 9 newtons.
2.1 Force
2 Mechanical Equilibrium
Tension and Weight
The upward tension in the
string has the same magnitude
as the weight of the bag, so the
net force on the bag is zero.
The bag of sugar is attracted to
Earth with a gravitational force
of 2 pounds or 9 newtons.
2.1 Force
2 Mechanical Equilibrium
Tension and Weight
There are two forces acting on the bag of sugar:
• tension force acting upward
• weight acting downward
The two forces on the bag are equal and opposite. The
net force on the bag is zero, so it remains at rest.
2.1 Force
2 Mechanical Equilibrium
Force Vectors
A vector is an arrow that represents the magnitude and
direction of a quantity.
A vector quantity needs both magnitude and direction for a
complete description. Force is an example of a vector quantity.
A scalar quantity can be described by magnitude only and
has no direction. Time, area, and volume are scalar quantities.
2.1 Force
2 Mechanical Equilibrium
Force Vectors
This vector represents a force of 60 N to the right.
2.1 Force
2 Mechanical Equilibrium
Force Vectors
2.1 Force
2 Mechanical Equilibrium
How can you change an object’s state
of motion?
2.1 Force
2 Mechanical Equilibrium
You can express the equilibrium rule
mathematically as ΣF = 0.
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
Mechanical equilibrium is a state wherein no physical
changes occur.
Whenever the net force on an object is zero, the object
is in mechanical equilibrium—this is known as the
equilibrium rule.
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
• The Σ symbol stands for “the sum of.”
• F stands for “forces.”
For a suspended object at rest, the forces acting upward on
the object must be balanced by other forces acting downward.
The vector sum equals zero.
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
The sum of the upward vectors equals the sum of the
downward vectors. ΣF = 0, and the scaffold is in equilibrium.
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
The sum of the upward vectors equals the sum of the
downward vectors. ΣF = 0, and the scaffold is in equilibrium.
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
The sum of the upward vectors equals the sum of the
downward vectors. ΣF = 0, and the scaffold is in equilibrium.
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
The sum of the upward vectors equals the sum of the
downward vectors. ΣF = 0, and the scaffold is in equilibrium.
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
think!
If the gymnast hangs with her weight evenly
divided between the two rings, how would scale
readings in both supporting ropes compare with
her weight? Suppose she hangs with slightly
more of her weight supported by the left ring.
How would a scale on the right read?
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
think!
If the gymnast hangs with her weight evenly
divided between the two rings, how would scale
readings in both supporting ropes compare with
her weight? Suppose she hangs with slightly
more of her weight supported by the left ring.
How would a scale on the right read?
Answer: In the first case, the reading on each
scale will be half her weight. In the second case,
when more of her weight is supported by the left
ring, the reading on the right reduces to less
than half her weight. The sum of the scale
readings always equals her weight.
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
How can you express the equilibrium
rule mathematically?
2.2 Mechanical Equilibrium
2 Mechanical Equilibrium
For an object at rest on a horizontal surface, the
support force must equal the object’s weight.
2.3 Support Force
2 Mechanical Equilibrium
What forces act on a book lying at rest on a table?
• One is the force due to gravity—the weight of the book.
• There must be another force acting on it to produce a net
force of zero—an upward force opposite to the force of
gravity.
The upward force that balances the weight of an object on a
surface is called the support force.
A support force is often called the normal force.
2.3 Support Force
2 Mechanical Equilibrium
The table pushes up on
the book with as much
force as the downward
weight of the book.
2.3 Support Force
2 Mechanical Equilibrium
The table supports the book with a support force—
the upward force that balances the weight of an object
on a surface.
A support force is often called the normal force.
2.3 Support Force
2 Mechanical Equilibrium
• The upward support force is positive and the downward
weight is negative.
• The two forces add mathematically to zero.
• Another way to say the net force on the book is zero is
ΣF = 0.
2.3 Support Force
The book lying on the table compresses atoms in the table and
they squeeze upward on the book. The compressed atoms
produce the support force.
2 Mechanical Equilibrium
The upward support
force is as much as the
downward pull of
gravity.
2.3 Support Force
2 Mechanical Equilibrium
The upward support
force is as much as the
downward pull of
gravity.
2.3 Support Force
2 Mechanical Equilibrium
think!
What is the net force on a bathroom scale when a 110-pound
person stands on it?
2.3 Support Force
2 Mechanical Equilibrium
think!
What is the net force on a bathroom scale when a 110-pound
person stands on it?
Answer: Zero–the scale is at rest. The scale reads the
support force, not the net force.
2.3 Support Force
2 Mechanical Equilibrium
think!
Suppose you stand on two bathroom scales with your weight
evenly distributed between the two scales. What is the reading
on each of the scales? What happens when you stand with
more of your weight on one foot than the other?
2.3 Support Force
2 Mechanical Equilibrium
think!
Suppose you stand on two bathroom scales with your weight
evenly distributed between the two scales. What is the reading
on each of the scales? What happens when you stand with
more of your weight on one foot than the other?
Answer: In the first case, the reading on each scale is half
your weight. In the second case, if you lean more on one
scale than the other, more than half your weight will be read
on that scale but less than half on the other. The total support
force adds up to your weight.
2.3 Support Force
2 Mechanical Equilibrium
For an object at rest on a horizontal surface,
what is the support force equal to?
2.3 Support Force
2 Mechanical Equilibrium
Objects at rest are said to be in static equilibrium;
objects moving at constant speed in a straight-line
path are said to be in dynamic equilibrium.
2.4 Equilibrium for Moving Objects
2 Mechanical Equilibrium
The state of rest is only one form of equilibrium.
An object moving at constant speed in a straight-line path is
also in a state of equilibrium. Once in motion, if there is no net
force to change the state of motion, it is in equilibrium.
2.4 Equilibrium for Moving Objects
2 Mechanical Equilibrium
An object under the influence of only one force cannot
be in equilibrium.
Only when there is no force at all, or when two or more
forces combine to zero, can an object be in equilibrium.
2.4 Equilibrium for Moving Objects
2 Mechanical Equilibrium
When the push on the
desk is the same as the
force of friction between
the desk and the floor,
the net force is zero
and the desk slides at
an unchanging speed.
2.4 Equilibrium for Moving Objects
2 Mechanical Equilibrium
If the desk moves steadily at constant speed, without change
in its motion, it is in equilibrium.
• Friction is a contact force between objects that slide or
tend to slide against each other.
• In this case, ΣF = 0 means that the force of friction is
equal in magnitude and opposite in direction to the
pushing force.
2.4 Equilibrium for Moving Objects
2 Mechanical Equilibrium
think!
An airplane flies horizontally at constant speed in a straight-
line direction. Its state of motion is unchanging. In other
words, it is in equilibrium. Two horizontal forces act on the
plane. One is the thrust of the propeller that pulls it forward.
The other is the force of air resistance (air friction) that acts in
the opposite direction. Which force is greater?
2.4 Equilibrium for Moving Objects
2 Mechanical Equilibrium
think!
An airplane flies horizontally at constant speed in a straight-
line direction. Its state of motion is unchanging. In other
words, it is in equilibrium. Two horizontal forces act on the
plane. One is the thrust of the propeller that pulls it forward.
The other is the force of air resistance (air friction) that acts in
the opposite direction. Which force is greater?
Answer: Neither, for both forces have the same strength. Call
the thrust positive. Then the air resistance is negative. Since
the plane is in equilibrium, the two forces combine to equal
zero.
2.4 Equilibrium for Moving Objects
2 Mechanical Equilibrium
How are static and dynamic
equilibrium different?
2.4 Equilibrium for Moving Objects
2 Mechanical Equilibrium
To find the resultant of two vectors, construct a
parallelogram wherein the two vectors are
adjacent sides. The diagonal of the
parallelogram shows the resultant.
2.5 Vectors
2 Mechanical Equilibrium
The sum of two or more vectors is called their resultant.
Combining vectors is quite simple when they are parallel:
• If they are in the same direction, they add.
• If they are in opposite directions, they subtract.
2.5 Vectors
2 Mechanical Equilibrium
a. The tension in the rope
is 300 N, equal to
Nellie’s weight.
2.5 Vectors
2 Mechanical Equilibrium
a. The tension in the rope
is 300 N, equal to
Nellie’s weight.
b. The tension in each rope
is now 150 N, half of
Nellie’s weight. In each
case, ΣF = 0.
2.5 Vectors
2 Mechanical Equilibrium
The Parallelogram Rule
To find the resultant of nonparallel vectors, we use the
parallelogram rule.
Consider two vectors at right angles to each other, as shown
below. The constructed parallelogram in this special case is a
rectangle. The diagonal is the resultant R.
2.5 Vectors
2 Mechanical Equilibrium
The Parallelogram Rule
In the special case of two perpendicular vectors that are equal
in magnitude, the parallelogram is a square.
The resultant is times one of the vectors.
For example, the resultant of two equal vectors of magnitude
100 acting at a right angle to each other is 141.4.
2.5 Vectors
2 Mechanical Equilibrium
Applying the Parallelogram Rule
When Nellie is suspended at
rest from the two non-vertical
ropes, is the rope tension
greater or less than the
tension in two vertical ropes?
You need to use the
parallelogram rule to
determine the tension.
2.5 Vectors
2 Mechanical Equilibrium
Notice how the tension vectors form a parallelogram in which
the resultant R is vertical.
Applying the Parallelogram Rule
2.5 Vectors
2 Mechanical Equilibrium
Nellie’s weight is shown by the downward vertical vector.
An equal and opposite vector is needed for equilibrium, shown by the dashed
vector. Note that the dashed vector is the diagonal of the parallelogram defined by
the dotted lines.
Using the parallelogram rule, we find that the tension in each rope is more than half
her weight.
Applying the Parallelogram Rule
2.5 Vectors
2 Mechanical Equilibrium
As the angle between the ropes increases, tension increases so that the
resultant (dashed-line vector) remains at 300 N upward, which is required
to support 300-N Nellie.
Applying the Parallelogram Rule
2.5 Vectors
2 Mechanical Equilibrium
When the ropes supporting Nellie are at different angles to the vertical, the
tensions in the two ropes are unequal.
By the parallelogram rule, we see that the right rope bears most of the load
and has the greater tension.
Applying the Parallelogram Rule
2.5 Vectors
2 Mechanical Equilibrium
You can safely hang from a clothesline hanging vertically, but
you will break the clothesline if it is strung horizontally.
Applying the Parallelogram Rule
2.5 Vectors
2 Mechanical Equilibrium
think!
Two sets of swings
are shown at right.
If the children on the
swings are of equal
weights, the ropes of
which swing are more likely to break?
2.5 Vectors
2 Mechanical Equilibrium
think!
Two sets of swings
are shown at right.
If the children on the
swings are of equal
weights, the ropes of
which swing are more likely to break?
Answer: The tension is greater in the ropes hanging at an
angle. The angled ropes are more likely to break than the
vertical ropes.
2.5 Vectors
2 Mechanical Equilibrium
think!
Consider what would happen if you suspended a 10-N object
midway along a very tight, horizontally stretched guitar string.
Is it possible for the string to remain horizontal without a slight
sag at the point of suspension?
2.5 Vectors
2 Mechanical Equilibrium
think!
Consider what would happen if you suspended a 10-N object
midway along a very tight, horizontally stretched guitar string.
Is it possible for the string to remain horizontal without a slight
sag at the point of suspension?
Answer: No way! If the 10-N load is to hang in equilibrium,
there must be a supporting 10-N upward resultant. The
tension in each half of the guitar string must form a
parallelogram with a vertically upward 10-N resultant.
2.5 Vectors
2 Mechanical Equilibrium
How can you find the resultant of
two vectors?
2.5 Vectors
2 Mechanical Equilibrium
1. When you hold a rock in your hand at rest,
the forces on the rock
a. are mainly due to gravity.
b. are mainly due to the upward push of
your hand.
c. cancel to zero.
d. don’t act unless the rock is dropped.
Assessment Questions
2 Mechanical Equilibrium
1. When you hold a rock in your hand at rest,
the forces on the rock
a. are mainly due to gravity.
b. are mainly due to the upward push of
your hand.
c. cancel to zero.
d. don’t act unless the rock is dropped.
Answer: C
Assessment Questions
2 Mechanical Equilibrium
2. Burl and Paul have combined weights of 1300 N. The tensions in
the supporting ropes that support the scaffold they stand on add to
1700 N. The weight of the scaffold itself must be
a. 400 N.
b. 500 N.
c. 600 N.
d. 3000 N.
Assessment Questions
2 Mechanical Equilibrium
2. Burl and Paul have combined weights of 1300 N. The tensions in
the supporting ropes that support the scaffold they stand on add to
1700 N. The weight of the scaffold itself must be
a. 400 N.
b. 500 N.
c. 600 N.
d. 3000 N.
Answer: A
Assessment Questions
2 Mechanical Equilibrium
3. Harry gives his little sister a piggyback ride. Harry weighs 400 N and
his little sister weighs 200 N. The support force supplied by the floor
must be
a. 200 N.
b. 400 N.
c. 600 N.
d. more than 600 N.
Assessment Questions
2 Mechanical Equilibrium
3. Harry gives his little sister a piggyback ride. Harry weighs 400 N and
his little sister weighs 200 N. The support force supplied by the floor
must be
a. 200 N.
b. 400 N.
c. 600 N.
d. more than 600 N.
Answer: C
Assessment Questions
2 Mechanical Equilibrium
4. When a desk is horizontally pushed across a floor at a steady speed
in a straight-line direction, the amount of friction acting on the desk is
a. less than the pushing force.
b. equal to the pushing force.
c. greater than the pushing force.
d. dependent on the speed of the sliding crate.
Assessment Questions
2 Mechanical Equilibrium
4. When a desk is horizontally pushed across a floor at a steady speed
in a straight-line direction, the amount of friction acting on the desk is
a. less than the pushing force.
b. equal to the pushing force.
c. greater than the pushing force.
d. dependent on the speed of the sliding crate.
Answer: B
Assessment Questions
2 Mechanical Equilibrium
5. When Nellie hangs at rest by a pair of ropes, the tensions in the
ropes
a. always equal her weight.
b. always equal half her weight.
c. depend on the angle of the ropes to the vertical.
d. are twice her weight.
Assessment Questions
2 Mechanical Equilibrium
5. When Nellie hangs at rest by a pair of ropes, the tensions in the
ropes
a. always equal her weight.
b. always equal half her weight.
c. depend on the angle of the ropes to the vertical.
d. are twice her weight.
Answer: C
Assessment Questions

More Related Content

Similar to ch02-171120081130.pdf

Similar to ch02-171120081130.pdf (20)

Physics: work, force and energy
Physics: work, force and energyPhysics: work, force and energy
Physics: work, force and energy
 
KMCH Basic Biomechanics.ppt
KMCH Basic Biomechanics.pptKMCH Basic Biomechanics.ppt
KMCH Basic Biomechanics.ppt
 
Engineering Mechanics - Intro to Statics.pdf
Engineering Mechanics - Intro to Statics.pdfEngineering Mechanics - Intro to Statics.pdf
Engineering Mechanics - Intro to Statics.pdf
 
Engineering mechanics
Engineering mechanics Engineering mechanics
Engineering mechanics
 
Ctm 154[1]
Ctm 154[1]Ctm 154[1]
Ctm 154[1]
 
Biomechanics newtons laws and application
Biomechanics newtons laws and applicationBiomechanics newtons laws and application
Biomechanics newtons laws and application
 
Newtons_Laws.ppt
Newtons_Laws.pptNewtons_Laws.ppt
Newtons_Laws.ppt
 
Newtons_Laws.ppt
Newtons_Laws.pptNewtons_Laws.ppt
Newtons_Laws.ppt
 
Newtons_Laws.ppt
Newtons_Laws.pptNewtons_Laws.ppt
Newtons_Laws.ppt
 
Newtons_Laws (1).ppt
Newtons_Laws (1).pptNewtons_Laws (1).ppt
Newtons_Laws (1).ppt
 
Physics 3
Physics 3Physics 3
Physics 3
 
Force motion-magnetism
Force motion-magnetismForce motion-magnetism
Force motion-magnetism
 
Science 8 module 1 day 2 balance unbalanced force
Science 8 module 1 day 2   balance unbalanced forceScience 8 module 1 day 2   balance unbalanced force
Science 8 module 1 day 2 balance unbalanced force
 
two_marks1.pdf
two_marks1.pdftwo_marks1.pdf
two_marks1.pdf
 
Forces notes power point
Forces notes power pointForces notes power point
Forces notes power point
 
Newtons_Laws.ppt
Newtons_Laws.pptNewtons_Laws.ppt
Newtons_Laws.ppt
 
Chapter 2 Physical Science
Chapter 2 Physical ScienceChapter 2 Physical Science
Chapter 2 Physical Science
 
Force
Force Force
Force
 
12475602.ppt
12475602.ppt12475602.ppt
12475602.ppt
 
12475602.ppt
12475602.ppt12475602.ppt
12475602.ppt
 

Recently uploaded

Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAroojKhan71
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxolyaivanovalion
 
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...amitlee9823
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxolyaivanovalion
 
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxBPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxMohammedJunaid861692
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Delhi Call girls
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...amitlee9823
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxJohnnyPlasten
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxolyaivanovalion
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Delhi Call girls
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFxolyaivanovalion
 

Recently uploaded (20)

Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptx
 
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFx
 
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxBPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get CytotecAbortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in  KishangarhDelhi 99530 vip 56974 Genuine Escort Service Call Girls in  Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptx
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptx
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFx
 

ch02-171120081130.pdf

  • 1. 2 Mechanical Equilibrium An object in mechanical equilibrium is stable, without changes in motion.
  • 2. 2 Mechanical Equilibrium Things that are in balance with one another illustrate equilibrium. Things in mechanical equilibrium are stable, without changes of motion. The rocks are in mechanical equilibrium. An unbalanced external force would be needed to change their resting state.
  • 3. 2 Mechanical Equilibrium A force is needed to change an object’s state of motion. 2.1 Force
  • 4. 2 Mechanical Equilibrium Net Force A force is a push or a pull. A force of some kind is always required to change the state of motion of an object. The combination of all forces acting on an object is called the net force. The net force on an object changes its motion. The scientific unit of force is the newton, abbreviated N. 2.1 Force
  • 5. 2 Mechanical Equilibrium Net Force The net force depends on the magnitudes and directions of the applied forces. 2.1 Force
  • 6. 2 Mechanical Equilibrium Net Force The net force depends on the magnitudes and directions of the applied forces. 2.1 Force
  • 7. 2 Mechanical Equilibrium Net Force The net force depends on the magnitudes and directions of the applied forces. 2.1 Force
  • 8. 2 Mechanical Equilibrium Net Force The net force depends on the magnitudes and directions of the applied forces. 2.1 Force
  • 9. 2 Mechanical Equilibrium Net Force The net force depends on the magnitudes and directions of the applied forces. 2.1 Force
  • 10. 2 Mechanical Equilibrium Net Force The net force depends on the magnitudes and directions of the applied forces. 2.1 Force
  • 11. 2 Mechanical Equilibrium Net Force When the girl holds the rock with as much force upward as gravity pulls downward, the net force on the rock is zero. 2.1 Force
  • 12. 2 Mechanical Equilibrium Tension and Weight A stretched spring is under a “stretching force” called tension. Pounds and newtons are units of weight, which are units of force. 2.1 Force
  • 13. 2 Mechanical Equilibrium Tension and Weight The upward tension in the string has the same magnitude as the weight of the bag, so the net force on the bag is zero. The bag of sugar is attracted to Earth with a gravitational force of 2 pounds or 9 newtons. 2.1 Force
  • 14. 2 Mechanical Equilibrium Tension and Weight The upward tension in the string has the same magnitude as the weight of the bag, so the net force on the bag is zero. The bag of sugar is attracted to Earth with a gravitational force of 2 pounds or 9 newtons. 2.1 Force
  • 15. 2 Mechanical Equilibrium Tension and Weight There are two forces acting on the bag of sugar: • tension force acting upward • weight acting downward The two forces on the bag are equal and opposite. The net force on the bag is zero, so it remains at rest. 2.1 Force
  • 16. 2 Mechanical Equilibrium Force Vectors A vector is an arrow that represents the magnitude and direction of a quantity. A vector quantity needs both magnitude and direction for a complete description. Force is an example of a vector quantity. A scalar quantity can be described by magnitude only and has no direction. Time, area, and volume are scalar quantities. 2.1 Force
  • 17. 2 Mechanical Equilibrium Force Vectors This vector represents a force of 60 N to the right. 2.1 Force
  • 18. 2 Mechanical Equilibrium Force Vectors 2.1 Force
  • 19. 2 Mechanical Equilibrium How can you change an object’s state of motion? 2.1 Force
  • 20. 2 Mechanical Equilibrium You can express the equilibrium rule mathematically as ΣF = 0. 2.2 Mechanical Equilibrium
  • 21. 2 Mechanical Equilibrium Mechanical equilibrium is a state wherein no physical changes occur. Whenever the net force on an object is zero, the object is in mechanical equilibrium—this is known as the equilibrium rule. 2.2 Mechanical Equilibrium
  • 22. 2 Mechanical Equilibrium • The Σ symbol stands for “the sum of.” • F stands for “forces.” For a suspended object at rest, the forces acting upward on the object must be balanced by other forces acting downward. The vector sum equals zero. 2.2 Mechanical Equilibrium
  • 23. 2 Mechanical Equilibrium The sum of the upward vectors equals the sum of the downward vectors. ΣF = 0, and the scaffold is in equilibrium. 2.2 Mechanical Equilibrium
  • 24. 2 Mechanical Equilibrium The sum of the upward vectors equals the sum of the downward vectors. ΣF = 0, and the scaffold is in equilibrium. 2.2 Mechanical Equilibrium
  • 25. 2 Mechanical Equilibrium The sum of the upward vectors equals the sum of the downward vectors. ΣF = 0, and the scaffold is in equilibrium. 2.2 Mechanical Equilibrium
  • 26. 2 Mechanical Equilibrium The sum of the upward vectors equals the sum of the downward vectors. ΣF = 0, and the scaffold is in equilibrium. 2.2 Mechanical Equilibrium
  • 27. 2 Mechanical Equilibrium think! If the gymnast hangs with her weight evenly divided between the two rings, how would scale readings in both supporting ropes compare with her weight? Suppose she hangs with slightly more of her weight supported by the left ring. How would a scale on the right read? 2.2 Mechanical Equilibrium
  • 28. 2 Mechanical Equilibrium think! If the gymnast hangs with her weight evenly divided between the two rings, how would scale readings in both supporting ropes compare with her weight? Suppose she hangs with slightly more of her weight supported by the left ring. How would a scale on the right read? Answer: In the first case, the reading on each scale will be half her weight. In the second case, when more of her weight is supported by the left ring, the reading on the right reduces to less than half her weight. The sum of the scale readings always equals her weight. 2.2 Mechanical Equilibrium
  • 29. 2 Mechanical Equilibrium How can you express the equilibrium rule mathematically? 2.2 Mechanical Equilibrium
  • 30. 2 Mechanical Equilibrium For an object at rest on a horizontal surface, the support force must equal the object’s weight. 2.3 Support Force
  • 31. 2 Mechanical Equilibrium What forces act on a book lying at rest on a table? • One is the force due to gravity—the weight of the book. • There must be another force acting on it to produce a net force of zero—an upward force opposite to the force of gravity. The upward force that balances the weight of an object on a surface is called the support force. A support force is often called the normal force. 2.3 Support Force
  • 32. 2 Mechanical Equilibrium The table pushes up on the book with as much force as the downward weight of the book. 2.3 Support Force
  • 33. 2 Mechanical Equilibrium The table supports the book with a support force— the upward force that balances the weight of an object on a surface. A support force is often called the normal force. 2.3 Support Force
  • 34. 2 Mechanical Equilibrium • The upward support force is positive and the downward weight is negative. • The two forces add mathematically to zero. • Another way to say the net force on the book is zero is ΣF = 0. 2.3 Support Force The book lying on the table compresses atoms in the table and they squeeze upward on the book. The compressed atoms produce the support force.
  • 35. 2 Mechanical Equilibrium The upward support force is as much as the downward pull of gravity. 2.3 Support Force
  • 36. 2 Mechanical Equilibrium The upward support force is as much as the downward pull of gravity. 2.3 Support Force
  • 37. 2 Mechanical Equilibrium think! What is the net force on a bathroom scale when a 110-pound person stands on it? 2.3 Support Force
  • 38. 2 Mechanical Equilibrium think! What is the net force on a bathroom scale when a 110-pound person stands on it? Answer: Zero–the scale is at rest. The scale reads the support force, not the net force. 2.3 Support Force
  • 39. 2 Mechanical Equilibrium think! Suppose you stand on two bathroom scales with your weight evenly distributed between the two scales. What is the reading on each of the scales? What happens when you stand with more of your weight on one foot than the other? 2.3 Support Force
  • 40. 2 Mechanical Equilibrium think! Suppose you stand on two bathroom scales with your weight evenly distributed between the two scales. What is the reading on each of the scales? What happens when you stand with more of your weight on one foot than the other? Answer: In the first case, the reading on each scale is half your weight. In the second case, if you lean more on one scale than the other, more than half your weight will be read on that scale but less than half on the other. The total support force adds up to your weight. 2.3 Support Force
  • 41. 2 Mechanical Equilibrium For an object at rest on a horizontal surface, what is the support force equal to? 2.3 Support Force
  • 42. 2 Mechanical Equilibrium Objects at rest are said to be in static equilibrium; objects moving at constant speed in a straight-line path are said to be in dynamic equilibrium. 2.4 Equilibrium for Moving Objects
  • 43. 2 Mechanical Equilibrium The state of rest is only one form of equilibrium. An object moving at constant speed in a straight-line path is also in a state of equilibrium. Once in motion, if there is no net force to change the state of motion, it is in equilibrium. 2.4 Equilibrium for Moving Objects
  • 44. 2 Mechanical Equilibrium An object under the influence of only one force cannot be in equilibrium. Only when there is no force at all, or when two or more forces combine to zero, can an object be in equilibrium. 2.4 Equilibrium for Moving Objects
  • 45. 2 Mechanical Equilibrium When the push on the desk is the same as the force of friction between the desk and the floor, the net force is zero and the desk slides at an unchanging speed. 2.4 Equilibrium for Moving Objects
  • 46. 2 Mechanical Equilibrium If the desk moves steadily at constant speed, without change in its motion, it is in equilibrium. • Friction is a contact force between objects that slide or tend to slide against each other. • In this case, ΣF = 0 means that the force of friction is equal in magnitude and opposite in direction to the pushing force. 2.4 Equilibrium for Moving Objects
  • 47. 2 Mechanical Equilibrium think! An airplane flies horizontally at constant speed in a straight- line direction. Its state of motion is unchanging. In other words, it is in equilibrium. Two horizontal forces act on the plane. One is the thrust of the propeller that pulls it forward. The other is the force of air resistance (air friction) that acts in the opposite direction. Which force is greater? 2.4 Equilibrium for Moving Objects
  • 48. 2 Mechanical Equilibrium think! An airplane flies horizontally at constant speed in a straight- line direction. Its state of motion is unchanging. In other words, it is in equilibrium. Two horizontal forces act on the plane. One is the thrust of the propeller that pulls it forward. The other is the force of air resistance (air friction) that acts in the opposite direction. Which force is greater? Answer: Neither, for both forces have the same strength. Call the thrust positive. Then the air resistance is negative. Since the plane is in equilibrium, the two forces combine to equal zero. 2.4 Equilibrium for Moving Objects
  • 49. 2 Mechanical Equilibrium How are static and dynamic equilibrium different? 2.4 Equilibrium for Moving Objects
  • 50. 2 Mechanical Equilibrium To find the resultant of two vectors, construct a parallelogram wherein the two vectors are adjacent sides. The diagonal of the parallelogram shows the resultant. 2.5 Vectors
  • 51. 2 Mechanical Equilibrium The sum of two or more vectors is called their resultant. Combining vectors is quite simple when they are parallel: • If they are in the same direction, they add. • If they are in opposite directions, they subtract. 2.5 Vectors
  • 52. 2 Mechanical Equilibrium a. The tension in the rope is 300 N, equal to Nellie’s weight. 2.5 Vectors
  • 53. 2 Mechanical Equilibrium a. The tension in the rope is 300 N, equal to Nellie’s weight. b. The tension in each rope is now 150 N, half of Nellie’s weight. In each case, ΣF = 0. 2.5 Vectors
  • 54. 2 Mechanical Equilibrium The Parallelogram Rule To find the resultant of nonparallel vectors, we use the parallelogram rule. Consider two vectors at right angles to each other, as shown below. The constructed parallelogram in this special case is a rectangle. The diagonal is the resultant R. 2.5 Vectors
  • 55. 2 Mechanical Equilibrium The Parallelogram Rule In the special case of two perpendicular vectors that are equal in magnitude, the parallelogram is a square. The resultant is times one of the vectors. For example, the resultant of two equal vectors of magnitude 100 acting at a right angle to each other is 141.4. 2.5 Vectors
  • 56. 2 Mechanical Equilibrium Applying the Parallelogram Rule When Nellie is suspended at rest from the two non-vertical ropes, is the rope tension greater or less than the tension in two vertical ropes? You need to use the parallelogram rule to determine the tension. 2.5 Vectors
  • 57. 2 Mechanical Equilibrium Notice how the tension vectors form a parallelogram in which the resultant R is vertical. Applying the Parallelogram Rule 2.5 Vectors
  • 58. 2 Mechanical Equilibrium Nellie’s weight is shown by the downward vertical vector. An equal and opposite vector is needed for equilibrium, shown by the dashed vector. Note that the dashed vector is the diagonal of the parallelogram defined by the dotted lines. Using the parallelogram rule, we find that the tension in each rope is more than half her weight. Applying the Parallelogram Rule 2.5 Vectors
  • 59. 2 Mechanical Equilibrium As the angle between the ropes increases, tension increases so that the resultant (dashed-line vector) remains at 300 N upward, which is required to support 300-N Nellie. Applying the Parallelogram Rule 2.5 Vectors
  • 60. 2 Mechanical Equilibrium When the ropes supporting Nellie are at different angles to the vertical, the tensions in the two ropes are unequal. By the parallelogram rule, we see that the right rope bears most of the load and has the greater tension. Applying the Parallelogram Rule 2.5 Vectors
  • 61. 2 Mechanical Equilibrium You can safely hang from a clothesline hanging vertically, but you will break the clothesline if it is strung horizontally. Applying the Parallelogram Rule 2.5 Vectors
  • 62. 2 Mechanical Equilibrium think! Two sets of swings are shown at right. If the children on the swings are of equal weights, the ropes of which swing are more likely to break? 2.5 Vectors
  • 63. 2 Mechanical Equilibrium think! Two sets of swings are shown at right. If the children on the swings are of equal weights, the ropes of which swing are more likely to break? Answer: The tension is greater in the ropes hanging at an angle. The angled ropes are more likely to break than the vertical ropes. 2.5 Vectors
  • 64. 2 Mechanical Equilibrium think! Consider what would happen if you suspended a 10-N object midway along a very tight, horizontally stretched guitar string. Is it possible for the string to remain horizontal without a slight sag at the point of suspension? 2.5 Vectors
  • 65. 2 Mechanical Equilibrium think! Consider what would happen if you suspended a 10-N object midway along a very tight, horizontally stretched guitar string. Is it possible for the string to remain horizontal without a slight sag at the point of suspension? Answer: No way! If the 10-N load is to hang in equilibrium, there must be a supporting 10-N upward resultant. The tension in each half of the guitar string must form a parallelogram with a vertically upward 10-N resultant. 2.5 Vectors
  • 66. 2 Mechanical Equilibrium How can you find the resultant of two vectors? 2.5 Vectors
  • 67. 2 Mechanical Equilibrium 1. When you hold a rock in your hand at rest, the forces on the rock a. are mainly due to gravity. b. are mainly due to the upward push of your hand. c. cancel to zero. d. don’t act unless the rock is dropped. Assessment Questions
  • 68. 2 Mechanical Equilibrium 1. When you hold a rock in your hand at rest, the forces on the rock a. are mainly due to gravity. b. are mainly due to the upward push of your hand. c. cancel to zero. d. don’t act unless the rock is dropped. Answer: C Assessment Questions
  • 69. 2 Mechanical Equilibrium 2. Burl and Paul have combined weights of 1300 N. The tensions in the supporting ropes that support the scaffold they stand on add to 1700 N. The weight of the scaffold itself must be a. 400 N. b. 500 N. c. 600 N. d. 3000 N. Assessment Questions
  • 70. 2 Mechanical Equilibrium 2. Burl and Paul have combined weights of 1300 N. The tensions in the supporting ropes that support the scaffold they stand on add to 1700 N. The weight of the scaffold itself must be a. 400 N. b. 500 N. c. 600 N. d. 3000 N. Answer: A Assessment Questions
  • 71. 2 Mechanical Equilibrium 3. Harry gives his little sister a piggyback ride. Harry weighs 400 N and his little sister weighs 200 N. The support force supplied by the floor must be a. 200 N. b. 400 N. c. 600 N. d. more than 600 N. Assessment Questions
  • 72. 2 Mechanical Equilibrium 3. Harry gives his little sister a piggyback ride. Harry weighs 400 N and his little sister weighs 200 N. The support force supplied by the floor must be a. 200 N. b. 400 N. c. 600 N. d. more than 600 N. Answer: C Assessment Questions
  • 73. 2 Mechanical Equilibrium 4. When a desk is horizontally pushed across a floor at a steady speed in a straight-line direction, the amount of friction acting on the desk is a. less than the pushing force. b. equal to the pushing force. c. greater than the pushing force. d. dependent on the speed of the sliding crate. Assessment Questions
  • 74. 2 Mechanical Equilibrium 4. When a desk is horizontally pushed across a floor at a steady speed in a straight-line direction, the amount of friction acting on the desk is a. less than the pushing force. b. equal to the pushing force. c. greater than the pushing force. d. dependent on the speed of the sliding crate. Answer: B Assessment Questions
  • 75. 2 Mechanical Equilibrium 5. When Nellie hangs at rest by a pair of ropes, the tensions in the ropes a. always equal her weight. b. always equal half her weight. c. depend on the angle of the ropes to the vertical. d. are twice her weight. Assessment Questions
  • 76. 2 Mechanical Equilibrium 5. When Nellie hangs at rest by a pair of ropes, the tensions in the ropes a. always equal her weight. b. always equal half her weight. c. depend on the angle of the ropes to the vertical. d. are twice her weight. Answer: C Assessment Questions