Curso de Matemáticas Tema 4 José Luis Marqués Lledó La división
Tengo 10 manzanas y los tengo que repartir entre dos niños ¿ Cuántos les daré a cada uno ? R:5  manzanas  cada  uno. 5 5
10 bolas 5 bolas 5 bolas
Lo que has visto con las bolas es dividir y se expresa así : 10 2 5 0
10 2 5 0 DIVIDENDO DIVISOR COCIENTE RESTO TÉRMINOS DE LA DIVISIÓN EXACTA
17 2 8 1 DIVIDENDO DIVISOR COCIENTE RESTO TÉRMINOS DE LA DIVISIÓN INEXACTA
Propiedades de la división exacta D= d x C 32  4 0  8  32 = 4 x 8 d = D : C  4 = 32 : 8 C = D : d  8 = 32 : 4
División de una cifra en el divisor Para empezar a dividir, se separa una cifra en el dividendo y si es menor que el divis...
División por varias cifras en el divisor 14257 : 234   Se separan del dividendo tantas cifras como tenga el divisor o una ...
División por varias cifras en el divisor 1 4 2 5 7  2 3 4   0 0 2 1 7  6 0 A continuación se baja la cifra siguiente, en n...
<ul><li>Reglas que siempre se cumplen </li></ul><ul><li>Si multiplicamos el Dividendo y el divisor por un mismo número el ...
Pruebas de la división Prueba tradicional Todas las pruebas se basan en la ya conocida fórmula: D = d  x   c  +  r 4 5 1 2...
<ul><li>Pruebas de la división </li></ul><ul><li>Prueba de los nueves : </li></ul><ul><li>Reglas </li></ul><ul><li>Se tach...
Prueba de los nueves : d D  d x c + r c 4 5 1 2  5 6 0 3 2  8 0 3 2 8 2  x  8  +  5  =  21 ; 2  +  1  =  Como puedes ver e...
¿ Para qué sirve la división ? La división es una operación matemática que sirve para repartir una cantidad en partes igua...
¿ Para qué sirve la división ? A veces , en algunos problemas, no sólo hay que aplicar la división, sino una combinación d...
Gracias Por Su Visita
Upcoming SlideShare
Loading in …5
×

Tema4 001

857 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
857
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
15
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Tema4 001

  1. 1. Curso de Matemáticas Tema 4 José Luis Marqués Lledó La división
  2. 2. Tengo 10 manzanas y los tengo que repartir entre dos niños ¿ Cuántos les daré a cada uno ? R:5 manzanas cada uno. 5 5
  3. 3. 10 bolas 5 bolas 5 bolas
  4. 4. Lo que has visto con las bolas es dividir y se expresa así : 10 2 5 0
  5. 5. 10 2 5 0 DIVIDENDO DIVISOR COCIENTE RESTO TÉRMINOS DE LA DIVISIÓN EXACTA
  6. 6. 17 2 8 1 DIVIDENDO DIVISOR COCIENTE RESTO TÉRMINOS DE LA DIVISIÓN INEXACTA
  7. 7. Propiedades de la división exacta D= d x C 32 4 0 8 32 = 4 x 8 d = D : C 4 = 32 : 8 C = D : d 8 = 32 : 4
  8. 8. División de una cifra en el divisor Para empezar a dividir, se separa una cifra en el dividendo y si es menor que el divisor se separan dos : 17 3 : 3. A continuación se busca un número que multiplicado por 3 , nos dé 17 o un número lo más aproximado posible : 5 x 3 = 15 El resultado se resta de las dos cifras escogidas : 17 - 15 = 2 , y se baja la cifra siguiente el 3 , con lo que se forma el número 23 : 3 y volvemos a hacer lo mismo : buscar un número que multiplicado por 3 , nos dé 23 o lo más próximo : 7 x 3 = 21. Restamos 21 de 23 y nos da 2 de resto final. Con lo que damos por terminada la cuenta.
  9. 9. División por varias cifras en el divisor 14257 : 234 Se separan del dividendo tantas cifras como tenga el divisor o una más para que el número escogido se pueda repartir entre el divisor: en nuestro ejemplo : 1425 y se divide entre 234 . Como no podemos dividir de golpe 1425 entre 234 , se cogen las dos primeras cifras del número 14 25, es decir 14 y se dividen entre la primera cifra del divisor , 2 . Haciendo lo mismo que en la división de una cifra, es decir buscando un número de la tabla del 2 que nos dé 14 , ese número es 7 . Por precaución multiplicamos mentalmente por el número siguiente a 2 , el 3 : 7 x 3 = 21 y comprobamos que nos vamos a llevar 2 y por consiguiente 7 x 2 + 2 = 16 , nos pasamos. Entonces probamos con el número anterior a 7 , es decir a 6 x 2 y ese número sí es el correcto . Multiplicamos 6 por el divisor 234 y vamos restando del número separado : 1425 : 1425 - 1404 , obteniendo así un primer resto parcial de 21 ( Continúa la explicación, pero primero entiende esto )
  10. 10. División por varias cifras en el divisor 1 4 2 5 7 2 3 4 0 0 2 1 7 6 0 A continuación se baja la cifra siguiente, en nuestro ejemplo el 7 , formando así el número 217 . Éste, se intenta dividir entre 234 , pero como en este caso es menor y no se puede, se escribe un 0 ( cero ) en el cociente y se acaba la división porque no hay más cifras para bajar. Si se hubiera podido dividir se procedería como en la primera parte , cogiendo la primera o las dos primeras cifras y repartiéndolas entre 2 ; el número encontrado se multiplicaría por 234 y se restaría del número formado y así sucesivamente hasta terminar. ( Es muy importante que tú lo practiques mucho para poder comprenderlo )
  11. 11. <ul><li>Reglas que siempre se cumplen </li></ul><ul><li>Si multiplicamos el Dividendo y el divisor por un mismo número el cociente no varía , pero el resto queda multiplicado en ese mismo número. </li></ul><ul><li>17 5 x 2 34 10 </li></ul><ul><li>0 2 3 0 4 3 </li></ul><ul><li>El cociente sigue siendo 3 en las dos divisiones, pero el resto ha pasado de 2 a 4 , así que ha quedado multiplicado también por 2 (2x2=4) </li></ul><ul><li>Si en lugar de multiplicar el dividendo y el divisor lo dividimos, el cociente tampoco varía, pero el resto terminaría siendo dividido también por el mismo número. ( Compruébalo en esta división : 76 : 18 ) </li></ul>
  12. 12. Pruebas de la división Prueba tradicional Todas las pruebas se basan en la ya conocida fórmula: D = d x c + r 4 5 1 2 5 6 5 6 0 3 2 8 0 x 8 0 4 4 8 0 + 3 2 D = 4 5 1 2 4 5 1 2 ( La división está bien hecha )
  13. 13. <ul><li>Pruebas de la división </li></ul><ul><li>Prueba de los nueves : </li></ul><ul><li>Reglas </li></ul><ul><li>Se tachan todos los nueves del Dividendo, divisor, cociente y resto. </li></ul><ul><li>Se buscan combinaciones de números que sumen nueve ( 9 ) , también en el Dividendo, divisor, cociente y resto: ( 5 + 4 ) , ( 2 + 3 + 4 ) etc. </li></ul><ul><li>La cifras restantes se suman y cada vez que sobrepasamos el valor nueve , quitamos (restamos) nueve 7 + 5 = 12 , como sobrepasamos el valor 9 , le restamos 9 : 12 - 9 = 3 y seguimos sumando con este 3 . Al final se pone cada valor resultante en los siguientes lugares de este símbolo: ( CONTINUARÁ ) </li></ul>
  14. 14. Prueba de los nueves : d D d x c + r c 4 5 1 2 5 6 0 3 2 8 0 3 2 8 2 x 8 + 5 = 21 ; 2 + 1 = Como puedes ver el número resultante de aplicar la fórmula D= d x c+ r , es 3, igual que el número situado en el Dividendo : 3. Esto indica que la división está bien . Ahora debes practicarlo TÚ 3 3
  15. 15. ¿ Para qué sirve la división ? La división es una operación matemática que sirve para repartir una cantidad en partes iguales. Veamos algunos ejemplos de problemas de dividir : En un tren viajan 1568 pasajeros repartidos en 14 vagones ¿ Cuántos pasajeros viajan en cada vagón ? 1568 : 14 = 112 pasajeros en cada uno En una bodega se almacenan 19968 litros de vino en cubas de 256 litros cada una ¿ Cuántas cubas hay en la bodega ? 19968 : 256 = 78 cubas en total
  16. 16. ¿ Para qué sirve la división ? A veces , en algunos problemas, no sólo hay que aplicar la división, sino una combinación de varias operaciones. Observa este ejemplo y luego practica tú. En tu cuadernillo y en tu libro vienen muchos problemas parecidos a este: Un agricultor recolecta 17540 Kg. de aceitunas al año. Se queda él con 125 Kg., para su uso personal y el resto lo envasa en garrafas de 45 Kg. para su venta posterior. ¿ Cuántas garrafas usará ? 1ª operación : 17540 - 125 = 17415 2ª operación 17415 : 45 = 387 garrafas
  17. 17. Gracias Por Su Visita

×