This document discusses methods for measuring semantic similarity between words. It begins by discussing how traditional lexical similarity measurements do not consider semantics. It then discusses several existing approaches that measure semantic similarity using web search engines and text snippets. These approaches calculate word co-occurrence statistics from page counts and analyze lexical patterns extracted from snippets. Pattern clustering is used to group semantically similar patterns. The approaches are evaluated using datasets and metrics like precision and recall. Finally, the document proposes a new method that combines page count statistics, lexical pattern extraction and clustering, and support vector machines to measure semantic similarity.