SlideShare a Scribd company logo
Эксэрготрансформаторная камера сгорания.
В эксэрготрансформаторной камере сгорания происходит процесс
преобразования значительной части потенциальной энергии топлива, в
кинетическую энергию, которая теоретически может быть преобразована в
работу (эксэргию). Выходное давление торможение может превосходить
давление на входе в камеру.
1
Существующие способы преобразования тепловой энергии в
механическую работу, открытые в 19 веке, достигли совершенства, и
дальнейшее их усовершенствование становится экономически не
оправдано. Существующие тепловые двигатели сложные в ремонте,
дорогостоящие при изготовлении, не надежные в работе и
экономически неэффективные. Эти способы преобразования тепловой
энергии в механическую энергию, естественным образом устарели,
поэтому нуждаются в замене.
В термическом цикле газотурбинных установках значительная часть
полезной работы затрачивается на работу компрессора, нагнетающий
избыточный сжатый воздух в камеру сгорания.
Цель разработки, создания способа, в котором минимизируются затраты
на сжатия воздуха, подаваемого в камеру сгорания.
Рассмотрим проект эксэрготрансформаторной камеры сгорания
топлива.
Предлагаемая эксэрготрансформаторная камера сгорания имеет запальное
устройство, в которое подается насосом одна единица топлива и нагнетается
компрессором одна или несколько весовых частей воздуха, обеспечивающих
устойчивое горение и испарение паров топлива. Пары топлива и продукты
его сгорания выходят из запального устройства с высоким давлением и
поступают в эксэрготрансформатор, где выполняют работу по всасыванию и
сжатию наружного воздуха.
В канале эксэрготрансформатора при сверхзвуковом движении воздуха и
паров топлива происходит сгорания их с выделением большого количества
тепла. Геометрия канала камеры сгорания определяет политропность
процесса горения топлива. Примем, что горение происходит при постоянном
объеме V = Const, что приводит к повышению внутреннего давления
двигающего со сверхзвуковой скоростью потока. Продукты сгорания топлива
из канала поступают в диффузор, где их скоростной напор преобразуется в
давление.
Выполнение этих условий возможно только при безударном способе
сложения потоков газа.
Открыт способ безударного сложения потоков газов и изготовлено
устройство, в котором он реализуется. Данное устройство названо нами
эксэрготрансформатором.
2
В камере сгорания более половины тепла преобразуется в кинетическую
энергию продуктов сгорания, обладающих высокой температурой. Для
доработки остаточного тепла выходящего с диффузора камеры
сгорания необходимы другие устройства, которые будут рассмотрены в
других проектах.
Краткий результат от эксэрготрансформаторной камеры сгорания на
1кг топлива.
В запальное устройство подается 1кг. топлива с теплотой сгорания
Qсг.=42000КДж/кг и 3кг. сжатого воздуха с температурой 498°К и
Р.=0.68МПа.
С диффузора эксэрготрансформатора выходят продукты сгорания топлива
массой 25.66 кг. Параметры давлением Р = 0.9Мпа, температурой
торможения Т= 1948°К и температурой выхода Т =1037°К.
Затраты на работу компрессора: Эк = (498 -288) × 1× 3 = 630КДж.
Эксэргия (работа) на выходе из камеры сгорания:
Эв = (1948 – 1037) × 1× 25,66 = 23375 КДж.
Коэффициент преобразования эксэргии: k = 23375 : 630 = 31,1.
Более подробное описание процесса приведено в расчете термического цикла
камеры сгорания.
3
4
Расчет первой ступени двигателя - эксэрготрансформаторной камеры
сгорания.
Начальные условия примем.
Теплота сгорания условного жидкого топлива 42000 КДж/кг.
Для сгорания 1кг. топлива необходимо 14 кг. воздуха.
При сгорании 1кг воздуха в парах топлива выделяется 3000 КДж. тепла.
Удельную теплоемкость для воздуха и продуктов сгорания примем
постоянную: Ср. = 1КДж/кг. град.
Камера сгорания имеет запальное устройство, в которое подается 1кг.
топлива с наружной температурой 288.°К. и 3кг. воздуха с давлением
0.68МПа и температурой 498°К.
При сгорании воздуха в парах топлива в запальном устройстве выделяется
тепло: 3000 ×3=9000 КДж.
Температура смеси в запальном устройстве:
(288×1 +498×3 +9000)/4 = 2695°К.
Иллюстрация расчета происходящих процессов изменения состояния газа,
показана в T-S диаграмме.
Энергия паров топлива и продуктов его сгорания (рабочей газ) выполняет в
эксэрготрансформаторной камере сгорания работу, по всасыванию и сжатию
атмосферного воздуха.
Работа адиабатного процесса 1-2 создает в камере критическое разряжение
процесс 2-3. Ар. = 1560 – 1300 = 260КДж. × 4 = 1040КДж.
Назовем это разряжение «потенциальной ямой».
Работа всасывания процесс 4-5 одного килограмма воздуха.
Авсас. = Ср×(Т4 – Т5) = 1×(288 – 240) × = 48 КДж.
Масса всасываемого атмосферного воздуха.
Мв. = 1040 : 48 = 21.66кг.
1 кг. рабочего газа выполняет работу по всасыванию и сжатию m = 5.417кг.
наружного воздуха. Наружный воздух, реализуя разряжение «потенциальной
ямы», со звуковой скоростью поступает в неё - процесс 4-5, где происходит
его встреча с рабочим газом.
5
Процесс энергообмена состоит в следующем: Рабочий газ, выходя из
«потенциальной ямы в процессе 3– 3 изотермического сжатия, отдает тепло
холодному воздуху и выходит из потенциальной ямы. Холодный воздух,
получив тепло в процессе 5-4, также выходит из потенциальной ямы и
возвращается в исходное состояние, т.е. его давление, удельный объём
соответствуют первоначальному состоянию т.4.
Пройдя «потенциальную яму», в канале эксэрготрансформатора
продолжается изотермическое сжатие рабочего газа и передача его тепла
холодному воздуху, который в процессе 4 – 7 изохорного сжатия получает
его. Сумма изохорных процессов 4-7 должна быть равна 2-7, отсутствие
равенства компенсируется эксэргией.
Аизох. = (545 – 288)×5.417 = 1392.
Аизоб. = 1560 – 545 = 1015. Недостача – 377КДж.
Расчет по изобаре: 1015 : 5.417 = 187.4.
Сложим и найдем температуру точку 6 на изохоре 4-7. 288 + 187.4 = 475.4
Расчет параметров точки 9.
Р. = (Т×R): V, Р = (475.4×290): 0.8352 = 165070 Па.
Адиабатное расширение газа процесс 7-9 определит параметры точки 9
Т=449,5°К.
Для достижения изохоры Т. = 545°К, необходимо использовать
кинетическую энергию газа.
(1392 – 1015) = 377. 377 : 5.417 = 69.6, 475.4 + 69.4 = 545.
Определим остатки кинетической энергии:
1560 +377 = 1937. 2695 – 1937 = 758КДж.
Оставшаяся кинетическая энергия рабочего газа распределяется по общей
массе взаимодействующего вещества. Процесс 7 – 8.
( 2695 – 1937) : (5.417 + 1) =118.1
Параметры точки т 8.
Т9. = 545 +118.1 = 663°К, Р. = 528640Па.
Произошло сложение двух потоков. Начинается процесс горения паров
топлива в избытке кислорода.
Горение топлива происходит в постоянном объеме камеры сгорания: её канал
имеет цилиндрическое строение постоянного сечения, огражденного на
входе и выходе сверхзвуковой скоростью.
Геометрия канала эксэрготрансформатора, определяет показатель
политропных процессов, которые может быть от 1 до ∞.
6
Горение.
Найдем повышение температуры газа при сгорании оставшихся паров
топлива. 42000 – 9000 = 33000КДж.
Общая масса газа на 1кг. топлива: М = 6.417×4 = 25.668.
Повышение температуры будет равно: 33000: 25.668 :1= 1285.6 градуса.
Температурой движущего потока является т.6, параметры которой:
температура Т. = 475,4°К. и удельный объем V = 0.8352.
Температура сгорания топлива точка 11. Тv. = 475.4 +1285.6 = 1731°К.
Далее газ, пройдя канал камеры сгорания, поступает в её диффузор, где
скоростной напор суммируется с давлением в движущемся потоке.
Энтальпия движущего потока 9-8 Ад = (663 – 449,5) ×1= 216,5КДж/кг.
Процесс 11 – 10 сложим энтальпии горения топлива и движущего потока:
1731 + 216,5 = 1948. Давление торможения в точки 10 будет 0,9МПа.
7

More Related Content

What's hot

презентация авиационного двигателя сверхвысоких пораметров газа. копия
презентация  авиационного двигателя сверхвысоких пораметров газа.   копияпрезентация  авиационного двигателя сверхвысоких пораметров газа.   копия
презентация авиационного двигателя сверхвысоких пораметров газа. копия
kriloveckiyy
 
презентация эксэрготрансформаторного пврд.
презентация эксэрготрансформаторного пврд.презентация эксэрготрансформаторного пврд.
презентация эксэрготрансформаторного пврд.
kriloveckiyy
 
презентация эксэрготрансформатора.
презентация эксэрготрансформатора.презентация эксэрготрансформатора.
презентация эксэрготрансформатора.
mkril
 
презентация суперэжектора. новый.
презентация суперэжектора. новый.презентация суперэжектора. новый.
презентация суперэжектора. новый.
kriloveckiyy
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
mkril
 
призентация гиперзвукового двигателя.
призентация гиперзвукового двигателя.призентация гиперзвукового двигателя.
призентация гиперзвукового двигателя.
kriloveckiyy
 
презентация эксэрготрансформаторного универсального двигателя.
презентация эксэрготрансформаторного универсального двигателя.презентация эксэрготрансформаторного универсального двигателя.
презентация эксэрготрансформаторного универсального двигателя.
mkril
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
mkril
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
mkril
 
презентация супурэжектора.
презентация супурэжектора.презентация супурэжектора.
презентация супурэжектора.
kriloveckiyy
 
презентация авиационного двигателя. 1
презентация авиационного двигателя. 1презентация авиационного двигателя. 1
презентация авиационного двигателя. 1
kriloveckiyy
 
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
mkril
 
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. ...
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. ...гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. ...
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. ...
mkril
 
презентация эксэрготрансформаторного авиационного двигателя.
презентация эксэрготрансформаторного авиационного двигателя.презентация эксэрготрансформаторного авиационного двигателя.
презентация эксэрготрансформаторного авиационного двигателя.
mkril
 
лекция №8
лекция №8лекция №8
лекция №8student_kai
 
презентация авиационного двигателя.
презентация авиационного двигателя.презентация авиационного двигателя.
презентация авиационного двигателя.
kriloveckiyy
 
призентация гиперзвукового двигателя.
призентация гиперзвукового двигателя.призентация гиперзвукового двигателя.
призентация гиперзвукового двигателя.
kriloveckiyy
 
презентация термодинамического ускорителя потоков газа.
презентация  термодинамического ускорителя потоков газа.презентация  термодинамического ускорителя потоков газа.
презентация термодинамического ускорителя потоков газа.
kriloveckiyy
 

What's hot (19)

презентация авиационного двигателя сверхвысоких пораметров газа. копия
презентация  авиационного двигателя сверхвысоких пораметров газа.   копияпрезентация  авиационного двигателя сверхвысоких пораметров газа.   копия
презентация авиационного двигателя сверхвысоких пораметров газа. копия
 
презентация эксэрготрансформаторного пврд.
презентация эксэрготрансформаторного пврд.презентация эксэрготрансформаторного пврд.
презентация эксэрготрансформаторного пврд.
 
презентация эксэрготрансформатора.
презентация эксэрготрансформатора.презентация эксэрготрансформатора.
презентация эксэрготрансформатора.
 
презентация суперэжектора. новый.
презентация суперэжектора. новый.презентация суперэжектора. новый.
презентация суперэжектора. новый.
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
 
призентация гиперзвукового двигателя.
призентация гиперзвукового двигателя.призентация гиперзвукового двигателя.
призентация гиперзвукового двигателя.
 
презентация эксэрготрансформаторного универсального двигателя.
презентация эксэрготрансформаторного универсального двигателя.презентация эксэрготрансформаторного универсального двигателя.
презентация эксэрготрансформаторного универсального двигателя.
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
 
презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.презентация газовоздушного турбодвигателя.
презентация газовоздушного турбодвигателя.
 
презентация супурэжектора.
презентация супурэжектора.презентация супурэжектора.
презентация супурэжектора.
 
презентация авиационного двигателя. 1
презентация авиационного двигателя. 1презентация авиационного двигателя. 1
презентация авиационного двигателя. 1
 
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
 
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. ...
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. ...гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. ...
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет. ...
 
презентация эксэрготрансформаторного авиационного двигателя.
презентация эксэрготрансформаторного авиационного двигателя.презентация эксэрготрансформаторного авиационного двигателя.
презентация эксэрготрансформаторного авиационного двигателя.
 
лекция №8
лекция №8лекция №8
лекция №8
 
презентация авиационного двигателя.
презентация авиационного двигателя.презентация авиационного двигателя.
презентация авиационного двигателя.
 
призентация гиперзвукового двигателя.
призентация гиперзвукового двигателя.призентация гиперзвукового двигателя.
призентация гиперзвукового двигателя.
 
презентация термодинамического ускорителя потоков газа.
презентация  термодинамического ускорителя потоков газа.презентация  термодинамического ускорителя потоков газа.
презентация термодинамического ускорителя потоков газа.
 
29209p
29209p29209p
29209p
 

Similar to презентация камеры сгорания.

призентация эксэрготрансформаторного двигателя.
призентация эксэрготрансформаторного двигателя.призентация эксэрготрансформаторного двигателя.
призентация эксэрготрансформаторного двигателя.
mkril
 
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
mkril
 
презентация. способ безударного сложение потоков газа и устройство для его ре...
презентация. способ безударного сложение потоков газа и устройство для его ре...презентация. способ безударного сложение потоков газа и устройство для его ре...
презентация. способ безударного сложение потоков газа и устройство для его ре...
kriloveckiyy
 
презентация термодинамического ускорителя потоков газа.
презентация  термодинамического ускорителя потоков газа.презентация  термодинамического ускорителя потоков газа.
презентация термодинамического ускорителя потоков газа.
kriloveckiyy
 
презентация эксэрготрансформатора.
презентация эксэрготрансформатора.презентация эксэрготрансформатора.
презентация эксэрготрансформатора.
kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
призентация.
призентация.призентация.
призентация.kriloveckiyy
 
презентация двигателя.
презентация двигателя.презентация двигателя.
презентация двигателя.kriloveckiyy
 

Similar to презентация камеры сгорания. (12)

призентация эксэрготрансформаторного двигателя.
призентация эксэрготрансформаторного двигателя.призентация эксэрготрансформаторного двигателя.
призентация эксэрготрансформаторного двигателя.
 
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
гиперзвуковой тепловой двигатель для ударных беспилотников и крылатых ракет.
 
презентация. способ безударного сложение потоков газа и устройство для его ре...
презентация. способ безударного сложение потоков газа и устройство для его ре...презентация. способ безударного сложение потоков газа и устройство для его ре...
презентация. способ безударного сложение потоков газа и устройство для его ре...
 
презентация термодинамического ускорителя потоков газа.
презентация  термодинамического ускорителя потоков газа.презентация  термодинамического ускорителя потоков газа.
презентация термодинамического ускорителя потоков газа.
 
презентация эксэрготрансформатора.
презентация эксэрготрансформатора.презентация эксэрготрансформатора.
презентация эксэрготрансформатора.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
призентация.
призентация.призентация.
призентация.
 
презентация двигателя.
презентация двигателя.презентация двигателя.
презентация двигателя.
 

презентация камеры сгорания.

  • 1. Эксэрготрансформаторная камера сгорания. В эксэрготрансформаторной камере сгорания происходит процесс преобразования значительной части потенциальной энергии топлива, в кинетическую энергию, которая теоретически может быть преобразована в работу (эксэргию). Выходное давление торможение может превосходить давление на входе в камеру. 1
  • 2. Существующие способы преобразования тепловой энергии в механическую работу, открытые в 19 веке, достигли совершенства, и дальнейшее их усовершенствование становится экономически не оправдано. Существующие тепловые двигатели сложные в ремонте, дорогостоящие при изготовлении, не надежные в работе и экономически неэффективные. Эти способы преобразования тепловой энергии в механическую энергию, естественным образом устарели, поэтому нуждаются в замене. В термическом цикле газотурбинных установках значительная часть полезной работы затрачивается на работу компрессора, нагнетающий избыточный сжатый воздух в камеру сгорания. Цель разработки, создания способа, в котором минимизируются затраты на сжатия воздуха, подаваемого в камеру сгорания. Рассмотрим проект эксэрготрансформаторной камеры сгорания топлива. Предлагаемая эксэрготрансформаторная камера сгорания имеет запальное устройство, в которое подается насосом одна единица топлива и нагнетается компрессором одна или несколько весовых частей воздуха, обеспечивающих устойчивое горение и испарение паров топлива. Пары топлива и продукты его сгорания выходят из запального устройства с высоким давлением и поступают в эксэрготрансформатор, где выполняют работу по всасыванию и сжатию наружного воздуха. В канале эксэрготрансформатора при сверхзвуковом движении воздуха и паров топлива происходит сгорания их с выделением большого количества тепла. Геометрия канала камеры сгорания определяет политропность процесса горения топлива. Примем, что горение происходит при постоянном объеме V = Const, что приводит к повышению внутреннего давления двигающего со сверхзвуковой скоростью потока. Продукты сгорания топлива из канала поступают в диффузор, где их скоростной напор преобразуется в давление. Выполнение этих условий возможно только при безударном способе сложения потоков газа. Открыт способ безударного сложения потоков газов и изготовлено устройство, в котором он реализуется. Данное устройство названо нами эксэрготрансформатором. 2
  • 3. В камере сгорания более половины тепла преобразуется в кинетическую энергию продуктов сгорания, обладающих высокой температурой. Для доработки остаточного тепла выходящего с диффузора камеры сгорания необходимы другие устройства, которые будут рассмотрены в других проектах. Краткий результат от эксэрготрансформаторной камеры сгорания на 1кг топлива. В запальное устройство подается 1кг. топлива с теплотой сгорания Qсг.=42000КДж/кг и 3кг. сжатого воздуха с температурой 498°К и Р.=0.68МПа. С диффузора эксэрготрансформатора выходят продукты сгорания топлива массой 25.66 кг. Параметры давлением Р = 0.9Мпа, температурой торможения Т= 1948°К и температурой выхода Т =1037°К. Затраты на работу компрессора: Эк = (498 -288) × 1× 3 = 630КДж. Эксэргия (работа) на выходе из камеры сгорания: Эв = (1948 – 1037) × 1× 25,66 = 23375 КДж. Коэффициент преобразования эксэргии: k = 23375 : 630 = 31,1. Более подробное описание процесса приведено в расчете термического цикла камеры сгорания. 3
  • 4. 4
  • 5. Расчет первой ступени двигателя - эксэрготрансформаторной камеры сгорания. Начальные условия примем. Теплота сгорания условного жидкого топлива 42000 КДж/кг. Для сгорания 1кг. топлива необходимо 14 кг. воздуха. При сгорании 1кг воздуха в парах топлива выделяется 3000 КДж. тепла. Удельную теплоемкость для воздуха и продуктов сгорания примем постоянную: Ср. = 1КДж/кг. град. Камера сгорания имеет запальное устройство, в которое подается 1кг. топлива с наружной температурой 288.°К. и 3кг. воздуха с давлением 0.68МПа и температурой 498°К. При сгорании воздуха в парах топлива в запальном устройстве выделяется тепло: 3000 ×3=9000 КДж. Температура смеси в запальном устройстве: (288×1 +498×3 +9000)/4 = 2695°К. Иллюстрация расчета происходящих процессов изменения состояния газа, показана в T-S диаграмме. Энергия паров топлива и продуктов его сгорания (рабочей газ) выполняет в эксэрготрансформаторной камере сгорания работу, по всасыванию и сжатию атмосферного воздуха. Работа адиабатного процесса 1-2 создает в камере критическое разряжение процесс 2-3. Ар. = 1560 – 1300 = 260КДж. × 4 = 1040КДж. Назовем это разряжение «потенциальной ямой». Работа всасывания процесс 4-5 одного килограмма воздуха. Авсас. = Ср×(Т4 – Т5) = 1×(288 – 240) × = 48 КДж. Масса всасываемого атмосферного воздуха. Мв. = 1040 : 48 = 21.66кг. 1 кг. рабочего газа выполняет работу по всасыванию и сжатию m = 5.417кг. наружного воздуха. Наружный воздух, реализуя разряжение «потенциальной ямы», со звуковой скоростью поступает в неё - процесс 4-5, где происходит его встреча с рабочим газом. 5
  • 6. Процесс энергообмена состоит в следующем: Рабочий газ, выходя из «потенциальной ямы в процессе 3– 3 изотермического сжатия, отдает тепло холодному воздуху и выходит из потенциальной ямы. Холодный воздух, получив тепло в процессе 5-4, также выходит из потенциальной ямы и возвращается в исходное состояние, т.е. его давление, удельный объём соответствуют первоначальному состоянию т.4. Пройдя «потенциальную яму», в канале эксэрготрансформатора продолжается изотермическое сжатие рабочего газа и передача его тепла холодному воздуху, который в процессе 4 – 7 изохорного сжатия получает его. Сумма изохорных процессов 4-7 должна быть равна 2-7, отсутствие равенства компенсируется эксэргией. Аизох. = (545 – 288)×5.417 = 1392. Аизоб. = 1560 – 545 = 1015. Недостача – 377КДж. Расчет по изобаре: 1015 : 5.417 = 187.4. Сложим и найдем температуру точку 6 на изохоре 4-7. 288 + 187.4 = 475.4 Расчет параметров точки 9. Р. = (Т×R): V, Р = (475.4×290): 0.8352 = 165070 Па. Адиабатное расширение газа процесс 7-9 определит параметры точки 9 Т=449,5°К. Для достижения изохоры Т. = 545°К, необходимо использовать кинетическую энергию газа. (1392 – 1015) = 377. 377 : 5.417 = 69.6, 475.4 + 69.4 = 545. Определим остатки кинетической энергии: 1560 +377 = 1937. 2695 – 1937 = 758КДж. Оставшаяся кинетическая энергия рабочего газа распределяется по общей массе взаимодействующего вещества. Процесс 7 – 8. ( 2695 – 1937) : (5.417 + 1) =118.1 Параметры точки т 8. Т9. = 545 +118.1 = 663°К, Р. = 528640Па. Произошло сложение двух потоков. Начинается процесс горения паров топлива в избытке кислорода. Горение топлива происходит в постоянном объеме камеры сгорания: её канал имеет цилиндрическое строение постоянного сечения, огражденного на входе и выходе сверхзвуковой скоростью. Геометрия канала эксэрготрансформатора, определяет показатель политропных процессов, которые может быть от 1 до ∞. 6
  • 7. Горение. Найдем повышение температуры газа при сгорании оставшихся паров топлива. 42000 – 9000 = 33000КДж. Общая масса газа на 1кг. топлива: М = 6.417×4 = 25.668. Повышение температуры будет равно: 33000: 25.668 :1= 1285.6 градуса. Температурой движущего потока является т.6, параметры которой: температура Т. = 475,4°К. и удельный объем V = 0.8352. Температура сгорания топлива точка 11. Тv. = 475.4 +1285.6 = 1731°К. Далее газ, пройдя канал камеры сгорания, поступает в её диффузор, где скоростной напор суммируется с давлением в движущемся потоке. Энтальпия движущего потока 9-8 Ад = (663 – 449,5) ×1= 216,5КДж/кг. Процесс 11 – 10 сложим энтальпии горения топлива и движущего потока: 1731 + 216,5 = 1948. Давление торможения в точки 10 будет 0,9МПа. 7