Reducion de Bloques
1
S + 2
4
3s
S + 4
3
S + 3
5
1
S
+
+
-
+
-
R(s) C(s)
1
S + 2
4
3s
S + 4
3
S + 3
5
1
S
+
+
-
+
R(s) C(s)
+
-
1
S + 6
3s
S + 4
3
S + 3
5
1
S
+
+
-
+
R(s) C(s)
1
S + 6
3s
S + 4
3
S + 3
5
S
+
+
-
+
R(s) C(s)
1
S + 6
3s
S + 4
3
S + 3
5
S
+
+
-
+
R(s) C(s)
s+4
3s
1
S + 6
3s
S + 4
3
S + 3
5
S
+
+
-
+
R(s) C(s)
s+4
3s
1
(s+6)(s+4)
5
S
+
+
-
+
R(s) C(s)
(s+4)
s(s+3)
3s
(s+6)(s+4) + 15
s(s+3)+ (s+4)
[s(s+3)]
R(s) C(s)
3s (s+3) +3 (s+4)
[(s+6)(s+4) +15](s+3)
R(s) C(s)
Reducion de Señales
1/S 1/S
1 b2
-a1
-a2
R(s) C(s)
b1
1/S 1/S
1 b2
-a1
-a2
R(s) C(s)
b1
1 1
1/(s+a1) 1/S
1 b2
-a2
R(s)
C(s)
b1
1 1
1/(s+a1) 1/S
1 b2
-a2
R(s)
C(s)
b1
1
1/(s+a1)
1/(s+a1) 1/S
1 b2
-a2
R(s)
C(s)
b1
1
1/(s+a1)
1/b2
Reducion de Señales
1/S 1/S
1 b2
-a1
-a2
R(s) C(s)
b1
1/S 1/S
1 b2
-a1
-a2
R(s) C(s)
b1
1 1
1/(s+a1) 1/S
1 b2
-a2
R(s)
C(s)
b1
1 1
1/(s+a1) 1/S
1 b2
-a2
R(s)
C(s)
b1
1
1/(s+a1)
1/(s+a1) 1/S
1 b2
-a2
R(s)
C(s)
b1
1
1/(s+a1)
1/b2
1/(s+a1) b1+1/(sb2 )
1
-a2
R(s)
C(s)
1
1/(s+a1)
1/b2
1/(s+a1)
R(s)
1 G1 1
C(s
)
1/(s+a1)
R(s) C(s)
1 b1+1/(sb2 )
1
-a2(1/b2)[1/(s+a)]
G1=
b1+
1
sb2
1+ [b1 +
1
sb2
][
a2
b2 (s+ a1)
]
Gs
R(s)
1 1
C(s
)
Gs=
1
(s+ a1)
b1+
1
sb2
1+ [b1 +
1
sb2
][
a2
b2 (s+ a1)
]
Gs=
1
(s+ a1)
[(b1 sb2)+ 1]/sb2
1+ [
(b1 sb2)+ 1
sb2
][
a2
b2 (s+ a1)
]
Gs=
(b1 sb2)+ 1
(sb2)(s+ a1)+ [(b1 sb2)+ 1][
a2
b2
]
Método de Mason
R(S)
C(s)
1
1
x4
x2 x3 x5
x8
x7 x6
x9
xA
x1 b c d
i h g f e
j
k
m
p
a
o
Las trayectorias
directas son los
caminos desde
una entrada
hasta una salida
sin repetir nodo.
T1(x18A) = i . k
T2(x1234567A) = a.b.c.d.e.o.m
T3(x123457A) = a.b.c.d.f.m
T4(x1238A) = a.b.h.k
IDENTIFICAR TODOS LOS LAZOS
L1 = x18A9 = ikpj
L2 = x3457 = cdfg
L3 = x34567 = cdeog
L4 = x1238A9 = abhkpj
L5 = x123457A9 = abcdfmpj
L6 = x1234567A9 = abcdeompj
Con esos datos la formula es:
Tt=
∑
i
Ti .△i
△T
△T= 1− ∑
a
La+ ∑
a,b
La .Lb− ∑
a,b,c
La .Lb .Lc+ ....
∑
a
La= L1+ L2+ L3+ L4+ L5+ L6
∑
a,b
La .Lb= L1 .L2+ L1 .L3= abhkpj.cdfg+ abhkpj.cdeog
∑
a
La= abhkpj+ cdeog+ cdfg+ ikpj+ abcdfmpj+ abcdeompj
∑
a,b,c
La .Lb .Lc= no hay grupos de 3 lazos disjuntos
△T= 1− [abhkpj+ cdeog+ cdfg+ ikpj+ abcdfmpj+ abcdeompj]+
+ [abhkpj.cdfg+ abhkpj.cdeog]
ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog]
ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog]
Δ1 = ΔT – todo elemento de T1
T1 = i . k
Δ1= 1 - cdeog - cdfg
ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog]
T2 = a.b.c.d.e.o.m Δ2 = ΔT – todo elemento de T2
Δ2= 1
T3 = a.b.c.d.f.m Δ3 = ΔT – todo elemento de T3
ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog]
Δ3= 1
T4 = a.b.h.k Δ4 = ΔT – todo elemento de T4
ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog]
Δ4= 1
Tt=
∑
i
Ti .△i
△T
Tt = (T1. Δ1 + T2. Δ2 + T3. Δ3 + T4. Δ4) / Δ
T
Tt=
(ik)(1− cdeog− cdfg) + abcdeom+ abcdfm + abhk
1− [abhkpj+ cdeog+ cdfg+ ikpj+ abcdfmpj+ abcdeompj]+ [abhkpj.cdfg+ abhkpj.cdeog]
ΔT = 1 - [ L1 + L2 + L3 + L4 + L5 + L6 ] + [L1.L2 + L1.L3]

Resolucion diagrama diagrama Diagramas.ppt

  • 1.
    Reducion de Bloques 1 S+ 2 4 3s S + 4 3 S + 3 5 1 S + + - + - R(s) C(s) 1 S + 2 4 3s S + 4 3 S + 3 5 1 S + + - + R(s) C(s) + - 1 S + 6 3s S + 4 3 S + 3 5 1 S + + - + R(s) C(s)
  • 2.
    1 S + 6 3s S+ 4 3 S + 3 5 S + + - + R(s) C(s) 1 S + 6 3s S + 4 3 S + 3 5 S + + - + R(s) C(s) s+4 3s 1 S + 6 3s S + 4 3 S + 3 5 S + + - + R(s) C(s) s+4 3s 1 (s+6)(s+4) 5 S + + - + R(s) C(s) (s+4) s(s+3) 3s (s+6)(s+4) + 15 s(s+3)+ (s+4) [s(s+3)] R(s) C(s) 3s (s+3) +3 (s+4) [(s+6)(s+4) +15](s+3) R(s) C(s)
  • 3.
    Reducion de Señales 1/S1/S 1 b2 -a1 -a2 R(s) C(s) b1 1/S 1/S 1 b2 -a1 -a2 R(s) C(s) b1 1 1 1/(s+a1) 1/S 1 b2 -a2 R(s) C(s) b1 1 1 1/(s+a1) 1/S 1 b2 -a2 R(s) C(s) b1 1 1/(s+a1) 1/(s+a1) 1/S 1 b2 -a2 R(s) C(s) b1 1 1/(s+a1) 1/b2
  • 4.
    Reducion de Señales 1/S1/S 1 b2 -a1 -a2 R(s) C(s) b1 1/S 1/S 1 b2 -a1 -a2 R(s) C(s) b1 1 1 1/(s+a1) 1/S 1 b2 -a2 R(s) C(s) b1 1 1 1/(s+a1) 1/S 1 b2 -a2 R(s) C(s) b1 1 1/(s+a1) 1/(s+a1) 1/S 1 b2 -a2 R(s) C(s) b1 1 1/(s+a1) 1/b2
  • 5.
    1/(s+a1) b1+1/(sb2 ) 1 -a2 R(s) C(s) 1 1/(s+a1) 1/b2 1/(s+a1) R(s) 1G1 1 C(s ) 1/(s+a1) R(s) C(s) 1 b1+1/(sb2 ) 1 -a2(1/b2)[1/(s+a)] G1= b1+ 1 sb2 1+ [b1 + 1 sb2 ][ a2 b2 (s+ a1) ] Gs R(s) 1 1 C(s ) Gs= 1 (s+ a1) b1+ 1 sb2 1+ [b1 + 1 sb2 ][ a2 b2 (s+ a1) ] Gs= 1 (s+ a1) [(b1 sb2)+ 1]/sb2 1+ [ (b1 sb2)+ 1 sb2 ][ a2 b2 (s+ a1) ] Gs= (b1 sb2)+ 1 (sb2)(s+ a1)+ [(b1 sb2)+ 1][ a2 b2 ]
  • 6.
    Método de Mason R(S) C(s) 1 1 x4 x2x3 x5 x8 x7 x6 x9 xA x1 b c d i h g f e j k m p a o
  • 7.
    Las trayectorias directas sonlos caminos desde una entrada hasta una salida sin repetir nodo. T1(x18A) = i . k T2(x1234567A) = a.b.c.d.e.o.m T3(x123457A) = a.b.c.d.f.m T4(x1238A) = a.b.h.k
  • 8.
    IDENTIFICAR TODOS LOSLAZOS L1 = x18A9 = ikpj L2 = x3457 = cdfg L3 = x34567 = cdeog L4 = x1238A9 = abhkpj L5 = x123457A9 = abcdfmpj L6 = x1234567A9 = abcdeompj
  • 9.
    Con esos datosla formula es: Tt= ∑ i Ti .△i △T △T= 1− ∑ a La+ ∑ a,b La .Lb− ∑ a,b,c La .Lb .Lc+ .... ∑ a La= L1+ L2+ L3+ L4+ L5+ L6 ∑ a,b La .Lb= L1 .L2+ L1 .L3= abhkpj.cdfg+ abhkpj.cdeog ∑ a La= abhkpj+ cdeog+ cdfg+ ikpj+ abcdfmpj+ abcdeompj ∑ a,b,c La .Lb .Lc= no hay grupos de 3 lazos disjuntos △T= 1− [abhkpj+ cdeog+ cdfg+ ikpj+ abcdfmpj+ abcdeompj]+ + [abhkpj.cdfg+ abhkpj.cdeog]
  • 10.
    ΔT= 1 -[abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog] ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog] Δ1 = ΔT – todo elemento de T1 T1 = i . k Δ1= 1 - cdeog - cdfg ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog] T2 = a.b.c.d.e.o.m Δ2 = ΔT – todo elemento de T2 Δ2= 1 T3 = a.b.c.d.f.m Δ3 = ΔT – todo elemento de T3 ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog] Δ3= 1 T4 = a.b.h.k Δ4 = ΔT – todo elemento de T4 ΔT= 1 - [abhkpj + cdeog + cdfg + ikpj + abcdfmpj + abcdeompj] + [abhkpj . cdfg + abhkpj . cdeog] Δ4= 1
  • 11.
    Tt= ∑ i Ti .△i △T Tt =(T1. Δ1 + T2. Δ2 + T3. Δ3 + T4. Δ4) / Δ T Tt= (ik)(1− cdeog− cdfg) + abcdeom+ abcdfm + abhk 1− [abhkpj+ cdeog+ cdfg+ ikpj+ abcdfmpj+ abcdeompj]+ [abhkpj.cdfg+ abhkpj.cdeog] ΔT = 1 - [ L1 + L2 + L3 + L4 + L5 + L6 ] + [L1.L2 + L1.L3]