1. A perceptron is a basic artificial neural network that can learn linearly separable patterns. It takes weighted inputs, applies an activation function, and outputs a single binary value.
2. Multilayer perceptrons can learn non-linear patterns by using multiple layers of perceptrons with weighted connections between them. They were developed to overcome limitations of single-layer perceptrons.
3. Perceptrons are trained using an error-correction learning rule called the delta rule or the least mean squares algorithm. Weights are adjusted to minimize the error between the actual and target outputs.