This document discusses performance of matching algorithms for signal approximation. It begins by introducing matching pursuit algorithms like Orthogonal Matching Pursuit (OMP) and Stagewise Orthogonal Matching Pursuit (StOMP) which are greedy algorithms that approximate sparse signals. It then describes the Non-Negative Least Squares algorithm which solves non-negative least squares problems. Finally, it discusses Extranious Equivalent Detection (EED), a modification of OED that incorporates non-negativity of representations by using a non-negative optimization technique instead of orthogonal projection.