BI-HISTOGRAM EQUALIZATION
wITH A pLATEAU LIMIT
FOR DIGITAL IMAGES.
MAHESH MOHAN.M.R
GECT S1 ECE
ROLL NO: 7
GUIDE : Dr.V.S.SHEEBA
OM NAMA
SIVAYA
OBJECTIVE
.
TO FAMILARIZE WITH
.HISTOGRAM EQUALIZATION
.DIFFERENT EQUALIZATION METHODS
.THEIR DRAWBACK AND HOW IT IS RECTIFIED.
FLOw OF SEMINAR.
1.WHAT IS A DIGITAL IMAGE?
2.WHAT IS A HISTOGRAM?
3.WHAT IS HISTOGRAM EQUALIZATION?
4.DIFFERENT EQUALIZATION METHODS AND ITS DRAWBACK.
5.HOW DRAWBACK OF EACH METHOD IS RECTIFED?
• A digital image is a matrix representation of a 
two-dimensional image. 
                        
                         
                           
wHAT IS A DIGITAL IMAGE?
Colour imageGray scale image(Black and white)
dGray Image
Image
wHAT IS A GRAy SCALE IMAGE?
243 121
.
34 21
.
. .
Gray level matrix
0 255
Image matrix
Image
wHAT IS A COLOUR IMAGE?
234 212 123
135 231 233
.
121 222
. .
243 121
.
. . .
112 167
.
. . .
Red matrix
Green matrix
Blue matrix
.
.
wHAT IS A HISTOGRAM?
Consider a 5x5 image with integer intensities in the range between zero and seven:
0 7 3 2 3
0 0 0 6 7
7 7 2 2 0
1 1 0 4 1
0 0 7 4 1
Image matrixImage
0 1 2 3 4 5 6 7
Gray scale
Black White
wHAT IS A HISTOGRAM?
Consider a 5x5 image with integer intensities in the range between one and eight:
0 7 3 2 3
0 0 0 6 7
7 7 2 2 0
1 1 0 4 1
0 0 7 4 1
Image matrixImage
0 1 2 3 4 5 6 7
Grey scale
Black White
Number of pixel with intensity value 0 [h(r0)] = 8
wHAT IS A HISTOGRAM?
0 7 3 2 3
0 0 0 6 7
7 7 2 2 0
1 1 0 4 1
0 0 7 4 1
Image matrixImage
0 1 2 3 4 5 6 7
Grey scale
Black White
Number of pixel with intensity value 0 [h(r0)] = 8
Similarly for 1 h(r1) = 4
wHAT IS A HISTOGRAM?
0 7 3 2 3
0 0 0 6 7
7 7 2 2 0
1 1 0 4 1
0 0 7 4 1
Image matrixImage
Similarly
INTENSITY r 0 1 2 3 4 5 6 7
NUMBER of
pixels of r
h(r)
  h(r0)=8   h(r1)=4 h(r2)=3  h(r3)=2  h(r4)=2  h(r5)=0  h(r6)=1   h(r7)=5
r
wHAT IS A HISTOGRAM?
Image matrix
0 1 2 3 4 5 6 7
HISTOGRAM
Intensity values
Number of pixels of
intensity r
r 0 1 2 3 4 5 6 7
h(r)   8     4    3     2     2     0     1     5
Histogram plots the number of pixels for each intensity value.
h(r)
What is a histogram?
r 0 1 2 3 4 5 6 7
h(r) 8 4 3 2 2 0 1 5
p(r)
h(r)/(5*5)
8/25 4/25 3/25 2/25 2/25 0/25 1/25 5/25
HISTOGRAM - h(r) - Y axis - number of intensities
NORMALIZED HISTOGRAM - p(r) - Y axis - probability of intensities
SAMPLE IMAGES AND ITS HISTOGRAM
Bright image
Intensity range 0 - 255
SAMPLE IMAGES AND ITS HISTOGRAM
Bright image
Intensity range 0 - 255
0 50 100 150 200 255
Intensity
No:ofpixels
DARK BRIGHT
h(r)
SAMPLE IMAGES AND ITS HISTOGRAM
Dark image
Intensity range 0 - 255
SAMPLE IMAGES AND ITS HISTOGRAM
Dark image
Intensity range 0 - 255
0 50 100 150 200 255
Intensity
No:ofpixels
h(r)
SAMPLE IMAGES AND ITS HISTOGRAM
Low contrast image
Intensity range 0 - 255
SAMPLE IMAGES AND ITS HISTOGRAM
Light image
Intensity range 0 - 255
0 50 100 150 200 255
Intensity
No:ofpixels
h(r)
SAMPLE IMAGES AND ITS HISTOGRAM
Bright image
Dark image
Low contrast
image
SAMPLE IMAGES AND ITS HISTOGRAM
High contrast image
Intensity range 0 - 255
0 50 100 150 200 255
Intensity
No:ofpixels
h(r)
CoNCEPt oF histogram EQUaLiZatioN
ORIGINAL IMAGE EQUALIZED IMAGE
MAXIMIZES ENTROPY OF AN IMAGE.
s1 s2
thEorY BEhiND histogram
EQUaLiZatioN
TRANSFORMATION FUNCTION THAT MAPS THE
INPUT INTENSITY TO ALL AVAILABLE INTENSITIES.
I/p intensity
O/p intensity
THEORY BEHIND HISTOGRAM
EQUALIZATION
ORIGINAL IMAGE EQUALIZED IMAGE
s1 s2
THEORY BEHIND HISTOGRAM
EQUALIZATION
CUMULATIVE DISTRIBUTION
FUNCTION T(r)
0 50 100 150 200 255
[76 – 213]
[0 – 48]
[15 – 100] [25 – 125]
O/P INTENSITY = X0 + [( Xl-1 –X0 )*C(x)]
I/P intensity
DIFFERENT STAGES
GLOBAL HISTOGRAM
EQUALIZATION
BI-HISTOGRAM
EQUALIZATION
BI-HISTOGRAM
EQUALIZATION
WITH A PLATEAU LIMIT
GLOBAL HISTOGRAM EQUALIZATION
OBTAIN
HISTOGRAM
OBTAIN PDF
OBTAIN CDF
OBTAIN
TRANSFORMATIO
N FUNCTION
MAPPING OF NEW
INTENSITY VALUES
NEW HISTOGRAM
Original histogram
M*N
PDF
1..
CDF
1
x0
XL-1
O/P
x0
XL-1
MappingTransformation
function
t1
t2
t2
New histogram
t1t1 t2
t2t1t2t1
GLOBAL HISTOGRAM EQUALIZATION
RESULTS
GHE
O/P MEAN CONSTANTWHY ?
GLOBAL HISTOGRAM EQUALIZATION
DRAWBACK
DO NOT CONSERVE THE MEAN.
WHY MEAN IMPORTANT?
Video frames
GHE
THEORY OF BIHISTOGRAM EQUALIZATION
HISTOGRAM EQUALIZED SEPERATELY AROUND MEAN.
THUS CONSERVE THE MEAN.
ORIGINAL HISTOGRAM BIHISTOGRAM EQUALIZED
BIHISTOGRAM EQUALIZATION
OBTAIN PDF
(lower subimage)[X0-Xm]
OBTAIN CDF
OBTAIN
TRANSFORMATIO
N FUNCTION
MAPPING OF NEW
INTENSITY VALUES
NEW HISTOGRAM
DIVIDE HISTOGRAM WITH RESPECT TO
INTENSITY MEAN (X m ).
OBTAIN
HISTOGRAM
OBTAIN PDF
(upper subimage)[Xm-Xl-1]
OBTAIN CDF
OBTAIN
TRANSFORMATIO
N FUNCTION
MAPPING OF NEW
INTENSITY VALUES
+
GHE
GHE
Partition
Merging
BI-HISTOGRAM EQUALIZATION RESULTS
BHE
BIHISTOGRAM EQUALIZATION DRAWBACK
LEVEL SATURATION DUE TO HIGH PROBABLE
INTENSITY VALUES.
BHE
EXAMPLE
WHY IT HAPPENS ?
THOERY OF BIHISTOGRAM EQUALIZATION
WITH A PLATEAU LIMIT .
BIHISTOGRAM CLIPPING HISTOGRAM
ABOVE PLATEAU LIMIT
TL PLATEAU LIMITS FOR LOWER HISTOGRAM.
TU PLATEAU LIMITS FOR UPPER HISTOGRAM.
SELECT PLATEAU LIMIT
BIHISTOGRAM EQUALIZATION WITH A
PLATEAU LIMIT
OBTAIN PDF
(lower subimage)[X0-Xm]
OBTAIN CDF
OBTAIN
TRANSFORMATION
FUNCTION
MAPPING OF NEW
INTENSITY VALUES
NEW HISTOGRAM
DIVIDE HISTOGRAM WITH RESPECT TO
INTENSITY MEAN (X m ).
OBTAIN
HISTOGRAM
OBTAIN PDF
(upper subimage)[Xm-Xl-1]
OBTAIN CDF
OBTAIN
TRANSFORMATION
FUNCTION
MAPPING OF NEW
INTENSITY VALUES
+
GHE
GHE
Partition
Merging
CLIP WRT
AMPLITUDE MEAN
CLIP WRT
AMPLITUDE MEAN
Clipping
BIHISTOGRAM EQUALIZATION WITH A
PLATEAU LIMIT RESULTS
BHEPL
SIMULATION RESULTS
TEST IMAGES GLOBAL
HISTOGRAM
EQUALIZATION
BI-HISTOGRAM
EQUALIZATION
BIHISTOGRAM
EQUALIZATION WITH
PLATEAU LIMIT
DARK 86 126 82 91
BRIGHT 143 126 154 153
LOWCONTRAST 77 124 99 103
MEAN VALUES
SIMULATION RESULTS
LEVEL SATURATION
TEST IMAGES BI-HISTOGRAM
EQUALIZATION
BIHISTOGRAM
EQUALIZATION WITH
PLATEAU LIMIT
WHITE DOT YES NO
d
WHY GRAY SCALE IMAGES INSTEAD
OF COLOUR IMAGES?
.
CONCLUSIONHistogram?
IN AN IMAGE
NOTHING WORSE MORE THAN LOW CONTRAST
GLOBAL HISTOGRAM EQUALIZATION
NOTHING WORSE MORE THAN MEAN CONSERVATION
BI-HISTOGRAM EQUALIZATION
NOTHING WORSE MORE
THAN ………………?
NOTHING WORSE MORE THAN LEVEL SATURATION
BI-HISTOGRAM EQUALIZATION WITH PLATEAU LIMIT
REFERENCESStogram?
Bi-Histogram Equalization with a Plateau Limit
for Digital Image Enhancement
Chen Hee Ooi, Student Member, IEEE, Nicholas Sia Pik Kong,
Student Member, IEEEand Haidi Ibrahim, Member, IEEE
IEEE Transactions on Consumer Electronics, Vol. 55, No. 4,
NOVEMBER 2009
Contrast Enhancement Using Brightness Preserving
Bi-Histogram Equalization
YEONG-TAEG KIM, MEMBER, IEEE
Color Image Enhancement Using Brightness Preserving
Dynamic Histogram Equalization
Nicholas Sia Pik Kong, Student Member, IEEE, and Haidi
Ibrahim, Member, IEEE.
Preserving brightness in histogram equalization
based contrast enhancement techniques
Soong-Der Chen a, Abd. Rahman Ramli
Digital image processing by Gonzalez and Woods
NAMASIVAYA
• Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vivamus et magna. Fusce sed
sem sed magna suscipit egestas.
• Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vivamus et magna. Fusce sed
sem sed magna suscipit egestas.
1
• Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vivamus et magna. Fusce sed
sem sed magna suscipit egestas.
• Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vivamus et magna. Fusce sed
sem sed magna suscipit egestas.
1

Histogram equalization

  • 1.
    BI-HISTOGRAM EQUALIZATION wITH ApLATEAU LIMIT FOR DIGITAL IMAGES. MAHESH MOHAN.M.R GECT S1 ECE ROLL NO: 7 GUIDE : Dr.V.S.SHEEBA OM NAMA SIVAYA
  • 2.
    OBJECTIVE . TO FAMILARIZE WITH .HISTOGRAMEQUALIZATION .DIFFERENT EQUALIZATION METHODS .THEIR DRAWBACK AND HOW IT IS RECTIFIED.
  • 3.
    FLOw OF SEMINAR. 1.WHATIS A DIGITAL IMAGE? 2.WHAT IS A HISTOGRAM? 3.WHAT IS HISTOGRAM EQUALIZATION? 4.DIFFERENT EQUALIZATION METHODS AND ITS DRAWBACK. 5.HOW DRAWBACK OF EACH METHOD IS RECTIFED?
  • 4.
  • 5.
    dGray Image Image wHAT ISA GRAy SCALE IMAGE? 243 121 . 34 21 . . . Gray level matrix 0 255
  • 6.
    Image matrix Image wHAT ISA COLOUR IMAGE? 234 212 123 135 231 233 . 121 222 . . 243 121 . . . . 112 167 . . . . Red matrix Green matrix Blue matrix . .
  • 7.
    wHAT IS AHISTOGRAM? Consider a 5x5 image with integer intensities in the range between zero and seven: 0 7 3 2 3 0 0 0 6 7 7 7 2 2 0 1 1 0 4 1 0 0 7 4 1 Image matrixImage 0 1 2 3 4 5 6 7 Gray scale Black White
  • 8.
    wHAT IS AHISTOGRAM? Consider a 5x5 image with integer intensities in the range between one and eight: 0 7 3 2 3 0 0 0 6 7 7 7 2 2 0 1 1 0 4 1 0 0 7 4 1 Image matrixImage 0 1 2 3 4 5 6 7 Grey scale Black White Number of pixel with intensity value 0 [h(r0)] = 8
  • 9.
    wHAT IS AHISTOGRAM? 0 7 3 2 3 0 0 0 6 7 7 7 2 2 0 1 1 0 4 1 0 0 7 4 1 Image matrixImage 0 1 2 3 4 5 6 7 Grey scale Black White Number of pixel with intensity value 0 [h(r0)] = 8 Similarly for 1 h(r1) = 4
  • 10.
    wHAT IS AHISTOGRAM? 0 7 3 2 3 0 0 0 6 7 7 7 2 2 0 1 1 0 4 1 0 0 7 4 1 Image matrixImage Similarly INTENSITY r 0 1 2 3 4 5 6 7 NUMBER of pixels of r h(r)   h(r0)=8   h(r1)=4 h(r2)=3  h(r3)=2  h(r4)=2  h(r5)=0  h(r6)=1   h(r7)=5
  • 11.
    r wHAT IS AHISTOGRAM? Image matrix 0 1 2 3 4 5 6 7 HISTOGRAM Intensity values Number of pixels of intensity r r 0 1 2 3 4 5 6 7 h(r)   8     4    3     2     2     0     1     5 Histogram plots the number of pixels for each intensity value. h(r)
  • 12.
    What is ahistogram? r 0 1 2 3 4 5 6 7 h(r) 8 4 3 2 2 0 1 5 p(r) h(r)/(5*5) 8/25 4/25 3/25 2/25 2/25 0/25 1/25 5/25 HISTOGRAM - h(r) - Y axis - number of intensities NORMALIZED HISTOGRAM - p(r) - Y axis - probability of intensities
  • 13.
    SAMPLE IMAGES ANDITS HISTOGRAM Bright image Intensity range 0 - 255
  • 14.
    SAMPLE IMAGES ANDITS HISTOGRAM Bright image Intensity range 0 - 255 0 50 100 150 200 255 Intensity No:ofpixels DARK BRIGHT h(r)
  • 15.
    SAMPLE IMAGES ANDITS HISTOGRAM Dark image Intensity range 0 - 255
  • 16.
    SAMPLE IMAGES ANDITS HISTOGRAM Dark image Intensity range 0 - 255 0 50 100 150 200 255 Intensity No:ofpixels h(r)
  • 17.
    SAMPLE IMAGES ANDITS HISTOGRAM Low contrast image Intensity range 0 - 255
  • 18.
    SAMPLE IMAGES ANDITS HISTOGRAM Light image Intensity range 0 - 255 0 50 100 150 200 255 Intensity No:ofpixels h(r)
  • 19.
    SAMPLE IMAGES ANDITS HISTOGRAM Bright image Dark image Low contrast image
  • 20.
    SAMPLE IMAGES ANDITS HISTOGRAM High contrast image Intensity range 0 - 255 0 50 100 150 200 255 Intensity No:ofpixels h(r)
  • 21.
    CoNCEPt oF histogramEQUaLiZatioN ORIGINAL IMAGE EQUALIZED IMAGE MAXIMIZES ENTROPY OF AN IMAGE. s1 s2
  • 22.
    thEorY BEhiND histogram EQUaLiZatioN TRANSFORMATIONFUNCTION THAT MAPS THE INPUT INTENSITY TO ALL AVAILABLE INTENSITIES. I/p intensity O/p intensity
  • 23.
  • 24.
    THEORY BEHIND HISTOGRAM EQUALIZATION CUMULATIVEDISTRIBUTION FUNCTION T(r) 0 50 100 150 200 255 [76 – 213] [0 – 48] [15 – 100] [25 – 125] O/P INTENSITY = X0 + [( Xl-1 –X0 )*C(x)] I/P intensity
  • 25.
  • 26.
    GLOBAL HISTOGRAM EQUALIZATION OBTAIN HISTOGRAM OBTAINPDF OBTAIN CDF OBTAIN TRANSFORMATIO N FUNCTION MAPPING OF NEW INTENSITY VALUES NEW HISTOGRAM Original histogram M*N PDF 1.. CDF 1 x0 XL-1 O/P x0 XL-1 MappingTransformation function t1 t2 t2 New histogram t1t1 t2 t2t1t2t1
  • 27.
  • 28.
    GLOBAL HISTOGRAM EQUALIZATION DRAWBACK DONOT CONSERVE THE MEAN. WHY MEAN IMPORTANT? Video frames GHE
  • 29.
    THEORY OF BIHISTOGRAMEQUALIZATION HISTOGRAM EQUALIZED SEPERATELY AROUND MEAN. THUS CONSERVE THE MEAN. ORIGINAL HISTOGRAM BIHISTOGRAM EQUALIZED
  • 30.
    BIHISTOGRAM EQUALIZATION OBTAIN PDF (lowersubimage)[X0-Xm] OBTAIN CDF OBTAIN TRANSFORMATIO N FUNCTION MAPPING OF NEW INTENSITY VALUES NEW HISTOGRAM DIVIDE HISTOGRAM WITH RESPECT TO INTENSITY MEAN (X m ). OBTAIN HISTOGRAM OBTAIN PDF (upper subimage)[Xm-Xl-1] OBTAIN CDF OBTAIN TRANSFORMATIO N FUNCTION MAPPING OF NEW INTENSITY VALUES + GHE GHE Partition Merging
  • 31.
  • 32.
    BIHISTOGRAM EQUALIZATION DRAWBACK LEVELSATURATION DUE TO HIGH PROBABLE INTENSITY VALUES. BHE EXAMPLE WHY IT HAPPENS ?
  • 33.
    THOERY OF BIHISTOGRAMEQUALIZATION WITH A PLATEAU LIMIT . BIHISTOGRAM CLIPPING HISTOGRAM ABOVE PLATEAU LIMIT TL PLATEAU LIMITS FOR LOWER HISTOGRAM. TU PLATEAU LIMITS FOR UPPER HISTOGRAM. SELECT PLATEAU LIMIT
  • 34.
    BIHISTOGRAM EQUALIZATION WITHA PLATEAU LIMIT OBTAIN PDF (lower subimage)[X0-Xm] OBTAIN CDF OBTAIN TRANSFORMATION FUNCTION MAPPING OF NEW INTENSITY VALUES NEW HISTOGRAM DIVIDE HISTOGRAM WITH RESPECT TO INTENSITY MEAN (X m ). OBTAIN HISTOGRAM OBTAIN PDF (upper subimage)[Xm-Xl-1] OBTAIN CDF OBTAIN TRANSFORMATION FUNCTION MAPPING OF NEW INTENSITY VALUES + GHE GHE Partition Merging CLIP WRT AMPLITUDE MEAN CLIP WRT AMPLITUDE MEAN Clipping
  • 35.
    BIHISTOGRAM EQUALIZATION WITHA PLATEAU LIMIT RESULTS BHEPL
  • 36.
    SIMULATION RESULTS TEST IMAGESGLOBAL HISTOGRAM EQUALIZATION BI-HISTOGRAM EQUALIZATION BIHISTOGRAM EQUALIZATION WITH PLATEAU LIMIT DARK 86 126 82 91 BRIGHT 143 126 154 153 LOWCONTRAST 77 124 99 103 MEAN VALUES
  • 37.
    SIMULATION RESULTS LEVEL SATURATION TESTIMAGES BI-HISTOGRAM EQUALIZATION BIHISTOGRAM EQUALIZATION WITH PLATEAU LIMIT WHITE DOT YES NO
  • 38.
    d WHY GRAY SCALEIMAGES INSTEAD OF COLOUR IMAGES? .
  • 39.
    CONCLUSIONHistogram? IN AN IMAGE NOTHINGWORSE MORE THAN LOW CONTRAST GLOBAL HISTOGRAM EQUALIZATION NOTHING WORSE MORE THAN MEAN CONSERVATION BI-HISTOGRAM EQUALIZATION NOTHING WORSE MORE THAN ………………? NOTHING WORSE MORE THAN LEVEL SATURATION BI-HISTOGRAM EQUALIZATION WITH PLATEAU LIMIT
  • 40.
    REFERENCESStogram? Bi-Histogram Equalization witha Plateau Limit for Digital Image Enhancement Chen Hee Ooi, Student Member, IEEE, Nicholas Sia Pik Kong, Student Member, IEEEand Haidi Ibrahim, Member, IEEE IEEE Transactions on Consumer Electronics, Vol. 55, No. 4, NOVEMBER 2009 Contrast Enhancement Using Brightness Preserving Bi-Histogram Equalization YEONG-TAEG KIM, MEMBER, IEEE Color Image Enhancement Using Brightness Preserving Dynamic Histogram Equalization Nicholas Sia Pik Kong, Student Member, IEEE, and Haidi Ibrahim, Member, IEEE. Preserving brightness in histogram equalization based contrast enhancement techniques Soong-Der Chen a, Abd. Rahman Ramli Digital image processing by Gonzalez and Woods
  • 41.
  • 42.
    • Lorem ipsumdolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. • Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. 1
  • 43.
    • Lorem ipsumdolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. • Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. 1