Stabilization of Furuta Pendulum: A Backstepping
 Based Hierarchical Sliding Mode Approach with
              Disturbance Estimation


                          by
                 Shubhobrata Rudra
               Inspire Research Fellow
         Electrical Engineering Department
                 Jadavpur University
                        Kolkata
Content

A Few Words on Rotating Pendulum
Adaptive Backstepping Sliding Mode Control
Hierarchical Sliding Mode Control
Control Law for Rotating Pendulum
Simulation Results
Conclusions
A Few Words on Rotating Pendulum

                             φ
                                 u

                                                        Degree of Freedom: 2
                                                     θ No of Control Input: 1




State Model of Rotating Pendulum System
          
          q1   p1
                                                                       q1=θ
                                                 2
          
          p1   k 2 tan q 2       k 3 sin q 2 p   1
                                                     k 1 u / cos q 2   q2=φ
          
          q2   p2
          
          p2   u
Contd.
 Standard State Model of Underactuated System
                   
                   x1   x2
                   
                   x2    f1 X          b1 X u      d1 t
                   
                   x3    x4
                   
                   x4    f2 X          b2 X u      d2 t

                  x1          , x2       , x       , x4    
                                              3



                                                                2
                  f1 X           k 2 tan q 2       k 3 sin q 2 p1

                  f2 X           0

                  g1 X               k 1 sec q 2

                  g2 X           1
Adaptive Backstepping Sliding Mode Control
 Define 1st Error variable & its dynamic as:
                  e1 x1 x1d         &    
                                         e1 x 2                                
                                                                               x1d

 Stabilizing Function:
                                  1
                                               c1 e1      1    1



 Control Lyapunov Function (CLF) and its derivative
                                           1        2    1     2
                             V1                    1
                                                              e1
                                           2             2

 Define 2nd error variable e2 and its derivative as:

         e2    x2    
                     x1 d                      and       
                                                         e2        f1 X        b1 X u   d1 t   1 d
                                                                                               x       1
                                  1


 Define first-layer sliding surface s1 and new CLF as
                                                                               1
                    s1       e
                            1 1
                                      e2                and         V2    V1
                                                                                    2
                                                                                   s1
                                                                               2
Contd.
 Derivative of CLF:
               V2
                                        2
                     e1 e 2        c1 e1       s1       1
                                                                e2       c1 e1      1    1
                                                                                             f1 X   b1 X u       d1 t    1 d
                                                                                                                         x         1


 Control Input:
           1
 u1   b1       X        1
                              e2       c1 e1        1       1
                                                                     f1 X           d 1 M tanh s1   1 d
                                                                                                    x       1   h1 s1      1
                                                                                                                                 tanh s1


 Augmented Lyapunov Function:

                                                            1             2
                                                                                                    
                                   V3       V2                       d   1M
                                                                                 and d 1 M    d1M   d 1M
                                                        2       1



 Adaptation Law:
                                                                 
                                                                 
                                                                 d1M                 s
                                                                                   1 1
Hierarchical Sliding Mode Control
 Control Inputs:
          1
u1   b1       X    1
                       e2     c1 e1          1   1
                                                          f1 X               d 1 M tanh s1                     1 d
                                                                                                               x       1    h1 s1      1
                                                                                                                                            tanh s1

          1
u2   b2       X    1
                       e4     c 2 e3         2       2
                                                          f2 X               d 2 M tanh s 2                    2 d
                                                                                                               x       2      h2 s 2       2
                                                                                                                                                tanh s 2

                                       
                                                                        
 Adaptation Laws:                     d1M                s
                                                         1 1         and d 2M                              2
                                                                                                               s2


 Composite control law: u                                u1        u2        u sw


 Define 2nd Layer sliding surface:                                      S                  s
                                                                                           1 1             2
                                                                                                               s2

                                                 b       X u2                b2 X u1                  tanh( S )         K .S
 Coupling Law:             u sw
                                             1 1                         2

                                                                     b
                                                                    1 1
                                                                              X                2
                                                                                                   b2 X



                                                               b    X u1                  b2 X u 2               tanh( S )   KS
 Composite Control Law:                         u
                                                              1 1                     2

                                                                                  b
                                                                                  1 1
                                                                                           X          2
                                                                                                          b2 X
Control Law for Rotating Pendulum System .
 Expression of Control Input for Translational Motion
                1
                                                                                           
     u1    b1        X       1
                                 e2      c1 e1          1   1
                                                                             f1 X          d 1M         1 d
                                                                                                        x           1        h1 s1      1
                                                                                                                                             tanh s1



 Expression of Control Input for Rotational Motion
                     1
                                                                                               
          u2    b2       X       2
                                      e4       c 2 e3           2        2
                                                                                   f2 X        d 2M         3 d
                                                                                                            x            2     h2 s 2        2
                                                                                                                                                  tanh s 2




 Coupling Control Law:
                                                    b1 X u 2                   b2 X u1                  tanh( S )         K .S
                                  u sw
                                                                                   b1 X        b2 X




 Composite Control Law:                                            k1
                                                                              u1     u2           tanh( S )         K .S
                                                            cos q 2
                                           u
                                                                                          k1
                                                                                                    1
                                                                                     cos q 2
Simulation Results
 Initial Conditions:      q1   pi / 3   and   p1   0




          Shaft Position                            Shaft Velocity
Contd.
Phase Portrait of q1-p1
Contd.
 Initial Conditions:     q2   pi / 6   and    p2   0




      Pendulum Position                   Pendulum Velocity
Contd.
Phase Portrait of q2-p2
Conclusions

 Another new method of addressing the stabilization problem for
  underactuated system.

 Can easily be extended to address the stabilization problem of other two
  degree of freedom underactuated mechanical systems.

 Chattering problem can be reduced with the introduction of second
  order sliding mode control.

 Proposed algorithm is applicable for only two-degree of freedom single
  input systems, research can be pursued to make the control algorithm
  more generalized such that it will able to address the control problem of
  any arbitrary underactuated system.
Reference
 K.J. Astrom, and K. Furuta, “Swing up a pendulum by energy control,” Automatica, 36(2), P-
  287–295,2000.
 V. Sukontanakarn and M. Parnichkun, “Real-time optimal control for rotary inverted
  pendulum. American Journal of Applied Sciences,” Vol-6, P-1106–1115, 2009.
 Shailaja Kurode, Asif Chalanga and B. Bandyopadhyay, “Swing-Up and Stabilization of Rotary
  Inverted Pendulum using Sliding Modes,” Preprints of the 18th IFAC World Congress Milano
  (Italy) August 28 - September 2, 2011.
 Hera, P.M., Shiriaev, A.S., Freidovich, L.B., and Mettin, U. ‘Orbital Stabilization of a Pre-
  planned Periodic Motion to Swing up the Furuta Pendulum: Theory and Experiments’, in
  ICRA’09: Proceedings of the 2009 IEEE International Conference on Robotics and Automation,
  12–17 May, IEEE Press, Kobe, Japan, pp. 2971–2976, 2009.
 W.Wang, J. Yi, D. Zhao, and D. Liu, “Design of a stable sliding-mode controller for a class of
  second-order underactuated systems,” IEE Proceedings: Control Theory and Applications, vol.
  151, no. 6, pp. 683–690, 2004.
 F. J. Lin, P. H. Shen, and S. P. Hsu, “Adaptive backstepping sliding mode control for linear
  induction motor drive,” Proc. Inst. Elect. Eng., Electr. Power Appl., vol. 149, no. 3, pp. 184–
  194, 2002.
 S. Sankaranarayanan and F. Khorrami, “Adaptive variable structure control and applications to
  friction compensation,” in Proc. IEEE CDC Conf. Rec., 1997, pp. 4159–4164.
 W. Wang, J. Yi, D. Zhao, and D. Liu, “Hierarchical sliding-mode control method for overhead
  cranes,” Acta Automatica Sinica, vol. 30, no. 5, pp. 784–788, 2004.
 H. H. Lee, Y. Liang, and S. Del, “A sliding-mode antiswing trajectory control for overhead
Thank You

Stabilization of Furuta Pendulum: A Backstepping Based Hierarchical Sliding Mode Approach with Disturbance Estimation

  • 1.
    Stabilization of FurutaPendulum: A Backstepping Based Hierarchical Sliding Mode Approach with Disturbance Estimation by Shubhobrata Rudra Inspire Research Fellow Electrical Engineering Department Jadavpur University Kolkata
  • 2.
    Content A Few Wordson Rotating Pendulum Adaptive Backstepping Sliding Mode Control Hierarchical Sliding Mode Control Control Law for Rotating Pendulum Simulation Results Conclusions
  • 3.
    A Few Wordson Rotating Pendulum φ u Degree of Freedom: 2 θ No of Control Input: 1 State Model of Rotating Pendulum System  q1 p1 q1=θ 2  p1 k 2 tan q 2 k 3 sin q 2 p 1 k 1 u / cos q 2 q2=φ  q2 p2  p2 u
  • 4.
    Contd.  Standard StateModel of Underactuated System  x1 x2  x2 f1 X b1 X u d1 t  x3 x4  x4 f2 X b2 X u d2 t x1 , x2 , x , x4  3 2 f1 X k 2 tan q 2 k 3 sin q 2 p1 f2 X 0 g1 X k 1 sec q 2 g2 X 1
  • 5.
    Adaptive Backstepping SlidingMode Control  Define 1st Error variable & its dynamic as: e1 x1 x1d &  e1 x 2  x1d  Stabilizing Function: 1 c1 e1 1 1  Control Lyapunov Function (CLF) and its derivative 1 2 1 2 V1 1 e1 2 2  Define 2nd error variable e2 and its derivative as: e2 x2  x1 d and  e2 f1 X b1 X u d1 t 1 d x 1 1  Define first-layer sliding surface s1 and new CLF as 1 s1 e 1 1 e2 and V2 V1 2 s1 2
  • 6.
    Contd.  Derivative ofCLF: V2 2 e1 e 2 c1 e1 s1 1 e2 c1 e1 1 1 f1 X b1 X u d1 t 1 d x 1  Control Input: 1 u1 b1 X 1 e2 c1 e1 1 1 f1 X d 1 M tanh s1 1 d x 1 h1 s1 1 tanh s1  Augmented Lyapunov Function: 1 2  V3 V2 d 1M and d 1 M d1M d 1M 2 1  Adaptation Law:   d1M s 1 1
  • 7.
    Hierarchical Sliding ModeControl  Control Inputs: 1 u1 b1 X 1 e2 c1 e1 1 1 f1 X d 1 M tanh s1 1 d x 1 h1 s1 1 tanh s1 1 u2 b2 X 1 e4 c 2 e3 2 2 f2 X d 2 M tanh s 2 2 d x 2 h2 s 2 2 tanh s 2     Adaptation Laws: d1M s 1 1 and d 2M 2 s2  Composite control law: u u1 u2 u sw  Define 2nd Layer sliding surface: S s 1 1 2 s2 b X u2 b2 X u1 tanh( S ) K .S  Coupling Law: u sw 1 1 2 b 1 1 X 2 b2 X b X u1 b2 X u 2 tanh( S ) KS  Composite Control Law: u 1 1 2 b 1 1 X 2 b2 X
  • 8.
    Control Law forRotating Pendulum System .  Expression of Control Input for Translational Motion 1  u1 b1 X 1 e2 c1 e1 1 1 f1 X d 1M 1 d x 1 h1 s1 1 tanh s1  Expression of Control Input for Rotational Motion 1  u2 b2 X 2 e4 c 2 e3 2 2 f2 X d 2M 3 d x 2 h2 s 2 2 tanh s 2  Coupling Control Law: b1 X u 2 b2 X u1 tanh( S ) K .S u sw b1 X b2 X  Composite Control Law: k1 u1 u2 tanh( S ) K .S cos q 2 u k1 1 cos q 2
  • 9.
    Simulation Results  InitialConditions: q1 pi / 3 and p1 0 Shaft Position Shaft Velocity
  • 10.
  • 11.
    Contd.  Initial Conditions: q2 pi / 6 and p2 0 Pendulum Position Pendulum Velocity
  • 12.
  • 13.
    Conclusions  Another newmethod of addressing the stabilization problem for underactuated system.  Can easily be extended to address the stabilization problem of other two degree of freedom underactuated mechanical systems.  Chattering problem can be reduced with the introduction of second order sliding mode control.  Proposed algorithm is applicable for only two-degree of freedom single input systems, research can be pursued to make the control algorithm more generalized such that it will able to address the control problem of any arbitrary underactuated system.
  • 14.
    Reference  K.J. Astrom,and K. Furuta, “Swing up a pendulum by energy control,” Automatica, 36(2), P- 287–295,2000.  V. Sukontanakarn and M. Parnichkun, “Real-time optimal control for rotary inverted pendulum. American Journal of Applied Sciences,” Vol-6, P-1106–1115, 2009.  Shailaja Kurode, Asif Chalanga and B. Bandyopadhyay, “Swing-Up and Stabilization of Rotary Inverted Pendulum using Sliding Modes,” Preprints of the 18th IFAC World Congress Milano (Italy) August 28 - September 2, 2011.  Hera, P.M., Shiriaev, A.S., Freidovich, L.B., and Mettin, U. ‘Orbital Stabilization of a Pre- planned Periodic Motion to Swing up the Furuta Pendulum: Theory and Experiments’, in ICRA’09: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, 12–17 May, IEEE Press, Kobe, Japan, pp. 2971–2976, 2009.  W.Wang, J. Yi, D. Zhao, and D. Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEE Proceedings: Control Theory and Applications, vol. 151, no. 6, pp. 683–690, 2004.  F. J. Lin, P. H. Shen, and S. P. Hsu, “Adaptive backstepping sliding mode control for linear induction motor drive,” Proc. Inst. Elect. Eng., Electr. Power Appl., vol. 149, no. 3, pp. 184– 194, 2002.  S. Sankaranarayanan and F. Khorrami, “Adaptive variable structure control and applications to friction compensation,” in Proc. IEEE CDC Conf. Rec., 1997, pp. 4159–4164.  W. Wang, J. Yi, D. Zhao, and D. Liu, “Hierarchical sliding-mode control method for overhead cranes,” Acta Automatica Sinica, vol. 30, no. 5, pp. 784–788, 2004.  H. H. Lee, Y. Liang, and S. Del, “A sliding-mode antiswing trajectory control for overhead
  • 15.