1
FORMULARIO DE TRIGONOMETRÍA
01 S = θ ⋅ R
1Rad =
360°
2 ⋅ π
1Rad = 57.3°
02
Complementarios
03
Suplementarios
04
Conjugados
θ + θc = 90° θ + θs = 180° θ + θk = 360°
TRIÁNGULOS RECTÁNGULOS
05 h2
= co2
+ ca2
06 A =
B ⋅ H
2
B = Base = ca
H = Altura = co
R = OB
̅̅̅̅ = OC
̅̅̅̅ = OE
̅̅̅̅
07 AB
̅̅̅̅ = Sen(θ) =
co
h
=
1
Csc(θ)
08 OA
̅̅̅̅ = Cos(θ) =
ca
h
=
1
Sec(θ)
09 CD
̅̅̅̅ = Tan(θ) =
co
ca
=
1
Ctg(θ)
=
Sen(θ)
Cos(θ)
10 EF
̅
̅̅
̅ = Ctg(θ) =
ca
co
=
1
Tan(θ)
=
Cos(θ)
Sen(θ)
11 OD
̅̅̅̅ = Sec(θ) =
h
ca
=
1
Cos(θ)
12 OF
̅̅̅̅ = Csc(θ) =
h
co
=
1
Sen(θ)
Si θ ≅ 0 Rad ⇒ {
BC
̅̅̅̅ ≅ AB
̅̅̅̅ ≅ CD
̅̅̅̅
S ≅ Sen(θ) ≅ Tan(θ)
13 ⊿OAB: Sen2
(θ) + Cos2
(θ) = 1 Sen(−θ) = −Sen(θ)
Cos(−θ) = Cos(θ)
Tan(−θ) = −Tan(θ)
14 ⊿OCD: Tan2
(θ) + 1 = Sec2
(θ)
15 ⊿OEF: 1 + Ctg2
(θ) = Csc2
(θ)
2
16 θ = ω ⋅ t
{
x = Cos(t)
y = Sen(t)
x2
+ y2
= 1
17 {
x = Cos(ω ⋅ t)
y = Sen(ω ⋅ t)
18 x2
+ y2
= 1
19 Sen(θ) = θ −
θ3
6
+
θ5
120
−
θ7
5040
+ ⋯
20 Cos(x) = 1 −
θ2
2
+
θ4
24
−
θ6
720
+ ⋯
TRIÁNGULOS OBLICUÁNGULOS
21 α + β + γ = 180°
22
Ley de Senos:
a
Sen(α)
=
b
Sen(β)
=
c
Sen(γ)
= 2 ⋅ Rc
23
Ley de Cosenos:
a2
= b2
+ c2
− 2 ⋅ b ⋅ c ⋅ Cos(α)
b2
= a2
+ c2
− 2 ⋅ a ⋅ c ⋅ Cos(β)
c2
= a2
+ b2
− 2 ⋅ a ⋅ b ⋅ Cos(γ)
24
Ley de Cosenos:
α = ∢Cos (
a2
− b2
− c2
−2 ⋅ b ⋅ c
)
β = ∢Cos (
b2
− a2
− c2
−2 ⋅ a ⋅ c
)
γ = ∢Cos (
c2
− a2
− b2
−2 ⋅ a ⋅ b
)
25
Ley de las Proyecciones:
a = b ⋅ Cos(γ) + c ⋅ Cos(β)
b = a ⋅ Cos(γ) + c ⋅ Cos(α)
c = a ⋅ Cos(β) + b ⋅ Cos(α)
3
26
Ri = (
−a + b + c
2
) ⋅ Tan (
α
2
)
Ri = (
a − b + c
2
) ⋅ Tan (
β
2
)
Ri = (
a + b − c
2
) ⋅ Tan (
γ
2
)
(06) A =
B ⋅ H
2
27 A =
a ⋅ b
2
⋅ Sen(γ) =
a ⋅ c
2
⋅ Sen(β) =
b ⋅ c
2
⋅ Sen(α)
28 A =
1
4
⋅ √(a + b + c) ⋅ (−a + b + c) ⋅ (a − b + c) ⋅ (a + b − c)
IDENTIDADES TRIGONOMÉTRICAS
29
Identidades Trigonométricas Pitagóricas:
Sen2
(θ) + Cos2
(θ) = 1
Tan2
(θ) + 1 = Sec2
(θ)
1 + Ctg2
(θ) = Csc2
(θ)
30 Sen(α + β) = Sen(α) ⋅ Cos(β) + Cos(α) ⋅ Sen(β)
31 Sen(α − β) = Sen(α) ⋅ Cos(β) − Cos(α) ⋅ Sen(β)
32 Cos(α + β) = Cos(α) ⋅ Cos(β) − Sen(α) ⋅ Sen(β)
33 Cos(α − β) = Cos(α) ⋅ Cos(β) + Sen(α) ⋅ Sen(β)
34 Tan(α + β) =
Tan(α) + Tan(β)
1 − Tan(α) ⋅ Tan(β)
35 Tan(α − β) =
Tan(α) − Tan(β)
1 + Tan(α) ⋅ Tan(β)
36 Sen(2 ⋅ α) = 2 ⋅ Sen(α) ⋅ Cos(α)
37 Cos(2 ⋅ α) = Cos2
(α) − Sen2
(α)
38 Tan(2 ⋅ α) =
2 ⋅ Tan(α)
1 − Tan2(α)
39 Sen(α) ⋅ Cos(β) =
Sen(α + β)
2
+
Sen(α − β)
2
40 Cos(α) ⋅ Sen(β) =
Sen(α + β)
2
−
Sen(α − β)
2
41 Cos(α) ⋅ Cos(β) =
Cos(α + β)
2
+
Cos(α − β)
2
4
42 Sen(α) ⋅ Sen(β) = −
Cos(α + β)
2
+
Cos(α − β)
2
43 Sen(α) + Sen(β) = 2 ⋅ Sen (
α + β
2
) ⋅ Cos (
α − β
2
)
44 Sen(α) − Sen(β) = 2 ⋅ Cos (
α + β
2
) ⋅ Sen (
α − β
2
)
45 Cos(α) + Cos(β) = 2 ⋅ Cos (
α + β
2
) ⋅ Cos (
α − β
2
)
46 Cos(α) − Cos(β) = −2 ⋅ Sen (
α + β
2
) ⋅ Sen (
α − β
2
)
π = lim
N→∞
N ⋅ Tan (
180°
N
) = 3.141592 …
Signos:
Cuadrante: I II III IV
Sen(θ) + + - -
Cos(θ) + - - +
Tan(θ) + - + -
Ctg(θ) + - + -
Sec(θ) + - - +
Csc(θ) + + - -
5
Función y CoFunción: F(θ) = coF(θc)
coSenθ coTanθ coSecθ
θ Senθ Cosθ Tanθ Ctgθ Secθ Cscθ
0° 0 1 0 ∞ 1 ∞
15°
(45-30)
√3 − 1
2 ⋅ √2
√3 + 1
2 ⋅ √2
√3 − 1
√3 + 1
√3 + 1
√3 − 1
2 ⋅ √2
√3 + 1
2 ⋅ √2
√3 − 1
30°
1
2
√3
2
1
√3
√3
2
√3
2
45°
1
√2
1
√2
1 1 √2 √2
60°
√3
2
1
2
√3
1
√3
2
2
√3
75°
(30+45)
√3 + 1
2 ⋅ √2
√3 − 1
2 ⋅ √2
√3 + 1
√3 − 1
√3 − 1
√3 + 1
2 ⋅ √2
√3 − 1
2 ⋅ √2
√3 + 1
90° 1 0 ∞ 0 ∞ 1
Sen:
0° 30° 45° 60° 90°
√0 1 2 3 4
2
Cos:
0° 30° 45° 60° 90°
√4 3 2 1 0
2
Tan:
0° 30° 45° 60° 90°
√0 1 2 3 4
√4 3 2 1 0
6
TRIGONOMETRÍA HIPERBÓLICA
47 Senh(x) =
℮x
− ℮−x
2
48 Cosh(x) =
℮x
+ ℮−x
2
49 Tanh(x) =
℮x
− ℮−x
℮x + ℮−x
=
Senh(x)
Cosh(x)
50 Ctgh(x) =
℮x
+ ℮−x
℮x − ℮−x
=
Cosh(x)
Senh(x)
=
1
Tanh(x)
x ≠ 0
51 Sech(x) =
2
℮x + ℮−x
=
1
Cosh(x)
52 Csch(x) =
2
℮x − ℮−x
=
1
Senh(x)
x ≠ 0
53 Si: y = Senh(x) =
℮x
− ℮−x
2
⇒ x = invSenh(y) = Ln (y + √y2 + 1)
54
Cosh2
(x) − Senh2
(x) = 1
1 − Tanh2
(x) = Sech2
(x)
Ctgh2
(x) − 1 = Csch2
(x)
{
x = Cosh(t)
y = Senh(t)
x2
− y2
= 1
55
Senh(−x) = −Senh(x)
Cosh(−x) = Cosh(x)
Tanh(−x) = −Tanh(x)
56 invSenh(x) = Ln (x + √x2 + 1)
57 invCosh(x) = Ln (x + √x2 − 1) x ≥ 1
58 invTanh(x) =
1
2
⋅ Ln (
1 + x
1 − x
) x2
< 1
59 invCtgh(x) =
1
2
⋅ Ln (
x + 1
x − 1
) x2
> 1
60 invSech(x) = Ln (
1 + √1 − x2
x
) 0 < x ≤ 1
7
61 invCsch(x) = Ln (
1
x
+
√x2 + 1
|x|
) x ≠ 0
℮ = lim
N→∞
(1 +
1
N
)
N
= 2.718281 …
TRIGONOMETRÍA VECTORIAL
62 A
⃗
⃗ = (ax, ay, az) 63 A
⃗
⃗ = ax ⋅ î + ay ⋅ ĵ + az ⋅ k
̂
64 |A
⃗
⃗ | = √ax
2 + ay
2 + az
2 65 {
î = (1,0,0)
ĵ = (0,1,0)
k
̂ = (0,0,1)
66
Cosenos Directores.
{
Cos(αx) =
ax
|A
⃗
⃗ |
Cos(αy) =
ay
|A
⃗
⃗ |
Cos(αz) =
az
|A
⃗
⃗ |
68
Vector Unitario.
A
̂ =
A
⃗
⃗
|A
⃗
⃗ |
A
̂ =
(ax, ay, az)
|A
⃗
⃗ |
A
̂ = (
ax
|A
⃗
⃗ |
,
ay
|A
⃗
⃗ |
,
az
|A
⃗
⃗ |
)
67 Cos2(αx) + Cos2
(αy) + Cos2(αz) = 1
69
Producto PUNTO.
A
⃗
⃗ ⊡ B
⃗
⃗ = (ax, ay, az) ⊡ (bx, by, bz) = {
ax ⋅ bx + ay ⋅ by + az ⋅ bz
|A
⃗
⃗ | ⋅ |B
⃗
⃗ | ⋅ Cos(γ)
70
Producto CRUZ.
A
⃗
⃗ ⊠ B
⃗
⃗ = (ax, ay, az) ⊠ (bx, by, bz) = [
î ĵ k
̂
ax ay az
bx by bz
]
71 |A
⃗
⃗ ⊠ B
⃗
⃗ | = |A
⃗
⃗ | ⋅ |B
⃗
⃗ | ⋅ Sen(γ)
72 Area =
|A
⃗
⃗ ⊠ B
⃗
⃗ |
2
=
|A
⃗
⃗ | ⋅ |B
⃗
⃗ | ⋅ Sen(γ)
2
8
73
Producto Mixto.
Volumen = (A
⃗
⃗ ⊠ B
⃗
⃗ ) ⊡ C
⃗
Volumen = [
ax ay az
bx by bz
cx cy cz
]
74
|A
⃗
⃗ ⊠ B
⃗
⃗ |
A
⃗
⃗ ⊡ B
⃗
⃗
= Tan(γ)
75
Proyección (o componente) de A
⃗
⃗ sobre B
⃗
⃗ .
A
⃗
⃗ B = (A
⃗
⃗ ⊡ B
̂) ⋅ B
̂
Elaboró: MCI José A. Guasco.
https://www.slideshare.net/AntonioGuasco1/

Formulario Trigonometria

  • 1.
    1 FORMULARIO DE TRIGONOMETRÍA 01S = θ ⋅ R 1Rad = 360° 2 ⋅ π 1Rad = 57.3° 02 Complementarios 03 Suplementarios 04 Conjugados θ + θc = 90° θ + θs = 180° θ + θk = 360° TRIÁNGULOS RECTÁNGULOS 05 h2 = co2 + ca2 06 A = B ⋅ H 2 B = Base = ca H = Altura = co R = OB ̅̅̅̅ = OC ̅̅̅̅ = OE ̅̅̅̅ 07 AB ̅̅̅̅ = Sen(θ) = co h = 1 Csc(θ) 08 OA ̅̅̅̅ = Cos(θ) = ca h = 1 Sec(θ) 09 CD ̅̅̅̅ = Tan(θ) = co ca = 1 Ctg(θ) = Sen(θ) Cos(θ) 10 EF ̅ ̅̅ ̅ = Ctg(θ) = ca co = 1 Tan(θ) = Cos(θ) Sen(θ) 11 OD ̅̅̅̅ = Sec(θ) = h ca = 1 Cos(θ) 12 OF ̅̅̅̅ = Csc(θ) = h co = 1 Sen(θ) Si θ ≅ 0 Rad ⇒ { BC ̅̅̅̅ ≅ AB ̅̅̅̅ ≅ CD ̅̅̅̅ S ≅ Sen(θ) ≅ Tan(θ) 13 ⊿OAB: Sen2 (θ) + Cos2 (θ) = 1 Sen(−θ) = −Sen(θ) Cos(−θ) = Cos(θ) Tan(−θ) = −Tan(θ) 14 ⊿OCD: Tan2 (θ) + 1 = Sec2 (θ) 15 ⊿OEF: 1 + Ctg2 (θ) = Csc2 (θ)
  • 2.
    2 16 θ =ω ⋅ t { x = Cos(t) y = Sen(t) x2 + y2 = 1 17 { x = Cos(ω ⋅ t) y = Sen(ω ⋅ t) 18 x2 + y2 = 1 19 Sen(θ) = θ − θ3 6 + θ5 120 − θ7 5040 + ⋯ 20 Cos(x) = 1 − θ2 2 + θ4 24 − θ6 720 + ⋯ TRIÁNGULOS OBLICUÁNGULOS 21 α + β + γ = 180° 22 Ley de Senos: a Sen(α) = b Sen(β) = c Sen(γ) = 2 ⋅ Rc 23 Ley de Cosenos: a2 = b2 + c2 − 2 ⋅ b ⋅ c ⋅ Cos(α) b2 = a2 + c2 − 2 ⋅ a ⋅ c ⋅ Cos(β) c2 = a2 + b2 − 2 ⋅ a ⋅ b ⋅ Cos(γ) 24 Ley de Cosenos: α = ∢Cos ( a2 − b2 − c2 −2 ⋅ b ⋅ c ) β = ∢Cos ( b2 − a2 − c2 −2 ⋅ a ⋅ c ) γ = ∢Cos ( c2 − a2 − b2 −2 ⋅ a ⋅ b ) 25 Ley de las Proyecciones: a = b ⋅ Cos(γ) + c ⋅ Cos(β) b = a ⋅ Cos(γ) + c ⋅ Cos(α) c = a ⋅ Cos(β) + b ⋅ Cos(α)
  • 3.
    3 26 Ri = ( −a+ b + c 2 ) ⋅ Tan ( α 2 ) Ri = ( a − b + c 2 ) ⋅ Tan ( β 2 ) Ri = ( a + b − c 2 ) ⋅ Tan ( γ 2 ) (06) A = B ⋅ H 2 27 A = a ⋅ b 2 ⋅ Sen(γ) = a ⋅ c 2 ⋅ Sen(β) = b ⋅ c 2 ⋅ Sen(α) 28 A = 1 4 ⋅ √(a + b + c) ⋅ (−a + b + c) ⋅ (a − b + c) ⋅ (a + b − c) IDENTIDADES TRIGONOMÉTRICAS 29 Identidades Trigonométricas Pitagóricas: Sen2 (θ) + Cos2 (θ) = 1 Tan2 (θ) + 1 = Sec2 (θ) 1 + Ctg2 (θ) = Csc2 (θ) 30 Sen(α + β) = Sen(α) ⋅ Cos(β) + Cos(α) ⋅ Sen(β) 31 Sen(α − β) = Sen(α) ⋅ Cos(β) − Cos(α) ⋅ Sen(β) 32 Cos(α + β) = Cos(α) ⋅ Cos(β) − Sen(α) ⋅ Sen(β) 33 Cos(α − β) = Cos(α) ⋅ Cos(β) + Sen(α) ⋅ Sen(β) 34 Tan(α + β) = Tan(α) + Tan(β) 1 − Tan(α) ⋅ Tan(β) 35 Tan(α − β) = Tan(α) − Tan(β) 1 + Tan(α) ⋅ Tan(β) 36 Sen(2 ⋅ α) = 2 ⋅ Sen(α) ⋅ Cos(α) 37 Cos(2 ⋅ α) = Cos2 (α) − Sen2 (α) 38 Tan(2 ⋅ α) = 2 ⋅ Tan(α) 1 − Tan2(α) 39 Sen(α) ⋅ Cos(β) = Sen(α + β) 2 + Sen(α − β) 2 40 Cos(α) ⋅ Sen(β) = Sen(α + β) 2 − Sen(α − β) 2 41 Cos(α) ⋅ Cos(β) = Cos(α + β) 2 + Cos(α − β) 2
  • 4.
    4 42 Sen(α) ⋅Sen(β) = − Cos(α + β) 2 + Cos(α − β) 2 43 Sen(α) + Sen(β) = 2 ⋅ Sen ( α + β 2 ) ⋅ Cos ( α − β 2 ) 44 Sen(α) − Sen(β) = 2 ⋅ Cos ( α + β 2 ) ⋅ Sen ( α − β 2 ) 45 Cos(α) + Cos(β) = 2 ⋅ Cos ( α + β 2 ) ⋅ Cos ( α − β 2 ) 46 Cos(α) − Cos(β) = −2 ⋅ Sen ( α + β 2 ) ⋅ Sen ( α − β 2 ) π = lim N→∞ N ⋅ Tan ( 180° N ) = 3.141592 … Signos: Cuadrante: I II III IV Sen(θ) + + - - Cos(θ) + - - + Tan(θ) + - + - Ctg(θ) + - + - Sec(θ) + - - + Csc(θ) + + - -
  • 5.
    5 Función y CoFunción:F(θ) = coF(θc) coSenθ coTanθ coSecθ θ Senθ Cosθ Tanθ Ctgθ Secθ Cscθ 0° 0 1 0 ∞ 1 ∞ 15° (45-30) √3 − 1 2 ⋅ √2 √3 + 1 2 ⋅ √2 √3 − 1 √3 + 1 √3 + 1 √3 − 1 2 ⋅ √2 √3 + 1 2 ⋅ √2 √3 − 1 30° 1 2 √3 2 1 √3 √3 2 √3 2 45° 1 √2 1 √2 1 1 √2 √2 60° √3 2 1 2 √3 1 √3 2 2 √3 75° (30+45) √3 + 1 2 ⋅ √2 √3 − 1 2 ⋅ √2 √3 + 1 √3 − 1 √3 − 1 √3 + 1 2 ⋅ √2 √3 − 1 2 ⋅ √2 √3 + 1 90° 1 0 ∞ 0 ∞ 1 Sen: 0° 30° 45° 60° 90° √0 1 2 3 4 2 Cos: 0° 30° 45° 60° 90° √4 3 2 1 0 2 Tan: 0° 30° 45° 60° 90° √0 1 2 3 4 √4 3 2 1 0
  • 6.
    6 TRIGONOMETRÍA HIPERBÓLICA 47 Senh(x)= ℮x − ℮−x 2 48 Cosh(x) = ℮x + ℮−x 2 49 Tanh(x) = ℮x − ℮−x ℮x + ℮−x = Senh(x) Cosh(x) 50 Ctgh(x) = ℮x + ℮−x ℮x − ℮−x = Cosh(x) Senh(x) = 1 Tanh(x) x ≠ 0 51 Sech(x) = 2 ℮x + ℮−x = 1 Cosh(x) 52 Csch(x) = 2 ℮x − ℮−x = 1 Senh(x) x ≠ 0 53 Si: y = Senh(x) = ℮x − ℮−x 2 ⇒ x = invSenh(y) = Ln (y + √y2 + 1) 54 Cosh2 (x) − Senh2 (x) = 1 1 − Tanh2 (x) = Sech2 (x) Ctgh2 (x) − 1 = Csch2 (x) { x = Cosh(t) y = Senh(t) x2 − y2 = 1 55 Senh(−x) = −Senh(x) Cosh(−x) = Cosh(x) Tanh(−x) = −Tanh(x) 56 invSenh(x) = Ln (x + √x2 + 1) 57 invCosh(x) = Ln (x + √x2 − 1) x ≥ 1 58 invTanh(x) = 1 2 ⋅ Ln ( 1 + x 1 − x ) x2 < 1 59 invCtgh(x) = 1 2 ⋅ Ln ( x + 1 x − 1 ) x2 > 1 60 invSech(x) = Ln ( 1 + √1 − x2 x ) 0 < x ≤ 1
  • 7.
    7 61 invCsch(x) =Ln ( 1 x + √x2 + 1 |x| ) x ≠ 0 ℮ = lim N→∞ (1 + 1 N ) N = 2.718281 … TRIGONOMETRÍA VECTORIAL 62 A ⃗ ⃗ = (ax, ay, az) 63 A ⃗ ⃗ = ax ⋅ î + ay ⋅ ĵ + az ⋅ k ̂ 64 |A ⃗ ⃗ | = √ax 2 + ay 2 + az 2 65 { î = (1,0,0) ĵ = (0,1,0) k ̂ = (0,0,1) 66 Cosenos Directores. { Cos(αx) = ax |A ⃗ ⃗ | Cos(αy) = ay |A ⃗ ⃗ | Cos(αz) = az |A ⃗ ⃗ | 68 Vector Unitario. A ̂ = A ⃗ ⃗ |A ⃗ ⃗ | A ̂ = (ax, ay, az) |A ⃗ ⃗ | A ̂ = ( ax |A ⃗ ⃗ | , ay |A ⃗ ⃗ | , az |A ⃗ ⃗ | ) 67 Cos2(αx) + Cos2 (αy) + Cos2(αz) = 1 69 Producto PUNTO. A ⃗ ⃗ ⊡ B ⃗ ⃗ = (ax, ay, az) ⊡ (bx, by, bz) = { ax ⋅ bx + ay ⋅ by + az ⋅ bz |A ⃗ ⃗ | ⋅ |B ⃗ ⃗ | ⋅ Cos(γ) 70 Producto CRUZ. A ⃗ ⃗ ⊠ B ⃗ ⃗ = (ax, ay, az) ⊠ (bx, by, bz) = [ î ĵ k ̂ ax ay az bx by bz ] 71 |A ⃗ ⃗ ⊠ B ⃗ ⃗ | = |A ⃗ ⃗ | ⋅ |B ⃗ ⃗ | ⋅ Sen(γ) 72 Area = |A ⃗ ⃗ ⊠ B ⃗ ⃗ | 2 = |A ⃗ ⃗ | ⋅ |B ⃗ ⃗ | ⋅ Sen(γ) 2
  • 8.
    8 73 Producto Mixto. Volumen =(A ⃗ ⃗ ⊠ B ⃗ ⃗ ) ⊡ C ⃗ Volumen = [ ax ay az bx by bz cx cy cz ] 74 |A ⃗ ⃗ ⊠ B ⃗ ⃗ | A ⃗ ⃗ ⊡ B ⃗ ⃗ = Tan(γ) 75 Proyección (o componente) de A ⃗ ⃗ sobre B ⃗ ⃗ . A ⃗ ⃗ B = (A ⃗ ⃗ ⊡ B ̂) ⋅ B ̂ Elaboró: MCI José A. Guasco. https://www.slideshare.net/AntonioGuasco1/