TRIPLE INTEGRALS



  Example 1.Calculate the value of multiple integral           E
                                                                 y 2 z 2 dV where
                                           2    2
E is bounded by the paraboloid x = 1 − y − z and plane x = 0.
  Solution. In the rectangular coordinate system we can describe our region
E as
              E = {(x, y, z)|(y, z) ∈ D, 0 ≤ x ≤ 1 − y 2 − z 2 }
where
                                 D = {(x, y)|y 2 + z 2 ≤ 1}.
Therefore
                                                       2
                                                           −z 2
                 y 2 z 2 dV =         y 2 z 2 x|1−y
                                                0                 dA =       y 2 z 2 (1 − y 2 − z 2 )dA.
             E                   D                                       D

In order to evaluate the double integral over D it is better to use the polar
coordinate system. We set

                                     z = rcosθ,              y = rsinθ.

In the polar coordinate system we can describe the region D as

                         D = {(r, θ)|0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}.

So we have
                                2π         1                                                        2π       1
             2 2                               2   2        2      2         2                                               sin2 (2θ)
             y z dV =                          r cos θr sin θ(1−r )rdrdθ =                                       (r5 −r7 )             drdθ =
         E                  0          0                                                        0        0                      4
                                     2π                                                    2π
                                        r6 r8 sin2 (2θ) 1       1
                                       ( − )           |0 dθ =                                  sin2 (2θ)dθ.
                                 0      6  8     4             86                      0

Note that
                                                           1    1
                                     sin2 (2θ) =             θ − sin(4θ).
                                                           2    8
                                                                                     Typeset by AMS-TEX
                                                       1
1 1   1              π
                                                   y 2 z 2 dV =       ( θ − sin(4θ))|2π =
                                                                                     0       .
                                              E                     86 2   8              86

    Example 2.Calculate the value of multiple integral     H
                                                             z 3 x2 + y 2 + z 2 dV
where H is the solid hemisphere with the center at the origin, radius 1, that
lies above xy-plane.
    Solution.
    Using the spherical coordinates we can describe the hemisphere H as

                                                                                                                       π
                         H = {(x, y, z)|0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤                                                   }.
                                                                                                                       2

Then we have

                                                                         π
                                                                         2        2π             1
                         3
                     z        x2 + y 2 + z 2 dV =                                                    ρ3 cos3 φρ3 sinφdρdθdφ
             H                                                       0        0              0
                 π                                                                               π
                             2π           1                                                                2π
                 2
                                               6      3
                                                                                                 2              ρ7
     =                                        ρ cos φsinφdρdθdφ =                                                  cos3 φsinφ|1 dθdφ
                                                                                                                              0
             0           0            0                                                      0         0        7
                     π                                                                   π
                                 2π
         1           2                                                   2π              2                                    2π        π
    =                                 cos3 φsinφdθdφ =                                       cos3 φsinφdφ = −                    cos4 φ|02

         7       0           0                                            7          0                                        28
                                                                                                                                       2π
                                                                                                                                    =      .
                                                                                                                                        28

   Example 3. Find the volume of the given solid. Under the paraboloid
z = x2 + 4y 2 and above the rectangle R = [0, 2] × [1, 4].
   Solution.

                                                                         2       4                                        2
                                                                                                                                    4
  volume =                            (x2 +4y 2 )dA =                                (x2 +4y 2 )dydx =                        (x2 y+ y 3 )|4 dx =
                                                                                                                                           1
                                  R                                  0       1                                        0             3
                                                           2
                                                               (3x2 + 84)dx = (x3 + 84x)|2 = 8 + 168 = 176.
                                                                                         0
                                                       0



   Example 4. Calculate the multiple integral       T
                                                      ydV , where T is the
tetrahedron bounded by the planes x = 0, y = 0, z = 0 and 2x + y + z = 2.
   Solution.
                                   2
1       2−2x    2−2x−y                                  1       2−2x
                                                                                                           2−2x−y
                 ydV =                                              ydzdydx =                           zy|0      dydx =
             T               0       0           0                                   0       0
                                     1        2−2x
                                                     (2y − 2xy − y 2 )dydx =
                                     0    0
    1                    3                               1
                        y 2−2x                                                                          (2 − 2x)3
        (y 2 − xy 2 −    )|    dx =                          ((2 − 2x)2 − x(2 − 2x)2 −                            dx =
0                       3 0                          0                                                      3
                                                                        1
                                                               4                           1             1
                                                                            (1 − x)3 dx = − (1 − x)4 |1 = .
                                                                                                      0
                                                               3    0                      3             3




                                                                3

Example triple integral

  • 1.
    TRIPLE INTEGRALS Example 1.Calculate the value of multiple integral E y 2 z 2 dV where 2 2 E is bounded by the paraboloid x = 1 − y − z and plane x = 0. Solution. In the rectangular coordinate system we can describe our region E as E = {(x, y, z)|(y, z) ∈ D, 0 ≤ x ≤ 1 − y 2 − z 2 } where D = {(x, y)|y 2 + z 2 ≤ 1}. Therefore 2 −z 2 y 2 z 2 dV = y 2 z 2 x|1−y 0 dA = y 2 z 2 (1 − y 2 − z 2 )dA. E D D In order to evaluate the double integral over D it is better to use the polar coordinate system. We set z = rcosθ, y = rsinθ. In the polar coordinate system we can describe the region D as D = {(r, θ)|0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}. So we have 2π 1 2π 1 2 2 2 2 2 2 2 sin2 (2θ) y z dV = r cos θr sin θ(1−r )rdrdθ = (r5 −r7 ) drdθ = E 0 0 0 0 4 2π 2π r6 r8 sin2 (2θ) 1 1 ( − ) |0 dθ = sin2 (2θ)dθ. 0 6 8 4 86 0 Note that 1 1 sin2 (2θ) = θ − sin(4θ). 2 8 Typeset by AMS-TEX 1
  • 2.
    1 1 1 π y 2 z 2 dV = ( θ − sin(4θ))|2π = 0 . E 86 2 8 86 Example 2.Calculate the value of multiple integral H z 3 x2 + y 2 + z 2 dV where H is the solid hemisphere with the center at the origin, radius 1, that lies above xy-plane. Solution. Using the spherical coordinates we can describe the hemisphere H as π H = {(x, y, z)|0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ }. 2 Then we have π 2 2π 1 3 z x2 + y 2 + z 2 dV = ρ3 cos3 φρ3 sinφdρdθdφ H 0 0 0 π π 2π 1 2π 2 6 3 2 ρ7 = ρ cos φsinφdρdθdφ = cos3 φsinφ|1 dθdφ 0 0 0 0 0 0 7 π π 2π 1 2 2π 2 2π π = cos3 φsinφdθdφ = cos3 φsinφdφ = − cos4 φ|02 7 0 0 7 0 28 2π = . 28 Example 3. Find the volume of the given solid. Under the paraboloid z = x2 + 4y 2 and above the rectangle R = [0, 2] × [1, 4]. Solution. 2 4 2 4 volume = (x2 +4y 2 )dA = (x2 +4y 2 )dydx = (x2 y+ y 3 )|4 dx = 1 R 0 1 0 3 2 (3x2 + 84)dx = (x3 + 84x)|2 = 8 + 168 = 176. 0 0 Example 4. Calculate the multiple integral T ydV , where T is the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and 2x + y + z = 2. Solution. 2
  • 3.
    1 2−2x 2−2x−y 1 2−2x 2−2x−y ydV = ydzdydx = zy|0 dydx = T 0 0 0 0 0 1 2−2x (2y − 2xy − y 2 )dydx = 0 0 1 3 1 y 2−2x (2 − 2x)3 (y 2 − xy 2 − )| dx = ((2 − 2x)2 − x(2 − 2x)2 − dx = 0 3 0 0 3 1 4 1 1 (1 − x)3 dx = − (1 − x)4 |1 = . 0 3 0 3 3 3