SlideShare a Scribd company logo
1 of 11
Download to read offline
The Past, Present, and Future of
Podiatric Biomechanics
                                                                        CRAIG B. PAYNE, DipPod(NZ), MPH*




The author places the history and development of podiatric biomechan-
ics, as well as current thinking about its underpinnings and future, in the
context of a theoretical framework drawn from the philosophy and soci-
ology of science. This analysis sets the stage for an exploration of the
possible future directions in which podiatric biomechanics could develop.
(J Am Podiatr Med Assoc 88(2): 53-63, 1998)




In order to look ahead in the field of podiatric biome-     chanics that deals specifically with the interactions
chanics, it is necessary to understand the past. The        of the foot with the lower extremity.3 However, the
philosophy, sociology, and history of science provide       use of the adjective “podiatric” before “biomechan-
conceptual frameworks that can be used to explain           ics” refers here to the particular “brand” of biome-
changes that have occurred in podiatric medical             chanics that is commonly used in podiatric medical
practice and serve as guides to the future. The pur-        practice. Its principles have been widely adopted in
pose of this article is to analyze the development of       other disciplines.4, 5 Historically, podiatric biome-
what is commonly referred to as podiatric biome-            chanics as a clinical discipline has developed outside
chanics in the context of one of the main theories of       the mainstream of the scientific community of bio-
the historical development of scientific disciplines.       mechanics, itself only one area within the wider sci-
This retrospective analysis suggests that it may be         ence of biomedical engineering, of which orthopedic
time for changes to occur in the clinical practice of       biomechanics is considered a part.6
podiatric biomechanics.                                         Podiatric biomechanics as it is commonly applied
                                                            today in clinical practice, in the form of the function-
Podiatric Biomechanics                                      al foot orthosis,7, 8 is based on work begun by Root
                                                            and his colleagues over 30 years ago, with the semi-
Few would deny the importance of biomechanics in            nal publication, Normal and Abnormal Function of
podiatric medical practice. Merton L. Root recently         the Foot, appearing in 1977.9 Biomechanical princi-
wrote: “Biomechanics is a necessary basic science           ples were widely taught in podiatric colleges and
for the field of Podiatry. No specialty in the field of     continuing-education courses even before publica-
medicine is more intimately involved, on an everyday        tion of that work.10-12 Other early publications includ-
basis, with the clinical application of biomechanics.       ed a manual written by Thomas Sgarlato10 used at the
The understanding of basic mechanics and biome-             California College of Podiatric Medicine and two ear-
chanics of the lower extremity can provide the Podi-        lier works by Root et al on clinical examination11 and
atrist with an invaluable diagnostic ability that can-      neutral-position casting methods.12 After gaining
not be otherwise matched.”1 The term “biomechan-            wide acceptance in clinical practice in the US, the
ics” is frequently misused, but it can be defined as        concepts later spread to other countries, including
“the application of mechanical laws to living struc-        the United Kingdom, 13 Australia, 14 and New Zea-
tures, as to a locomotor system.” 2 Podiatric biome-        land.15 More recently Root has provided insight into
chanics has been defined as that branch of biome-           how the functional foot orthosis was developed.16, 17
                                                                Before the work of Root and colleagues, there was
  *Lecturer, Department of Podiatry, La Trobe University,   no uniform or widely accepted podiatric theory of
Bundoora, Victoria 3083, Australia.                         foot biomechanics to guide therapy. Early contribu-



Volume 88 • Number 2 • February 1998                                                                             53
tions to the literature18 include a description in 1845    its wide acceptance and is based on deviations from
by Durlacher19 of a built-up leather inlay used to treat   what Root et al considered to be normal alignment.
mechanical foot problems. Thomas 20 in 1874 de-            Any variation from that normal alignment as they
scribed the use of additions to the outer sole of the      defined it was considered to cause abnormal foot
shoe to treat foot disorders. A different approach         function, resulting in a particular set of signs and
was taken in 1888 by Whitman,21 who used a steel su-       symptoms, depending on the nature of the variation.
pinated device with a high medial and lateral flange       The variation is carefully measured,11 and then a
that was designed to press on the navicular, causing       cast 8, 12, 30 is made of the foot in its neutral position to
the foot to invert by force or from muscular contrac-      capture these deviations in alignment. A functional
tion due to pain. Roberts 22 in 1916 developed a metal     foot orthosis7, 8, 17 is then constructed, with posts
brace similar to the Whitman device that had a deep        attached to position either the forefoot or the rear-
inverted heel cup with medial and lateral clips.           foot or both in the appropriate alignment, thereby
Morton23 in the 1940s advocated the use of an insole       restoring what is considered normal function.
with a medial forefoot extension to functionally               The years since Root et al first elucidated the theory
lengthen the first ray. Early contributions from podia-    have seen a number of developments, including the
try include that of Schuster,24 who in the 1920s devel-    use of extrinsic forefoot posting, 8 application of
oped what became known as the Roberts-Whitman              direct pressure on the fourth and fifth metatarsal
brace, which combined features of both devices.            heads during the neutral-position casting,8 improve-
   In 1948, Schreiber and Weinerman25 proposed that        ments in materials technology,31 advances in under-
an inverted or everted position of the forefoot re-        standing of the influence of positional variations in
quired balancing. In 1950, Levy26 developed a support      the subtalar joint axis,32-34 the medial heel skive tech-
combined with a toe crest that became known as the         nique,35 the inverted orthosis,36 cast sectioning,37, 38
Levy mold; it had a thick leather cover, with the sup-     the DC (direct control) inverted wedge,39 the use of
port made of a latex compound. Root later used and         scanners 40 to replace the plaster casting process, and
modified this device before moving on to rigid plas-       the use of computer technology during the manufac-
tics. At this time, the foot tended to be viewed as a      ture of orthoses.40, 41
static structure, with the height of the arch consid-          The widespread application of the principles of
ered paramount. More detailed descriptive accounts         podiatric biomechanics in clinical practice has not
of the historical development of mechanical foot           been accompanied by an abundance of published
therapy are available elsewhere.18, 27-29                  articles in scientific journals describing empirical
   It is difficult to appreciate the history of a disci-   studies. Virtually all of the material in even the most
pline without recognizing the broader context, the         recently published textbooks 5, 7, 8, 42, 43 as well as the
factors that have contributed to the shaping of that       content of courses offered at podiatric medical col-
history. Schuster18 noted that at the turn of the centu-   leges and in continuing education programs reflects
ry podiatric orthopedics began to develop its own          the clinical experience of talented practitioners and
unique characteristics because of the limitations on       educators. The field is characterized by strongly assert-
the scope of podiatric practice, which encouraged an       ed opinions that are widely accepted but are unsup-
emphasis on mechanical approaches. It was in this          ported by data from well-controlled studies or exper-
context that Root and his colleagues developed their       iments. Often, challenges to these established views
work, which had a dramatic impact on the clinical          are greeted with antagonism 44 and a confusion of fact
practice of podiatric medicine. They brought togeth-       with theory. Strongly promulgated postulates tend to
er a diverse and apparently incoherent body of litera-     discourage further work that will enhance understand-
ture on foot mechanics and developed the concepts          ing. Yet, as the profession develops a more critical atti-
of the neutral position of the subtalar joint and the      tude toward its underpinnings, the theory is being more
forefoot-rearfoot relationship when the midtarsal          systematically and objectively evaluated, and postu-
joint is “locked,” while introducing a theoretical         lates and assumptions that have become entrenched
coherence to the field.                                    orthodoxy are increasingly being challenged.45-47
   The theory first proposed by Root and his col-
leagues as a protocol for the management of foot dis-      Philosophy of Science
orders constituted a dramatic shift in the understand-
ing of the foot and its mechanical relationship to the     The philosophy of science is concerned with the
rest of the kinetic chain, emphasizing the foot as a       nature and foundations of what is considered to be
dynamic rather than a static structure. Their theoreti-    scientific knowledge, while the sociology of science
cal framework has remained largely unchanged since         concerns the social processes involved in the pro-



54                                                           Journal of the American Podiatric Medical Association
duction of this scientific knowledge. Many philoso-           “paradigms” are overthrown and replaced by other
phers and sociologists have proffered theories about          paradigms.53-59 His account of the progress of scientif-
the development of scientific thought.48-50 The discus-       ic inquiry sees science as consisting of long periods
sion here, however, is restricted to what is relevant         of orderly, disciplined work—which he called “nor-
to the field of podiatric biomechanics. The discus-           mal science”—punctuated by periods of intellectual
sion is admittedly superficial, with no attempt made          ferment leading to revolutions in which the old theo-
to situate it within the wider debate over the philoso-       retical order is overthrown, after which a new period
phy of science.                                               of normal science begins. Normal science is charac-
   Positivism, once considered the dominant view of           terized by the collective acceptance of a certain para-
science, holds that science proceeds by means of a            digm, or framework of ideas. This set of assumptions
process of deriving observational predictions and             determines what is considered acceptable “science”
hypotheses from theories and then testing them                or “practice” at any given time. Practitioners direct
empirically.48 This process provides the basis for            their work toward solving problems that are deter-
decisions among competing theories. Scientific                mined by or relevant to the dominant paradigm at the
knowledge is seen as both rational and objective.             time. Kuhn’s central argument is that scientific con-
The positivist approach to the historical development         cepts must be understood within the particular his-
of science assumes that scientific knowledge is in a          torical and social context in which they developed.
continuous state of accumulation and growth: More             This is an appropriate view to adopt for an explo-
and more areas are explored, established areas are            ration of the history and future course of podiatric
examined in more and more detail, increasingly accu-          biomechanics: It can help explain the field’s past as
rate observations are made, and increasingly sophis-          well as help predict its future.
ticated experiments and observations are carried
out. In this way, new concepts and theories to explain        A Paradigm in Podiatric Biomechanics
reality evolve, and knowledge grows. The history of a
particular scientific discipline is seen as a linear devel-   A paradigm is difficult to define precisely, but it
opment toward scientific truth by means of steadily           includes scientific laws and theoretical assumptions
improving scientific methods. In this view, science is        as well as how they are applied. Kuhn characterized
fundamentally evolutionary and progressivist.                 paradigms as “universally recognized achievements,
   The descriptive accounts of the history of podi-           that for a long time provide model problems and
atric biomechanics by Schuster18 and Levitz et al27           solutions to a community of practitioners.”51(p176) The
illustrate this positivist approach. For example,             paradigm reflects the unique set of beliefs, values,
Schuster18 considers the forefoot balancing described         and methods shared by this community of practition-
by Schreiber and Weinerman25 in 1948 as the prede-            ers, a particular worldview that shapes scientific
cessor of the forefoot posting developed by Root.             thinking and action. Paradigms structure scientific
Yet, although Root et al 9 cite Schreiber and Weiner-         observation in particular ways: Observations are
man’s work, there is no evidence that they were               made in light of the concepts and theories that are
influenced by it. Similarly, Starrett 29 claims that the      embedded in the paradigm. Kuhn’s theory was con-
Whitman device 21 had a profound effect on the devel-         ceived as a theory of the history of scientific discov-
opment of the modern functional foot orthosis. How-           ery, but his original concept of the scientific paradigm
ever, Blake’s development of the inverted orthotic            has since been applied to technological develop-
technique was not influenced by the Whitman device            ment 60; thus his notion of “paradigm” is very much
(R Blake, DPM, personal communication, 1997),                 applicable to the discipline of podiatric biomechanics.
although there are conceptual similarities between               The process of the initial formation of a paradigm
the two. Also, while Anthony 8 refers to the influence        typically starts with attempts to resolve a particular
of the Levy mold on Root’s development of the func-           range of problems or develop a body of theoretical
tional orthosis, the functional foot orthosis actually        knowledge about some aspect of the world. In this
bears no resemblance to the Levy device. These brief          stage, which Kuhn called the “pre-scientific” period,
examples suggest that podiatric biomechanics did              interpretations of the problem under inquiry are dis-
not develop in a linear fashion.                              organized and diverse. Initial research studies and
   Historical studies reveal that the evolution of the        scientific practice are not structured by any coherent
major branches of science does not exhibit the struc-         model or methodology. Kuhn cites as an example the
ture assumed by the positivist approach. Kuhn51, 52           wide diversity of theories in optics before Newton
interpreted the development of scientific knowledge           proposed and defended his particle theory. Similarly,
as a succession of “revolutions” in which dominant            the understanding of podiatric biomechanics before



Volume 88 • Number 2 • February 1998                                                                               55
the advent of Root’s work was not structured or uni-        few anomalies is not sufficient to cause the abandon-
fied by any coherent model or framework.                    ment of a paradigm. When many anomalies emerge,
   The pre-scientific period ends when those engaged        however, a state of “crisis” develops, especially if the
in this activity form a social community and agree to       anomalies pose fundamental challenges to the para-
adhere to a single paradigm. The paradigm embodies          digm and do not yield to persistent attempts by the
the particular conceptual framework in which the            community to resolve them. At that point, the com-
practitioners and researchers of that community             munity begins to express discontent with the existing
operate and in terms of which a particular interpreta-      paradigm, marking the end of the period of “normal
tion of “reality” is generated, so that any new theo-       science.” According to Kuhn, the anomalies that pose
ries generated will be consistent with the view of          problems for the paradigm result in “pronounced
reality supported by the paradigm. The paradigm sets        professional insecurity” among members of the com-
the standards for legitimate scientific work and gov-       munity. As they begin to lose their faith in the cur-
erns the scientific activity of the members of that         rent paradigm, debates over fundamental issues are
community. The production of theories within a              initiated, and alternative paradigms emerge.
given paradigm, what Kuhn calls “normal science,”               The crisis is finally resolved when the existing
usually takes the form of “puzzle-solving,” with the        paradigm is abandoned and a new paradigm that has
puzzles always defined by and soluble in terms of the       gained the allegiance and support of researchers and
dominant paradigm. This period of normal science is         practitioners takes its place. This process of “paradigm
characterized by detailed attempts to articulate the        shift” is not based on any rational, systematic, or logi-
paradigm, and to improve the match between the              cal assessment of the rival alternatives; rather, it is a
paradigm and reality, but the fundamentals of the           “revolution” brought about by the “conversion” of the
paradigm are not questioned. The pre-scientific peri-       community. This abandonment of one theoretical
od in the field of podiatric biomechanics essentially       structure and its replacement by another one that is
came to an end with the work of Root and his col-           incompatible with the first is a key point in Kuhn’s
leagues, which was widely accepted by the podiatric         structure of scientific revolutions. The new paradigm
community as a unifying framework or paradigm               then guides normal scientific activity until sufficient
that would guide research and clinical practice.            anomalies emerge to result in a new revolution.
   Disagreement has surfaced in the literature as to            Kuhn refers to paradigms as “incommensurable,”
whether paradigms are discipline-wide or confined           meaning that the overall content and propositions of
to specialties or subfields within a discipline. The        different paradigms cannot be directly compared. Con-
development of the current paradigm in podiatric            clusions drawn within the context of one paradigm
biomechanics would support the argument that they           cannot be “translated” into the terms of another par-
are confined to specialties or subfields, as that para-     adigm. Successive paradigms, then, can be evaluated
digm applies primarily to podiatric management of           only with difficulty. Proponents of one paradigm or
the foot, even though, as noted above, some other           theory usually have difficulty understanding the pro-
disciplines have adopted its underlying principles.         ponents of a rival paradigm or theory; thus the two
The paradigm did not gain wide acceptance in the            groups tend to talk past each other. The observations
orthopedic profession for management of the foot;           or conclusions drawn by the proponents of a given
indeed, it has been described by members of that            paradigm reflect the beliefs, values, and interests of
community as “nonsense and non-science” 61 and is           the community that adheres to that paradigm.
usually omitted from major orthopedic texts describ-            In the early days, resistance to Root’s work came
ing foot mechanics.62                                       from practitioners who tried to relate what he was
                                                            saying to what they already knew. The problem many
The Process of Paradigm Shift                               people have in understanding new paradigms is not
                                                            necessarily due to any difficulty inherent in the new
The activities that take place during the period of         paradigm, but rather relates to the fact that the new
normal science continue as long as the paradigm sat-        paradigm is being viewed through the “lens” of the
isfactorily explains the phenomena to which it is           existing paradigm. This may account for the infa-
applied. However, no intellectual framework can             mous split between the East Coast and the West
explain everything. In attempting to discover solu-         Coast of the US that occurred in the understanding
tions to puzzles, researchers will eventually run into      of Root’s original work. Similarities can be seen in
difficulties. Puzzles that resist solution are seen with-   Constant’s 63 account of the development of the jet
in the context of the paradigm as “anomalies” rather        engine, in which he relates how aircraft-engine design-
than as falsifiers of the paradigm. The existence of a      ers strongly adhered to the propeller-driven piston



56                                                           Journal of the American Podiatric Medical Association
engine paradigm and were reluctant to take seriously        for the propulsive phase of gait. In support of this
any rival system.                                           they cite the analysis of Wright et al70 of two subjects.
                                                            Yet Root and colleagues appear to have misinterpret-
Problems with Traditional Theory                            ed Wright and colleagues, for what Wright et al
                                                            called the subtalar joint neutral position is what Root
Although there has always been a certain amount of          et al would consider the relaxed calcaneal stance
resistance to the theories originally proposed by           position. Two more recent reports confirmed that
Root, it paled into insignificance in the context of the    the foot is in its relaxed calcaneal stance position,
paradigm’s wide acceptance and the extent to which          not its neutral position, at midstance during gait.71, 72
it was incorporated into clinical practice. With time,         Several studies, reviewed by Menz,73 examined the
however, the number of anomalies or puzzles within          reliability of measurement procedures that were
the current podiatric biomechanics paradigm has             originally described by Root et al,11 with most finding
become apparent as attempts have been made to               intratester reliability to be reasonably good but
improve the match between the theory and reality.           intertester reliability to be poor. This raises major
   One of the first problems with the theory is not         questions about the use of measurement during
really an anomaly in Kuhnian terms but has led to           assessment of patients and for prescription of
difficulty in understanding of the paradigm. The use        orthoses. Three studies74-76 have concluded that static
and intended meaning of certain terms, which were           measurements are not good predictors of dynamic
originally elucidated very clearly by Root et al,11 have    limb function. The use of medial foot wedges was
given rise to different interpretations and disagree-       found to significantly reduce the “Q angle” during
ment among practitioners in different disciplines. In       static stance but not during gait.77 Static measure-
short, what is clear in the podiatric profession is a       ments are used as part of the biomechanical assess-
source of confusion to those in other fields.               ment of patients, but in light of these reports and
   The definition of “normality” used by Root et al11       other work on the reliability of the measurements,
is contentious. It is not compatible with what those        their usefulness must be reconsidered. The plaster
in the orthopedic profession64 would accept as a            cast used for functional foot orthoses is also the prod-
“normal” foot, which constitutes a much looser defi-        uct of static measurements. One report74 showed a
nition than the podiatric one. Indeed, the criteria of      statistically significant difference between the static
Root et al might allow the entire population to be          and dynamic arch index values, suggesting that the
classified as “abnormal.”45, 46 Reference ranges are        traditional method of static casting may not result in
widely used in medicine to determine normality; thus        an adequate representation of a dynamic foot. The
it would be expected that the criteria originally pro-      assessment of the range of motion of the subtalar
posed by Root et al for normalcy would fall in the          joint is done in a nonweightbearing position, but
middle of a normal bell-shaped distribution in a pop-       there is a difference between the weightbearing and
ulation sample. This, however, is not the case.65, 66       nonweightbearing range of excursion of the calca-
This is explored by Astrom and Arvidson,66 who con-         neus in the frontal plane, indicating motion in this
sider the criteria for the normal or ideal foot as          joint.78 Many clinicians who are familiar with in-shoe
defined by Root et al to be based on an invalid theo-       plantar pressure measurements anecdotally report
retical concept.                                            some inconsistency between clinical biomechanical
   A cornerstone of the Root paradigm is the con-           examination and how the foot functions. In particu-
cept of subtalar joint neutral position. The intuitive      lar, the plantar pressure measurements of patients
and sensible definition of subtalar joint neutral is the    with inverted or everted forefoot positions do not
position in which the subtalar joint is neither pronat-     usually corroborate the underlying theory.
ed nor supinated, but the validity of this position has        Originally Root et al 9 and Sgarlato10 assumed that
never been established. Many methods have been              forefoot varus was due to a lack of normal talar head
developed to clinically determine this position,67          torsion. More recent investigators, such as Seibel43
such as the now discredited calculation method,47           and Valmassy,42 have been even more assertive in
the palpation of the talar head method, and observa-        attributing forefoot varus to this phenomenon despite
tion of the lateral skin curves, but none of these          evidence to the contrary79 and the lack of evidence
establishes validity. The ability of clinicians to place    that the frontal-plane position of the talar head is
the foot in this position is extremely variable.68, 69      related to the frontal-plane position of the forefoot.80
According to Root et al,9 the goal of the orthosis is to    In contrast, recent evidence shows that the trans-
ensure that the subtalar joint is in its neutral position   verse-plane position of the head and neck of the talus
at midstance or slightly before heel-off in preparation     does influence the forefoot position.81 There is also



Volume 88 • Number 2 • February 1998                                                                              57
no evidence that the posterior bisection of the calca-      tored during a clinical trial. Only three studies 87-89
neus is perpendicular to the plantar surface of the         have prospectively evaluated the use of functional
calcaneus, which is used as the reference plane for         foot orthoses in randomized controlled trials, two
frontal-plane forefoot deformity. Possible distortion       with positive outcomes 88, 89 and one with a negative
of the plantar calcaneal fat pad from the bony con-         outcome.87 The two positive reports involved adults
tour during nonweightbearing could disguise the true        with rheumatoid arthritis 88 and diabetes,89 and the
plantar rearfoot plane and give the appearance of an        negative report concerned healthy children.87 None
inverted forefoot.80 This soft-tissue distortion raises     of them compared the functional foot orthosis with
the question of what exactly is replicated by the sur-      another type of device, but instead compared its use
face of the neutral position cast.80 It is a common         with no intervention,87 a placebo,88 or palliative care.89
assumption that the soft-tissue contour of the non-         It is unclear whether similar results would have been
weightbearing foot reflects the true osseous position,      obtained with a comparison of different types of
when in fact there is no evidence to support this.          devices.
    Clearly, there is a relationship between excessive          Problems can exist with the clinical application of
subtalar joint pronation and patellofemoral joint dys-      the paradigm, in the form of excessive use or abuse
function,82, 83 but the pathologic mechanisms have not      of orthoses by clinicians. The overuse may stem from
yet been elucidated,77, 84, 85 with no or minimal changes   a lack of knowledge,90 but there is also an inherent
observed in knee kinematics with orthoses in experi-        conflict in prescribing a product (foot orthoses) for
mental situations.                                          which one gets reimbursed, which is not the case for
    In a review of the effectiveness of children’s foot     other products such as pharmaceuticals. Another
orthoses in the treatment of pediatric flatfoot, Kirby      major problem could be, as Anthony 8(p109) asserts,
and Green86 noted that a number of experimental stud-       “that control of abnormal compensation that is not
ies found that foot orthoses reduce not only symp-          associated with the patient’s specific problem consti-
toms associated with an overpronating foot but also
                                                            tutes one of the main causes of treatment failure
the magnitude, velocity, and acceleration of rearfoot
                                                            when using functional orthotic devices as a treatment
pronation. However, a review of the literature by
                                                            modality.” Common problems 91 include the use of
Kilmartin and Wallace 84 led them to the different con-
                                                            orthoses that are not indicated, errors in the casting
clusion that no single piece of research has yet proved
                                                            technique, inappropriate choice of orthotic materials,
the advantage of placing the foot in a supinated or
                                                            and faulty prescription and manufacture. It is some-
neutral position rather than a pronated position.
                                                            what paradoxical, as noted by Kilmartin and Wal-
Sims and Cavanagh85 noted that although studies
                                                            lace,84 that the two texts 7, 8 on the prescription and
have claimed that foot and ankle symptoms are usu-
                                                            manufacture of functional foot orthoses imply that
ally dramatically decreased with the use of foot
                                                            incorrectly prescribed orthoses may cause damage
orthoses, the objective improvement in rearfoot
motion is considerably more modest, suggesting that         to the foot of the wearer, yet the authors of these two
therapeutic success is not necessarily due to restor-       texts have two different clinical approaches to the
ing the foot to what is functionally considered “nor-       use of the functional foot orthosis.
mal.” This raises the possibility that foot orthoses are        A large part of the theory of foot function pro-
effective for reasons that are not entirely clear. A        posed by Root et al 9 is based on a “hinge” model of
number of the experimental studies did not use func-        the subtalar and midtarsal joints and the two-axes
tional foot orthoses but rather flexible or semirigid       model of the midtarsal joint. However, there are no
devices based on the principles of functional foot          true hinge joints in the foot,85, 92 and the two-axes
orthoses, which some8 would consider to be flawed.          model of the midtarsal joint has been discredited for
    The lack of prospective, randomized, controlled         some time now.85, 93, 94 The talonavicular joint is just
trials comparing functional foot orthoses with other        as important as the subtalar joint in translating trans-
types of devices is a major criticism directed at the       verse rotation of the leg. As positional variation of
paradigm. The difficulty in conducting such studies         the subtalar joint axis affects the range of frontal-
must be acknowledged: They involve many subject             plane movement of the calcaneus with movement of
variables associated with pathology, countless pre-         the subtalar joint, and with this more recent under-
scription and manufacturing variables, and difficulty       standing of the midtarsal joint, the use of frontal-
in defining appropriate endpoints and outcomes that         plane movement of the calcaneus for determining the
are valid, accurate, and reliable. Also lacking is an       effectiveness of an orthosis in clinical and research
objective measure of orthotic efficacy comparable to        settings may not be valid. Confusion also exists as to
the tissue concentration of drugs that can be moni-         the stability of the foot when the subtalar joint is



58                                                           Journal of the American Podiatric Medical Association
pronated,44, 46 with Root et al 9 suggesting that it is a             behind the approach rather than its superficial aspects.
less stable position and Sarrafian95 suggesting that it               Indeed, a profession’s willingness to subject its own
is a more stable position.                                            procedures and methods to critical self-evaluation
                                                                      can be considered a sign of that profession’s maturity.
The Importance of Critical Thinking
                                                                      Future Directions
Have these “puzzles” or inconsistencies become suf-
ficient to precipitate a paradigm shift? Although                     For a paradigm shift to occur, there must be alterna-
these problems have become apparent through                           tives to the existing paradigm. Classic paradigm
attempts to improve the fit between the model and                     shifts cited by Kuhn include the shift in astronomy
reality, they do not rate a mention in recent texts 5, 7, 8, 42, 43   from the Ptolemaic (earth-centered) view to the
and appear to be either unknown or largely ignored                    Copernican (sun-centered) one 48 and the shift from
by those who are most supportive of the paradigm.                     Aristotelian to Newtonian physics. In all of these
Kuhn’s work emphasizes the role of socialization, the                 cases, a number of anomalies became apparent in the
process by which young practitioners are educated                     original paradigm, and then the alternative emerged.
or indoctrinated into the current paradigm. Because                   The paradigm shift requires community agreement,
research and practice are conducted within a social                   not just conversion by individuals. A few alternatives
community of practitioners, the way in which these                    are starting to emerge that may affect the clinical prac-
communities are organized is of crucial significance                  tice of podiatric biomechanics as they become more
in the production of knowledge. Kuhn’s early work 96                  fully developed as coherent theoretical frameworks.
explored the role of dogma in scientific research.                       There are several possibilities for the future course
Kuhn considered textbooks of a discipline to be cru-                  of podiatric biomechanics. The first possibility is that
cial vehicles of socialization into a paradigm. It is                 no paradigm shift will occur. It is entirely possible
unlikely that Root et al9 considered their text to be                 that the anomalies discussed above will prove insuf-
the final word. The work should have been just a                      ficient to undermine the fundamentals of the para-
starting point; yet the paradigm has been defined by                  digm. Further theoretical development, experiments,
a dogmatic and unquestioning literal interpretation                   and empirical observations could resolve the anoma-
of their text. Popper 97 characterized Kuhn’s normal                  lies. However, this is increasingly unlikely given the
science as “the activity of the non-revolutionary, or                 fundamental inconsistencies in the currently prevail-
more precisely, the not too critical professional; of                 ing theory.
the . . . student who accepts the ruling dogma of the                    The second potential direction for podiatric bio-
day; who does not want to challenge it . . . all teach-               mechanics is the adoption of a paradigm that empha-
ing at the University level should be training and                    sizes the neurophysiologic, neuromechanical, or pro-
encouragement in critical thinking . . . the normal sci-              prioceptive effects of foot orthoses. Normally the
entist, as described by Kuhn has been badly taught.                   joint, skin, and muscle proprioceptors work together
He has been taught in a dogmatic spirit; he is a victim               to provide the central nervous system with informa-
of indoctrination. He has learned a technique which                   tion about position and movement. This information
can be applied without asking for the reason why.”                    is analyzed against a desired normal pattern to pro-
   Recently, podiatric education in the United King-                  duce an appropriate motor response. Abnormal
dom, 98 Australia, and New Zealand 99 has gone                        motion patterns will affect proprioception, and foot
through a transition from a curriculum focusing on                    orthoses will alter proprioceptive inputs to the cen-
technical skills to one that highlights critical think-               tral nervous system. To date very little coherent the-
ing, with much more emphasis now being placed on                      ory has been developed in this area. There is a pro-
the critical evaluation of fundamental assumptions                    prioceptive center located in the subtalar joint.100 It
that underpin podiatric clinical practice. The clinical               appears that the interosseous ligament plays an
practice of podiatric biomechanics by podiatrists                     important role in rearfoot proprioception. Supination
outside the US takes place in very different health-                  of the subtalar joint increases afferent feedback to the
care contexts. Podiatrists outside the US have con-                   central nervous system, while pronation decreases it.
siderably less scope in clinical practice, leading to                    Michaud 5 suggests that by improving the progres-
greater reliance on mechanical therapies, the use of                  sion of forces, the orthosis acts to reeducate the cen-
which requires systematic evaluation. The critical                    tral nervous system as to ideal patterns of muscle
evaluation of an approach to patient care is not nec-                 recruitment. This could be an explanation for the
essarily a destructive process; it is best viewed as a                phenomenon, anecdotally reported by a number of
method of assessment that emphasizes the principles                   clinicians, of an apparent period of normal foot func-



Volume 88 • Number 2 • February 1998                                                                                        59
tion after removal of an orthosis. It also appears that       originally proposed by Root et al11 that classifies feet
subtle intertarsal movements are conducive to nor-            on the basis of what causes the abnormal function.
mal balance, as those with a tarsal coalition have            Under this proposed classification, for example,
some trouble balancing on one foot. Stimulation of            when the center of pressure is lateral to the subtalar
the cutaneous mechanoreceptors on the plantar sur-            joint axis, a pronation moment from the ground is
face of the foot also seems to have functional signifi-       acting on the foot. There must be an equal and oppo-
cance. Stimulation under the metatarsophalangeal              site supination moment within the foot countering
joints has been shown to result in a contraction of           the pronation from the ground. This supination
the digital plantar flexors 101 that redistributes plantar    moment could be caused by the osseous end range of
ground reactive forces. Stimulation of the skin in the        motion, the plantar fascia, or a supinator muscle
arch (on which any type of foot orthosis will press)          such as the posterior tibial muscle. Depending on
dorsiflexes the digits, effectively increasing the            which structure or structures provide the supination
ground reactive forces under the metatarsal heads.            moment, various pathologies could result. The ad-
This has led to speculation that it is footwear that          vantages of this new classification system are that it
attenuates plantar sensations that is responsible for         is not reliant on the inaccurate measurement tech-
pathology.102 Also of interest here is the use of the         niques, pathology correlates with physical findings,
“dynamic” foot orthosis103, 104 for the treatment of          and treatment is aimed at reducing stress on the
mild-to-moderate spasticity. It uses a sensorimotor           anatomic structures involved (E Fuller, DPM, per-
approach to control motor output by changing senso-           sonal communication, 1997). How this can be trans-
ry input, so that unwanted foot movements are con-            lated into a system for the prescription of foot
trolled by other than purely mechanical means. None           orthoses for mechanical foot pathology has not yet
of these observations point to any emerging coherent          been explored.
framework, so further development of them is needed.             A fifth option, the tissue-stress model as proposed
   The sagittal-plane facilitation of motion model105 is      by McPoil and Hunt,109, 110 states that there must be a
a potential third direction for podiatric biomechan-          reduction of tissue stress to tolerable levels (Table 1).
ics; it is based on the work of Dananberg.106, 107 In this    Placing undue emphasis on the orthosis to the
model, the foot is considered to have three autosup-          neglect of other aspects of an optimal management
portive mechanisms: the close packing of the calca-
neocuboid joint, the windlass mechanism, and the
wedge-and-truss effect. All require the timely and
efficient function of the foot in the sagittal plane so it
can resist stress. Any blockage of this sagittal-plane
motion, even momentarily, will result in the failure of       Table 1. The Tissue-Stress Model109, 110
one or all of these mechanisms, leading to the occur-         1. Identify the involved tissues on the basis of symptoms
rence of compensation and pathology at other                     and other subjective information obtained from the history.
sites.106, 107 An orthosis is used to reestablish this pre-   2. Apply various stresses to the involved tissues to replicate
cise direction of weight flow through the foot so that           symptoms through the use of nonweightbearing and
the foot can establish its own autosupportive mecha-             weightbearing tests as well as palpation.
nisms at the time of heel-off, when power generation          3. Determine whether the patient’s complaint is caused by
is at its maximum. It has been suggested105 that this            excessive mechanical loading, then ascertain whether
model is theoretically coherent and biologically plau-           the problem is related to:
sible as an explanation for the anomalies that have              a. excessive foot pronation
emerged in the context of the current Root-based                 b. lack of foot mobility
model. This model’s use of in-shoe pressure mea-                 c. limitation in flexibility
surement to prescribe orthoses designed to direct                d. decreased muscle strength
weight flow through the foot overcomes the above-
                                                              4. Follow a management protocol that emphasizes:
mentioned problems with static measurements.
   A potential fourth direction for podiatric biome-             a. reducing tissue stress to a tolerable level through rest,
                                                                    activity modification, footwear, and/or orthoses
chanics has been indicated by Fuller,108 who has pro-
posed a classification system that is an extension of            b. healing the involved tissues through medication and
                                                                    physical therapy
the work by Kirby 32, 33 on rotational equilibrium about
the subtalar joint. Fuller’s system classifies feet by           c. the restoration of lower-extremity flexibility and muscle
                                                                    strength
looking at stress in anatomic structures rather than
abnormal position. This contrasts with the system                d. a plan for the gradual resumption of daily activities




60                                                             Journal of the American Podiatric Medical Association
plan is a problem with the clinical application of the       Acknowledgment. Eric Fuller, Kevin Kirby,
current paradigm, as stated above. The tissue-stress      Anne-Maree Keenan, Hylton Menz, and Trevor Prior
model is a useful starting point for the development      for comments on earlier versions of this essay.
of optimal intervention strategies, regardless of the
type of orthosis used.                                    References
   Another possibility is the emergence of an as-yet-
unknown new paradigm.                                       1. R OOT ML: “Foreword,” in Clinical Biomechanics of
                                                               the Lower Extremities, ed by RL Valmassy, p vii, CV
   All of these conceptual frameworks require fur-             Mosby, St Louis, 1996.
ther work, but most are sufficiently developed that         2. Dorland’s Illustrated Medical Dictionary, 28th Ed,
they can begin to inform clinical practice. It remains         WB Saunders, Philadelphia, 1994.
to be seen which direction will be the most success-        3. K IRBY K: Podiatric biomechanics: an integral part of
ful in this regard, as there is no rational mechanism          evaluating and treating the athlete. Med Exerc Nutr
                                                               Health 2: 196, 1993.
for evaluating one paradigm in terms of another par-
                                                            4. H UNT GC, M C P OIL TG ( ED ): Physical Therapy of the
adigm. It is possible for more than one paradigm to            Foot and Ankle, 2nd Ed, Churchill Livingstone, New
exist simultaneously, in a manner similar to the way           York, 1995.
that the psychosocial model of health sits beside the       5. MICHAUD TC: Foot Orthoses and Other Forms of Con-
biomedical model. There will always be attempts to             servative Foot Care, Williams & Wilkins, Baltimore,
integrate paradigms with each other as a means of              1993.
                                                            6. CHAO EYS: Orthopaedic biomechanics: the past, pres-
saving a given paradigm. This is generally done by             ent and future. Int Orthop 20: 239, 1996.
those who are still “wearing the lens” of the current       7. P HILPS JW: The Functional Foot Orthosis, Churchill
paradigm and could be considered an attempt to co-opt          Livingstone, New York, 1990.
the competing paradigm. For example, it has been            8. A NTHONY RJ: The Manufacture and Use of the Func-
alleged111 that the biopsychosocial model of health is         tional Foot Orthosis, Karger, Basel, 1991.
                                                            9. ROOT ML, ORIEN WP, WEED JH: Normal and Abnormal
nothing more than an attempted takeover of the
                                                               Function of the Foot, Clinical Biomechanics Corp, Los
psychosocial model by the biomedical model. The bio-           Angeles, 1977.
medical model has the support of powerful financial        10. SGARLATO TE: A Compendium of Podiatric Biomech-
interests, namely, the pharmaceutical industry.112             anics, California College of Podiatric Medicine, San
Similarly, the current podiatric biomechanics para-            Francisco, 1971.
                                                           11. ROOT ML, ORIEN WP, WEED JH: Biomechanical Exam-
digm is supported by the commercial orthotic indus-
                                                               ination of the Foot, Clinical Biomechanics Corp, Los
try, which will resist any paradigm shift that it does         Angeles, 1971.
not regard as in its own interest.                         12. ROOT ML, WEED JH, ORIEN WP: Neutral Position Cast-
                                                               ing Techniques, Clinical Biomechanics Corp, Los
Conclusion                                                     Angeles, 1971.
                                                           13. ANTHONY RJ: Treating the runner. Chiropodist 37: 228,
                                                               1982.
This analysis has reviewed the history and develop-
                                                           14. A RCHIBALD N: Australian podiatry of the future. Aust
ment of the field of podiatric biomechanics, as well           Podiatr 15: 6, 1981.
as current thinking about its underpinnings and future,    15. P AYNE CB: Biomechanics of the Foot and Related
in the context of a theoretical framework drawn from           Pathology, Podiatry Associates, Riccarton, New Zea-
the philosophy and sociology of science. This analysis         land, 1982.
has been used to explore possible future directions        16. R OOT ML: How was the Root functional orthotic de-
                                                               veloped? Podiatr Arts Newslett (Fall): 1, 1981.
for podiatric biomechanics.                                17. ROOT ML: Development of the functional orthosis. Clin
    Undergraduate and postgraduate education must              Podiatr Med Surg 11: 183, 1994.
enable students and practitioners to think critically      18. S CHUSTER RO: A history of orthopedics in podiatry.
about what is accepted as knowledge in podiatric               JAPA 64: 332, 1974.
biomechanics. This knowledge includes ideas, assump-       19. D URLACHER L: A Treatise on Corns, Bunions, the
                                                               Diseases of Nails and the General Management of
tions, propositions, and hypotheses, as well as what
                                                               the Feet, Simpkin, Marshal, London, 1845.
are currently believed to be facts. Facts should not be    20. T HOMAS TG [cited by] B RACHMAN P: Shoe Therapy,
confused with theory, and science should not be con-           Illinois College of Podiatric Medicine, Chicago, 1979.
fused with theoretical coherence. Through reflecting       21. WHITMAN R: Observations on seventy-five cases of flat
critically on what has been written as well as on per-         foot. Trans Am Orthop Assoc 1: 1888.
sonal experience, practitioners will come to a fuller      22. ROBERTS PW: The influence of the oscalcis on the pro-
                                                               duction and correction of valgus deformities of the
understanding of their own methods and views.                  foot. Am J Orthop Surg 14: 1916.
Paradigms call for critical engagement, not dogmatic       23. M ORTON DJ: The Human Foot, Columbia University
adherence.                                                     Press, New York, 1942.




Volume 88 • Number 2 • February 1998                                                                              61
24. S CHUSTER OF: Foot Orthopaedics, First Institute of           dial diagnosis. J Br Podiatr Med 46: 172, 1991.
     Podiatry, New York, 1927.                                 48. CHALMERS AF: What Is This Thing Called Science? 2nd
 25. SCHREIBER LK, WEINERMAN HW: Research in podophys-             Ed, University of Queensland Press, Brisbane, Aus-
     iology and their application to podopathomechanics.           tralia, 1982.
     J Nat Assoc Chirop 38: 24, 1948.                          49. S UPPE F ( ED ): The Structure of Scientific Theories,
 26. LEVY B: An appliance to induce toe flexion on weight-         University of Illinois Press, Urbana-Champaign, 1977.
     bearing. J Nat Assoc Chirop 50: 887, 1950.                50. LOSEE J: A Historical Introduction to the Philosophy
 27. LEVITZ SJ, WHITESIDE LS, FITZGERALD TA: Biomechanical         of Science, 3rd Ed, Oxford University Press, London,
     foot therapy. Clin Podiatr Med Surg 5: 721, 1988.             1993.
 28. BERGMANN JN: History and mechanical control of heel       51. K UHN TS: The Structure of Scientific Revolutions,
     spur pain. Clin Podiatr Med Surg 7: 243, 1990.                University of Chicago Press, Chicago, 1962.
 29. S TARRETT CJ: Historical review and current use of        52. K UHN TS: “Second Thoughts on Paradigms,” in The
     Whitman/Roberts orthoses in biomechanical therapy.            Structure of Scientific Theories, ed by F Suppe, p 87,
     Clin Podiatr Med Surg 11: 231, 1994.                          University of Illinois Press, Urbana-Champaign, 1977.
 30. L OSITO JM: “Impression Casting Techniques,” in Clin-     53. H ORWICH P: World Changes: Thomas Kuhn and the
     ical Biomechanics of the Lower Extremities, ed by             Nature of Science, MIT Press, Cambridge, MA, 1993.
     RL Valmassy, p 279, CV Mosby, St Louis, 1996.             54. NOTTURNO MA: The Popper/Kuhn debate: truth and two
 31. OLSON WR: “Orthotic Materials,” in Clinical Biomech-          faces of relativism. Psychol Med 14: 273, 1984.
     anics of the Lower Extremities, ed by RL Valmassy,        55. CHARLTON KH: Popper-Kuhn debate: a consideration of
     p 307, CV Mosby, St Louis, 1996.                              some of the implications for the philosophy of science
 32. K IRBY KA: Rotational equilibrium across the subtalar         and the chiropractic investigative community. J Man-
     axis. JAPMA 79: 1, 1989.                                      ipulative Physiol Ther 11: 224, 1988.
 33. K IRBY KA: Methods for determination of positional        56. C OULTER ID: The defence of Kuhn (and chiropractic).
     variations in the subtalar joint axis. JAPMA 77: 228,         J Manipulative Physiol Ther 15: 392, 1992.
     1987.                                                     57. CHARLESWORTH M: “Thomas Kuhn and Scientific Revo-
 34. T OMARO JE, B URDETT RG, C HADRAN AM: Subtalar joint          lutions,” in Science, Nonscience and Pseudoscience, ed
     motion and the relationship to lower extremity                by M Charlesworth, Deakin University Press, Melbourne,
     overuse injuries. JAPMA 86: 427, 1996.                        Australia, 1982.
 35. KIRBY KA: The medial heel skive technique. Precision      58. P ALERMO DS: In defence of Kuhn: a discussion of his
     Labs Newslett (July-Aug): 1992.                               detractors. Adv Child Dev 18: 259, 1994.
 36. B LAKE RL, F ERGUSON H: “The Inverted Orthotic Tech-      59. MASTERMAN M: “The Nature of the Paradigm,” in Criti-
     nique: Its Role in Clinical Biomechanics,” in Clinical        cism and the Growth of Knowledge, ed by I Lakatos,
     Biomechanics of the Lower Extremities, ed by RL               A Musgrave, p 59, Cambridge University Press, London,
     Valmassy, p 463, CV Mosby, St Louis, 1996.                    1970.
 37. ANTHONY RJ: Positive cast sectioning: an essential pre-   60. C LARK N: Similarities and differences between scien-
     scription writing protocol. J Br Podiatr Med 50: 11,          tific and technological paradigms. Futures 19: 26, 1987.
     1995.                                                     61. MCGUIRE T: Other deformities (abstract). J Bone Joint
 38. LUNDEEN RO: Polysectional triaxial posting: a new pro-        Surg Br 77 (suppl 1): 57, 1995.
     cess for incorporating correction in foot orthoses.       62. M ANN R: Surgery of the Foot, 6th Ed, CV Mosby, St
     JAPMA 78: 55, 1988.                                           Louis, 1993.
 39. GARDNER C, COULL D, COULL R: DC inverted wedge: less      63. CONSTANT EW: The Origins of the Turbojet Revolution,
     degrees of orthotic correction: greater degrees of foot       Johns Hopkins University Press, Baltimore, 1980.
     control (abstract). Presented at the 17th Australian      64. O’DOHERTY D: “The Foot and Ankle,” in Outcome Mea-
     Podiatry Conference, Melbourne, 1996.                         sures in Orthopaedics, ed by PB Pynsent, JCT Fair-
 40. B ERGMANN J: The Bergmann foot scanner for auto-              bank, A Carr, p 143, Butterworth-Heinemann, London,
     mated orthotic fabrication. Clin Podiatr Med Surg 10:         1993.
     363, 1993.                                                65. M C P OIL TG, K NECHT HG, S CHUIT D: A survey of foot
 41. B IRD AR: Computer generated orthoses. Aust Podiatr           types in normal females between the ages of 18 to 30
     30: 79, 1996.                                                 years. J Orthop Sports Phys Ther 9: 406, 1988.
 42. VALMASSY RL (ED): Clinical Biomechanics of the Lower      66. ASTROM M, ARVIDSON T: Alignment and joint motion in
     Extremities, CV Mosby, St Louis, 1996.                        the normal foot. J Orthop Sports Phys Ther 22: 216,
 43. S EIBEL MO: Foot Function: A Programmed Text,                 1995.
     Williams & Wilkins, Baltimore, 1988.                      67. COOK A, GORMAN I, MORRIS J: Evaluation of the neutral
 44. ROOT ML: Reappraisal of the negative impression cast          position of the subtalar joint. JAPMA 78: 449, 1988.
     and the subtalar joint neutral position revisited (let-   68. P IERRYNOWSKI MR, S MITH SB, M LYNARCZYK JH: Pro-
     ter). JAPMA 87: 192, 1997.                                    ficiency of foot care specialists to place the rearfoot
 45. S OBEL E, L EVITZ SJ: Reappraisal of the negative im-         at subtalar neutral. JAPMA 86: 217, 1996.
     pression cast and the subtalar joint neutral position.    69. S MITH -O RICCHIO K, H ARRIS BA: Interrater reliability of
     JAPMA 87: 32, 1997.                                           subtalar joint neutral, calcaneal inversion and ever-
 46. L EVITZ SJ, S OBEL E: Reappraisal of the negative im-         sion. J Orthop Sports Phys Ther 12: 10, 1990.
     pression cast and the subtalar joint neutral position     70. W RIGHT DG, D ESAI SM, H ENDERSON WH: Action of the
     revisited (letter). JAPMA 87: 193, 1997.                      subtalar and ankle-joint complex during the stance
 47. KIDD R: An examination of the validity of some of the         phase of walking. J Bone Joint Surg Am 46: 361, 1964.
     more questionable corner stones of modern chiropo-        71. M C P OIL TG, C ORNWALL MW: The relationship between




62                                                             Journal of the American Podiatric Medical Association
subtalar joint neutral position and rearfoot motion dur-     90. S HALVESTON D: The face of podiatry in the nineties.
       ing walking. Foot Ankle Int 15: 141, 1994.                       Podiatry Today 5: 51, 1992.
 72.   P IERRYNOWSKI MR, S MITH SB: Rearfoot inversion/ever-        91. S UBOTNICK SI: The abuses of orthotic devices. JAPA
       sion during gait relative to the subtalar joint neutral          65: 1025, 1975.
       position. Foot Ankle Int 17: 406, 1996.                      92. H IRSCH BE, U DUPA JK, S AMARASEKERA S: New method
 73.   MENZ HB: Clinical hindfoot measurement: a critical re-           of studying joint kinematics from three-dimensional
       view of the literature. Foot 5: 57, 1995.                        reconstructions of MRI data. JAPMA 86: 4, 1996.
 74.   H AMILL J, B ATES BT, K NUTZEN KM, ET AL : Relationship      93. KEENAN AM: “Understanding Midtarsal Joint Function:
       between selected static and dynamic lower extremity              Fact and Fallacy,” in Proceedings of the 17th Austral-
       measures. Clin Biomech 4: 217, 1989.                             ian Podiatry Conference, ed by AM Keenan, HB Menz,
 75.   KNUTZEN KM, PRICE A: Lower extremity static and dy-              p 107, Australian Podiatry Council, Melbourne, 1996.
       namic relationships with rearfoot motion in gait.            94. VAN LANGELAAN EJ: A kinematical analysis of the tarsal
       JAPMA 84: 171, 1994.                                             joints. Acta Orthop Scand 54 (suppl): 4, 1983.
 76.   M C P OIL TG, C ORNWALL MW: The relationship between         95. S ARRAFIAN SK: Functional characteristics of the foot
       static lower extremity measurements and rearfoot mo-             and plantar aponeurosis under tibiotalar loading. Foot
       tion during walking. J Orthop Sports Phys Ther 24:               Ankle Int 8: 4, 1987.
       309, 1996.                                                   96. K UHN TS: “The Function of Dogma in Scientific
 77.   L EFEBVRE R, B OUCHER JP: “Effects of Foot Orthotics             Research,” in Scientific Change, ed by AC Crombie,
       upon the Ankle and Knee Mechanical Alignment,” in                p 83, London, 1962.
       Proceedings of the International Society of Biomech-         97. POPPER KR: “Normal Science and Its Dangers,” in Crit-
       anics Congress, p 1046, 1989.                                    icism and the Growth of Knowledge, ed by I Lakatos,
 78.   L ATTANZA L, G RAY GW, K ANTNER RM: Closed versus                A Musgrave, p 52, Cambridge University Press, London,
       open kinematic chain measurements of subtalar joint              1970.
       eversion. J Orthop Sports Phys Ther 9: 310, 1988.            98. L ORIMER DL: The development of degree education in
 79.   M C P OIL T, C AMERON JA, A DRIAN MJ: Anatomical char-           podiatry in the United Kingdom. J Br Podiatr Med 51:
       acteristics of the talus in relation to forefoot deformi-        52, 1996.
                                                                    99. KIPPEN C: Podiatry education in New Zealand. Foot 5:
       ties. JAPMA 77: 77, 1987.
                                                                        167, 1995.
 80.   KIDD R: Forefoot varus: real or false, fact or fantasy?
                                                                   100. VALENTI V: “Proprioception,” in The Foot, ed by B Helal,
       Australas J Podiatr Med 31: 81, 1997.
                                                                        D Wilson, p 86, Churchill Livingstone, Edinburgh, 1988.
 81.   DANIELS TR, SMITH JW, ROSS TI: Varus malalignment of
                                                                   101. ROBBINS SE, GOUW GJ: Athletic footwear unsafe due to
       the talar neck: its effect on the position of the foot
                                                                        perceptual illusions. Med Sci Sports Exerc 23: 217,
       and on subtalar motion. J Bone Joint Surg Am 78: 1559,
                                                                        1991.
       1996.
                                                                   102. R OBBINS SE, G OUW GJ: Athletic footwear and chronic
 82.   T IBERIIO D: The effects of excessive subtalar joint
                                                                        overloading. Sports Med 9: 76, 1990.
       pronation on patellofemoral mechanics: a theoretical
                                                                   103. P RATT DJ, S ANNER WH: Paediatric foot orthoses. Foot
       model. J Orthop Sports Phys Ther 9: 160, 1987.
                                                                        6: 99, 1996.
 83.   KLINGMAN RE, LIAOSS M, HARDIN KM: The effect of sub-
                                                                   104. S HAMP JK: Neurophysiological orthotic designs in the
       talar joint posting on patellar glide position in sub-
                                                                        treatment of central nervous system disorders. J
       jects with excessive rearfoot pronation. J Orthop
                                                                        Prosthet Orthot 2: 14, 1989.
       Sports Phys Ther 25: 185, 1997.                             105. PAYNE CB, DANANBERG HJ: Sagittal plane facilitation of
 84.   KILMARTIN TE, WALLACE WA: The scientific basis for the           the foot. Australas J Podiatr Med 31: 7, 1997.
       use of biomechanical foot orthoses in the treatment         106. DANANBERG HJ: Gait style as an etiology to chronic pos-
       of lower limb sports injuries: a review of the litera-           tural pain: part I. functional hallux limitus. JAPMA 83:
       ture. Br J Sports Med 28: 180, 1994.                             433, 1993.
 85.   S IMS DS, C AVANAGH PR: “Selected Foot Mechanics            107. DANANBERG HJ: Gait style as an etiology to chronic pos-
       Related to the Prescription of Foot Orthoses,” in Dis-           tural pain: part II. postural compensatory process.
       orders of the Foot and Ankle: Medical and Surgical               JAPMA 83: 615, 1993.
       Management, 2nd Ed, ed by MH Jahss, p 469, WB Saun-         108. FULLER E: Categorizing of feet based on the anatomical
       ders, Philadelphia, 1991.                                        structure that stops pronation. Presented at the Third
 86.   K IRBY KA, G REEN DA: “Evaluation and Nonoperative               Annual John Weed Memorial Seminar, San Diego, March
       Management of Pes Valgus,” in Foot and Ankle Dis-                14-16, 1996.
       orders in Children, ed by S DeValentine, p 295,             109. M C P OIL TG, H UNT GC: “An Evaluation and Treatment
       Churchill Livingstone, New York, 1992.                           for the Future,” in Physical Therapy of the Foot and
 87.   K ILMARTIN TE, B ARRINGTON RL, W ALLACE WA: A con-               Ankle, 2nd Ed, ed by GC Hunt, TG McPoil, p 132,
       trolled prospective trial of a foot orthosis for juvenile        Churchill Livingstone, New York, 1995.
       hallux valgus. J Bone Joint Surg Br 76: 210, 1994.          110. MCPOIL TG, HUNT GC: Evaluation and management of
 88.   BUDIMAN-MAK E, CONRAD KJ, ROACH KE, ET AL: Can foot              foot and ankle disorders: present position and future
       orthoses prevent hallux valgus deformity in rheuma-              directions. J Orthop Sports Phys Ther 21: 381, 1995.
       toid arthritis? A randomised controlled trial. J Clin       111. ARMSTRONG D: Theoretical tensions in biopsychosocial
       Rheumatol 1: 313, 1995.                                          medicine. Soc Sci Med 25: 1213, 1987.
 89.   C OLAGIURI S, M ARSDEN LL, N AIDU V, ET AL : The use of     112. D AVIS P ( ED ): For Profit or Health? Medicine, the
       orthotic devices to correct plantar callus in people             Pharmaceutical Industry and the State in New
       with diabetes. Diabet Res Clin Pract 28: 29, 1995.               Zealand, Oxford University Press, Oxford, 1992.




Volume 88 • Number 2 • February 1998                                                                                        63

More Related Content

What's hot

Effect of a_knee_ankle_foot_orthosis_on_knee.10
Effect of a_knee_ankle_foot_orthosis_on_knee.10Effect of a_knee_ankle_foot_orthosis_on_knee.10
Effect of a_knee_ankle_foot_orthosis_on_knee.10huda alfatafta
 
Why do total knees fail
Why do total knees failWhy do total knees fail
Why do total knees failjatinder12345
 
Short Term Analysis of Clinical, Functional Radiological Outcome of Total Kne...
Short Term Analysis of Clinical, Functional Radiological Outcome of Total Kne...Short Term Analysis of Clinical, Functional Radiological Outcome of Total Kne...
Short Term Analysis of Clinical, Functional Radiological Outcome of Total Kne...iosrjce
 
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...FUAD HAZIME
 
total knee replacement in tobruk medical center in, libya
 total knee replacement in tobruk medical center in, libya total knee replacement in tobruk medical center in, libya
total knee replacement in tobruk medical center in, libyasana I . Souliman
 
Proximal Fibular Osteotomy for Knee Osteoarthritis - What is the evidence?
Proximal Fibular Osteotomy for Knee Osteoarthritis - What is the evidence?Proximal Fibular Osteotomy for Knee Osteoarthritis - What is the evidence?
Proximal Fibular Osteotomy for Knee Osteoarthritis - What is the evidence?Dr Saseendar MD
 
Knee surg sports traumatol arthrosc 2016 24 (11) 3599
Knee surg sports traumatol arthrosc 2016 24 (11) 3599Knee surg sports traumatol arthrosc 2016 24 (11) 3599
Knee surg sports traumatol arthrosc 2016 24 (11) 3599María Belén Torres
 
Correlation between conventional clinical tests and a new movement assessment...
Correlation between conventional clinical tests and a new movement assessment...Correlation between conventional clinical tests and a new movement assessment...
Correlation between conventional clinical tests and a new movement assessment...Stavros Litsos
 
Effect of Kinesiology Tape on Cycling Performance
Effect of Kinesiology Tape on Cycling PerformanceEffect of Kinesiology Tape on Cycling Performance
Effect of Kinesiology Tape on Cycling PerformanceRockTape
 
2000 anti pronation tape_before_and_after_exercise
2000 anti pronation tape_before_and_after_exercise2000 anti pronation tape_before_and_after_exercise
2000 anti pronation tape_before_and_after_exercisepainfree888
 
Measuring inter-vertebral range of motion: how and why with clinical examples
Measuring inter-vertebral range of motion: how and why with clinical examplesMeasuring inter-vertebral range of motion: how and why with clinical examples
Measuring inter-vertebral range of motion: how and why with clinical examplesFiona Mellor
 
Knee Replacement - Desun Hospital Health Insight
Knee Replacement - Desun Hospital Health InsightKnee Replacement - Desun Hospital Health Insight
Knee Replacement - Desun Hospital Health InsightDESUN Hospital
 
Stress fracture: Causes, Investigation, Diagnosis, Treatment
Stress fracture: Causes, Investigation, Diagnosis, TreatmentStress fracture: Causes, Investigation, Diagnosis, Treatment
Stress fracture: Causes, Investigation, Diagnosis, TreatmentDr. Anurag Mittal
 
Gautam Singh - Reasearch and Thesis
Gautam Singh - Reasearch and ThesisGautam Singh - Reasearch and Thesis
Gautam Singh - Reasearch and ThesisGautam Singh
 
AJM Sheet: Ankle Equinus
AJM Sheet:  Ankle EquinusAJM Sheet:  Ankle Equinus
AJM Sheet: Ankle EquinusPodiatry Town
 

What's hot (20)

Effect of a_knee_ankle_foot_orthosis_on_knee.10
Effect of a_knee_ankle_foot_orthosis_on_knee.10Effect of a_knee_ankle_foot_orthosis_on_knee.10
Effect of a_knee_ankle_foot_orthosis_on_knee.10
 
Why do total knees fail
Why do total knees failWhy do total knees fail
Why do total knees fail
 
Short Term Analysis of Clinical, Functional Radiological Outcome of Total Kne...
Short Term Analysis of Clinical, Functional Radiological Outcome of Total Kne...Short Term Analysis of Clinical, Functional Radiological Outcome of Total Kne...
Short Term Analysis of Clinical, Functional Radiological Outcome of Total Kne...
 
Dr Jones: Knee Joint Replacement
Dr Jones: Knee Joint ReplacementDr Jones: Knee Joint Replacement
Dr Jones: Knee Joint Replacement
 
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
Comparison of vastus medialis 0bliquus vastus lateralis muscle integrated ele...
 
total knee replacement in tobruk medical center in, libya
 total knee replacement in tobruk medical center in, libya total knee replacement in tobruk medical center in, libya
total knee replacement in tobruk medical center in, libya
 
Proximal Fibular Osteotomy for Knee Osteoarthritis - What is the evidence?
Proximal Fibular Osteotomy for Knee Osteoarthritis - What is the evidence?Proximal Fibular Osteotomy for Knee Osteoarthritis - What is the evidence?
Proximal Fibular Osteotomy for Knee Osteoarthritis - What is the evidence?
 
Knee surg sports traumatol arthrosc 2016 24 (11) 3599
Knee surg sports traumatol arthrosc 2016 24 (11) 3599Knee surg sports traumatol arthrosc 2016 24 (11) 3599
Knee surg sports traumatol arthrosc 2016 24 (11) 3599
 
Mnp ppt jw
Mnp ppt jwMnp ppt jw
Mnp ppt jw
 
Correlation between conventional clinical tests and a new movement assessment...
Correlation between conventional clinical tests and a new movement assessment...Correlation between conventional clinical tests and a new movement assessment...
Correlation between conventional clinical tests and a new movement assessment...
 
Effect of Kinesiology Tape on Cycling Performance
Effect of Kinesiology Tape on Cycling PerformanceEffect of Kinesiology Tape on Cycling Performance
Effect of Kinesiology Tape on Cycling Performance
 
Zimmer studies powerpoint
Zimmer studies powerpointZimmer studies powerpoint
Zimmer studies powerpoint
 
2000 anti pronation tape_before_and_after_exercise
2000 anti pronation tape_before_and_after_exercise2000 anti pronation tape_before_and_after_exercise
2000 anti pronation tape_before_and_after_exercise
 
Measuring inter-vertebral range of motion: how and why with clinical examples
Measuring inter-vertebral range of motion: how and why with clinical examplesMeasuring inter-vertebral range of motion: how and why with clinical examples
Measuring inter-vertebral range of motion: how and why with clinical examples
 
Knee Replacement - Desun Hospital Health Insight
Knee Replacement - Desun Hospital Health InsightKnee Replacement - Desun Hospital Health Insight
Knee Replacement - Desun Hospital Health Insight
 
Knee what's new - robots and more
Knee what's new - robots and moreKnee what's new - robots and more
Knee what's new - robots and more
 
Stress fracture: Causes, Investigation, Diagnosis, Treatment
Stress fracture: Causes, Investigation, Diagnosis, TreatmentStress fracture: Causes, Investigation, Diagnosis, Treatment
Stress fracture: Causes, Investigation, Diagnosis, Treatment
 
Gautam Singh - Reasearch and Thesis
Gautam Singh - Reasearch and ThesisGautam Singh - Reasearch and Thesis
Gautam Singh - Reasearch and Thesis
 
AJM Sheet: Ankle Equinus
AJM Sheet:  Ankle EquinusAJM Sheet:  Ankle Equinus
AJM Sheet: Ankle Equinus
 
Sporting Hip and Groin
Sporting Hip and GroinSporting Hip and Groin
Sporting Hip and Groin
 

Viewers also liked

Foot biomechanics
Foot biomechanicsFoot biomechanics
Foot biomechanicsdeepakanap
 
1. Biomechanics of ankle joint subtalar joint and foot
1. Biomechanics of ankle joint subtalar joint and foot1. Biomechanics of ankle joint subtalar joint and foot
1. Biomechanics of ankle joint subtalar joint and footSaurab Sharma
 
Biomechanics of ankle_joint
Biomechanics of ankle_jointBiomechanics of ankle_joint
Biomechanics of ankle_jointNityal Kumar
 
Biomechanics powerpoint 2010
Biomechanics powerpoint 2010Biomechanics powerpoint 2010
Biomechanics powerpoint 2010mrsdavison
 
Introduction to Biomechanics
Introduction to BiomechanicsIntroduction to Biomechanics
Introduction to BiomechanicsNick Johnstone
 
Biomechanics of ankle and foot
Biomechanics of ankle and footBiomechanics of ankle and foot
Biomechanics of ankle and footNityal Kumar
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShareSlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShareSlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShareSlideShare
 

Viewers also liked (10)

Are we born to run?
Are we born to run?Are we born to run?
Are we born to run?
 
Foot biomechanics
Foot biomechanicsFoot biomechanics
Foot biomechanics
 
1. Biomechanics of ankle joint subtalar joint and foot
1. Biomechanics of ankle joint subtalar joint and foot1. Biomechanics of ankle joint subtalar joint and foot
1. Biomechanics of ankle joint subtalar joint and foot
 
Biomechanics of ankle_joint
Biomechanics of ankle_jointBiomechanics of ankle_joint
Biomechanics of ankle_joint
 
Biomechanics powerpoint 2010
Biomechanics powerpoint 2010Biomechanics powerpoint 2010
Biomechanics powerpoint 2010
 
Introduction to Biomechanics
Introduction to BiomechanicsIntroduction to Biomechanics
Introduction to Biomechanics
 
Biomechanics of ankle and foot
Biomechanics of ankle and footBiomechanics of ankle and foot
Biomechanics of ankle and foot
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
 

Similar to Craig b. payne the past, present and future of podiatric biomechanics (japma, 1998)

A fresh look at vascularized flexor tendon transfers
A fresh look at vascularized flexor tendon transfersA fresh look at vascularized flexor tendon transfers
A fresh look at vascularized flexor tendon transfersOTTO
 
Shetty a evolução da artroplastia total de joelho. parte i
Shetty a evolução da artroplastia total de joelho. parte i  Shetty a evolução da artroplastia total de joelho. parte i
Shetty a evolução da artroplastia total de joelho. parte i Gustavo Resek Borges
 
Functional appliances evolution and mode of action /certified fixed orthodon...
Functional appliances evolution and mode of action  /certified fixed orthodon...Functional appliances evolution and mode of action  /certified fixed orthodon...
Functional appliances evolution and mode of action /certified fixed orthodon...Indian dental academy
 
Articulators-A Review Article
Articulators-A Review ArticleArticulators-A Review Article
Articulators-A Review ArticleMartha Brown
 
Heel Pain and Plantar Fasciitis
Heel Pain and Plantar FasciitisHeel Pain and Plantar Fasciitis
Heel Pain and Plantar FasciitisWill Holden
 
Articulators in orthodontics an evidencebased
Articulators in orthodontics an evidencebasedArticulators in orthodontics an evidencebased
Articulators in orthodontics an evidencebasedDr. Carlos Joel Sequeira.
 
Design And Analysis of Different Artificial Human Hip Stems Based on Fenestra...
Design And Analysis of Different Artificial Human Hip Stems Based on Fenestra...Design And Analysis of Different Artificial Human Hip Stems Based on Fenestra...
Design And Analysis of Different Artificial Human Hip Stems Based on Fenestra...IRJET Journal
 
Modus operandi of functional appliances mallik /prosthodontic courses
Modus operandi of functional appliances mallik /prosthodontic coursesModus operandi of functional appliances mallik /prosthodontic courses
Modus operandi of functional appliances mallik /prosthodontic coursesIndian dental academy
 
Review on alternative material for prostheesis.pdf
Review on alternative material for prostheesis.pdfReview on alternative material for prostheesis.pdf
Review on alternative material for prostheesis.pdfEndalkachew Gashawtena
 
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...Endalkachew Gashawtena
 
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...Endalkachew Gashawtena
 
Anatomy_and_Human_Movement.pdf
Anatomy_and_Human_Movement.pdfAnatomy_and_Human_Movement.pdf
Anatomy_and_Human_Movement.pdfKYAMCANATOMY
 
C H A P T E R1What Is BiomechanicsAfter completing this.docx
C H A P T E R1What Is BiomechanicsAfter completing this.docxC H A P T E R1What Is BiomechanicsAfter completing this.docx
C H A P T E R1What Is BiomechanicsAfter completing this.docxclairbycraft
 

Similar to Craig b. payne the past, present and future of podiatric biomechanics (japma, 1998) (20)

Argos SpineNews 3
Argos SpineNews 3Argos SpineNews 3
Argos SpineNews 3
 
A fresh look at vascularized flexor tendon transfers
A fresh look at vascularized flexor tendon transfersA fresh look at vascularized flexor tendon transfers
A fresh look at vascularized flexor tendon transfers
 
Shetty a evolução da artroplastia total de joelho. parte i
Shetty a evolução da artroplastia total de joelho. parte i  Shetty a evolução da artroplastia total de joelho. parte i
Shetty a evolução da artroplastia total de joelho. parte i
 
Functional appliances evolution and mode of action /certified fixed orthodon...
Functional appliances evolution and mode of action  /certified fixed orthodon...Functional appliances evolution and mode of action  /certified fixed orthodon...
Functional appliances evolution and mode of action /certified fixed orthodon...
 
Articulators-A Review Article
Articulators-A Review ArticleArticulators-A Review Article
Articulators-A Review Article
 
Heel Pain and Plantar Fasciitis
Heel Pain and Plantar FasciitisHeel Pain and Plantar Fasciitis
Heel Pain and Plantar Fasciitis
 
Studies validate ergonomic pipette design
Studies validate ergonomic pipette designStudies validate ergonomic pipette design
Studies validate ergonomic pipette design
 
Articulators in orthodontics an evidencebased
Articulators in orthodontics an evidencebasedArticulators in orthodontics an evidencebased
Articulators in orthodontics an evidencebased
 
Design And Analysis of Different Artificial Human Hip Stems Based on Fenestra...
Design And Analysis of Different Artificial Human Hip Stems Based on Fenestra...Design And Analysis of Different Artificial Human Hip Stems Based on Fenestra...
Design And Analysis of Different Artificial Human Hip Stems Based on Fenestra...
 
John reggars
John reggarsJohn reggars
John reggars
 
John Reggars
John ReggarsJohn Reggars
John Reggars
 
bionic
bionicbionic
bionic
 
Modus operandi of functional appliances mallik /prosthodontic courses
Modus operandi of functional appliances mallik /prosthodontic coursesModus operandi of functional appliances mallik /prosthodontic courses
Modus operandi of functional appliances mallik /prosthodontic courses
 
Oroaj.ms.id.555557 (1)
Oroaj.ms.id.555557 (1)Oroaj.ms.id.555557 (1)
Oroaj.ms.id.555557 (1)
 
Oroaj.ms.id.555557 (1)
Oroaj.ms.id.555557 (1)Oroaj.ms.id.555557 (1)
Oroaj.ms.id.555557 (1)
 
Review on alternative material for prostheesis.pdf
Review on alternative material for prostheesis.pdfReview on alternative material for prostheesis.pdf
Review on alternative material for prostheesis.pdf
 
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
 
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
Review on-alternate-materials-for-producing-low-cost-lower-limb-prosthetic-so...
 
Anatomy_and_Human_Movement.pdf
Anatomy_and_Human_Movement.pdfAnatomy_and_Human_Movement.pdf
Anatomy_and_Human_Movement.pdf
 
C H A P T E R1What Is BiomechanicsAfter completing this.docx
C H A P T E R1What Is BiomechanicsAfter completing this.docxC H A P T E R1What Is BiomechanicsAfter completing this.docx
C H A P T E R1What Is BiomechanicsAfter completing this.docx
 

More from mdjimenezcristino (9)

Póster vendajes Neuromusculares
Póster vendajes NeuromuscularesPóster vendajes Neuromusculares
Póster vendajes Neuromusculares
 
Sebior final
Sebior finalSebior final
Sebior final
 
Tarea 7
Tarea 7Tarea 7
Tarea 7
 
Tarea 6
Tarea 6Tarea 6
Tarea 6
 
Tarea 5
Tarea 5Tarea 5
Tarea 5
 
Tarea 4
Tarea 4Tarea 4
Tarea 4
 
Tarea 3
Tarea 3Tarea 3
Tarea 3
 
Tarea 2
Tarea 2Tarea 2
Tarea 2
 
Mapa web 2.0
Mapa web 2.0Mapa web 2.0
Mapa web 2.0
 

Craig b. payne the past, present and future of podiatric biomechanics (japma, 1998)

  • 1. The Past, Present, and Future of Podiatric Biomechanics CRAIG B. PAYNE, DipPod(NZ), MPH* The author places the history and development of podiatric biomechan- ics, as well as current thinking about its underpinnings and future, in the context of a theoretical framework drawn from the philosophy and soci- ology of science. This analysis sets the stage for an exploration of the possible future directions in which podiatric biomechanics could develop. (J Am Podiatr Med Assoc 88(2): 53-63, 1998) In order to look ahead in the field of podiatric biome- chanics that deals specifically with the interactions chanics, it is necessary to understand the past. The of the foot with the lower extremity.3 However, the philosophy, sociology, and history of science provide use of the adjective “podiatric” before “biomechan- conceptual frameworks that can be used to explain ics” refers here to the particular “brand” of biome- changes that have occurred in podiatric medical chanics that is commonly used in podiatric medical practice and serve as guides to the future. The pur- practice. Its principles have been widely adopted in pose of this article is to analyze the development of other disciplines.4, 5 Historically, podiatric biome- what is commonly referred to as podiatric biome- chanics as a clinical discipline has developed outside chanics in the context of one of the main theories of the mainstream of the scientific community of bio- the historical development of scientific disciplines. mechanics, itself only one area within the wider sci- This retrospective analysis suggests that it may be ence of biomedical engineering, of which orthopedic time for changes to occur in the clinical practice of biomechanics is considered a part.6 podiatric biomechanics. Podiatric biomechanics as it is commonly applied today in clinical practice, in the form of the function- Podiatric Biomechanics al foot orthosis,7, 8 is based on work begun by Root and his colleagues over 30 years ago, with the semi- Few would deny the importance of biomechanics in nal publication, Normal and Abnormal Function of podiatric medical practice. Merton L. Root recently the Foot, appearing in 1977.9 Biomechanical princi- wrote: “Biomechanics is a necessary basic science ples were widely taught in podiatric colleges and for the field of Podiatry. No specialty in the field of continuing-education courses even before publica- medicine is more intimately involved, on an everyday tion of that work.10-12 Other early publications includ- basis, with the clinical application of biomechanics. ed a manual written by Thomas Sgarlato10 used at the The understanding of basic mechanics and biome- California College of Podiatric Medicine and two ear- chanics of the lower extremity can provide the Podi- lier works by Root et al on clinical examination11 and atrist with an invaluable diagnostic ability that can- neutral-position casting methods.12 After gaining not be otherwise matched.”1 The term “biomechan- wide acceptance in clinical practice in the US, the ics” is frequently misused, but it can be defined as concepts later spread to other countries, including “the application of mechanical laws to living struc- the United Kingdom, 13 Australia, 14 and New Zea- tures, as to a locomotor system.” 2 Podiatric biome- land.15 More recently Root has provided insight into chanics has been defined as that branch of biome- how the functional foot orthosis was developed.16, 17 Before the work of Root and colleagues, there was *Lecturer, Department of Podiatry, La Trobe University, no uniform or widely accepted podiatric theory of Bundoora, Victoria 3083, Australia. foot biomechanics to guide therapy. Early contribu- Volume 88 • Number 2 • February 1998 53
  • 2. tions to the literature18 include a description in 1845 its wide acceptance and is based on deviations from by Durlacher19 of a built-up leather inlay used to treat what Root et al considered to be normal alignment. mechanical foot problems. Thomas 20 in 1874 de- Any variation from that normal alignment as they scribed the use of additions to the outer sole of the defined it was considered to cause abnormal foot shoe to treat foot disorders. A different approach function, resulting in a particular set of signs and was taken in 1888 by Whitman,21 who used a steel su- symptoms, depending on the nature of the variation. pinated device with a high medial and lateral flange The variation is carefully measured,11 and then a that was designed to press on the navicular, causing cast 8, 12, 30 is made of the foot in its neutral position to the foot to invert by force or from muscular contrac- capture these deviations in alignment. A functional tion due to pain. Roberts 22 in 1916 developed a metal foot orthosis7, 8, 17 is then constructed, with posts brace similar to the Whitman device that had a deep attached to position either the forefoot or the rear- inverted heel cup with medial and lateral clips. foot or both in the appropriate alignment, thereby Morton23 in the 1940s advocated the use of an insole restoring what is considered normal function. with a medial forefoot extension to functionally The years since Root et al first elucidated the theory lengthen the first ray. Early contributions from podia- have seen a number of developments, including the try include that of Schuster,24 who in the 1920s devel- use of extrinsic forefoot posting, 8 application of oped what became known as the Roberts-Whitman direct pressure on the fourth and fifth metatarsal brace, which combined features of both devices. heads during the neutral-position casting,8 improve- In 1948, Schreiber and Weinerman25 proposed that ments in materials technology,31 advances in under- an inverted or everted position of the forefoot re- standing of the influence of positional variations in quired balancing. In 1950, Levy26 developed a support the subtalar joint axis,32-34 the medial heel skive tech- combined with a toe crest that became known as the nique,35 the inverted orthosis,36 cast sectioning,37, 38 Levy mold; it had a thick leather cover, with the sup- the DC (direct control) inverted wedge,39 the use of port made of a latex compound. Root later used and scanners 40 to replace the plaster casting process, and modified this device before moving on to rigid plas- the use of computer technology during the manufac- tics. At this time, the foot tended to be viewed as a ture of orthoses.40, 41 static structure, with the height of the arch consid- The widespread application of the principles of ered paramount. More detailed descriptive accounts podiatric biomechanics in clinical practice has not of the historical development of mechanical foot been accompanied by an abundance of published therapy are available elsewhere.18, 27-29 articles in scientific journals describing empirical It is difficult to appreciate the history of a disci- studies. Virtually all of the material in even the most pline without recognizing the broader context, the recently published textbooks 5, 7, 8, 42, 43 as well as the factors that have contributed to the shaping of that content of courses offered at podiatric medical col- history. Schuster18 noted that at the turn of the centu- leges and in continuing education programs reflects ry podiatric orthopedics began to develop its own the clinical experience of talented practitioners and unique characteristics because of the limitations on educators. The field is characterized by strongly assert- the scope of podiatric practice, which encouraged an ed opinions that are widely accepted but are unsup- emphasis on mechanical approaches. It was in this ported by data from well-controlled studies or exper- context that Root and his colleagues developed their iments. Often, challenges to these established views work, which had a dramatic impact on the clinical are greeted with antagonism 44 and a confusion of fact practice of podiatric medicine. They brought togeth- with theory. Strongly promulgated postulates tend to er a diverse and apparently incoherent body of litera- discourage further work that will enhance understand- ture on foot mechanics and developed the concepts ing. Yet, as the profession develops a more critical atti- of the neutral position of the subtalar joint and the tude toward its underpinnings, the theory is being more forefoot-rearfoot relationship when the midtarsal systematically and objectively evaluated, and postu- joint is “locked,” while introducing a theoretical lates and assumptions that have become entrenched coherence to the field. orthodoxy are increasingly being challenged.45-47 The theory first proposed by Root and his col- leagues as a protocol for the management of foot dis- Philosophy of Science orders constituted a dramatic shift in the understand- ing of the foot and its mechanical relationship to the The philosophy of science is concerned with the rest of the kinetic chain, emphasizing the foot as a nature and foundations of what is considered to be dynamic rather than a static structure. Their theoreti- scientific knowledge, while the sociology of science cal framework has remained largely unchanged since concerns the social processes involved in the pro- 54 Journal of the American Podiatric Medical Association
  • 3. duction of this scientific knowledge. Many philoso- “paradigms” are overthrown and replaced by other phers and sociologists have proffered theories about paradigms.53-59 His account of the progress of scientif- the development of scientific thought.48-50 The discus- ic inquiry sees science as consisting of long periods sion here, however, is restricted to what is relevant of orderly, disciplined work—which he called “nor- to the field of podiatric biomechanics. The discus- mal science”—punctuated by periods of intellectual sion is admittedly superficial, with no attempt made ferment leading to revolutions in which the old theo- to situate it within the wider debate over the philoso- retical order is overthrown, after which a new period phy of science. of normal science begins. Normal science is charac- Positivism, once considered the dominant view of terized by the collective acceptance of a certain para- science, holds that science proceeds by means of a digm, or framework of ideas. This set of assumptions process of deriving observational predictions and determines what is considered acceptable “science” hypotheses from theories and then testing them or “practice” at any given time. Practitioners direct empirically.48 This process provides the basis for their work toward solving problems that are deter- decisions among competing theories. Scientific mined by or relevant to the dominant paradigm at the knowledge is seen as both rational and objective. time. Kuhn’s central argument is that scientific con- The positivist approach to the historical development cepts must be understood within the particular his- of science assumes that scientific knowledge is in a torical and social context in which they developed. continuous state of accumulation and growth: More This is an appropriate view to adopt for an explo- and more areas are explored, established areas are ration of the history and future course of podiatric examined in more and more detail, increasingly accu- biomechanics: It can help explain the field’s past as rate observations are made, and increasingly sophis- well as help predict its future. ticated experiments and observations are carried out. In this way, new concepts and theories to explain A Paradigm in Podiatric Biomechanics reality evolve, and knowledge grows. The history of a particular scientific discipline is seen as a linear devel- A paradigm is difficult to define precisely, but it opment toward scientific truth by means of steadily includes scientific laws and theoretical assumptions improving scientific methods. In this view, science is as well as how they are applied. Kuhn characterized fundamentally evolutionary and progressivist. paradigms as “universally recognized achievements, The descriptive accounts of the history of podi- that for a long time provide model problems and atric biomechanics by Schuster18 and Levitz et al27 solutions to a community of practitioners.”51(p176) The illustrate this positivist approach. For example, paradigm reflects the unique set of beliefs, values, Schuster18 considers the forefoot balancing described and methods shared by this community of practition- by Schreiber and Weinerman25 in 1948 as the prede- ers, a particular worldview that shapes scientific cessor of the forefoot posting developed by Root. thinking and action. Paradigms structure scientific Yet, although Root et al 9 cite Schreiber and Weiner- observation in particular ways: Observations are man’s work, there is no evidence that they were made in light of the concepts and theories that are influenced by it. Similarly, Starrett 29 claims that the embedded in the paradigm. Kuhn’s theory was con- Whitman device 21 had a profound effect on the devel- ceived as a theory of the history of scientific discov- opment of the modern functional foot orthosis. How- ery, but his original concept of the scientific paradigm ever, Blake’s development of the inverted orthotic has since been applied to technological develop- technique was not influenced by the Whitman device ment 60; thus his notion of “paradigm” is very much (R Blake, DPM, personal communication, 1997), applicable to the discipline of podiatric biomechanics. although there are conceptual similarities between The process of the initial formation of a paradigm the two. Also, while Anthony 8 refers to the influence typically starts with attempts to resolve a particular of the Levy mold on Root’s development of the func- range of problems or develop a body of theoretical tional orthosis, the functional foot orthosis actually knowledge about some aspect of the world. In this bears no resemblance to the Levy device. These brief stage, which Kuhn called the “pre-scientific” period, examples suggest that podiatric biomechanics did interpretations of the problem under inquiry are dis- not develop in a linear fashion. organized and diverse. Initial research studies and Historical studies reveal that the evolution of the scientific practice are not structured by any coherent major branches of science does not exhibit the struc- model or methodology. Kuhn cites as an example the ture assumed by the positivist approach. Kuhn51, 52 wide diversity of theories in optics before Newton interpreted the development of scientific knowledge proposed and defended his particle theory. Similarly, as a succession of “revolutions” in which dominant the understanding of podiatric biomechanics before Volume 88 • Number 2 • February 1998 55
  • 4. the advent of Root’s work was not structured or uni- few anomalies is not sufficient to cause the abandon- fied by any coherent model or framework. ment of a paradigm. When many anomalies emerge, The pre-scientific period ends when those engaged however, a state of “crisis” develops, especially if the in this activity form a social community and agree to anomalies pose fundamental challenges to the para- adhere to a single paradigm. The paradigm embodies digm and do not yield to persistent attempts by the the particular conceptual framework in which the community to resolve them. At that point, the com- practitioners and researchers of that community munity begins to express discontent with the existing operate and in terms of which a particular interpreta- paradigm, marking the end of the period of “normal tion of “reality” is generated, so that any new theo- science.” According to Kuhn, the anomalies that pose ries generated will be consistent with the view of problems for the paradigm result in “pronounced reality supported by the paradigm. The paradigm sets professional insecurity” among members of the com- the standards for legitimate scientific work and gov- munity. As they begin to lose their faith in the cur- erns the scientific activity of the members of that rent paradigm, debates over fundamental issues are community. The production of theories within a initiated, and alternative paradigms emerge. given paradigm, what Kuhn calls “normal science,” The crisis is finally resolved when the existing usually takes the form of “puzzle-solving,” with the paradigm is abandoned and a new paradigm that has puzzles always defined by and soluble in terms of the gained the allegiance and support of researchers and dominant paradigm. This period of normal science is practitioners takes its place. This process of “paradigm characterized by detailed attempts to articulate the shift” is not based on any rational, systematic, or logi- paradigm, and to improve the match between the cal assessment of the rival alternatives; rather, it is a paradigm and reality, but the fundamentals of the “revolution” brought about by the “conversion” of the paradigm are not questioned. The pre-scientific peri- community. This abandonment of one theoretical od in the field of podiatric biomechanics essentially structure and its replacement by another one that is came to an end with the work of Root and his col- incompatible with the first is a key point in Kuhn’s leagues, which was widely accepted by the podiatric structure of scientific revolutions. The new paradigm community as a unifying framework or paradigm then guides normal scientific activity until sufficient that would guide research and clinical practice. anomalies emerge to result in a new revolution. Disagreement has surfaced in the literature as to Kuhn refers to paradigms as “incommensurable,” whether paradigms are discipline-wide or confined meaning that the overall content and propositions of to specialties or subfields within a discipline. The different paradigms cannot be directly compared. Con- development of the current paradigm in podiatric clusions drawn within the context of one paradigm biomechanics would support the argument that they cannot be “translated” into the terms of another par- are confined to specialties or subfields, as that para- adigm. Successive paradigms, then, can be evaluated digm applies primarily to podiatric management of only with difficulty. Proponents of one paradigm or the foot, even though, as noted above, some other theory usually have difficulty understanding the pro- disciplines have adopted its underlying principles. ponents of a rival paradigm or theory; thus the two The paradigm did not gain wide acceptance in the groups tend to talk past each other. The observations orthopedic profession for management of the foot; or conclusions drawn by the proponents of a given indeed, it has been described by members of that paradigm reflect the beliefs, values, and interests of community as “nonsense and non-science” 61 and is the community that adheres to that paradigm. usually omitted from major orthopedic texts describ- In the early days, resistance to Root’s work came ing foot mechanics.62 from practitioners who tried to relate what he was saying to what they already knew. The problem many The Process of Paradigm Shift people have in understanding new paradigms is not necessarily due to any difficulty inherent in the new The activities that take place during the period of paradigm, but rather relates to the fact that the new normal science continue as long as the paradigm sat- paradigm is being viewed through the “lens” of the isfactorily explains the phenomena to which it is existing paradigm. This may account for the infa- applied. However, no intellectual framework can mous split between the East Coast and the West explain everything. In attempting to discover solu- Coast of the US that occurred in the understanding tions to puzzles, researchers will eventually run into of Root’s original work. Similarities can be seen in difficulties. Puzzles that resist solution are seen with- Constant’s 63 account of the development of the jet in the context of the paradigm as “anomalies” rather engine, in which he relates how aircraft-engine design- than as falsifiers of the paradigm. The existence of a ers strongly adhered to the propeller-driven piston 56 Journal of the American Podiatric Medical Association
  • 5. engine paradigm and were reluctant to take seriously for the propulsive phase of gait. In support of this any rival system. they cite the analysis of Wright et al70 of two subjects. Yet Root and colleagues appear to have misinterpret- Problems with Traditional Theory ed Wright and colleagues, for what Wright et al called the subtalar joint neutral position is what Root Although there has always been a certain amount of et al would consider the relaxed calcaneal stance resistance to the theories originally proposed by position. Two more recent reports confirmed that Root, it paled into insignificance in the context of the the foot is in its relaxed calcaneal stance position, paradigm’s wide acceptance and the extent to which not its neutral position, at midstance during gait.71, 72 it was incorporated into clinical practice. With time, Several studies, reviewed by Menz,73 examined the however, the number of anomalies or puzzles within reliability of measurement procedures that were the current podiatric biomechanics paradigm has originally described by Root et al,11 with most finding become apparent as attempts have been made to intratester reliability to be reasonably good but improve the match between the theory and reality. intertester reliability to be poor. This raises major One of the first problems with the theory is not questions about the use of measurement during really an anomaly in Kuhnian terms but has led to assessment of patients and for prescription of difficulty in understanding of the paradigm. The use orthoses. Three studies74-76 have concluded that static and intended meaning of certain terms, which were measurements are not good predictors of dynamic originally elucidated very clearly by Root et al,11 have limb function. The use of medial foot wedges was given rise to different interpretations and disagree- found to significantly reduce the “Q angle” during ment among practitioners in different disciplines. In static stance but not during gait.77 Static measure- short, what is clear in the podiatric profession is a ments are used as part of the biomechanical assess- source of confusion to those in other fields. ment of patients, but in light of these reports and The definition of “normality” used by Root et al11 other work on the reliability of the measurements, is contentious. It is not compatible with what those their usefulness must be reconsidered. The plaster in the orthopedic profession64 would accept as a cast used for functional foot orthoses is also the prod- “normal” foot, which constitutes a much looser defi- uct of static measurements. One report74 showed a nition than the podiatric one. Indeed, the criteria of statistically significant difference between the static Root et al might allow the entire population to be and dynamic arch index values, suggesting that the classified as “abnormal.”45, 46 Reference ranges are traditional method of static casting may not result in widely used in medicine to determine normality; thus an adequate representation of a dynamic foot. The it would be expected that the criteria originally pro- assessment of the range of motion of the subtalar posed by Root et al for normalcy would fall in the joint is done in a nonweightbearing position, but middle of a normal bell-shaped distribution in a pop- there is a difference between the weightbearing and ulation sample. This, however, is not the case.65, 66 nonweightbearing range of excursion of the calca- This is explored by Astrom and Arvidson,66 who con- neus in the frontal plane, indicating motion in this sider the criteria for the normal or ideal foot as joint.78 Many clinicians who are familiar with in-shoe defined by Root et al to be based on an invalid theo- plantar pressure measurements anecdotally report retical concept. some inconsistency between clinical biomechanical A cornerstone of the Root paradigm is the con- examination and how the foot functions. In particu- cept of subtalar joint neutral position. The intuitive lar, the plantar pressure measurements of patients and sensible definition of subtalar joint neutral is the with inverted or everted forefoot positions do not position in which the subtalar joint is neither pronat- usually corroborate the underlying theory. ed nor supinated, but the validity of this position has Originally Root et al 9 and Sgarlato10 assumed that never been established. Many methods have been forefoot varus was due to a lack of normal talar head developed to clinically determine this position,67 torsion. More recent investigators, such as Seibel43 such as the now discredited calculation method,47 and Valmassy,42 have been even more assertive in the palpation of the talar head method, and observa- attributing forefoot varus to this phenomenon despite tion of the lateral skin curves, but none of these evidence to the contrary79 and the lack of evidence establishes validity. The ability of clinicians to place that the frontal-plane position of the talar head is the foot in this position is extremely variable.68, 69 related to the frontal-plane position of the forefoot.80 According to Root et al,9 the goal of the orthosis is to In contrast, recent evidence shows that the trans- ensure that the subtalar joint is in its neutral position verse-plane position of the head and neck of the talus at midstance or slightly before heel-off in preparation does influence the forefoot position.81 There is also Volume 88 • Number 2 • February 1998 57
  • 6. no evidence that the posterior bisection of the calca- tored during a clinical trial. Only three studies 87-89 neus is perpendicular to the plantar surface of the have prospectively evaluated the use of functional calcaneus, which is used as the reference plane for foot orthoses in randomized controlled trials, two frontal-plane forefoot deformity. Possible distortion with positive outcomes 88, 89 and one with a negative of the plantar calcaneal fat pad from the bony con- outcome.87 The two positive reports involved adults tour during nonweightbearing could disguise the true with rheumatoid arthritis 88 and diabetes,89 and the plantar rearfoot plane and give the appearance of an negative report concerned healthy children.87 None inverted forefoot.80 This soft-tissue distortion raises of them compared the functional foot orthosis with the question of what exactly is replicated by the sur- another type of device, but instead compared its use face of the neutral position cast.80 It is a common with no intervention,87 a placebo,88 or palliative care.89 assumption that the soft-tissue contour of the non- It is unclear whether similar results would have been weightbearing foot reflects the true osseous position, obtained with a comparison of different types of when in fact there is no evidence to support this. devices. Clearly, there is a relationship between excessive Problems can exist with the clinical application of subtalar joint pronation and patellofemoral joint dys- the paradigm, in the form of excessive use or abuse function,82, 83 but the pathologic mechanisms have not of orthoses by clinicians. The overuse may stem from yet been elucidated,77, 84, 85 with no or minimal changes a lack of knowledge,90 but there is also an inherent observed in knee kinematics with orthoses in experi- conflict in prescribing a product (foot orthoses) for mental situations. which one gets reimbursed, which is not the case for In a review of the effectiveness of children’s foot other products such as pharmaceuticals. Another orthoses in the treatment of pediatric flatfoot, Kirby major problem could be, as Anthony 8(p109) asserts, and Green86 noted that a number of experimental stud- “that control of abnormal compensation that is not ies found that foot orthoses reduce not only symp- associated with the patient’s specific problem consti- toms associated with an overpronating foot but also tutes one of the main causes of treatment failure the magnitude, velocity, and acceleration of rearfoot when using functional orthotic devices as a treatment pronation. However, a review of the literature by modality.” Common problems 91 include the use of Kilmartin and Wallace 84 led them to the different con- orthoses that are not indicated, errors in the casting clusion that no single piece of research has yet proved technique, inappropriate choice of orthotic materials, the advantage of placing the foot in a supinated or and faulty prescription and manufacture. It is some- neutral position rather than a pronated position. what paradoxical, as noted by Kilmartin and Wal- Sims and Cavanagh85 noted that although studies lace,84 that the two texts 7, 8 on the prescription and have claimed that foot and ankle symptoms are usu- manufacture of functional foot orthoses imply that ally dramatically decreased with the use of foot incorrectly prescribed orthoses may cause damage orthoses, the objective improvement in rearfoot motion is considerably more modest, suggesting that to the foot of the wearer, yet the authors of these two therapeutic success is not necessarily due to restor- texts have two different clinical approaches to the ing the foot to what is functionally considered “nor- use of the functional foot orthosis. mal.” This raises the possibility that foot orthoses are A large part of the theory of foot function pro- effective for reasons that are not entirely clear. A posed by Root et al 9 is based on a “hinge” model of number of the experimental studies did not use func- the subtalar and midtarsal joints and the two-axes tional foot orthoses but rather flexible or semirigid model of the midtarsal joint. However, there are no devices based on the principles of functional foot true hinge joints in the foot,85, 92 and the two-axes orthoses, which some8 would consider to be flawed. model of the midtarsal joint has been discredited for The lack of prospective, randomized, controlled some time now.85, 93, 94 The talonavicular joint is just trials comparing functional foot orthoses with other as important as the subtalar joint in translating trans- types of devices is a major criticism directed at the verse rotation of the leg. As positional variation of paradigm. The difficulty in conducting such studies the subtalar joint axis affects the range of frontal- must be acknowledged: They involve many subject plane movement of the calcaneus with movement of variables associated with pathology, countless pre- the subtalar joint, and with this more recent under- scription and manufacturing variables, and difficulty standing of the midtarsal joint, the use of frontal- in defining appropriate endpoints and outcomes that plane movement of the calcaneus for determining the are valid, accurate, and reliable. Also lacking is an effectiveness of an orthosis in clinical and research objective measure of orthotic efficacy comparable to settings may not be valid. Confusion also exists as to the tissue concentration of drugs that can be moni- the stability of the foot when the subtalar joint is 58 Journal of the American Podiatric Medical Association
  • 7. pronated,44, 46 with Root et al 9 suggesting that it is a behind the approach rather than its superficial aspects. less stable position and Sarrafian95 suggesting that it Indeed, a profession’s willingness to subject its own is a more stable position. procedures and methods to critical self-evaluation can be considered a sign of that profession’s maturity. The Importance of Critical Thinking Future Directions Have these “puzzles” or inconsistencies become suf- ficient to precipitate a paradigm shift? Although For a paradigm shift to occur, there must be alterna- these problems have become apparent through tives to the existing paradigm. Classic paradigm attempts to improve the fit between the model and shifts cited by Kuhn include the shift in astronomy reality, they do not rate a mention in recent texts 5, 7, 8, 42, 43 from the Ptolemaic (earth-centered) view to the and appear to be either unknown or largely ignored Copernican (sun-centered) one 48 and the shift from by those who are most supportive of the paradigm. Aristotelian to Newtonian physics. In all of these Kuhn’s work emphasizes the role of socialization, the cases, a number of anomalies became apparent in the process by which young practitioners are educated original paradigm, and then the alternative emerged. or indoctrinated into the current paradigm. Because The paradigm shift requires community agreement, research and practice are conducted within a social not just conversion by individuals. A few alternatives community of practitioners, the way in which these are starting to emerge that may affect the clinical prac- communities are organized is of crucial significance tice of podiatric biomechanics as they become more in the production of knowledge. Kuhn’s early work 96 fully developed as coherent theoretical frameworks. explored the role of dogma in scientific research. There are several possibilities for the future course Kuhn considered textbooks of a discipline to be cru- of podiatric biomechanics. The first possibility is that cial vehicles of socialization into a paradigm. It is no paradigm shift will occur. It is entirely possible unlikely that Root et al9 considered their text to be that the anomalies discussed above will prove insuf- the final word. The work should have been just a ficient to undermine the fundamentals of the para- starting point; yet the paradigm has been defined by digm. Further theoretical development, experiments, a dogmatic and unquestioning literal interpretation and empirical observations could resolve the anoma- of their text. Popper 97 characterized Kuhn’s normal lies. However, this is increasingly unlikely given the science as “the activity of the non-revolutionary, or fundamental inconsistencies in the currently prevail- more precisely, the not too critical professional; of ing theory. the . . . student who accepts the ruling dogma of the The second potential direction for podiatric bio- day; who does not want to challenge it . . . all teach- mechanics is the adoption of a paradigm that empha- ing at the University level should be training and sizes the neurophysiologic, neuromechanical, or pro- encouragement in critical thinking . . . the normal sci- prioceptive effects of foot orthoses. Normally the entist, as described by Kuhn has been badly taught. joint, skin, and muscle proprioceptors work together He has been taught in a dogmatic spirit; he is a victim to provide the central nervous system with informa- of indoctrination. He has learned a technique which tion about position and movement. This information can be applied without asking for the reason why.” is analyzed against a desired normal pattern to pro- Recently, podiatric education in the United King- duce an appropriate motor response. Abnormal dom, 98 Australia, and New Zealand 99 has gone motion patterns will affect proprioception, and foot through a transition from a curriculum focusing on orthoses will alter proprioceptive inputs to the cen- technical skills to one that highlights critical think- tral nervous system. To date very little coherent the- ing, with much more emphasis now being placed on ory has been developed in this area. There is a pro- the critical evaluation of fundamental assumptions prioceptive center located in the subtalar joint.100 It that underpin podiatric clinical practice. The clinical appears that the interosseous ligament plays an practice of podiatric biomechanics by podiatrists important role in rearfoot proprioception. Supination outside the US takes place in very different health- of the subtalar joint increases afferent feedback to the care contexts. Podiatrists outside the US have con- central nervous system, while pronation decreases it. siderably less scope in clinical practice, leading to Michaud 5 suggests that by improving the progres- greater reliance on mechanical therapies, the use of sion of forces, the orthosis acts to reeducate the cen- which requires systematic evaluation. The critical tral nervous system as to ideal patterns of muscle evaluation of an approach to patient care is not nec- recruitment. This could be an explanation for the essarily a destructive process; it is best viewed as a phenomenon, anecdotally reported by a number of method of assessment that emphasizes the principles clinicians, of an apparent period of normal foot func- Volume 88 • Number 2 • February 1998 59
  • 8. tion after removal of an orthosis. It also appears that originally proposed by Root et al11 that classifies feet subtle intertarsal movements are conducive to nor- on the basis of what causes the abnormal function. mal balance, as those with a tarsal coalition have Under this proposed classification, for example, some trouble balancing on one foot. Stimulation of when the center of pressure is lateral to the subtalar the cutaneous mechanoreceptors on the plantar sur- joint axis, a pronation moment from the ground is face of the foot also seems to have functional signifi- acting on the foot. There must be an equal and oppo- cance. Stimulation under the metatarsophalangeal site supination moment within the foot countering joints has been shown to result in a contraction of the pronation from the ground. This supination the digital plantar flexors 101 that redistributes plantar moment could be caused by the osseous end range of ground reactive forces. Stimulation of the skin in the motion, the plantar fascia, or a supinator muscle arch (on which any type of foot orthosis will press) such as the posterior tibial muscle. Depending on dorsiflexes the digits, effectively increasing the which structure or structures provide the supination ground reactive forces under the metatarsal heads. moment, various pathologies could result. The ad- This has led to speculation that it is footwear that vantages of this new classification system are that it attenuates plantar sensations that is responsible for is not reliant on the inaccurate measurement tech- pathology.102 Also of interest here is the use of the niques, pathology correlates with physical findings, “dynamic” foot orthosis103, 104 for the treatment of and treatment is aimed at reducing stress on the mild-to-moderate spasticity. It uses a sensorimotor anatomic structures involved (E Fuller, DPM, per- approach to control motor output by changing senso- sonal communication, 1997). How this can be trans- ry input, so that unwanted foot movements are con- lated into a system for the prescription of foot trolled by other than purely mechanical means. None orthoses for mechanical foot pathology has not yet of these observations point to any emerging coherent been explored. framework, so further development of them is needed. A fifth option, the tissue-stress model as proposed The sagittal-plane facilitation of motion model105 is by McPoil and Hunt,109, 110 states that there must be a a potential third direction for podiatric biomechan- reduction of tissue stress to tolerable levels (Table 1). ics; it is based on the work of Dananberg.106, 107 In this Placing undue emphasis on the orthosis to the model, the foot is considered to have three autosup- neglect of other aspects of an optimal management portive mechanisms: the close packing of the calca- neocuboid joint, the windlass mechanism, and the wedge-and-truss effect. All require the timely and efficient function of the foot in the sagittal plane so it can resist stress. Any blockage of this sagittal-plane motion, even momentarily, will result in the failure of Table 1. The Tissue-Stress Model109, 110 one or all of these mechanisms, leading to the occur- 1. Identify the involved tissues on the basis of symptoms rence of compensation and pathology at other and other subjective information obtained from the history. sites.106, 107 An orthosis is used to reestablish this pre- 2. Apply various stresses to the involved tissues to replicate cise direction of weight flow through the foot so that symptoms through the use of nonweightbearing and the foot can establish its own autosupportive mecha- weightbearing tests as well as palpation. nisms at the time of heel-off, when power generation 3. Determine whether the patient’s complaint is caused by is at its maximum. It has been suggested105 that this excessive mechanical loading, then ascertain whether model is theoretically coherent and biologically plau- the problem is related to: sible as an explanation for the anomalies that have a. excessive foot pronation emerged in the context of the current Root-based b. lack of foot mobility model. This model’s use of in-shoe pressure mea- c. limitation in flexibility surement to prescribe orthoses designed to direct d. decreased muscle strength weight flow through the foot overcomes the above- 4. Follow a management protocol that emphasizes: mentioned problems with static measurements. A potential fourth direction for podiatric biome- a. reducing tissue stress to a tolerable level through rest, activity modification, footwear, and/or orthoses chanics has been indicated by Fuller,108 who has pro- posed a classification system that is an extension of b. healing the involved tissues through medication and physical therapy the work by Kirby 32, 33 on rotational equilibrium about the subtalar joint. Fuller’s system classifies feet by c. the restoration of lower-extremity flexibility and muscle strength looking at stress in anatomic structures rather than abnormal position. This contrasts with the system d. a plan for the gradual resumption of daily activities 60 Journal of the American Podiatric Medical Association
  • 9. plan is a problem with the clinical application of the Acknowledgment. Eric Fuller, Kevin Kirby, current paradigm, as stated above. The tissue-stress Anne-Maree Keenan, Hylton Menz, and Trevor Prior model is a useful starting point for the development for comments on earlier versions of this essay. of optimal intervention strategies, regardless of the type of orthosis used. References Another possibility is the emergence of an as-yet- unknown new paradigm. 1. R OOT ML: “Foreword,” in Clinical Biomechanics of the Lower Extremities, ed by RL Valmassy, p vii, CV All of these conceptual frameworks require fur- Mosby, St Louis, 1996. ther work, but most are sufficiently developed that 2. Dorland’s Illustrated Medical Dictionary, 28th Ed, they can begin to inform clinical practice. It remains WB Saunders, Philadelphia, 1994. to be seen which direction will be the most success- 3. K IRBY K: Podiatric biomechanics: an integral part of ful in this regard, as there is no rational mechanism evaluating and treating the athlete. Med Exerc Nutr Health 2: 196, 1993. for evaluating one paradigm in terms of another par- 4. H UNT GC, M C P OIL TG ( ED ): Physical Therapy of the adigm. It is possible for more than one paradigm to Foot and Ankle, 2nd Ed, Churchill Livingstone, New exist simultaneously, in a manner similar to the way York, 1995. that the psychosocial model of health sits beside the 5. MICHAUD TC: Foot Orthoses and Other Forms of Con- biomedical model. There will always be attempts to servative Foot Care, Williams & Wilkins, Baltimore, integrate paradigms with each other as a means of 1993. 6. CHAO EYS: Orthopaedic biomechanics: the past, pres- saving a given paradigm. This is generally done by ent and future. Int Orthop 20: 239, 1996. those who are still “wearing the lens” of the current 7. P HILPS JW: The Functional Foot Orthosis, Churchill paradigm and could be considered an attempt to co-opt Livingstone, New York, 1990. the competing paradigm. For example, it has been 8. A NTHONY RJ: The Manufacture and Use of the Func- alleged111 that the biopsychosocial model of health is tional Foot Orthosis, Karger, Basel, 1991. 9. ROOT ML, ORIEN WP, WEED JH: Normal and Abnormal nothing more than an attempted takeover of the Function of the Foot, Clinical Biomechanics Corp, Los psychosocial model by the biomedical model. The bio- Angeles, 1977. medical model has the support of powerful financial 10. SGARLATO TE: A Compendium of Podiatric Biomech- interests, namely, the pharmaceutical industry.112 anics, California College of Podiatric Medicine, San Similarly, the current podiatric biomechanics para- Francisco, 1971. 11. ROOT ML, ORIEN WP, WEED JH: Biomechanical Exam- digm is supported by the commercial orthotic indus- ination of the Foot, Clinical Biomechanics Corp, Los try, which will resist any paradigm shift that it does Angeles, 1971. not regard as in its own interest. 12. ROOT ML, WEED JH, ORIEN WP: Neutral Position Cast- ing Techniques, Clinical Biomechanics Corp, Los Conclusion Angeles, 1971. 13. ANTHONY RJ: Treating the runner. Chiropodist 37: 228, 1982. This analysis has reviewed the history and develop- 14. A RCHIBALD N: Australian podiatry of the future. Aust ment of the field of podiatric biomechanics, as well Podiatr 15: 6, 1981. as current thinking about its underpinnings and future, 15. P AYNE CB: Biomechanics of the Foot and Related in the context of a theoretical framework drawn from Pathology, Podiatry Associates, Riccarton, New Zea- the philosophy and sociology of science. This analysis land, 1982. has been used to explore possible future directions 16. R OOT ML: How was the Root functional orthotic de- veloped? Podiatr Arts Newslett (Fall): 1, 1981. for podiatric biomechanics. 17. ROOT ML: Development of the functional orthosis. Clin Undergraduate and postgraduate education must Podiatr Med Surg 11: 183, 1994. enable students and practitioners to think critically 18. S CHUSTER RO: A history of orthopedics in podiatry. about what is accepted as knowledge in podiatric JAPA 64: 332, 1974. biomechanics. This knowledge includes ideas, assump- 19. D URLACHER L: A Treatise on Corns, Bunions, the Diseases of Nails and the General Management of tions, propositions, and hypotheses, as well as what the Feet, Simpkin, Marshal, London, 1845. are currently believed to be facts. Facts should not be 20. T HOMAS TG [cited by] B RACHMAN P: Shoe Therapy, confused with theory, and science should not be con- Illinois College of Podiatric Medicine, Chicago, 1979. fused with theoretical coherence. Through reflecting 21. WHITMAN R: Observations on seventy-five cases of flat critically on what has been written as well as on per- foot. Trans Am Orthop Assoc 1: 1888. sonal experience, practitioners will come to a fuller 22. ROBERTS PW: The influence of the oscalcis on the pro- duction and correction of valgus deformities of the understanding of their own methods and views. foot. Am J Orthop Surg 14: 1916. Paradigms call for critical engagement, not dogmatic 23. M ORTON DJ: The Human Foot, Columbia University adherence. Press, New York, 1942. Volume 88 • Number 2 • February 1998 61
  • 10. 24. S CHUSTER OF: Foot Orthopaedics, First Institute of dial diagnosis. J Br Podiatr Med 46: 172, 1991. Podiatry, New York, 1927. 48. CHALMERS AF: What Is This Thing Called Science? 2nd 25. SCHREIBER LK, WEINERMAN HW: Research in podophys- Ed, University of Queensland Press, Brisbane, Aus- iology and their application to podopathomechanics. tralia, 1982. J Nat Assoc Chirop 38: 24, 1948. 49. S UPPE F ( ED ): The Structure of Scientific Theories, 26. LEVY B: An appliance to induce toe flexion on weight- University of Illinois Press, Urbana-Champaign, 1977. bearing. J Nat Assoc Chirop 50: 887, 1950. 50. LOSEE J: A Historical Introduction to the Philosophy 27. LEVITZ SJ, WHITESIDE LS, FITZGERALD TA: Biomechanical of Science, 3rd Ed, Oxford University Press, London, foot therapy. Clin Podiatr Med Surg 5: 721, 1988. 1993. 28. BERGMANN JN: History and mechanical control of heel 51. K UHN TS: The Structure of Scientific Revolutions, spur pain. Clin Podiatr Med Surg 7: 243, 1990. University of Chicago Press, Chicago, 1962. 29. S TARRETT CJ: Historical review and current use of 52. K UHN TS: “Second Thoughts on Paradigms,” in The Whitman/Roberts orthoses in biomechanical therapy. Structure of Scientific Theories, ed by F Suppe, p 87, Clin Podiatr Med Surg 11: 231, 1994. University of Illinois Press, Urbana-Champaign, 1977. 30. L OSITO JM: “Impression Casting Techniques,” in Clin- 53. H ORWICH P: World Changes: Thomas Kuhn and the ical Biomechanics of the Lower Extremities, ed by Nature of Science, MIT Press, Cambridge, MA, 1993. RL Valmassy, p 279, CV Mosby, St Louis, 1996. 54. NOTTURNO MA: The Popper/Kuhn debate: truth and two 31. OLSON WR: “Orthotic Materials,” in Clinical Biomech- faces of relativism. Psychol Med 14: 273, 1984. anics of the Lower Extremities, ed by RL Valmassy, 55. CHARLTON KH: Popper-Kuhn debate: a consideration of p 307, CV Mosby, St Louis, 1996. some of the implications for the philosophy of science 32. K IRBY KA: Rotational equilibrium across the subtalar and the chiropractic investigative community. J Man- axis. JAPMA 79: 1, 1989. ipulative Physiol Ther 11: 224, 1988. 33. K IRBY KA: Methods for determination of positional 56. C OULTER ID: The defence of Kuhn (and chiropractic). variations in the subtalar joint axis. JAPMA 77: 228, J Manipulative Physiol Ther 15: 392, 1992. 1987. 57. CHARLESWORTH M: “Thomas Kuhn and Scientific Revo- 34. T OMARO JE, B URDETT RG, C HADRAN AM: Subtalar joint lutions,” in Science, Nonscience and Pseudoscience, ed motion and the relationship to lower extremity by M Charlesworth, Deakin University Press, Melbourne, overuse injuries. JAPMA 86: 427, 1996. Australia, 1982. 35. KIRBY KA: The medial heel skive technique. Precision 58. P ALERMO DS: In defence of Kuhn: a discussion of his Labs Newslett (July-Aug): 1992. detractors. Adv Child Dev 18: 259, 1994. 36. B LAKE RL, F ERGUSON H: “The Inverted Orthotic Tech- 59. MASTERMAN M: “The Nature of the Paradigm,” in Criti- nique: Its Role in Clinical Biomechanics,” in Clinical cism and the Growth of Knowledge, ed by I Lakatos, Biomechanics of the Lower Extremities, ed by RL A Musgrave, p 59, Cambridge University Press, London, Valmassy, p 463, CV Mosby, St Louis, 1996. 1970. 37. ANTHONY RJ: Positive cast sectioning: an essential pre- 60. C LARK N: Similarities and differences between scien- scription writing protocol. J Br Podiatr Med 50: 11, tific and technological paradigms. Futures 19: 26, 1987. 1995. 61. MCGUIRE T: Other deformities (abstract). J Bone Joint 38. LUNDEEN RO: Polysectional triaxial posting: a new pro- Surg Br 77 (suppl 1): 57, 1995. cess for incorporating correction in foot orthoses. 62. M ANN R: Surgery of the Foot, 6th Ed, CV Mosby, St JAPMA 78: 55, 1988. Louis, 1993. 39. GARDNER C, COULL D, COULL R: DC inverted wedge: less 63. CONSTANT EW: The Origins of the Turbojet Revolution, degrees of orthotic correction: greater degrees of foot Johns Hopkins University Press, Baltimore, 1980. control (abstract). Presented at the 17th Australian 64. O’DOHERTY D: “The Foot and Ankle,” in Outcome Mea- Podiatry Conference, Melbourne, 1996. sures in Orthopaedics, ed by PB Pynsent, JCT Fair- 40. B ERGMANN J: The Bergmann foot scanner for auto- bank, A Carr, p 143, Butterworth-Heinemann, London, mated orthotic fabrication. Clin Podiatr Med Surg 10: 1993. 363, 1993. 65. M C P OIL TG, K NECHT HG, S CHUIT D: A survey of foot 41. B IRD AR: Computer generated orthoses. Aust Podiatr types in normal females between the ages of 18 to 30 30: 79, 1996. years. J Orthop Sports Phys Ther 9: 406, 1988. 42. VALMASSY RL (ED): Clinical Biomechanics of the Lower 66. ASTROM M, ARVIDSON T: Alignment and joint motion in Extremities, CV Mosby, St Louis, 1996. the normal foot. J Orthop Sports Phys Ther 22: 216, 43. S EIBEL MO: Foot Function: A Programmed Text, 1995. Williams & Wilkins, Baltimore, 1988. 67. COOK A, GORMAN I, MORRIS J: Evaluation of the neutral 44. ROOT ML: Reappraisal of the negative impression cast position of the subtalar joint. JAPMA 78: 449, 1988. and the subtalar joint neutral position revisited (let- 68. P IERRYNOWSKI MR, S MITH SB, M LYNARCZYK JH: Pro- ter). JAPMA 87: 192, 1997. ficiency of foot care specialists to place the rearfoot 45. S OBEL E, L EVITZ SJ: Reappraisal of the negative im- at subtalar neutral. JAPMA 86: 217, 1996. pression cast and the subtalar joint neutral position. 69. S MITH -O RICCHIO K, H ARRIS BA: Interrater reliability of JAPMA 87: 32, 1997. subtalar joint neutral, calcaneal inversion and ever- 46. L EVITZ SJ, S OBEL E: Reappraisal of the negative im- sion. J Orthop Sports Phys Ther 12: 10, 1990. pression cast and the subtalar joint neutral position 70. W RIGHT DG, D ESAI SM, H ENDERSON WH: Action of the revisited (letter). JAPMA 87: 193, 1997. subtalar and ankle-joint complex during the stance 47. KIDD R: An examination of the validity of some of the phase of walking. J Bone Joint Surg Am 46: 361, 1964. more questionable corner stones of modern chiropo- 71. M C P OIL TG, C ORNWALL MW: The relationship between 62 Journal of the American Podiatric Medical Association
  • 11. subtalar joint neutral position and rearfoot motion dur- 90. S HALVESTON D: The face of podiatry in the nineties. ing walking. Foot Ankle Int 15: 141, 1994. Podiatry Today 5: 51, 1992. 72. P IERRYNOWSKI MR, S MITH SB: Rearfoot inversion/ever- 91. S UBOTNICK SI: The abuses of orthotic devices. JAPA sion during gait relative to the subtalar joint neutral 65: 1025, 1975. position. Foot Ankle Int 17: 406, 1996. 92. H IRSCH BE, U DUPA JK, S AMARASEKERA S: New method 73. MENZ HB: Clinical hindfoot measurement: a critical re- of studying joint kinematics from three-dimensional view of the literature. Foot 5: 57, 1995. reconstructions of MRI data. JAPMA 86: 4, 1996. 74. H AMILL J, B ATES BT, K NUTZEN KM, ET AL : Relationship 93. KEENAN AM: “Understanding Midtarsal Joint Function: between selected static and dynamic lower extremity Fact and Fallacy,” in Proceedings of the 17th Austral- measures. Clin Biomech 4: 217, 1989. ian Podiatry Conference, ed by AM Keenan, HB Menz, 75. KNUTZEN KM, PRICE A: Lower extremity static and dy- p 107, Australian Podiatry Council, Melbourne, 1996. namic relationships with rearfoot motion in gait. 94. VAN LANGELAAN EJ: A kinematical analysis of the tarsal JAPMA 84: 171, 1994. joints. Acta Orthop Scand 54 (suppl): 4, 1983. 76. M C P OIL TG, C ORNWALL MW: The relationship between 95. S ARRAFIAN SK: Functional characteristics of the foot static lower extremity measurements and rearfoot mo- and plantar aponeurosis under tibiotalar loading. Foot tion during walking. J Orthop Sports Phys Ther 24: Ankle Int 8: 4, 1987. 309, 1996. 96. K UHN TS: “The Function of Dogma in Scientific 77. L EFEBVRE R, B OUCHER JP: “Effects of Foot Orthotics Research,” in Scientific Change, ed by AC Crombie, upon the Ankle and Knee Mechanical Alignment,” in p 83, London, 1962. Proceedings of the International Society of Biomech- 97. POPPER KR: “Normal Science and Its Dangers,” in Crit- anics Congress, p 1046, 1989. icism and the Growth of Knowledge, ed by I Lakatos, 78. L ATTANZA L, G RAY GW, K ANTNER RM: Closed versus A Musgrave, p 52, Cambridge University Press, London, open kinematic chain measurements of subtalar joint 1970. eversion. J Orthop Sports Phys Ther 9: 310, 1988. 98. L ORIMER DL: The development of degree education in 79. M C P OIL T, C AMERON JA, A DRIAN MJ: Anatomical char- podiatry in the United Kingdom. J Br Podiatr Med 51: acteristics of the talus in relation to forefoot deformi- 52, 1996. 99. KIPPEN C: Podiatry education in New Zealand. Foot 5: ties. JAPMA 77: 77, 1987. 167, 1995. 80. KIDD R: Forefoot varus: real or false, fact or fantasy? 100. VALENTI V: “Proprioception,” in The Foot, ed by B Helal, Australas J Podiatr Med 31: 81, 1997. D Wilson, p 86, Churchill Livingstone, Edinburgh, 1988. 81. DANIELS TR, SMITH JW, ROSS TI: Varus malalignment of 101. ROBBINS SE, GOUW GJ: Athletic footwear unsafe due to the talar neck: its effect on the position of the foot perceptual illusions. Med Sci Sports Exerc 23: 217, and on subtalar motion. J Bone Joint Surg Am 78: 1559, 1991. 1996. 102. R OBBINS SE, G OUW GJ: Athletic footwear and chronic 82. T IBERIIO D: The effects of excessive subtalar joint overloading. Sports Med 9: 76, 1990. pronation on patellofemoral mechanics: a theoretical 103. P RATT DJ, S ANNER WH: Paediatric foot orthoses. Foot model. J Orthop Sports Phys Ther 9: 160, 1987. 6: 99, 1996. 83. KLINGMAN RE, LIAOSS M, HARDIN KM: The effect of sub- 104. S HAMP JK: Neurophysiological orthotic designs in the talar joint posting on patellar glide position in sub- treatment of central nervous system disorders. J jects with excessive rearfoot pronation. J Orthop Prosthet Orthot 2: 14, 1989. Sports Phys Ther 25: 185, 1997. 105. PAYNE CB, DANANBERG HJ: Sagittal plane facilitation of 84. KILMARTIN TE, WALLACE WA: The scientific basis for the the foot. Australas J Podiatr Med 31: 7, 1997. use of biomechanical foot orthoses in the treatment 106. DANANBERG HJ: Gait style as an etiology to chronic pos- of lower limb sports injuries: a review of the litera- tural pain: part I. functional hallux limitus. JAPMA 83: ture. Br J Sports Med 28: 180, 1994. 433, 1993. 85. S IMS DS, C AVANAGH PR: “Selected Foot Mechanics 107. DANANBERG HJ: Gait style as an etiology to chronic pos- Related to the Prescription of Foot Orthoses,” in Dis- tural pain: part II. postural compensatory process. orders of the Foot and Ankle: Medical and Surgical JAPMA 83: 615, 1993. Management, 2nd Ed, ed by MH Jahss, p 469, WB Saun- 108. FULLER E: Categorizing of feet based on the anatomical ders, Philadelphia, 1991. structure that stops pronation. Presented at the Third 86. K IRBY KA, G REEN DA: “Evaluation and Nonoperative Annual John Weed Memorial Seminar, San Diego, March Management of Pes Valgus,” in Foot and Ankle Dis- 14-16, 1996. orders in Children, ed by S DeValentine, p 295, 109. M C P OIL TG, H UNT GC: “An Evaluation and Treatment Churchill Livingstone, New York, 1992. for the Future,” in Physical Therapy of the Foot and 87. K ILMARTIN TE, B ARRINGTON RL, W ALLACE WA: A con- Ankle, 2nd Ed, ed by GC Hunt, TG McPoil, p 132, trolled prospective trial of a foot orthosis for juvenile Churchill Livingstone, New York, 1995. hallux valgus. J Bone Joint Surg Br 76: 210, 1994. 110. MCPOIL TG, HUNT GC: Evaluation and management of 88. BUDIMAN-MAK E, CONRAD KJ, ROACH KE, ET AL: Can foot foot and ankle disorders: present position and future orthoses prevent hallux valgus deformity in rheuma- directions. J Orthop Sports Phys Ther 21: 381, 1995. toid arthritis? A randomised controlled trial. J Clin 111. ARMSTRONG D: Theoretical tensions in biopsychosocial Rheumatol 1: 313, 1995. medicine. Soc Sci Med 25: 1213, 1987. 89. C OLAGIURI S, M ARSDEN LL, N AIDU V, ET AL : The use of 112. D AVIS P ( ED ): For Profit or Health? Medicine, the orthotic devices to correct plantar callus in people Pharmaceutical Industry and the State in New with diabetes. Diabet Res Clin Pract 28: 29, 1995. Zealand, Oxford University Press, Oxford, 1992. Volume 88 • Number 2 • February 1998 63