Búsqueda Binaria
www.slideshare.net/emergar
www.youtube.com/emergaray
Es un algoritmo de búsqueda que encuentra el
índice de la posición de un valor X en un vector
ordenado (ascendente o descendente),​
estableciendo un limite inferior, limite superior y el
centro de estos limites, para comparar el valor X
buscado con el elemento que este en la posición
centro, si son iguales se retorna el índice centro, en
caso de no ser así, la mitad en la cual el valor X no
puede estar, es descartada y la búsqueda continúa
en la mitad restante(estableciendo un nuevo valor
para alguno de los limites) hasta que el valor X sea
encontrado y en caso de no hallar el valor X se
retorna -1.
Búsqueda Binaria
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Inferior
Superior
= 0
= n - 1
Búsqueda Binaria
ALGORITMOSea V un Vector de n casillas
Limite Inferior será igual a la primera posición
Limite Superior será igual a la ultima posición
V debe estar ordenado
X Es el valor buscado
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
Centro =
Inferior +
Superior
1
Si X
¡Encontrado!
V[ ]
Si Centro < XV[ ]
Centro=
Sino
Sino
- 1Centro=
Está a la derecha
Está a la izquierda
Centro = Inferior + Superior( ) DIV 2
ALGORITMO
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Vector V con 10 casillas
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
X = 61
Elemento a buscar
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior
X = 61
Limite Inferior
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior Superior
X = 61
Limite Superior
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior SuperiorCentro
X = 61
Centro = Inferior + Superior( ) DIV 2
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior SuperiorCentro
X = 61
≠
¡Diferente!
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior SuperiorCentro
X = 61
Centro=Inferior + 1
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior SuperiorCentro
X = 61
Centro = Inferior + Superior( ) DIV 2
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior SuperiorCentro
X = 61
≠
¡Diferente!
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior Superior Centro
X = 61
Centro= - 1Superior
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior Superior
Centro
X = 61
Centro = Inferior + Superior( ) DIV 2
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior Superior
Centro
X = 61
≠
¡Diferente!
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior
Superior
Centro
X = 61
Centro=Inferior + 1
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior
Superior
Centro
X = 61
Centro = Inferior + Superior( ) DIV 2
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior
Superior
Centro
X = 61
=
¡Encontrado!
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Resumido
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
Inferior SuperiorCentro
Inferior SuperiorCentro
I
Superior
C S
Inferior
Centro
Resumido
[0] [1] [2] [3] [4] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
[0] [1] [2] [3] [4] [5] [7] [8] [9]
24 32 38 40 45 56 61 70 77 82
[5]
[6]
Código Java
2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
Búsqueda Binaria

Búsqueda Binaria

  • 1.
  • 2.
    Es un algoritmode búsqueda que encuentra el índice de la posición de un valor X en un vector ordenado (ascendente o descendente),​ estableciendo un limite inferior, limite superior y el centro de estos limites, para comparar el valor X buscado con el elemento que este en la posición centro, si son iguales se retorna el índice centro, en caso de no ser así, la mitad en la cual el valor X no puede estar, es descartada y la búsqueda continúa en la mitad restante(estableciendo un nuevo valor para alguno de los limites) hasta que el valor X sea encontrado y en caso de no hallar el valor X se retorna -1. Búsqueda Binaria 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 3.
    Inferior Superior = 0 = n- 1 Búsqueda Binaria ALGORITMOSea V un Vector de n casillas Limite Inferior será igual a la primera posición Limite Superior será igual a la ultima posición V debe estar ordenado X Es el valor buscado 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 4.
    Búsqueda Binaria Centro = Inferior+ Superior 1 Si X ¡Encontrado! V[ ] Si Centro < XV[ ] Centro= Sino Sino - 1Centro= Está a la derecha Está a la izquierda Centro = Inferior + Superior( ) DIV 2 ALGORITMO 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 5.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Vector V con 10 casillas 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 6.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 X = 61 Elemento a buscar 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 7.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior X = 61 Limite Inferior 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 8.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior Superior X = 61 Limite Superior 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 9.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior SuperiorCentro X = 61 Centro = Inferior + Superior( ) DIV 2 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 10.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior SuperiorCentro X = 61 ≠ ¡Diferente! 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 11.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior SuperiorCentro X = 61 Centro=Inferior + 1 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 12.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior SuperiorCentro X = 61 Centro = Inferior + Superior( ) DIV 2 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 13.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior SuperiorCentro X = 61 ≠ ¡Diferente! 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 14.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior Superior Centro X = 61 Centro= - 1Superior 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 15.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior Superior Centro X = 61 Centro = Inferior + Superior( ) DIV 2 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 16.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior Superior Centro X = 61 ≠ ¡Diferente! 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 17.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior Superior Centro X = 61 Centro=Inferior + 1 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 18.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior Superior Centro X = 61 Centro = Inferior + Superior( ) DIV 2 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 19.
    Búsqueda Binaria [0] [1][2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior Superior Centro X = 61 = ¡Encontrado! 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez
  • 20.
    Resumido [0] [1] [2][3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 Inferior SuperiorCentro Inferior SuperiorCentro I Superior C S Inferior Centro
  • 21.
    Resumido [0] [1] [2][3] [4] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 2017www.slideshare.net/emergar Ing. Emerson E. Garay Gómez [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 [0] [1] [2] [3] [4] [5] [7] [8] [9] 24 32 38 40 45 56 61 70 77 82 [5] [6]
  • 22.