This document discusses using repeated simulations of a crisp neural network to obtain quasi-fuzzy weight sets (QFWS) that can be used to initialize fuzzy neural networks. The key points are:
1) A crisp neural network is repeatedly trained on input-output data to model an unknown function. The connection weights change with each simulation.
2) Recording the weights from multiple simulations produces quasi-fuzzy weight sets, where each weight is a fuzzy set rather than a single value.
3) These QFWS can provide initial solutions for training type-I fuzzy neural networks with reduced computational complexity compared to random initialization.
4) The QFWS follow fuzzy arithmetic and allow both numerical and linguistic data to