The document summarizes a proposed methodology that integrates associative classification and neural networks for improved classification accuracy. It begins by introducing association rule mining and associative classification. It then describes using chi-squared analysis and the Gini index for attribute selection and rule pruning to generate a reduced set of rules. These rules are used to train a backpropagation neural network classifier. The methodology is tested on datasets from a public repository, demonstrating improved accuracy over traditional associative classification alone. Future work to integrate optical neural networks is also proposed.