Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
TIF4001
aljabarlinieraljabarlinier
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
Any question?
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
LATIHAN
-2 8 10
3 -1 4
6 -5 7
A =
8 1 9
7 -3 5
11 4 -2
B =
Tentukan: 1. A+BT
2. 2A*B
3. Algoritma 2AT
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
int
i,j,m=3,n=3,a[m][n],at[m][n];
main()
{
for(i=0;i<m;i++)
for(j=0;j<n;j++)
{
cin>>a[i][j];
at[i][j]=a[j][i];
}
for(i=0;i<m;i++)
for(j=0;j<n;j++)
{
at[i][j]=a[j][i];
}
}
?
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
Matriks Nol
0 0 0
0 0 0
0 0 0
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
Matriks Identitas
1 0 0
0 1 0
0 0 1
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
A ( B + C ) = AB + AC
( B + C ) A = BA + CA
distributif
A ( B C ) = ( A B ) C
asosiatif
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
A B = B A
non-komutatif
4 1
1 4A =
6 1
1 6B =
Tentukan: 1. AB
2. BA
2 3
1 5
4 5
2 6
?
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
Matriks Setangkup/ Simetri
3 5 -2
5 1 4
-2 4 -6
A = AT
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
Matriks Anti-simetri
0 5 -2
-5 0 4
2 4 0
AT = -A
Wibisono Sukmo Wardhono, ST, MT
http://wibiwardhono.lecture.ub.ac.id
-2 8 10
3 -1 4
6 -5 7
A =
Ruang baris matriks A:
[-2 8 10], [3 -1 4], [6 -5 7]
Ruang kolom matriks A:
[-2 3 6], [8 -1 -5], [10 4 7]

01 alin matriks_invers

  • 1.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id TIF4001 aljabarlinieraljabarlinier
  • 2.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id Any question?
  • 3.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id LATIHAN -2 8 10 3 -1 4 6 -5 7 A = 8 1 9 7 -3 5 11 4 -2 B = Tentukan: 1. A+BT 2. 2A*B 3. Algoritma 2AT
  • 4.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id int i,j,m=3,n=3,a[m][n],at[m][n]; main() { for(i=0;i<m;i++) for(j=0;j<n;j++) { cin>>a[i][j]; at[i][j]=a[j][i]; } for(i=0;i<m;i++) for(j=0;j<n;j++) { at[i][j]=a[j][i]; } } ?
  • 5.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Nol 0 0 0 0 0 0 0 0 0
  • 6.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Identitas 1 0 0 0 1 0 0 0 1
  • 7.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id A ( B + C ) = AB + AC ( B + C ) A = BA + CA distributif A ( B C ) = ( A B ) C asosiatif
  • 8.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id A B = B A non-komutatif 4 1 1 4A = 6 1 1 6B = Tentukan: 1. AB 2. BA 2 3 1 5 4 5 2 6 ?
  • 9.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Setangkup/ Simetri 3 5 -2 5 1 4 -2 4 -6 A = AT
  • 10.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id Matriks Anti-simetri 0 5 -2 -5 0 4 2 4 0 AT = -A
  • 11.
    Wibisono Sukmo Wardhono,ST, MT http://wibiwardhono.lecture.ub.ac.id -2 8 10 3 -1 4 6 -5 7 A = Ruang baris matriks A: [-2 8 10], [3 -1 4], [6 -5 7] Ruang kolom matriks A: [-2 3 6], [8 -1 -5], [10 4 7]