<ul><li>Descomponer en factores  a 2  +2a   </li></ul><ul><li>a 2  y 2a  contiene el factor común a. escribimos el factor ...
Descomponer  ax  + bx + ay + by . Los dos primeros términos tiene el factor común x  y los dos últimos el factor común  y....
Una cantidad es trinomio perfecto cuando es el cuadrado de otra cantidad, o sea cuando es el producto de dos factores igua...
<ul><li>En los productos notables se vio que dos cantidades  multiplicadas por su diferencia  es el cuadrado del minuendo ...
FactorX 2  +x 2 y 2 +y 4 Vemos si este trinomio es un cuadrado perfecto.la raíz cuadrada de x 1   es x 2  ;la raíz cuadrad...
Trinomios de forma x 2 +bx+c son trinomios como X 2 +5x+6,  m 2 +5m-14 a 2 -2a -15,  y 2 -8y +15 que cumplen las condicion...
son trinomios de esta forma: 2x 2  +11x +5 3a 2  +7a  -6 10n 2 - n  -2 7m 2 -23m+6 Que se diferencian  de los trinomios es...
En los productos notables  se vio que Lo anterios nos dice que (a+b) 3  =a 3 +3a 2 b+3ab 2 +b 3 (a-b) 3 = a 3 - 3a 2 b+3ab...
Sabemos  que: a 3 +b 3  a 3 -b 3 --------=a 2  –ab+b 2  y  ---------=a 2 +ab+b 2 a + b  a – b y como en toda división exac...
probamos que: 1. a n  - b n  es divisible por a-b siendo n par o impar 2.a n  + b n  es divisible por a + b siendo n  impa...
Upcoming SlideShare
Loading in …5
×

Casos de-factorizacion-1226446933737759-8

4,603 views

Published on

Published in: Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
4,603
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
33
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Casos de-factorizacion-1226446933737759-8

  1. 2. <ul><li>Descomponer en factores a 2 +2a </li></ul><ul><li>a 2 y 2a contiene el factor común a. escribimos el factor común a como coeficiente de un paréntesis; dentro del paréntesis escribimos los cocientes de dividir. </li></ul><ul><li>ejemplo </li></ul><ul><li>a 2 / a=a y2a/a=2, y tendremos----a 2 =a(a+2). </li></ul>
  2. 3. Descomponer ax + bx + ay + by . Los dos primeros términos tiene el factor común x y los dos últimos el factor común y. Agrupamos los dos primeros términos en un paréntesis y los dos últimos en otro precedido del signo + por que el tercer termino tiene el signo + y tendremos: Ejemplo: ax + bx + ay+ by=(ax+bx)+(ay+by) =x(a+b)+y(a+b) =R.(a+b)(x+y)
  3. 4. Una cantidad es trinomio perfecto cuando es el cuadrado de otra cantidad, o sea cuando es el producto de dos factores iguales. Asi , 4a 2 es un cuadrado perfecto por que es el cuadrado de 2a. En efecto: (-2a) 2 =2a. 2a =4a 2 y 2a que multiplica por si misma da4a 2 ,es cuadrado perfecto por que es el cuadrado de 2a Obsérvese que (-2a) 2 =(-2a).(-2a)=4a 2 , luego -2ª es también la raíz cuadrada de 4a 2 anterior nos dice que , la raíz cuadrada de una cantidad positiva tiene dos signos + y – a 2 -2ab +b 2 =(a-b) 2 ejemplo: a b 2.a.b  
  4. 5. <ul><li>En los productos notables se vio que dos cantidades multiplicadas por su diferencia es el cuadrado del minuendo menos el cuadrado del sustraendo, osea </li></ul><ul><li>(a+b) (a-b)=a 2 - b 2;. Luego recíprocamente a 2 –b 2 =(a+b)(a-b) </li></ul><ul><li>Podemos pues enunciar lo siguiente:361x 14 -1 (19x 7 +1)(19x 7 -1) </li></ul><ul><li>ejemplo: 19x 7 1 </li></ul>
  5. 6. FactorX 2 +x 2 y 2 +y 4 Vemos si este trinomio es un cuadrado perfecto.la raíz cuadrada de x 1 es x 2 ;la raíz cuadrada de y 4 es y 2 y el doble producto de estas raíces es 2x 2 y 2 ;luego este trinomio no es cuadrado perfecto. Para que sea cuadrado perfecto hay que lograr que el 2 0 termino x 2 y 2 se convierte en 2x 2 y 2, lo cual se consigue sumándole x 2 y 2 pero para que el trinomio no varie hay que restarle la misma cantidad que se suma x 2 y 2y tendremos: X 4 +x 2 y 2 +y 4 +x 2 y 2 -x 2 y 2 =(x 4 +2x 2 y 2 +y 4 )-x 2 y 2 factorando el trinomio cuadrado perfecto) =(x 2 +y 2 ) 2 -x 2 y 2 factorando la diferencia de cuadrados =(x 2 +y 2 +xy)(x 2 +y 2 -y 2 ) ordenando =(x 2 +xy+y 2 )(x 2 -xy+y 2 )R.
  6. 7. Trinomios de forma x 2 +bx+c son trinomios como X 2 +5x+6, m 2 +5m-14 a 2 -2a -15, y 2 -8y +15 que cumplen las condiciones siguientes: 1)El coeficiente del primer termino es 1. 2)El primero termino es una letra cualquiera elevada al cuadrado. 3)El segundo termino tiene la misma letra que el primero con exponente 1 y su coeficiente es una cantidad cualquiera, positiva o negativo. 4)El tercer termino es independiente de la letra que aparece en 1 0 y 2 0 términos y es una cantidad cualquiera, positiva o negativa. Ejemplo:
  7. 8. son trinomios de esta forma: 2x 2 +11x +5 3a 2 +7a -6 10n 2 - n -2 7m 2 -23m+6 Que se diferencian de los trinomios estudiados en el caso anterior en que el primer termino tiene un coeficiente distinto de 1. Ejemplo:Factorar 18 2 -13a -5 Multiplicado por 18: (18a) 2 -13 (18a)-90 Factorando este trinomio(18a-18)(18a+5). Dividiendo por 18,para lo cual como el primer binomio 18a -18 es divisible por 18 basta dividir este factor entre18,tendremos: (18a -18)(18a+5) -----------------------=(a-1)(18a +5) 18 18a 2 -13ª-5=(a-1)(18a +5) R.
  8. 9. En los productos notables se vio que Lo anterios nos dice que (a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3 (a-b) 3 = a 3 - 3a 2 b+3ab 2 - b 3 Lo anterior nos dice que para que una expresión algebraica ordenada con respecto a una letra sea el cubo de un binomio, tiene que cumplir las siguientes condiciones: 1. Tener cuatro términos. 2. Que el primero y el ultimo termino sean cubos perfectos. 3. Que el 2 0 término sean más o menos el triplo del cuadrado de la raíz cubica del último término. 4. Que el 3 er termino sea mas o menos el triplo de la raíz cubica del primer termino por el cuadrado de la raíz cubica del ultimo .si todos los terminos de la expresion son positivos,la expresion dada es el cubo de la suma de la las raices cubicas de su primero y ultimo termino y si son alternativamente positivos y negativos la expresion es el cubo de la diferencia de dichas raices.
  9. 10. Sabemos que: a 3 +b 3 a 3 -b 3 --------=a 2 –ab+b 2 y ---------=a 2 +ab+b 2 a + b a – b y como en toda división exacta el dividendo es   igual al producto del divisor por el cociente, tendremos a 3 +b 3 =(a+b)(a 2 -ab+b 2 ) 1 a 3 - b 3 =(a- b)(a 2 +ab+b 2 ) 2 La formula 1 nos dice: Regla1: la suma de dos cubos perfectos se descompone en dos factores: 1 la suma de sus raíces cubicas .2)el cuadrado de la primera raíz, menos el producto de las raíces, mas el cuadrado de la segunda raíz.ejemplo:
  10. 11. probamos que: 1. a n - b n es divisible por a-b siendo n par o impar 2.a n + b n es divisible por a + b siendo n impar 3.a n - b n es divisible por a + b cuando n es par 4.a n + b n es divisible por a-b y vimos el modo hallar el cociente cuando la división era exacta.

×