SlideShare a Scribd company logo
1 of 32
INSTITUTO UNIVERSITARIO POLITÉCNICO
“SANTIAGO MARIÑO”
EXTENSIÓN: PORLAMAR
MATERIA: ELEMENTOS DE MAQUINAS
SECCIÓN: S1
ELEMENTOS DE MAQUINAS
LUIS MANUEL FRANCO RODRIGUEZ
CAPITULO I
ESFUERZO Y DEFORMACIÓN
El esfuerzo se define aquí como la intensidad de las fuerzas componentes
internas distribuidas que resisten un cambio en la forma de un cuerpo. El
esfuerzo se define en términos de fuerza por unidad de área. Existen tres clases
básicas de esfuerzos: tensivo, compresivo y corte.
La deformación se define como el cambio de forma de un cuerpo, el cual se
debe al esfuerzo, al cambio térmico, al cambio de humedad o a otras causas. En
conjunción con el esfuerzo directo, la deformación se supone como un cambio
lineal y se mide en unidades de longitud.
La elasticidad es aquella propiedad de un material por virtud de la cual las
deformaciones causadas por el esfuerzo desaparecen al removérsele. Algunas
sustancias, tales como los gases poseen únicamente elasticidad volumétrica, pero los
sólidos pueden poseer, además, elasticidad de forma. Un cuerpo perfectamente
elástico se concibe como uno que recobra completamente su forma y sus
dimensiones originales al retirarse el esfuerzo.
ESFUERZO NORMAL
Los esfuerzos con dirección normal a la sección, se denotan normalmente como σ
(sigma) y se denominan como esfuerzo de tracción o tensión cuando apunta hacia
afuera de la sección, tratando de estirar al elemento analizado, y como esfuerzo de
Compresión cuando apunta hacia la sección, tratando de aplastar al elemento
analizado.
El esfuerzo con dirección paralela al área en la que se aplica se denota como τ (tau)
y representa un esfuerzo de corte ya que este esfuerzo trata de cortar el elemento
analizado, tal como una tijera cuando corta papel.
Las unidades que más se utilizan son: Pascal (Pa) = N/ m2, (S.I.); din/ cm2( c.g.s );
Kp/m2, (s. Técnico); atmósfera técnica(Kp/cm2); atmósfera (atm); bar.
DIAGRAMAS ESFUERZO-DEFORMACIÓN
UNITARIA, CONVENCIONAL Y REAL, PARA UN
MATERIAL DÚCTIL (ACERO) (NO DE ESCALA)
CAPITULO II
FATIGA, RIGIDEZ Y
FLEXIÓN
FATIGA
la fatiga de materiales se refiere a un fenómeno por el cual la rotura de los
materiales bajo cargas dinámicas cíclicas se produce más fácilmente que con
cargas estáticas. Aunque es un fenómeno que, sin definición formal, era
reconocido desde la antigüedad, este comportamiento no fue de interés real hasta
la Revolución Industrial, cuando, a mediados del siglo XIX comenzaron a producir
las fuerzas necesarias para provocar la rotura con cargas dinámicas son muy
inferiores a las necesarias en el caso estático; y a desarrollar métodos de cálculo
para el diseño de piezas confiables. Este no es el caso de materiales de aparición
reciente, para los que es necesaria la fabricación y el ensayo de prototipos.
1-Denominado ciclo de carga repetida, los máximos y mínimos son asimétricos
2-con respecto al nivel cero de carga.
Aleatorio: el nivel de tensión puede variar al azar en amplitud y frecuencia.
La amplitud de la tensión varía alrededor de un valor medio, el promedio de las
tensiones máxima y mínima en cada ciclo:
El intervalo de tensiones es la diferencia entre tensión máxima y mínima
La amplitud de tensión es la mitad del intervalo de tensiones
El cociente de tensiones R es el cociente entre las amplitudes mínima y máxima
DIAGRAMA DE FATIGA
Curva S-N
Estas curvas se obtienen a través de una serie de ensayos donde una probeta del
material se somete a tensiones cíclicas con una amplitud máxima relativamente
grande (aproximadamente 2/3 de la resistencia estática a tracción). Se cuentan los
ciclos hasta rotura. Este procedimiento se repite en otras probetas a amplitudes
máximas decrecientes.
Los resultados se representan en un diagrama de tensión, S, frente al
logaritmo del número N de ciclos hasta la rotura para cada una de las
probetas. Los valores de S se toman normalmente como amplitudes de la
tensión .
Se pueden obtener dos tipos de curvas S-N. A mayor tensión, menor número
de ciclos hasta rotura. En algunas aleaciones férreas y en aleaciones de titanio,
la curva S-N se hace horizontal para valores grandes de N, es decir, existe una
tensión límite, denominada límite de fatiga, por debajo del cual la rotura por
fatiga no ocurrirá.
RIGIDEZ
la rigidez es la capacidad de un elemento estructural para soportar esfuerzos sin
adquirir grandes deformaciones y/o desplazamientos.
Los coeficientes de rigidez son magnitudes físicas que cuantifican la rigidez de
un elemento resistente bajo diversas configuraciones de carga. Normalmente las
rigideces se calculan como la razón entre una fuerza aplicada y el desplazamiento
obtenido por la aplicación de esa fuerza.
Para barras o vigas se habla así de rigidez axial, rigidez flexional, rigidez torsional
o rigidez frente a esfuerzos cortantes, etc.
Rigidez flexional
La rigidez flexional de una barra recta es la relación entre el momento flector
aplicado en uno de sus extremos y el ángulo girado por ese extremo al deformarse
cuando la barra está empotrada en el otro extremo. Para barras rectas de sección
uniforme existen dos coeficientes de rigidez según el momento flector esté
dirigido según una u otra dirección principal de inercia. Esta rigidez viene dada:
Donde son los segundos momentos de área de la sección transversal de la
barra.
Rigidez frente a cortante
La rigidez frente a cortante es la relación entre los desplazamientos verticales de
un extremo de un viga y el esfuerzo cortante aplicado en los extremos para
provocar dicho desplazamiento. En barras rectas de sección uniforme existen dos
coeficientes de rigidez según cada una de las direcciones principales:
Rigidez mixta flexión-cortante
En general debido a las características peculiares de la flexión cuando el momento
flector no es constante sobre una taza prismática aparecen también esfuerzos
cortantes, eso hace al aplicar esfuerzos de flexión aparezcan desplazamientos
verticales y viceversa, cuando se fuerzas desplazamientos verticales aparecen
esfuerzos de flexión. Para representar adecuadamente los desplazamientos
lineales inducidos por la flexión, y los giros angulares inducidos por el cortante, se
define la rigidez mixta cortante-flexión que para una barra recta resulta ser igual
a:
Rigidez torsional
La rigidez torsional en una barra recta de sección uniforme es la relación entre el
momento torsor aplicado en uno de sus extremos y el ángulo girado por este
extremo, al mantener fijo el extremo opuesto de la barra:
Rigidez de membrana
rigidez de membrana es el equivalente bidimensional de la rigidez axial en el caso
de elementos lineales viene dada por:
Donde E es el módulo de Young, G es el módulo elástico transversal y ν el
coeficiente de Poisson.
Rigidez flexional
Para una placa delgada (modelo de Love-Kircchoff) de espesor constante la única
rigidez relevante es la que da cuenta de las deformaciones provocadas por la
flexión bajo carga perpendicular a la placa. Esta rigidez se conoce como rigidez
flexional de placas y viene dada por:
FLEXIÓN
se denomina flexión al tipo de deformación que presenta un elemento
estructural alargado en una dirección perpendicular a su eje longitudinal. El
término "alargado" se aplica cuando una dimensión es dominante frente a las
otras. Un caso típico son las vigas, las que están diseñadas para trabajar,
principalmente, por flexión. Igualmente, el concepto de flexión se extiende a
elementos estructurales superficiales como placas o láminas.
El rasgo más destacado es que un objeto sometido a flexión presenta una
superficie de puntos llamada fibra neutra tal que la distancia a lo largo de
cualquier curva contenida en ella no varía con respecto al valor antes de la
deformación. El esfuerzo que provoca la flexión se denomina momento
flector.
CAPITULO III
TORSIÓN
DIAGRAMA MOMENTOS
TORSORES
Al aplicar las ecuaciones de la estática, en el empotramiento se producirá un
momento torsor igual y de sentido contrario a T.
Si cortamos el eje por 1-1 y nos quedamos con la parte de abajo, para que este trozo
de eje este en equilibrio, en la sección 1-1 debe existir un momento torsor igual y
de sentido contrario. Por tanto en cualquier sección de este eje existe un momento
torsor T.
El diagrama de momentos torsores será:
ÁNGULO GIRADO POR UN EJE
Para el estudio de la torsión de un eje cilíndrico vamos a suponer las siguientes
hipótesis:
a) Hipótesis de secciones planas.
b) Los diámetros se conservan así como la distancia entre ellos.
c) Las secciones van a girar como si se tratara de cuerpos rígidos.
Planteadas estas hipótesis vamos a considerar un elemento diferencial de eje en el
que estudiaremos su deformación y después las tensiones a las que esta sometido.
vamos a aislar el trozo dx de eje.
CÁLCULO DE LAS TENSIONES A LAS
QUE ESTÁ SOMETIDO EL
ELEMENTO ABCD.
El lado cd desliza hacia la derecha respecto al lado ab; por tanto existe una t.
Este elemento trabaja a tensión cortante pura. El valor de t será:
r = G . y = G . e . D/2
El circulo de Morh de este elemento es el circulo de la tensión cortante pura.
Las tensiones principales de este elemento serán:
Las direcciones principales del elemento estarán a 45º.
σ1 = τ y σ2 = -τ
Si en vez de considerar al elemento la superficial abcd, hubiera considerado otro
elemento a la distancia r del centro, la t a la que estaría sometido este elemento
será:
CÁLCULO DE TMÁX Y DEL ÁNGULO
GIRADO POR EL EJE EN FUNCIÓN
DEL MOMENTO TORSOR.
Supongamos que la figura representa la sección del eje y el momento torsor T que
actúa
La tensión t en el punto B vale:
Si tomamos un diferencial de are dA alrededor del punto B las t de ese dA dan una
resultante dF.
MÓDULO RESISTENTE A LA
TORSIÓN
Hemos visto que :
Esta expresión se puede poner en la forma:
Para la sección circular:
DIFERENCIAS Y EQUIVALENCIAS
ENTRE TORSIÓN Y FLEXIÓN.
CASOS HIPERESTÁTICOS EN
TORSIÓN
1º CASO:
Supongamos un eje cilíndrico empotrado en los dos extremos sometido a los
momentos torsores de la figura.
Supongamos que hemos calculado T1 y T2. Ahora vamos a calcular el giro y la tmax
en C.
El giro de C será lo que gire la sección C respecto del empotramiento derecho o
izquierdo ya que los empotramientos no giran.
Trazando por C una vertical, y como los momentos torsores son mas fáciles a la
izquierda que a ala derecha en el diagrama de momentos torsores calculamos el
giro de C respecto del empotramiento izquierdo.
2ºCASO
Supongamos un eje cilíndrico empotrado en los 2 extremos sometido a los
momentos torsores de la figura.
FLEXIÓN ACOMPAÑADA CON
TORSIÓN.
El efecto que produce la carga P es equivalente a un par y a una fuerza actuando en
O.
Los puntos más peligrosos de la sección de empotramiento son el a y el b.
Los diagramas se representan así:
ESTUDIO DEL PUNTO A.
ESTUDIO DEL PUNTO B.
Por estar el punto b en la LN:

More Related Content

What's hot

Unidad 1 3 estabilidad y determinacion de estructuras parte 1
Unidad 1 3 estabilidad y determinacion de estructuras parte 1Unidad 1 3 estabilidad y determinacion de estructuras parte 1
Unidad 1 3 estabilidad y determinacion de estructuras parte 1
MIKYRoll
 
Obras de drenaje para carreteras
Obras de drenaje para carreterasObras de drenaje para carreteras
Obras de drenaje para carreteras
espinelgonzalez
 
Reparación de fisuras en muros de bloquetas
Reparación de fisuras en muros de bloquetasReparación de fisuras en muros de bloquetas
Reparación de fisuras en muros de bloquetas
Luis Percy Sutta Escobar
 

What's hot (20)

Unidad 1 3 estabilidad y determinacion de estructuras parte 1
Unidad 1 3 estabilidad y determinacion de estructuras parte 1Unidad 1 3 estabilidad y determinacion de estructuras parte 1
Unidad 1 3 estabilidad y determinacion de estructuras parte 1
 
Obras de drenaje para carreteras
Obras de drenaje para carreterasObras de drenaje para carreteras
Obras de drenaje para carreteras
 
DISEÑO EN ACERO-ESTRUCTURAS METÁLICAS
DISEÑO EN  ACERO-ESTRUCTURAS METÁLICASDISEÑO EN  ACERO-ESTRUCTURAS METÁLICAS
DISEÑO EN ACERO-ESTRUCTURAS METÁLICAS
 
Control de deflexiones en estructuras de concreto armado
Control de deflexiones en estructuras de concreto armadoControl de deflexiones en estructuras de concreto armado
Control de deflexiones en estructuras de concreto armado
 
reacciones en vigas.pdf
reacciones en vigas.pdfreacciones en vigas.pdf
reacciones en vigas.pdf
 
Método de las deformaciones, método pendiente-deflexion
Método de las deformaciones, método pendiente-deflexionMétodo de las deformaciones, método pendiente-deflexion
Método de las deformaciones, método pendiente-deflexion
 
Túneles
TúnelesTúneles
Túneles
 
Columnas flexo compresion
Columnas flexo compresionColumnas flexo compresion
Columnas flexo compresion
 
Deflexiones
DeflexionesDeflexiones
Deflexiones
 
Reparación de fisuras en muros de bloquetas
Reparación de fisuras en muros de bloquetasReparación de fisuras en muros de bloquetas
Reparación de fisuras en muros de bloquetas
 
Disipadores
DisipadoresDisipadores
Disipadores
 
ACERO ESTRUCTURAL - FLEXOCOMPRESION
ACERO ESTRUCTURAL - FLEXOCOMPRESIONACERO ESTRUCTURAL - FLEXOCOMPRESION
ACERO ESTRUCTURAL - FLEXOCOMPRESION
 
02 analisis estructural metodo elementos finitos
02 analisis estructural metodo elementos finitos02 analisis estructural metodo elementos finitos
02 analisis estructural metodo elementos finitos
 
Examen final mecanica de suelos 2 2001 - resuelto
Examen final  mecanica de suelos 2   2001  - resueltoExamen final  mecanica de suelos 2   2001  - resuelto
Examen final mecanica de suelos 2 2001 - resuelto
 
Resalto hidraulico
Resalto hidraulico Resalto hidraulico
Resalto hidraulico
 
011 capitulo 3 lineas de influencia
011 capitulo 3 lineas de  influencia011 capitulo 3 lineas de  influencia
011 capitulo 3 lineas de influencia
 
Deformacion en vigas
Deformacion en vigasDeformacion en vigas
Deformacion en vigas
 
Segundo teorema de castigliano
Segundo teorema de castiglianoSegundo teorema de castigliano
Segundo teorema de castigliano
 
Manejo software ftool
Manejo software ftoolManejo software ftool
Manejo software ftool
 
Diseño de conexiones
Diseño de conexionesDiseño de conexiones
Diseño de conexiones
 

Viewers also liked

Slideshare elementos
Slideshare elementosSlideshare elementos
Slideshare elementos
Juan Boscán
 
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSIONESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
Marcanodennys1
 
Molas coxins - Dimensionamento Estático
Molas coxins - Dimensionamento EstáticoMolas coxins - Dimensionamento Estático
Molas coxins - Dimensionamento Estático
Borrachas
 
4. ensayo de torsion
4.  ensayo de torsion4.  ensayo de torsion
4. ensayo de torsion
alcaldia
 

Viewers also liked (20)

Esfuerzo a Torsión
Esfuerzo a TorsiónEsfuerzo a Torsión
Esfuerzo a Torsión
 
TORSIÓN
TORSIÓNTORSIÓN
TORSIÓN
 
Torsion
TorsionTorsion
Torsion
 
Torsion
TorsionTorsion
Torsion
 
Esfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigasEsfuerzo normal y cortante en vigas
Esfuerzo normal y cortante en vigas
 
Placas1
Placas1Placas1
Placas1
 
Capitulo iii
Capitulo iiiCapitulo iii
Capitulo iii
 
Capitulo 4 Mecánica de sólidos udec
Capitulo 4 Mecánica de sólidos udecCapitulo 4 Mecánica de sólidos udec
Capitulo 4 Mecánica de sólidos udec
 
Slideshare elementos
Slideshare elementosSlideshare elementos
Slideshare elementos
 
Presentación analogías(Maria y Gustavo 7 mo EUS-UCV)
Presentación analogías(Maria y Gustavo 7 mo EUS-UCV)Presentación analogías(Maria y Gustavo 7 mo EUS-UCV)
Presentación analogías(Maria y Gustavo 7 mo EUS-UCV)
 
5º sec analogías distriuciones
5º sec analogías   distriuciones5º sec analogías   distriuciones
5º sec analogías distriuciones
 
Flexion (2)
Flexion (2)Flexion (2)
Flexion (2)
 
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSIONESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
 
Molas coxins - Dimensionamento Estático
Molas coxins - Dimensionamento EstáticoMolas coxins - Dimensionamento Estático
Molas coxins - Dimensionamento Estático
 
Presentación Técnicas Creativas para la Innovación: Analogias
Presentación Técnicas Creativas para la Innovación: AnalogiasPresentación Técnicas Creativas para la Innovación: Analogias
Presentación Técnicas Creativas para la Innovación: Analogias
 
cortante x torsion
cortante x torsioncortante x torsion
cortante x torsion
 
4. ensayo de torsion
4.  ensayo de torsion4.  ensayo de torsion
4. ensayo de torsion
 
SinéCtica Para La EnseñAnza
SinéCtica Para La EnseñAnzaSinéCtica Para La EnseñAnza
SinéCtica Para La EnseñAnza
 
Calculo sobre el Coeficiente de balasto
Calculo sobre el Coeficiente de balastoCalculo sobre el Coeficiente de balasto
Calculo sobre el Coeficiente de balasto
 
Solcap3
Solcap3Solcap3
Solcap3
 

Similar to Trabajo de capitulo i,ii,iii

Elemento de maquinas i. capitulo i,ii y iii
Elemento de maquinas i. capitulo i,ii y iiiElemento de maquinas i. capitulo i,ii y iii
Elemento de maquinas i. capitulo i,ii y iii
Reinaldo Bermudez
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
Evelio Vasquez
 
Bethania redondo 28428523_resist.matii.10%
Bethania redondo 28428523_resist.matii.10%Bethania redondo 28428523_resist.matii.10%
Bethania redondo 28428523_resist.matii.10%
BethaniaRedondo
 
Capítulos.Elementos De Maquinas.
Capítulos.Elementos De Maquinas.Capítulos.Elementos De Maquinas.
Capítulos.Elementos De Maquinas.
Kami Dv' Ricoveri
 
Elementos de maquinas capitulo i ii iii
Elementos de maquinas capitulo i ii iiiElementos de maquinas capitulo i ii iii
Elementos de maquinas capitulo i ii iii
enmanuel2131
 

Similar to Trabajo de capitulo i,ii,iii (20)

Capítulos i, ii, y iii br. lorena vasquez
Capítulos i, ii, y iii  br. lorena vasquezCapítulos i, ii, y iii  br. lorena vasquez
Capítulos i, ii, y iii br. lorena vasquez
 
Elemento de maquinas i. capitulo i,ii y iii
Elemento de maquinas i. capitulo i,ii y iiiElemento de maquinas i. capitulo i,ii y iii
Elemento de maquinas i. capitulo i,ii y iii
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Franjelica sucre
Franjelica sucreFranjelica sucre
Franjelica sucre
 
Bethania redondo 28428523_resist.matii.10%
Bethania redondo 28428523_resist.matii.10%Bethania redondo 28428523_resist.matii.10%
Bethania redondo 28428523_resist.matii.10%
 
Juan carlos
Juan carlosJuan carlos
Juan carlos
 
Esfuerzo
EsfuerzoEsfuerzo
Esfuerzo
 
Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1
 
Republica bolivariana de venezuela
Republica bolivariana de venezuelaRepublica bolivariana de venezuela
Republica bolivariana de venezuela
 
capitulo I,II Y III
capitulo I,II Y IIIcapitulo I,II Y III
capitulo I,II Y III
 
CAPITULO I, II, III
CAPITULO I, II, IIICAPITULO I, II, III
CAPITULO I, II, III
 
Capitulo i, ii , iii elemento de maquina
Capitulo i, ii , iii elemento de maquinaCapitulo i, ii , iii elemento de maquina
Capitulo i, ii , iii elemento de maquina
 
Resistencia de materiales 2 Torsión
Resistencia de materiales 2 TorsiónResistencia de materiales 2 Torsión
Resistencia de materiales 2 Torsión
 
Capítulos.Elementos De Maquinas.
Capítulos.Elementos De Maquinas.Capítulos.Elementos De Maquinas.
Capítulos.Elementos De Maquinas.
 
Elementos de maquinas capitulo i ii iii
Elementos de maquinas capitulo i ii iiiElementos de maquinas capitulo i ii iii
Elementos de maquinas capitulo i ii iii
 
Elementos de maquinas capitulo i ii iii
Elementos de maquinas capitulo i ii iiiElementos de maquinas capitulo i ii iii
Elementos de maquinas capitulo i ii iii
 
Unidad iii torsion
Unidad iii torsionUnidad iii torsion
Unidad iii torsion
 
Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1Esfuerzo y deformacion elemento1
Esfuerzo y deformacion elemento1
 
TORSION
TORSION TORSION
TORSION
 
ELEMENTOS DE MAQUINAS
ELEMENTOS DE MAQUINASELEMENTOS DE MAQUINAS
ELEMENTOS DE MAQUINAS
 

Recently uploaded

Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxProcesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
JuanPablo452634
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
CristhianZetaNima
 
Sesión N°2_Curso_Ingeniería_Sanitaria.pdf
Sesión N°2_Curso_Ingeniería_Sanitaria.pdfSesión N°2_Curso_Ingeniería_Sanitaria.pdf
Sesión N°2_Curso_Ingeniería_Sanitaria.pdf
annavarrom
 
CLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxCLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptx
bingoscarlet
 

Recently uploaded (20)

PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdf
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
Ejemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - EjerciciosEjemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - Ejercicios
 
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptxProcesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
Procesos-de-la-Industria-Alimentaria-Envasado-en-la-Produccion-de-Alimentos.pptx
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptx
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
 
osciloscopios Mediciones Electricas ingenieria.pdf
osciloscopios Mediciones Electricas ingenieria.pdfosciloscopios Mediciones Electricas ingenieria.pdf
osciloscopios Mediciones Electricas ingenieria.pdf
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...
 
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.pptaCARGA y FUERZA UNI 19 marzo 2024-22.ppt
aCARGA y FUERZA UNI 19 marzo 2024-22.ppt
 
Sesión N°2_Curso_Ingeniería_Sanitaria.pdf
Sesión N°2_Curso_Ingeniería_Sanitaria.pdfSesión N°2_Curso_Ingeniería_Sanitaria.pdf
Sesión N°2_Curso_Ingeniería_Sanitaria.pdf
 
CLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptxCLASe número 4 fotogrametria Y PARALAJE.pptx
CLASe número 4 fotogrametria Y PARALAJE.pptx
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)Voladura Controlada  Sobrexcavación (como se lleva a cabo una voladura)
Voladura Controlada Sobrexcavación (como se lleva a cabo una voladura)
 
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
COMPEDIOS ESTADISTICOS DE PERU EN EL 2023
 
nomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesnomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestaciones
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docx
 
PostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCDPostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCD
 
Controladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y VentajasControladores Lógicos Programables Usos y Ventajas
Controladores Lógicos Programables Usos y Ventajas
 
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptx
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptxCARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptx
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptx
 
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotencialesUNIDAD 3 ELECTRODOS.pptx para biopotenciales
UNIDAD 3 ELECTRODOS.pptx para biopotenciales
 

Trabajo de capitulo i,ii,iii

  • 1. INSTITUTO UNIVERSITARIO POLITÉCNICO “SANTIAGO MARIÑO” EXTENSIÓN: PORLAMAR MATERIA: ELEMENTOS DE MAQUINAS SECCIÓN: S1 ELEMENTOS DE MAQUINAS LUIS MANUEL FRANCO RODRIGUEZ
  • 2. CAPITULO I ESFUERZO Y DEFORMACIÓN
  • 3. El esfuerzo se define aquí como la intensidad de las fuerzas componentes internas distribuidas que resisten un cambio en la forma de un cuerpo. El esfuerzo se define en términos de fuerza por unidad de área. Existen tres clases básicas de esfuerzos: tensivo, compresivo y corte. La deformación se define como el cambio de forma de un cuerpo, el cual se debe al esfuerzo, al cambio térmico, al cambio de humedad o a otras causas. En conjunción con el esfuerzo directo, la deformación se supone como un cambio lineal y se mide en unidades de longitud.
  • 4. La elasticidad es aquella propiedad de un material por virtud de la cual las deformaciones causadas por el esfuerzo desaparecen al removérsele. Algunas sustancias, tales como los gases poseen únicamente elasticidad volumétrica, pero los sólidos pueden poseer, además, elasticidad de forma. Un cuerpo perfectamente elástico se concibe como uno que recobra completamente su forma y sus dimensiones originales al retirarse el esfuerzo.
  • 5. ESFUERZO NORMAL Los esfuerzos con dirección normal a la sección, se denotan normalmente como σ (sigma) y se denominan como esfuerzo de tracción o tensión cuando apunta hacia afuera de la sección, tratando de estirar al elemento analizado, y como esfuerzo de Compresión cuando apunta hacia la sección, tratando de aplastar al elemento analizado. El esfuerzo con dirección paralela al área en la que se aplica se denota como τ (tau) y representa un esfuerzo de corte ya que este esfuerzo trata de cortar el elemento analizado, tal como una tijera cuando corta papel. Las unidades que más se utilizan son: Pascal (Pa) = N/ m2, (S.I.); din/ cm2( c.g.s ); Kp/m2, (s. Técnico); atmósfera técnica(Kp/cm2); atmósfera (atm); bar.
  • 6. DIAGRAMAS ESFUERZO-DEFORMACIÓN UNITARIA, CONVENCIONAL Y REAL, PARA UN MATERIAL DÚCTIL (ACERO) (NO DE ESCALA)
  • 8. FATIGA la fatiga de materiales se refiere a un fenómeno por el cual la rotura de los materiales bajo cargas dinámicas cíclicas se produce más fácilmente que con cargas estáticas. Aunque es un fenómeno que, sin definición formal, era reconocido desde la antigüedad, este comportamiento no fue de interés real hasta la Revolución Industrial, cuando, a mediados del siglo XIX comenzaron a producir las fuerzas necesarias para provocar la rotura con cargas dinámicas son muy inferiores a las necesarias en el caso estático; y a desarrollar métodos de cálculo para el diseño de piezas confiables. Este no es el caso de materiales de aparición reciente, para los que es necesaria la fabricación y el ensayo de prototipos. 1-Denominado ciclo de carga repetida, los máximos y mínimos son asimétricos 2-con respecto al nivel cero de carga. Aleatorio: el nivel de tensión puede variar al azar en amplitud y frecuencia. La amplitud de la tensión varía alrededor de un valor medio, el promedio de las tensiones máxima y mínima en cada ciclo:
  • 9. El intervalo de tensiones es la diferencia entre tensión máxima y mínima La amplitud de tensión es la mitad del intervalo de tensiones El cociente de tensiones R es el cociente entre las amplitudes mínima y máxima
  • 10. DIAGRAMA DE FATIGA Curva S-N Estas curvas se obtienen a través de una serie de ensayos donde una probeta del material se somete a tensiones cíclicas con una amplitud máxima relativamente grande (aproximadamente 2/3 de la resistencia estática a tracción). Se cuentan los ciclos hasta rotura. Este procedimiento se repite en otras probetas a amplitudes máximas decrecientes.
  • 11. Los resultados se representan en un diagrama de tensión, S, frente al logaritmo del número N de ciclos hasta la rotura para cada una de las probetas. Los valores de S se toman normalmente como amplitudes de la tensión . Se pueden obtener dos tipos de curvas S-N. A mayor tensión, menor número de ciclos hasta rotura. En algunas aleaciones férreas y en aleaciones de titanio, la curva S-N se hace horizontal para valores grandes de N, es decir, existe una tensión límite, denominada límite de fatiga, por debajo del cual la rotura por fatiga no ocurrirá.
  • 12. RIGIDEZ la rigidez es la capacidad de un elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones y/o desplazamientos. Los coeficientes de rigidez son magnitudes físicas que cuantifican la rigidez de un elemento resistente bajo diversas configuraciones de carga. Normalmente las rigideces se calculan como la razón entre una fuerza aplicada y el desplazamiento obtenido por la aplicación de esa fuerza. Para barras o vigas se habla así de rigidez axial, rigidez flexional, rigidez torsional o rigidez frente a esfuerzos cortantes, etc.
  • 13. Rigidez flexional La rigidez flexional de una barra recta es la relación entre el momento flector aplicado en uno de sus extremos y el ángulo girado por ese extremo al deformarse cuando la barra está empotrada en el otro extremo. Para barras rectas de sección uniforme existen dos coeficientes de rigidez según el momento flector esté dirigido según una u otra dirección principal de inercia. Esta rigidez viene dada: Donde son los segundos momentos de área de la sección transversal de la barra.
  • 14. Rigidez frente a cortante La rigidez frente a cortante es la relación entre los desplazamientos verticales de un extremo de un viga y el esfuerzo cortante aplicado en los extremos para provocar dicho desplazamiento. En barras rectas de sección uniforme existen dos coeficientes de rigidez según cada una de las direcciones principales: Rigidez mixta flexión-cortante En general debido a las características peculiares de la flexión cuando el momento flector no es constante sobre una taza prismática aparecen también esfuerzos cortantes, eso hace al aplicar esfuerzos de flexión aparezcan desplazamientos verticales y viceversa, cuando se fuerzas desplazamientos verticales aparecen esfuerzos de flexión. Para representar adecuadamente los desplazamientos lineales inducidos por la flexión, y los giros angulares inducidos por el cortante, se define la rigidez mixta cortante-flexión que para una barra recta resulta ser igual a:
  • 15. Rigidez torsional La rigidez torsional en una barra recta de sección uniforme es la relación entre el momento torsor aplicado en uno de sus extremos y el ángulo girado por este extremo, al mantener fijo el extremo opuesto de la barra: Rigidez de membrana rigidez de membrana es el equivalente bidimensional de la rigidez axial en el caso de elementos lineales viene dada por: Donde E es el módulo de Young, G es el módulo elástico transversal y ν el coeficiente de Poisson.
  • 16. Rigidez flexional Para una placa delgada (modelo de Love-Kircchoff) de espesor constante la única rigidez relevante es la que da cuenta de las deformaciones provocadas por la flexión bajo carga perpendicular a la placa. Esta rigidez se conoce como rigidez flexional de placas y viene dada por:
  • 17. FLEXIÓN se denomina flexión al tipo de deformación que presenta un elemento estructural alargado en una dirección perpendicular a su eje longitudinal. El término "alargado" se aplica cuando una dimensión es dominante frente a las otras. Un caso típico son las vigas, las que están diseñadas para trabajar, principalmente, por flexión. Igualmente, el concepto de flexión se extiende a elementos estructurales superficiales como placas o láminas. El rasgo más destacado es que un objeto sometido a flexión presenta una superficie de puntos llamada fibra neutra tal que la distancia a lo largo de cualquier curva contenida en ella no varía con respecto al valor antes de la deformación. El esfuerzo que provoca la flexión se denomina momento flector.
  • 19. DIAGRAMA MOMENTOS TORSORES Al aplicar las ecuaciones de la estática, en el empotramiento se producirá un momento torsor igual y de sentido contrario a T. Si cortamos el eje por 1-1 y nos quedamos con la parte de abajo, para que este trozo de eje este en equilibrio, en la sección 1-1 debe existir un momento torsor igual y de sentido contrario. Por tanto en cualquier sección de este eje existe un momento torsor T. El diagrama de momentos torsores será:
  • 20. ÁNGULO GIRADO POR UN EJE Para el estudio de la torsión de un eje cilíndrico vamos a suponer las siguientes hipótesis: a) Hipótesis de secciones planas. b) Los diámetros se conservan así como la distancia entre ellos. c) Las secciones van a girar como si se tratara de cuerpos rígidos. Planteadas estas hipótesis vamos a considerar un elemento diferencial de eje en el que estudiaremos su deformación y después las tensiones a las que esta sometido. vamos a aislar el trozo dx de eje.
  • 21. CÁLCULO DE LAS TENSIONES A LAS QUE ESTÁ SOMETIDO EL ELEMENTO ABCD. El lado cd desliza hacia la derecha respecto al lado ab; por tanto existe una t. Este elemento trabaja a tensión cortante pura. El valor de t será: r = G . y = G . e . D/2 El circulo de Morh de este elemento es el circulo de la tensión cortante pura.
  • 22. Las tensiones principales de este elemento serán: Las direcciones principales del elemento estarán a 45º. σ1 = τ y σ2 = -τ Si en vez de considerar al elemento la superficial abcd, hubiera considerado otro elemento a la distancia r del centro, la t a la que estaría sometido este elemento será:
  • 23. CÁLCULO DE TMÁX Y DEL ÁNGULO GIRADO POR EL EJE EN FUNCIÓN DEL MOMENTO TORSOR. Supongamos que la figura representa la sección del eje y el momento torsor T que actúa La tensión t en el punto B vale: Si tomamos un diferencial de are dA alrededor del punto B las t de ese dA dan una resultante dF.
  • 24. MÓDULO RESISTENTE A LA TORSIÓN Hemos visto que : Esta expresión se puede poner en la forma: Para la sección circular:
  • 25. DIFERENCIAS Y EQUIVALENCIAS ENTRE TORSIÓN Y FLEXIÓN.
  • 26. CASOS HIPERESTÁTICOS EN TORSIÓN 1º CASO: Supongamos un eje cilíndrico empotrado en los dos extremos sometido a los momentos torsores de la figura.
  • 27. Supongamos que hemos calculado T1 y T2. Ahora vamos a calcular el giro y la tmax en C. El giro de C será lo que gire la sección C respecto del empotramiento derecho o izquierdo ya que los empotramientos no giran. Trazando por C una vertical, y como los momentos torsores son mas fáciles a la izquierda que a ala derecha en el diagrama de momentos torsores calculamos el giro de C respecto del empotramiento izquierdo.
  • 28. 2ºCASO Supongamos un eje cilíndrico empotrado en los 2 extremos sometido a los momentos torsores de la figura.
  • 29. FLEXIÓN ACOMPAÑADA CON TORSIÓN. El efecto que produce la carga P es equivalente a un par y a una fuerza actuando en O. Los puntos más peligrosos de la sección de empotramiento son el a y el b. Los diagramas se representan así:
  • 32. Por estar el punto b en la LN: