Guía del mapa de karnaugh

25,034 views

Published on

Published in: Education
1 Comment
5 Likes
Statistics
Notes
No Downloads
Views
Total views
25,034
On SlideShare
0
From Embeds
0
Number of Embeds
60
Actions
Shares
0
Downloads
567
Comments
1
Likes
5
Embeds 0
No embeds

No notes for slide

Guía del mapa de karnaugh

  1. 1. CIRCUITOS DIGITALES II MAPA DE KARNAUGH (MK) Es un método gráfico para la simplificación de ecuaciones lógicas booleanas y resolución de problemas lógicos combinatorios. Se basa en algunos teoremas boléanos para su funcionamiento. Para lograr una simplificación más efectiva y mejor, es necesario integrar dos elementos: Las reglas de agrupamiento y la práctica por parte del estudiante. Al igual que la tabla de la verdad permite ordenar las variables con su comportamiento en la salida, y pasar a la construcción de las ecuaciones lógicas y el dibujo del circuito lógico correspondiente. MK de 2, 3, 4 variables Están constituidos por un grupo de celdas. MK de 2 variables MK de 3 variables Celdas MK de 4 variables 1 Prof. Luis Zurita
  2. 2. CIRCUITOS DIGITALES II En los bordes superiores y laterales, se colocan los valores que pueden tomar las variables participantes en la ecuación lógica ó el problema que se está resolviendo, y en la barra diagonal el nombre de las variables. Recuerde el valor asignado a las variables: Ecuación Valor SDP 0:Variable Negada o Complementada ( A ) 1: Variable sin complementar ( A ) PDS 0: Variable sin complementar ( A ) 1: Variable Negada o Complementada ( A ) Datos que toman las variables Variables BC A B 0 1 00 01 11 10 A 0 0 1 1 Ahora: ¿que encontramos en cada celda? Recordando algo de matrices, cada expresión de celda estará constituida por el producto de las variables de la fila y la columna asociada a la celda, por ejemplo: La celda sombreada, está BC constituida por el producto de A (0)= 00 01 11 10 A A y BC (11)= BC, los cuales a su vez 0 0 0 1 0 están multiplicados por el 1 presente 1 en la celda. Por ejemplo veamos los 0 0 0 0 términos que estarían contentivos en un MK de 4 variables: 2 Prof. Luis Zurita
  3. 3. CIRCUITOS DIGITALES II CD AB 00 01 11 10 NOTA: La enumeración de 00 A BC D A BC D las variables se hace de menor a mayor, en código 01 Gray. Repase el concepto A BC D A BC D de Adyacencia. Rellene usted los recuadros que 11 faltan en cuanto a numeración se refiere. 10 Algunos autores, en vez de colocar unos y ceros para representar los valores que toman las variables, colocan directamente a la variable en su forma normal o complementada. Lo que al momento de determinar la expresión de la celda se hace de una forma directa. Evalúe usted el método que se le haga más fácil de entender y utilizar. Por cierto, ¿Este MK de tres variables es igual al mostrado en páginas anteriores? Demuéstrelo. C AB C C AB AB AB AB 3 Prof. Luis Zurita
  4. 4. CIRCUITOS DIGITALES II REGLAS DE AGRUPAMIENTO Y SIMPLIFICACION Cada grupo de celdas le permitirá a usted tener un término SDP ó PDS simplificado. A medida que logres formar un grupo más grande de celdas, el término será más reducido y simplificado. Repase las notas colocadas en la guía de ejercicios. Grupos válidos: 1, 2, 4, 8 y 16 celdas. Bajo el concepto de adyacencia. Con respecto a los otros números de grupos de celdas que no aparecen y que son NO VALIDOS, como por ejemplo, 3, 5, 6, 7 etc., Pueden ser agrupados en varios subgrupos dentro del número válido de celdas, recordando que cada grupo es un término simplificado. NOTA: Adyacencia: Se refiere a dos celdas en las cuales sólo cambia una variable entre una y otra celda. Para esto se basa en el código Gray visto por usted en Informática. Dos celdas diagonales NO son adyacentes, Generalmente son adyacentes las celdas contiguas en horizontal y/o vertical. EJEMPLOS GRUPOS DE 2 CELDAS: ¡Innecesario! 1 0 1 1 0 1 1 1 0 1 1 0 NOTA: Si una celda ya pertenece a un grupo, NO es necesario involucrarla a otro grupo, a menos que exista una celda adyacente a esta que la tome para hacer un grupo. El grupo subrayado es innecesario. Note que para este mismo ejemplo, hay 1 1 0 1 varias formas de agrupamiento, las cuales 1 0 1 1 respetando las normas, son perfectamente válidas, lo que le llevará a concluir que NO HAY 0 1 0 0 una sola forma de resolución sobre un MK. 1 0 0 1 4 Prof. Luis Zurita
  5. 5. CIRCUITOS DIGITALES II Por cada grupo de dos celdas propuesto, se reduce en una variable el término producto. Por ejemplo: Se tiene un MK de 2 variables, el término le queda en 1 variable, si tiene un MK de 3 variables, el término le queda en 2 variables y así sucesivamente. GRUPOS DE 4 CELDAS En este caso la expresión vale 1. Todas las 1 1 celdas son adyacentes entre si y se anulan o 1 1 neutralizan. 00 01 11 10 00 01 11 10 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 00 01 11 10 00 01 11 10 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 Este agrupamiento NO es válido. Y lo podemos sustituir por 1 0 0 1 ejemplo por estos subgrupos: 0 1 1 0 5 Prof. Luis Zurita
  6. 6. CIRCUITOS DIGITALES II 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 NOTA: Cada grupo reduce en dos variables a las expresiones lógicas del total de las variables participantes. GRUPOS DE 8 CELDAS La expresión vale 1. Todas las celdas son 1 1 1 1 adyacentes entre sí y se neutralizan. 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 =1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 NOTA: Cada grupo reduce en 3 variables a las expresiones lógicas del total de las variables participantes, lo que da origen a un término de una variable. Al igual que los MK anteriores, un grupo de 16 celdas, origina una expresión que vale 1. 6 Prof. Luis Zurita
  7. 7. CIRCUITOS DIGITALES II Es normal que dentro de un MK se encuentren grupos de 1, 2, 4 u 8 celdas e incluso 16 celdas, solitarios o combinados. ¿QUE HACEMOS CON CADA GRUPO FORMADO Y SIMPLIFICADO? Los sumamos si se trata de una expresión SDP o los multiplicamos si se trata de una expresión PDS, y conseguimos nuestra “Expresión Lógica Simplificada” NOTA: Todos los grupos fueron formados tomando como base los 1´s presentes. ¿Será posible hacer lo mismo tomando como base a los 0´s? ¿Cuál será la diferencia? VARIABLES IRRELEVANTES (Don´t Care) Estas variables se representan con la letra X u otra de su preferencia, y significa que pueden tomar el valor de 1 ó 0. Siguen las mismas normas y reglas de agrupamiento vistas hasta ahora, y son tomadas en cuenta, a CONVENIENCIA, es decir, si nos sirven para simplificar un grupo, las usamos, si no nos sirven, ¡No! Las usamos. Y nuestro resultado será más simplificado ó menos simplificado. NO debemos formar grupos de x, solamente ya que estaríamos adicionando términos ficticios e innecesarios. 1 0 1 0 0 x x 0 1 x x 1 1 0 0 x 1 x x x 1 0 1 x 1 0 x 1 0 0 x x x 1 0 0 0 0 0 Este grupo 0 1 x x 0 NO es válido 1 x 1 x ¿Cuándo Hacemos uso de las variables irrelevantes? Cuando no han sido definidas en las condiciones de funcionamiento y operación de un problema. Pueden Ocurrir o no. No afectan el funcionamiento de nuestro diseño lógico, más sin embargo, nos pueden servir para simplificar nuestras expresiones. 7 Prof. Luis Zurita
  8. 8. CIRCUITOS DIGITALES II Ejercicios propuestos  Agrupe, simplifique y halle las expresiones en los siguientes mapas de Karnaugh: 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 Nota: 1. Coloque usted el conteo donde haga falta. 2. Recuerde: a. Un grupo de 1 celda da origen a un término producto de 4 variables. b. Un grupo de 2 celda da origen a un término producto de 3 variables. c. Un grupo de 4 celda da origen a un término producto de 2 variables. d. Un grupo de 8 celda da origen a un término producto de 1 variables. e. Un grupo de 16 celda da origen a que la expresión valga 1. 3. Una vez agrupados y simplificados se suman los términos mínimos encontrados. 4. Si considera los 1’s, la función encontrada es una S.D.P. 5. Si considera los 0’s la función encontrada es una P.D.S. 6. A medida de que los grupos sean más grandes, la función tendrá menos variables. 8 Prof. Luis Zurita
  9. 9. CIRCUITOS DIGITALES II  Agrupe, simplifique y halle las expresiones en los siguientes mapas de Karnaugh: 1 x 0 1 0 1 1 0 1 0 0 1 0 x x 1 x x x x x x x 1 1 1 0 x x x x x 0 x 1 x x x 0 1 x x x x 1 x 0 1 0 1 x x 1 0 1 1 1 0 0 0 1 1 x x 1 0 1 1 1 x x 1 1 1 x x 0 x 0 1 x x 1 1 1 1 x x x 0 x x 0 0 0 0 1 Nota: 1. Coloque usted el conteo donde haga falta. 2. X representa una condición irrelevante, o no ocurre o no tiene ningún efecto sobre la salida. 3. Se tratan como 1’s ó 0’s, A CONVENIENCIA. 4. Deben ser tomadas en cuenta a medida de que ayuden a simplificar el circuito. 5. Se siguen las mismas reglas de agrupamiento. 6. NO se pueden agrupar solo X. 7. A medida de que los grupos sean más grandes, la función tendrá menos variables. 9 Prof. Luis Zurita

×