SlideShare a Scribd company logo
1 of 21
Download to read offline
Quantum	
  walks:	
  Test	
  case	
  for	
  
Quantumness	
  

Pavan	
  Iyengar	
  
Project	
  Fellow	
  	
  
Prof.TS	
  Mahesh	
  NMR-­‐QIP	
  Lab	
  	
  
IISER	
  Pune	
  	
  
Earlier	
  at	
  RRI,	
  Bengaluru	
  as	
  a	
  VSP	
  
Discussion	
  structure	
  
•  What	
  are	
  1	
  dimensional	
  quantum	
  (not	
  random!)	
  walks	
  
(in	
  relaPon	
  to	
  Classical	
  random	
  walks)	
  ?	
  
•  Noise	
  (models)	
  model	
  a	
  quantum	
  system	
  into	
  
one	
  with	
  a	
  classical	
  signature	
  (read	
  Gaussian,	
  
apart	
  from	
  coherent	
  states!)	
  .	
  
•  Why	
  a	
  quantumness	
  index	
  !	
  That’s	
  so	
  non-­‐
classical!	
  
What	
  are	
  1	
  dimensional	
  quantum	
  
walks?	
  
•  First	
  quesPon,	
  What	
  is	
  a	
  walk	
  -­‐	
  A	
  (Classical)	
  random	
  walk	
  is	
  
the	
  simulaPon	
  of	
  the	
  random	
  movement	
  of	
  a	
  parPcle	
  on	
  	
  a	
  
line.	
  
	
  
•  A	
  quantum	
  walk	
  is	
  analogous	
  	
  –	
  but	
  with	
  simultaneous	
  right	
  
AND	
  leY	
  steps.	
  So	
  (Classical)	
  Random	
  walk	
  with	
  simultaneous	
  
superposiPon	
  of	
  the	
  leY	
  and	
  the	
  right	
  walk	
  gives	
  the	
  quantum	
  
walk	
  distribuPon.	
  The	
  difference	
  is	
  in	
  the	
  quantum	
  ‘gunta’	
  …	
  
i.e.	
  entanglement	
  
•  (FYI!)	
  Random	
  walks	
  are	
  a	
  useful	
  model	
  for	
  developing	
  
classical	
  algorithms;	
  quantum	
  walks	
  provide	
  a	
  new	
  way	
  of	
  
developing	
  quantum	
  algorithms	
  
–  which	
  is	
  parPcularly	
  important	
  because	
  producing	
  new	
  quantum	
  
algorithms	
  is	
  so	
  hard	
  	
  
Classical	
  random	
  walk	
  on	
  the	
  line	
  
 

Consider a walk on the following simple infinite graph:

	
  
•  When	
  the	
  walker	
  has	
  equal	
  probability	
  to	
  move	
  leY	
  or	
  right,	
  
it s	
  well-­‐known	
  that	
  the	
  average	
  distance	
  from	
  the	
  start	
  
posiPon	
  aYer	
  Pme	
  n	
  is	
  sqrt(n)	
  
	
  
•  But	
  we	
  can	
  define	
  a	
  quantum	
  walk	
  on	
  the	
  same	
  graph	
  with	
  
different	
  behaviour:	
  an	
  average	
  distance	
  of	
  n	
  .	
  This	
  speedup	
  is	
  
due	
  to	
  the	
  leY	
  and	
  right	
  step	
  contribuPng	
  in	
  both	
  direcPon	
  
travel	
  simultaneously	
  !	
  (itni	
  bhi	
  kya	
  jaldi	
  ….)	
  
Quantum	
  walk	
  on	
  the	
  line	
  
•  We	
  have	
  two	
  quantum	
  registers:	
  a	
  coin	
  register	
  holding	
  |L〉	
  or	
  
|R〉,	
  and	
  a	
  posiPon	
  register	
  |x〉	
  
•  Our	
  walk	
  operaPon	
  is	
  a	
  coin	
  flip	
  followed	
  by	
  a	
  shiY	
  (discrete)	
  
–  coin	
  flip:
	
  
	
  
–  shiY:	
  	
  
	
  
	
  

	
  
	
  send 	
  |L〉	
  →	
  |L〉	
  +	
  i|R〉,	
  
	
  
	
  |R〉	
  →|L〉	
  -­‐	
  i	
  |R〉	
  
	
  send 	
  |L〉|x〉	
  →	
  |L〉|x-­‐1〉	
  
	
  
	
  |R〉|x〉	
  →	
  |R〉|x+1〉	
  

•  These	
  are	
  both	
  unitary	
  operaPons,	
  and	
  hence	
  their	
  
combinaPon	
  is	
  too	
  

–  so,	
  together,	
  they	
  provide	
  a	
  way	
  of	
  defining	
  a	
  quantum	
  walk	
  on	
  the	
  
line	
  
–  there	
  are	
  other	
  ways	
  –	
  e.g.	
  the	
  con-nuous-­‐-me	
  formulaPon	
  of	
  
quantum	
  walks	
  
A	
  few	
  iteraPons	
  of	
  the	
  walk	
  on	
  the	
  line	
  	
  
1. 

start	
  →	
  |R〉|0〉	
  

2. 

coin	
  →	
  (|L〉	
  +	
  i|R〉)|0〉	
  
shiY	
  →	
  i|L〉|-­‐1〉	
  +	
  |R〉|1〉	
  

3. 

coin	
  →	
  (i|L〉	
  -­‐	
  |R〉)|-­‐1〉	
  +	
  (i|L〉	
  +	
  |R〉)|1〉	
  	
  
shiY	
  →	
  i|L〉|-­‐2〉	
  -­‐	
  |R〉|0〉	
  +	
  i|L〉|0〉	
  +	
  |R〉|2〉	
  

4. 

coin	
  →	
  (i|L〉	
  -­‐	
  |R〉)|-­‐2〉	
  +	
  (i|L〉	
  +	
  |R〉)|2〉	
  	
  
shiY	
  →	
  i|L〉|-­‐3〉	
  -­‐	
  |R〉|-­‐1〉	
  +	
  i|L〉|1〉	
  +	
  |R〉|3〉	
  

Equal	
  probability	
  to	
  be	
  at	
  |-­‐3〉,	
  |-­‐1〉,	
  |1〉	
  or	
  |3〉	
  -­‐	
  whereas	
  classical	
  
random	
  walk	
  favours	
  |-­‐1〉,	
  |1〉	
  
Classical	
  vs.	
  quantum	
  walk	
  on	
  the	
  line	
  
Running a
classical
walk on the
line
results in a
probability
distribution
like the left
graph
Whereas running this quantum walk for the
same number of steps gives the right graph
The peaks and troughs in the right graph are caused by
quantum interference.
QuesPons	
  ….	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  delta	
  
Goal	
  was	
  (and	
  is)	
  -­‐
	
  
•  To	
  find	
  whether	
  Photosynthesis	
  uses	
  quantum	
  
mechanics	
  (holy	
  grail	
  –	
  increase	
  efficiency	
  of	
  
Organic	
  Dye	
  sensiPsed	
  solar	
  cells)	
  
•  ConPnuous	
  quantum	
  walks	
  have	
  been	
  proposed	
  as	
  
models	
  for	
  Energy	
  Transport	
  (through	
  Dipole	
  int.)	
  
in	
  the	
  FMO	
  complex	
  in	
  Photosynthesis	
  .	
  (Mohseni	
  
et.al.)	
  
•  So	
  the	
  present	
  study	
  on	
  discrete	
  quantum	
  walks!	
  
Quantum	
  System	
  +	
  noise	
  	
  	
  	
  Classical	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  signature	
  (autograph	
  please	
  	
  )	
  
Lets	
  see	
  the	
  plots	
  
Conclusions	
  and	
  further	
  reading	
  

•  Density	
  matrices	
  of	
  Discrete	
  Quantum	
  Walks	
  at	
  slightly	
  
different	
  Pmes	
  (t,t-­‐2)	
  don’t	
  commute	
  at	
  low	
  noise.	
  A	
  rela've	
  
measure	
  of	
  quantumness.	
  	
  
•  Our	
  scheme	
  usefull	
  experimentally	
  when	
  we	
  have	
  
tomographic	
  data	
  .	
  For	
  interference	
  experiments	
  Fazio	
  et.al.	
  
propose	
  AnP	
  Commutators	
  to	
  measure	
  quatumness.	
  	
  
•  Working	
  on	
  NMR	
  expt.	
  Design	
  and	
  feasibility	
  of	
  our	
  work	
  for	
  
Quantum	
  Dots	
  (cyclic	
  array	
  cont.qw),	
  Quantum	
  
Photosynthesis	
  ...	
  
•  Further	
  reading	
  (on	
  www.arxiv.org):	
  
–  	
   Quantum	
  random	
  walks	
  –	
  an	
  introductory	
  overview ,	
  J.	
  Kempe,	
  
quant-­‐ph/0303081	
  
2 books on Quantum
Walks NOT written by me !
Prof.R.Srikanth (PPISR,Visiting
Prof. @ RRI ) (summer internships!)

Thanks	
  to	
  my	
  
Collaborators	
  ,	
  mentors	
  
and	
  guides	
  (IISER	
  
Pune,UoP	
  Pune,	
  
IISC,RRI,IUCAA	
  Sci-­‐pop)	
  
and	
  last	
  but	
  not	
  the	
  least	
  
…	
  Family	
  and	
  Friends.
	
  
	
  

GN.Chandan , Grad
Student at PPISR
QuesPons	
  (shooPng	
  round	
  2)	
  	
  …
	
  
QuesPons	
  (shooPng	
  round	
  2)	
  	
  …
	
  
Catch	
  me	
  at	
  iyengarpavan@gmail.com	
  	
  
	
  
	
  
AdverPsement-­‐	
  
A	
  lot	
  of	
  usefull	
  and	
  impacpull	
  Info	
  for	
  B.Sc.,	
  
M.Sc.	
  Students	
  on	
  pavaniyengar.weebly.com	
  
(including	
  this	
  work	
  and	
  towards	
  Quantum	
  
Biology)	
  
	
  
Thanks	
  ,	
  hope	
  you	
  had	
  fun!
	
  

More Related Content

Similar to Pavan rmc14quantumwalks

Minimality and Equicontinuity of a Sequence of Maps in Iterative Way
Minimality and Equicontinuity of a Sequence of Maps in Iterative WayMinimality and Equicontinuity of a Sequence of Maps in Iterative Way
Minimality and Equicontinuity of a Sequence of Maps in Iterative Wayinventionjournals
 
Introduction to Random Walk
Introduction to Random WalkIntroduction to Random Walk
Introduction to Random WalkShuai Zhang
 
Multi-Verse Optimizer
Multi-Verse OptimizerMulti-Verse Optimizer
Multi-Verse OptimizerAmir Mehr
 
Quantum Walk on Spin Networks by Marcelo Amaral, Raymond Aschheim and Klee Irwin
Quantum Walk on Spin Networks by Marcelo Amaral, Raymond Aschheim and Klee IrwinQuantum Walk on Spin Networks by Marcelo Amaral, Raymond Aschheim and Klee Irwin
Quantum Walk on Spin Networks by Marcelo Amaral, Raymond Aschheim and Klee IrwinKlee Irwin
 
randomwalks_states_figures_events_happenings.ppt
randomwalks_states_figures_events_happenings.pptrandomwalks_states_figures_events_happenings.ppt
randomwalks_states_figures_events_happenings.pptVGaneshKarthikeyan
 
Spacey random walks CAM Colloquium
Spacey random walks CAM ColloquiumSpacey random walks CAM Colloquium
Spacey random walks CAM ColloquiumAustin Benson
 
Tim Maudlin: New Foundations for Physical Geometry
Tim Maudlin: New Foundations for Physical GeometryTim Maudlin: New Foundations for Physical Geometry
Tim Maudlin: New Foundations for Physical GeometryArun Gupta
 
Quantized and finite reference of frame
Quantized and finite reference of frame Quantized and finite reference of frame
Quantized and finite reference of frame Eran Sinbar
 
Mechanical waves.pptx
Mechanical waves.pptxMechanical waves.pptx
Mechanical waves.pptxOsamaYousuf7
 
Galactic Rotation
Galactic RotationGalactic Rotation
Galactic RotationJared Cohn
 
Spacey random walks CMStatistics 2017
Spacey random walks CMStatistics 2017Spacey random walks CMStatistics 2017
Spacey random walks CMStatistics 2017Austin Benson
 
Maths straight lines presentation
Maths straight lines presentationMaths straight lines presentation
Maths straight lines presentationPratikBhattarai12
 
Lagrangeon Points
Lagrangeon PointsLagrangeon Points
Lagrangeon PointsNikhitha C
 
Transform as a vector? Tying functional parity with rotation angle of coordin...
Transform as a vector? Tying functional parity with rotation angle of coordin...Transform as a vector? Tying functional parity with rotation angle of coordin...
Transform as a vector? Tying functional parity with rotation angle of coordin...SayakBhattacharjee4
 
Random tripleb nov05
Random tripleb nov05Random tripleb nov05
Random tripleb nov05Devesh Dhamor
 
Visualizing extra dimensions
Visualizing extra dimensions Visualizing extra dimensions
Visualizing extra dimensions Eran Sinbar
 

Similar to Pavan rmc14quantumwalks (20)

Minimality and Equicontinuity of a Sequence of Maps in Iterative Way
Minimality and Equicontinuity of a Sequence of Maps in Iterative WayMinimality and Equicontinuity of a Sequence of Maps in Iterative Way
Minimality and Equicontinuity of a Sequence of Maps in Iterative Way
 
Ieee lecture
Ieee lectureIeee lecture
Ieee lecture
 
Introduction to Random Walk
Introduction to Random WalkIntroduction to Random Walk
Introduction to Random Walk
 
Chaos Analysis
Chaos AnalysisChaos Analysis
Chaos Analysis
 
Multi-Verse Optimizer
Multi-Verse OptimizerMulti-Verse Optimizer
Multi-Verse Optimizer
 
Quantum Walk on Spin Networks by Marcelo Amaral, Raymond Aschheim and Klee Irwin
Quantum Walk on Spin Networks by Marcelo Amaral, Raymond Aschheim and Klee IrwinQuantum Walk on Spin Networks by Marcelo Amaral, Raymond Aschheim and Klee Irwin
Quantum Walk on Spin Networks by Marcelo Amaral, Raymond Aschheim and Klee Irwin
 
randomwalks_states_figures_events_happenings.ppt
randomwalks_states_figures_events_happenings.pptrandomwalks_states_figures_events_happenings.ppt
randomwalks_states_figures_events_happenings.ppt
 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
 
Spacey random walks CAM Colloquium
Spacey random walks CAM ColloquiumSpacey random walks CAM Colloquium
Spacey random walks CAM Colloquium
 
Tim Maudlin: New Foundations for Physical Geometry
Tim Maudlin: New Foundations for Physical GeometryTim Maudlin: New Foundations for Physical Geometry
Tim Maudlin: New Foundations for Physical Geometry
 
Quantized and finite reference of frame
Quantized and finite reference of frame Quantized and finite reference of frame
Quantized and finite reference of frame
 
Mechanical waves.pptx
Mechanical waves.pptxMechanical waves.pptx
Mechanical waves.pptx
 
Galactic Rotation
Galactic RotationGalactic Rotation
Galactic Rotation
 
Spacey random walks CMStatistics 2017
Spacey random walks CMStatistics 2017Spacey random walks CMStatistics 2017
Spacey random walks CMStatistics 2017
 
Maths straight lines presentation
Maths straight lines presentationMaths straight lines presentation
Maths straight lines presentation
 
Lagrangeon Points
Lagrangeon PointsLagrangeon Points
Lagrangeon Points
 
Transform as a vector? Tying functional parity with rotation angle of coordin...
Transform as a vector? Tying functional parity with rotation angle of coordin...Transform as a vector? Tying functional parity with rotation angle of coordin...
Transform as a vector? Tying functional parity with rotation angle of coordin...
 
Random tripleb nov05
Random tripleb nov05Random tripleb nov05
Random tripleb nov05
 
Me314 week09-root locusanalysis
Me314 week09-root locusanalysisMe314 week09-root locusanalysis
Me314 week09-root locusanalysis
 
Visualizing extra dimensions
Visualizing extra dimensions Visualizing extra dimensions
Visualizing extra dimensions
 

Pavan rmc14quantumwalks

  • 1. Quantum  walks:  Test  case  for   Quantumness   Pavan  Iyengar   Project  Fellow     Prof.TS  Mahesh  NMR-­‐QIP  Lab     IISER  Pune     Earlier  at  RRI,  Bengaluru  as  a  VSP  
  • 2. Discussion  structure   •  What  are  1  dimensional  quantum  (not  random!)  walks   (in  relaPon  to  Classical  random  walks)  ?   •  Noise  (models)  model  a  quantum  system  into   one  with  a  classical  signature  (read  Gaussian,   apart  from  coherent  states!)  .   •  Why  a  quantumness  index  !  That’s  so  non-­‐ classical!  
  • 3. What  are  1  dimensional  quantum   walks?   •  First  quesPon,  What  is  a  walk  -­‐  A  (Classical)  random  walk  is   the  simulaPon  of  the  random  movement  of  a  parPcle  on    a   line.     •  A  quantum  walk  is  analogous    –  but  with  simultaneous  right   AND  leY  steps.  So  (Classical)  Random  walk  with  simultaneous   superposiPon  of  the  leY  and  the  right  walk  gives  the  quantum   walk  distribuPon.  The  difference  is  in  the  quantum  ‘gunta’  …   i.e.  entanglement   •  (FYI!)  Random  walks  are  a  useful  model  for  developing   classical  algorithms;  quantum  walks  provide  a  new  way  of   developing  quantum  algorithms   –  which  is  parPcularly  important  because  producing  new  quantum   algorithms  is  so  hard    
  • 4. Classical  random  walk  on  the  line     Consider a walk on the following simple infinite graph:   •  When  the  walker  has  equal  probability  to  move  leY  or  right,   it s  well-­‐known  that  the  average  distance  from  the  start   posiPon  aYer  Pme  n  is  sqrt(n)     •  But  we  can  define  a  quantum  walk  on  the  same  graph  with   different  behaviour:  an  average  distance  of  n  .  This  speedup  is   due  to  the  leY  and  right  step  contribuPng  in  both  direcPon   travel  simultaneously  !  (itni  bhi  kya  jaldi  ….)  
  • 5. Quantum  walk  on  the  line   •  We  have  two  quantum  registers:  a  coin  register  holding  |L〉  or   |R〉,  and  a  posiPon  register  |x〉   •  Our  walk  operaPon  is  a  coin  flip  followed  by  a  shiY  (discrete)   –  coin  flip:     –  shiY:            send  |L〉  →  |L〉  +  i|R〉,      |R〉  →|L〉  -­‐  i  |R〉    send  |L〉|x〉  →  |L〉|x-­‐1〉      |R〉|x〉  →  |R〉|x+1〉   •  These  are  both  unitary  operaPons,  and  hence  their   combinaPon  is  too   –  so,  together,  they  provide  a  way  of  defining  a  quantum  walk  on  the   line   –  there  are  other  ways  –  e.g.  the  con-nuous-­‐-me  formulaPon  of   quantum  walks  
  • 6. A  few  iteraPons  of  the  walk  on  the  line     1.  start  →  |R〉|0〉   2.  coin  →  (|L〉  +  i|R〉)|0〉   shiY  →  i|L〉|-­‐1〉  +  |R〉|1〉   3.  coin  →  (i|L〉  -­‐  |R〉)|-­‐1〉  +  (i|L〉  +  |R〉)|1〉     shiY  →  i|L〉|-­‐2〉  -­‐  |R〉|0〉  +  i|L〉|0〉  +  |R〉|2〉   4.  coin  →  (i|L〉  -­‐  |R〉)|-­‐2〉  +  (i|L〉  +  |R〉)|2〉     shiY  →  i|L〉|-­‐3〉  -­‐  |R〉|-­‐1〉  +  i|L〉|1〉  +  |R〉|3〉   Equal  probability  to  be  at  |-­‐3〉,  |-­‐1〉,  |1〉  or  |3〉  -­‐  whereas  classical   random  walk  favours  |-­‐1〉,  |1〉  
  • 7. Classical  vs.  quantum  walk  on  the  line   Running a classical walk on the line results in a probability distribution like the left graph Whereas running this quantum walk for the same number of steps gives the right graph The peaks and troughs in the right graph are caused by quantum interference.
  • 8. QuesPons  ….                                      delta  
  • 9. Goal  was  (and  is)  -­‐   •  To  find  whether  Photosynthesis  uses  quantum   mechanics  (holy  grail  –  increase  efficiency  of   Organic  Dye  sensiPsed  solar  cells)   •  ConPnuous  quantum  walks  have  been  proposed  as   models  for  Energy  Transport  (through  Dipole  int.)   in  the  FMO  complex  in  Photosynthesis  .  (Mohseni   et.al.)   •  So  the  present  study  on  discrete  quantum  walks!  
  • 10. Quantum  System  +  noise        Classical                                                                                                                signature  (autograph  please    )  
  • 11.
  • 12.
  • 13.
  • 14.
  • 15. Lets  see  the  plots  
  • 16.
  • 17. Conclusions  and  further  reading   •  Density  matrices  of  Discrete  Quantum  Walks  at  slightly   different  Pmes  (t,t-­‐2)  don’t  commute  at  low  noise.  A  rela've   measure  of  quantumness.     •  Our  scheme  usefull  experimentally  when  we  have   tomographic  data  .  For  interference  experiments  Fazio  et.al.   propose  AnP  Commutators  to  measure  quatumness.     •  Working  on  NMR  expt.  Design  and  feasibility  of  our  work  for   Quantum  Dots  (cyclic  array  cont.qw),  Quantum   Photosynthesis  ...   •  Further  reading  (on  www.arxiv.org):   –    Quantum  random  walks  –  an  introductory  overview ,  J.  Kempe,   quant-­‐ph/0303081   2 books on Quantum Walks NOT written by me !
  • 18. Prof.R.Srikanth (PPISR,Visiting Prof. @ RRI ) (summer internships!) Thanks  to  my   Collaborators  ,  mentors   and  guides  (IISER   Pune,UoP  Pune,   IISC,RRI,IUCAA  Sci-­‐pop)   and  last  but  not  the  least   …  Family  and  Friends.     GN.Chandan , Grad Student at PPISR
  • 19. QuesPons  (shooPng  round  2)    …  
  • 20. QuesPons  (shooPng  round  2)    …   Catch  me  at  iyengarpavan@gmail.com         AdverPsement-­‐   A  lot  of  usefull  and  impacpull  Info  for  B.Sc.,   M.Sc.  Students  on  pavaniyengar.weebly.com   (including  this  work  and  towards  Quantum   Biology)    
  • 21. Thanks  ,  hope  you  had  fun!