SlideShare a Scribd company logo
1 of 25
Download to read offline
MA32 (GEII - S3)
B - T RANSFORMÉE EN Z ET CONVOLUTION DISCRÈTE :
EXPOSITION

F. Morain-Nicolier
frederic.nicolier@univ-reims.fr

2013 - 2014 / URCA - IUT Troyes

1 / 25
O UTLINE

1. S IGNAUX DISCRETS

2. U N SYSTÈME DISCRET SIMPLE

3. P RINCIPALES PROPRIÉTÉS DE LA TZ

2 / 25
1.1 S IGNAUX DISCRETS ?
Un signal est le support physique d’une information (ex :
signaux sonores, visuels)
signaux continus (analogiques), discrets (échantillonnés),
numériques (échantillonnés et quantifiés)

F IGURE : Signal échantillonné

3 / 25
1.1 S IGNAUX DISCRETS ?

F IGURE : Signal mal échantillonné

4 / 25
1.2 N OTATION MATHÉMATIQUE DES SIGNAUX
DISCRETS

Un signal discret est donc un liste ordonné de valeurs réelles
ou complexes
En mathématique, on le représente donc par une suite
numérique
(D ÉFINITION ) Une suite numérique (un )n∈N est une
application de N sur R (ou C). un est le terme
général de la suite.

5 / 25
1.2 S UITES ET SÉRIES

Une série est obtenue en sommant les termes généraux d’une
suite, en particulier :
(Définition) Une série {un } est la somme des termes généraux
un de la suite (un ).
∞

{un } =

∑

n=0

∞

un ou {un } =

∑

n=−∞

un

ex : série de Fourier

6 / 25
1.3 Q UELQUES EXEMPLES
impulsion unité

δn =

1
0

si n = 0
.
sinon

7 / 25
1.3 Q UELQUES EXEMPLES
Échelon unité
un =

1
0

si n ≥ 0
sinon

8 / 25
1.3 Q UELQUES EXEMPLES
Signal exponentiel
xn = an

9 / 25
O UTLINE

1. S IGNAUX DISCRETS

2. U N SYSTÈME DISCRET SIMPLE

3. P RINCIPALES PROPRIÉTÉS DE LA TZ

10 / 25
2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE
(xk)

(yk)

+
a

retard

F IGURE : système discret simple

yk = xk + ayk−1 . (0)

C’est une équation aux différences (simple)
Cherchons à exprimer explicitement (yk ) en fonction de
(xk )
11 / 25
2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE

On a donc

k

yk =

∑

n=−∞

ak−n xn .

Reformulons la sortie en posant
hn =

0
an

si t < 0
.
si n ≥ 0

12 / 25
2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE

(hn ) est donc la réponse impulsionnelle du système.
Cherchons la réponse à une entrée
xk = zk
où z est un nombre complexe fixé.
Montrons alors que
yk =

z
xk .
z−a

13 / 25
2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE

H (z) =

z
z−a

est la fonction de transfert du filtre.
C’est une fonction de la variable z, définie dans le domaine
|z| > |a|.
Explicitons l’obtention de H (z) à partir de (hn ).

14 / 25
2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE

H (z) est donc la transformée en z de (hn ), avec
∞

Z [ fn ] =

∑

n=−∞

fn z − n .

quelles sont ses propriétés ?
quelles sont ses conditions d’existence et de convergence ?

⇒ suites et séries numériques et de fonctions

15 / 25
O UTLINE

1. S IGNAUX DISCRETS

2. U N SYSTÈME DISCRET SIMPLE

3. P RINCIPALES PROPRIÉTÉS DE LA TZ

16 / 25
3.1. D ÉFINITION
(D ÉFINITION ) La transformée en z d’un signal discret (xn ) est
∞

X ( z ) = Z [ fn ] =

∑

n=−∞

fn z − n

où z est une variable complexe.

La TZ peut-être considérée comme une généralisation de
la transformée de Fourier (poser z = eiω )
La TZ constitue l’outil privilégié pour l’étude des système
discrets.
Elle joue un rôle équivalent à la transformée de Laplace
Par exemple, la TZ permet de représenter un signal possédant
une infinité d’échantillons par un ensemble fini de nombres.
17 / 25
3.2 D OMAINE DE CONVERGENCE
TRANSIORMATIONIN/

45

r R*- la limite
La TZ n’a de sens que si l’on précise le domaine des valeurs de
lim lr( & 1l 1/* = 4,(2.8)
z pour lesquelles la série existe.

série

Xr(z)

converge alors pour lzl

>Rr_.

Avec le changement de variable / =

-k,

peut montrer d'ure madère similaire que la série Xl (z) converge pour lzl (Â,+,
Nous montrerons (plus tard) que le domaine de convergence
R,a est la lirnite
de X(z) est un anneau du plan complexe.
R,+ = 1/[ lim lx( -/)lt/t
(2.e)
:

,- + -

si,
série TZ converge si
Ainsilaune(2.1) converge en général dans un anneau du plan complexe
0 ( R,- ( lzl ( R,* ( +R < |z| < R

x−

i est illustré sur la figure

tt évident que si Àx-

)

2. I

.

x+

(2.r 0)

Rjr, et .R, + caractérisent le signal x
série (2.1) n'est pas convergente.

Les limites

À,-} , la

des z donné

///l

Fig.2.l

([

).

résiortr de convetzenî.e

18 / 25
3.3 E XEMPLES

TZ de l’impulsion unité
Z[δn ] = 1
TZ de l’échelon unité
Z [ un ] =

1
1 − z−1

TZ du signal exponentiel
Z [ an u n ] =

z
z−a

19 / 25
3.4 P ROPRIÉTÉS
(L INÉARITÉ ) Soit sn = axn + byn alors
S(z) = aX(z) + bY(z).

Quel est le domaine de convergence ?
(D ÉCALAGE ) Si yn = xn−n0 alors
Y ( z ) = z − n0 X ( z ) .
En particulier, si yn = xn−1 , Y(z) = z−1 X(z).

20 / 25
3.4 P ROPRIÉTÉS
(D ÉRIVÉE ) La dérivée d’une TZ multipliée par −z est la TZ
du signal multiplié par n :

−z

∞
dX(z)
= ∑ nxn z−n = Z[nxn ]
dz
n=−∞

(C ONVOLUTION ) La convolution discrète étant définie par
∞

xn ∗ yn =

∑

xn−k yn ,

k=−∞

la TZ est
Z[xn ∗ yn ] = X(z)Y(z).

21 / 25
3.5 R EPRÉSENTATION PAR PÔLES ET ZÉROS

Considérons H (z) = Z[hn ].
Les pôles de H(z) sont les valeurs de z pour lequelles H (z)
tend vers l’infini.
Les zéros de H(z) sont les valeurs de z pour lesquelles H (z)
est nul.
Les pôles et les zéros complexes de H (z) sont de la forme
α ± iβ.

22 / 25
3.5 R EPRÉSENTATION PAR PÔLES ET ZÉROS
Si X(z) possède M zéros zm et N pôles pn , on peut la mettre sous
la forme :
X (z)
Y (z)
b + b1 z − 1 + . . . + bM z − M
= 0
1 + a1 z−1 + . . . + aN z−N
∏M (z − zm )
= A m=1
∏N=1 (z − pn )
n

H (z) =

On peut toujours écrire une TZ sous cette forme, et donc
représenter le signal par des listes de pôles et de zéros.
Exemple :
H ( z ) = Z ( an u n ) =

z
z−a
23 / 25
3.6. TZ INVERSE
À partir de la TZ X(z) d’un signal, l’original xn peut être
retrouvé de plusieurs manières :
en développant X(z) en une série (puissance par exemple)
en utilisant le théorème des résidus pour calculer
xn =

1
2iπ

Γ

X(z)zn−1 dz

où Γ est un lacet entourant l’origine, situé dans la
couronne de convergence et orienté dans le sens positif.
un formulaire

24 / 25
3.6. TZ INVERSE
Le théorème des résidus indique que l’intégrale sur un
contour fermé C d’une fonction complexe holomorphe
F(z) rationnelle vaut

C

F(z)dz = 2iπ

∑

pi ∈C

Résidu(pi )

où pi est un pôle de F(z).
(Fonction holomorphe = fonction à valeurs complexes, définie et
dérivable en tout point d’un sous-ensemble ouvert du plan complexe.)
si pi est un pôle simple : Résidu(pi ) = limz→pi (z − pi )F(z)
1
Exemple : calcul de Z−1 [ 1+az−1 ].
25 / 25

More Related Content

What's hot

CM2 - Conversion Anlogique Numérique
CM2 - Conversion Anlogique NumériqueCM2 - Conversion Anlogique Numérique
CM2 - Conversion Anlogique Numérique
Pierre Maréchal
 
Tp 2 transmission de donné modulation analogique
Tp 2 transmission de donné modulation analogiqueTp 2 transmission de donné modulation analogique
Tp 2 transmission de donné modulation analogique
hamdinho
 
Chapitre 1 Rappels sur le filtrage numérique 1.pdf
Chapitre 1 Rappels sur le filtrage numérique 1.pdfChapitre 1 Rappels sur le filtrage numérique 1.pdf
Chapitre 1 Rappels sur le filtrage numérique 1.pdf
Heithem2
 
Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires
sarah Benmerzouk
 
Cour traitement du signal.pdf
Cour traitement du signal.pdfCour traitement du signal.pdf
Cour traitement du signal.pdf
stock8602
 
Cours --hydraulique-thorique-dbit-vitesse
Cours --hydraulique-thorique-dbit-vitesseCours --hydraulique-thorique-dbit-vitesse
Cours --hydraulique-thorique-dbit-vitesse
iro2
 

What's hot (20)

chap4 codes-en-ligne
chap4 codes-en-lignechap4 codes-en-ligne
chap4 codes-en-ligne
 
chap3 numerisation_des_signaux
chap3 numerisation_des_signauxchap3 numerisation_des_signaux
chap3 numerisation_des_signaux
 
CM2 - Conversion Anlogique Numérique
CM2 - Conversion Anlogique NumériqueCM2 - Conversion Anlogique Numérique
CM2 - Conversion Anlogique Numérique
 
Tp 2 transmission de donné modulation analogique
Tp 2 transmission de donné modulation analogiqueTp 2 transmission de donné modulation analogique
Tp 2 transmission de donné modulation analogique
 
Lamini&farsane traitement de_signale
Lamini&farsane traitement de_signaleLamini&farsane traitement de_signale
Lamini&farsane traitement de_signale
 
Chapitre 1 Rappels sur le filtrage numérique 1.pdf
Chapitre 1 Rappels sur le filtrage numérique 1.pdfChapitre 1 Rappels sur le filtrage numérique 1.pdf
Chapitre 1 Rappels sur le filtrage numérique 1.pdf
 
les filtres analogiques.pdf
les filtres analogiques.pdfles filtres analogiques.pdf
les filtres analogiques.pdf
 
Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires
 
Traitement de signal -chapitre 1
Traitement de signal -chapitre 1Traitement de signal -chapitre 1
Traitement de signal -chapitre 1
 
chap3 transmission_numerique-en-bd_b
chap3 transmission_numerique-en-bd_bchap3 transmission_numerique-en-bd_b
chap3 transmission_numerique-en-bd_b
 
124776153 td-automatique-1 a-jmd-2011
124776153 td-automatique-1 a-jmd-2011124776153 td-automatique-1 a-jmd-2011
124776153 td-automatique-1 a-jmd-2011
 
modulation AM FM PM
modulation AM FM PMmodulation AM FM PM
modulation AM FM PM
 
cours transmission numerique.pdf
cours transmission numerique.pdfcours transmission numerique.pdf
cours transmission numerique.pdf
 
L’amplificateur opérationnel et ses applications
L’amplificateur opérationnel et ses applicationsL’amplificateur opérationnel et ses applications
L’amplificateur opérationnel et ses applications
 
traitement de signal cours
traitement de signal cours traitement de signal cours
traitement de signal cours
 
cours-regulation-automatique-analogique
cours-regulation-automatique-analogiquecours-regulation-automatique-analogique
cours-regulation-automatique-analogique
 
Cour traitement du signal.pdf
Cour traitement du signal.pdfCour traitement du signal.pdf
Cour traitement du signal.pdf
 
Cours2 Réponse temporelle des systèmes dynamiques continus LTI
Cours2 Réponse temporelle des systèmes dynamiques continus LTICours2 Réponse temporelle des systèmes dynamiques continus LTI
Cours2 Réponse temporelle des systèmes dynamiques continus LTI
 
Chapitre 2_ les capteurs passifs et leurs conditionneurs 2011-20122012.pdf
Chapitre 2_ les capteurs passifs et leurs conditionneurs 2011-20122012.pdfChapitre 2_ les capteurs passifs et leurs conditionneurs 2011-20122012.pdf
Chapitre 2_ les capteurs passifs et leurs conditionneurs 2011-20122012.pdf
 
Cours --hydraulique-thorique-dbit-vitesse
Cours --hydraulique-thorique-dbit-vitesseCours --hydraulique-thorique-dbit-vitesse
Cours --hydraulique-thorique-dbit-vitesse
 

Similar to Introduction à la transformée en z et convolution discrète (GEII MA32)

Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
Mehdi Maroun
 
Resume-Abaque-Smith.pdf
Resume-Abaque-Smith.pdfResume-Abaque-Smith.pdf
Resume-Abaque-Smith.pdf
kamouf
 
Chap13 fin--ts-exp
Chap13  fin--ts-expChap13  fin--ts-exp
Chap13 fin--ts-exp
sikora233
 

Similar to Introduction à la transformée en z et convolution discrète (GEII MA32) (20)

GEII - OL3 : Signaux et systèmes numériques
GEII - OL3 : Signaux et systèmes numériquesGEII - OL3 : Signaux et systèmes numériques
GEII - OL3 : Signaux et systèmes numériques
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
GEII - Ma3 - Représentations de Fourier et convolution
GEII - Ma3 - Représentations de Fourier et convolutionGEII - Ma3 - Représentations de Fourier et convolution
GEII - Ma3 - Représentations de Fourier et convolution
 
Traitement de signal rappel outilmathematiques
Traitement de signal rappel outilmathematiquesTraitement de signal rappel outilmathematiques
Traitement de signal rappel outilmathematiques
 
Discrimination et régression pour des dérivées : un résultat de consistance p...
Discrimination et régression pour des dérivées : un résultat de consistance p...Discrimination et régression pour des dérivées : un résultat de consistance p...
Discrimination et régression pour des dérivées : un résultat de consistance p...
 
L'essentiel du programme de l'agrégation de mathématiques
L'essentiel du programme de l'agrégation de mathématiquesL'essentiel du programme de l'agrégation de mathématiques
L'essentiel du programme de l'agrégation de mathématiques
 
chap2 outil_mathematiques
chap2 outil_mathematiqueschap2 outil_mathematiques
chap2 outil_mathematiques
 
Les Filtres Numeriques
Les Filtres NumeriquesLes Filtres Numeriques
Les Filtres Numeriques
 
Resume-Abaque-Smith.pdf
Resume-Abaque-Smith.pdfResume-Abaque-Smith.pdf
Resume-Abaque-Smith.pdf
 
corr_exos.pdf
corr_exos.pdfcorr_exos.pdf
corr_exos.pdf
 
Cours vibration 2016 prat
Cours vibration 2016 pratCours vibration 2016 prat
Cours vibration 2016 prat
 
Cnc mp-2017-maths-2-corrige
Cnc mp-2017-maths-2-corrigeCnc mp-2017-maths-2-corrige
Cnc mp-2017-maths-2-corrige
 
Echantillonage
EchantillonageEchantillonage
Echantillonage
 
Mettre obligatoirement le titre de la leçon ici
Mettre obligatoirement le titre de la leçon iciMettre obligatoirement le titre de la leçon ici
Mettre obligatoirement le titre de la leçon ici
 
Gele2511 ch3
Gele2511 ch3Gele2511 ch3
Gele2511 ch3
 
Polynomial Regression on Riemannian Manifolds, report, 2012
Polynomial Regression on Riemannian Manifolds, report, 2012Polynomial Regression on Riemannian Manifolds, report, 2012
Polynomial Regression on Riemannian Manifolds, report, 2012
 
Chap13 fin--ts-exp
Chap13  fin--ts-expChap13  fin--ts-exp
Chap13 fin--ts-exp
 
Sujettdtds
SujettdtdsSujettdtds
Sujettdtds
 
Fic00126
Fic00126Fic00126
Fic00126
 

More from Frédéric Morain-Nicolier

2012.09.25 - Local and non-metric similarities between images - why, how and ...
2012.09.25 - Local and non-metric similarities between images - why, how and ...2012.09.25 - Local and non-metric similarities between images - why, how and ...
2012.09.25 - Local and non-metric similarities between images - why, how and ...
Frédéric Morain-Nicolier
 
Mesures de dissimilarités locales et globales entre images, symétriques et as...
Mesures de dissimilarités locales et globales entre images, symétriques et as...Mesures de dissimilarités locales et globales entre images, symétriques et as...
Mesures de dissimilarités locales et globales entre images, symétriques et as...
Frédéric Morain-Nicolier
 

More from Frédéric Morain-Nicolier (12)

Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital Images
 
GEII - Ma3 - Matrices
GEII - Ma3 - MatricesGEII - Ma3 - Matrices
GEII - Ma3 - Matrices
 
GEII - Ma3 - Suites et séries
GEII - Ma3 - Suites et sériesGEII - Ma3 - Suites et séries
GEII - Ma3 - Suites et séries
 
Étude des fonctions à plusieurs variables (GEII MA32)
Étude des fonctions à plusieurs variables (GEII MA32)Étude des fonctions à plusieurs variables (GEII MA32)
Étude des fonctions à plusieurs variables (GEII MA32)
 
2012.09.25 - Local and non-metric similarities between images - why, how and ...
2012.09.25 - Local and non-metric similarities between images - why, how and ...2012.09.25 - Local and non-metric similarities between images - why, how and ...
2012.09.25 - Local and non-metric similarities between images - why, how and ...
 
Ipta2010
Ipta2010Ipta2010
Ipta2010
 
Capteurs de positions
Capteurs de positionsCapteurs de positions
Capteurs de positions
 
CCD
CCDCCD
CCD
 
SRC - SAV - La lumière
SRC - SAV - La lumièreSRC - SAV - La lumière
SRC - SAV - La lumière
 
SRC - SAV - Système Visuel et Auditif Humain
SRC - SAV - Système Visuel et Auditif HumainSRC - SAV - Système Visuel et Auditif Humain
SRC - SAV - Système Visuel et Auditif Humain
 
Mesures de dissimilarités locales et globales entre images, symétriques et as...
Mesures de dissimilarités locales et globales entre images, symétriques et as...Mesures de dissimilarités locales et globales entre images, symétriques et as...
Mesures de dissimilarités locales et globales entre images, symétriques et as...
 
Binary Symbol Recognition from Local Dissimilarity Map
Binary Symbol Recognition from Local Dissimilarity MapBinary Symbol Recognition from Local Dissimilarity Map
Binary Symbol Recognition from Local Dissimilarity Map
 

Recently uploaded

Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdf
AmgdoulHatim
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
ikospam0
 

Recently uploaded (19)

GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
 
Echos libraries Burkina Faso newsletter 2024
Echos libraries Burkina Faso newsletter 2024Echos libraries Burkina Faso newsletter 2024
Echos libraries Burkina Faso newsletter 2024
 
les_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhkles_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhk
 
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANKRAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
 
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
 
Cours Généralités sur les systèmes informatiques
Cours Généralités sur les systèmes informatiquesCours Généralités sur les systèmes informatiques
Cours Généralités sur les systèmes informatiques
 
python-Cours Officiel POO Python-m103.pdf
python-Cours Officiel POO Python-m103.pdfpython-Cours Officiel POO Python-m103.pdf
python-Cours Officiel POO Python-m103.pdf
 
Formation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxFormation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptx
 
Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdf
 
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetFormation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
 
Télécommunication et transport .pdfcours
Télécommunication et transport .pdfcoursTélécommunication et transport .pdfcours
Télécommunication et transport .pdfcours
 
L application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxL application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptx
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
 
Neuvaine de la Pentecôte avec des textes de saint Jean Eudes
Neuvaine de la Pentecôte avec des textes de saint Jean EudesNeuvaine de la Pentecôte avec des textes de saint Jean Eudes
Neuvaine de la Pentecôte avec des textes de saint Jean Eudes
 
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
 
Les roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptxLes roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptx
 
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptxIntégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
 
Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaire
 
L'expression du but : fiche et exercices niveau C1 FLE
L'expression du but : fiche et exercices  niveau C1 FLEL'expression du but : fiche et exercices  niveau C1 FLE
L'expression du but : fiche et exercices niveau C1 FLE
 

Introduction à la transformée en z et convolution discrète (GEII MA32)

  • 1. MA32 (GEII - S3) B - T RANSFORMÉE EN Z ET CONVOLUTION DISCRÈTE : EXPOSITION F. Morain-Nicolier frederic.nicolier@univ-reims.fr 2013 - 2014 / URCA - IUT Troyes 1 / 25
  • 2. O UTLINE 1. S IGNAUX DISCRETS 2. U N SYSTÈME DISCRET SIMPLE 3. P RINCIPALES PROPRIÉTÉS DE LA TZ 2 / 25
  • 3. 1.1 S IGNAUX DISCRETS ? Un signal est le support physique d’une information (ex : signaux sonores, visuels) signaux continus (analogiques), discrets (échantillonnés), numériques (échantillonnés et quantifiés) F IGURE : Signal échantillonné 3 / 25
  • 4. 1.1 S IGNAUX DISCRETS ? F IGURE : Signal mal échantillonné 4 / 25
  • 5. 1.2 N OTATION MATHÉMATIQUE DES SIGNAUX DISCRETS Un signal discret est donc un liste ordonné de valeurs réelles ou complexes En mathématique, on le représente donc par une suite numérique (D ÉFINITION ) Une suite numérique (un )n∈N est une application de N sur R (ou C). un est le terme général de la suite. 5 / 25
  • 6. 1.2 S UITES ET SÉRIES Une série est obtenue en sommant les termes généraux d’une suite, en particulier : (Définition) Une série {un } est la somme des termes généraux un de la suite (un ). ∞ {un } = ∑ n=0 ∞ un ou {un } = ∑ n=−∞ un ex : série de Fourier 6 / 25
  • 7. 1.3 Q UELQUES EXEMPLES impulsion unité δn = 1 0 si n = 0 . sinon 7 / 25
  • 8. 1.3 Q UELQUES EXEMPLES Échelon unité un = 1 0 si n ≥ 0 sinon 8 / 25
  • 9. 1.3 Q UELQUES EXEMPLES Signal exponentiel xn = an 9 / 25
  • 10. O UTLINE 1. S IGNAUX DISCRETS 2. U N SYSTÈME DISCRET SIMPLE 3. P RINCIPALES PROPRIÉTÉS DE LA TZ 10 / 25
  • 11. 2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE (xk) (yk) + a retard F IGURE : système discret simple yk = xk + ayk−1 . (0) C’est une équation aux différences (simple) Cherchons à exprimer explicitement (yk ) en fonction de (xk ) 11 / 25
  • 12. 2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE On a donc k yk = ∑ n=−∞ ak−n xn . Reformulons la sortie en posant hn = 0 an si t < 0 . si n ≥ 0 12 / 25
  • 13. 2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE (hn ) est donc la réponse impulsionnelle du système. Cherchons la réponse à une entrée xk = zk où z est un nombre complexe fixé. Montrons alors que yk = z xk . z−a 13 / 25
  • 14. 2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE H (z) = z z−a est la fonction de transfert du filtre. C’est une fonction de la variable z, définie dans le domaine |z| > |a|. Explicitons l’obtention de H (z) à partir de (hn ). 14 / 25
  • 15. 2.1. É TUDE D ’ UN SYSTÈME DISCRET SIMPLE H (z) est donc la transformée en z de (hn ), avec ∞ Z [ fn ] = ∑ n=−∞ fn z − n . quelles sont ses propriétés ? quelles sont ses conditions d’existence et de convergence ? ⇒ suites et séries numériques et de fonctions 15 / 25
  • 16. O UTLINE 1. S IGNAUX DISCRETS 2. U N SYSTÈME DISCRET SIMPLE 3. P RINCIPALES PROPRIÉTÉS DE LA TZ 16 / 25
  • 17. 3.1. D ÉFINITION (D ÉFINITION ) La transformée en z d’un signal discret (xn ) est ∞ X ( z ) = Z [ fn ] = ∑ n=−∞ fn z − n où z est une variable complexe. La TZ peut-être considérée comme une généralisation de la transformée de Fourier (poser z = eiω ) La TZ constitue l’outil privilégié pour l’étude des système discrets. Elle joue un rôle équivalent à la transformée de Laplace Par exemple, la TZ permet de représenter un signal possédant une infinité d’échantillons par un ensemble fini de nombres. 17 / 25
  • 18. 3.2 D OMAINE DE CONVERGENCE TRANSIORMATIONIN/ 45 r R*- la limite La TZ n’a de sens que si l’on précise le domaine des valeurs de lim lr( & 1l 1/* = 4,(2.8) z pour lesquelles la série existe. série Xr(z) converge alors pour lzl >Rr_. Avec le changement de variable / = -k, peut montrer d'ure madère similaire que la série Xl (z) converge pour lzl (Â,+, Nous montrerons (plus tard) que le domaine de convergence R,a est la lirnite de X(z) est un anneau du plan complexe. R,+ = 1/[ lim lx( -/)lt/t (2.e) : ,- + - si, série TZ converge si Ainsilaune(2.1) converge en général dans un anneau du plan complexe 0 ( R,- ( lzl ( R,* ( +R < |z| < R x− i est illustré sur la figure tt évident que si Àx- ) 2. I . x+ (2.r 0) Rjr, et .R, + caractérisent le signal x série (2.1) n'est pas convergente. Les limites À,-} , la des z donné ///l Fig.2.l ([ ). résiortr de convetzenî.e 18 / 25
  • 19. 3.3 E XEMPLES TZ de l’impulsion unité Z[δn ] = 1 TZ de l’échelon unité Z [ un ] = 1 1 − z−1 TZ du signal exponentiel Z [ an u n ] = z z−a 19 / 25
  • 20. 3.4 P ROPRIÉTÉS (L INÉARITÉ ) Soit sn = axn + byn alors S(z) = aX(z) + bY(z). Quel est le domaine de convergence ? (D ÉCALAGE ) Si yn = xn−n0 alors Y ( z ) = z − n0 X ( z ) . En particulier, si yn = xn−1 , Y(z) = z−1 X(z). 20 / 25
  • 21. 3.4 P ROPRIÉTÉS (D ÉRIVÉE ) La dérivée d’une TZ multipliée par −z est la TZ du signal multiplié par n : −z ∞ dX(z) = ∑ nxn z−n = Z[nxn ] dz n=−∞ (C ONVOLUTION ) La convolution discrète étant définie par ∞ xn ∗ yn = ∑ xn−k yn , k=−∞ la TZ est Z[xn ∗ yn ] = X(z)Y(z). 21 / 25
  • 22. 3.5 R EPRÉSENTATION PAR PÔLES ET ZÉROS Considérons H (z) = Z[hn ]. Les pôles de H(z) sont les valeurs de z pour lequelles H (z) tend vers l’infini. Les zéros de H(z) sont les valeurs de z pour lesquelles H (z) est nul. Les pôles et les zéros complexes de H (z) sont de la forme α ± iβ. 22 / 25
  • 23. 3.5 R EPRÉSENTATION PAR PÔLES ET ZÉROS Si X(z) possède M zéros zm et N pôles pn , on peut la mettre sous la forme : X (z) Y (z) b + b1 z − 1 + . . . + bM z − M = 0 1 + a1 z−1 + . . . + aN z−N ∏M (z − zm ) = A m=1 ∏N=1 (z − pn ) n H (z) = On peut toujours écrire une TZ sous cette forme, et donc représenter le signal par des listes de pôles et de zéros. Exemple : H ( z ) = Z ( an u n ) = z z−a 23 / 25
  • 24. 3.6. TZ INVERSE À partir de la TZ X(z) d’un signal, l’original xn peut être retrouvé de plusieurs manières : en développant X(z) en une série (puissance par exemple) en utilisant le théorème des résidus pour calculer xn = 1 2iπ Γ X(z)zn−1 dz où Γ est un lacet entourant l’origine, situé dans la couronne de convergence et orienté dans le sens positif. un formulaire 24 / 25
  • 25. 3.6. TZ INVERSE Le théorème des résidus indique que l’intégrale sur un contour fermé C d’une fonction complexe holomorphe F(z) rationnelle vaut C F(z)dz = 2iπ ∑ pi ∈C Résidu(pi ) où pi est un pôle de F(z). (Fonction holomorphe = fonction à valeurs complexes, définie et dérivable en tout point d’un sous-ensemble ouvert du plan complexe.) si pi est un pôle simple : Résidu(pi ) = limz→pi (z − pi )F(z) 1 Exemple : calcul de Z−1 [ 1+az−1 ]. 25 / 25