SlideShare a Scribd company logo
1 of 4
Download to read offline
TRANSISTORES
El transistor, inventado en 1951, es el componente electrónico estrella, pues
inició una auténtica revolución en la electrónica que ha superado cualquier
previsión inicial.
Con el transistor vino la miniaturización de los componentes y se llegó al
descubrimiento de los circuitos integrados, en los que se colocan, en pocos
milímetros cuadrados, miles de transistores. Estos circuitos constituyen el
origen de los microprocesadores y, por lo tanto, de los ordenadores actuales.
Por otra parte, la sustitución en los montajes electrónicos de las clásicas y
antiguas válvulas de vacío por los transistores, reduce al máximo las pérdidas
de calor de los equipos.
Un transistor es un componente que tiene, básicamente, dos funciones:
- Deja pasar o corta señales eléctricas a partir de una PEQUEÑA señal de
mando.
- Funciona como un elemento AMPLIFICADOR de señales.
¿Cómo es físicamente un transistor?
Hay dos tipos básicos de transistor:
a) Transistor bipolar o BJT (Bipolar Junction Transistor)
b) Transistor de efecto de campo, FET (Field Effect Transistor) o unipolar
A) Transistor bipolar
Consta de tres cristales semiconductores
(usualmente de silicio) unidos entre sí. Según como
se coloquen los cristales hay dos tipos básicos de
transistores bipolares.
- Transistor NPN: en este caso un cristal P está
situado entre dos cristales N. Son los más
comunes.
- Transistor PNP: en este caso un cristal N está
situado entre dos cristales P
La capa de en medio es mucho más estrecha que las
otras dos.
En cada uno de estos cristales se realiza un contacto metálico, lo que da origen
a tres terminales:
• Emisor (E): Se encarga de proporcionar portadores de carga.
• Colector (C): Se encarga de recoger portadores de carga.
• Base (B): Controla el paso de corriente a través del transistor. Es el
cristal de en medio.
El conjunto se protege con una funda de plástico o metal.
Nos centraremos en el transistor NPN:
B) Polarización del transistor
Se entiende por polarización del transistor las
conexiones adecuadas que hay que realizar con
corriente continua para que pueda funcionar correctamente.
Si se conectan dos baterías al transistor como se ve en la figura, es decir, con
la unión PN de la base-emisor polarizada directamente y la unión PN de la
base-colector polarizado inversamente. Siempre que la tensión de la base-
emisor supere 0,7 V, diremos que el transistor está polarizado, es decir, que
funciona correctamente.
Este montaje se llama con emisor común.
En este caso, el hecho de que el transistor esté en funcionamiento significa que
es capaz de conducir la corriente desde el terminal colector hasta el terminal
emisor. Se cumplen dos expresiones para este caso:
La primera…
IE= IB + IC
Donde…
IE es la corriente que recorre el terminal emisor.
IC es la corriente que recorre el terminal colector.
IB es la corriente que recorre el terminal base.
Como la corriente de base resulta siempre MUY PEQUEÑA, se puede decir
que la corriente del colector y la del emisor prácticamente coinciden.
IE ≈ IC
La segunda expresión dice
IC= β·IB
Donde β es una constante que depende de cada transistor llamado ganancia
que puede valer entre 50 y 300 (algunos transistores llegan a 1000).
La ganancia de un transistor nos habla de la capacidad que tiene para
amplificar la corriente. Cuanto mayor es la ganancia de un transistor, más
puede amplificar la corriente.
Se concluye que la corriente por el colector de un transistor bipolar es
proporcional a la corriente por la base, es decir, a mayor corriente en la base,
mayor corriente en el colector.
En la práctica no se utilizan dos baterías, sino una
sola.
Según estas dos expresiones el transistor bipolar puede tener tres estados
distintos de funcionamiento:
a) Corte: En este caso la corriente de base es nula (o casi), es decir, IB = 0,
por lo tanto, IC= β·IB= β·0 = 0  IC= 0
En este caso, el transistor no conduce en absoluto. No está
funcionando. Se dice que el transistor se comporta como un interruptor
abierto.
b) Activa: En este caso el transistor conduce parcialmente siguiendo la
segunda expresión (IC= β·IB). La corriente del colector es directamente
proporcional a la corriente de la base. Ejemplo: Si β = 100, la corriente
del colector es 100 veces la corriente de la base. Por eso se dice que el
transistor amplifica la corriente.
c) Saturación: En este caso, el transistor conduce totalmente y se comporta
como un interruptor cerrado. Este estado se alcanza cuando la corriente
por la base (IB) alcanza un valor alto. En este caso la expresión (IC= β·IB)
ya no tiene sentido pues, por mucho que aumente el valor de la corriente de
base (IB), no aumenta el valor de la corriente de colector.
Veamos un cuadro resumen con las tensiones de trabajo en los diferentes
estados de funcionamiento, así como las corrientes de un transistor conectado
a una pila cuya tensión es V
Corte Activa Saturación
VCE VCE = V 0< VCE < V VCE ≈ 0
IC IC≈ IE = 0
IC= β·IB
IE ≈ IC
IE ≈ IC
IB
en cualquier caso IB
siempre es una
corriente pequeña, es
decir, IB << IC
IB≈0 IB>0 IB con máximo valor
Conducción del
transistor
No conduce (se
comporta como
un interruptor
abierto)
Conduce
parcialmente
Conduce
totalmente (se
comporta como
un interruptor
cerrado)
Donde VCE es la tensión que existe entre el colector y el emisor.
Si la corriente de base es muy alta, el transistor puede estropearse, por eso, la
base del transistor debe protegerse SIEMPRE con una resistencia de una valor
alto.
Estados de funcionamiento de un transistor

More Related Content

What's hot

Fuente regulable de voltaje
Fuente regulable de voltajeFuente regulable de voltaje
Fuente regulable de voltajeWiwi Hdez
 
MOSFET uso aplicaciones definicion
MOSFET uso aplicaciones definicionMOSFET uso aplicaciones definicion
MOSFET uso aplicaciones definicionJ'Luis Mata
 
Seguidor de linea
Seguidor de lineaSeguidor de linea
Seguidor de lineataicon
 
Transistor como conmutador
Transistor como conmutadorTransistor como conmutador
Transistor como conmutadorGoogle
 
Circuitos reguladores de tension jhonatan
Circuitos reguladores de tension   jhonatanCircuitos reguladores de tension   jhonatan
Circuitos reguladores de tension jhonatanjhonatan1810
 
Practica uno caracteristicas del diodo
Practica uno  caracteristicas del diodoPractica uno  caracteristicas del diodo
Practica uno caracteristicas del diodoMarx Simpson
 
Electronica analisis a pequeña señal fet
Electronica  analisis a pequeña señal fetElectronica  analisis a pequeña señal fet
Electronica analisis a pequeña señal fetVelmuz Buzz
 
Cuadro comparativo de familias logicas
Cuadro comparativo de familias logicasCuadro comparativo de familias logicas
Cuadro comparativo de familias logicasGermanGeorge
 
Tema 4: Problemas electrostática con valor en frontera
Tema 4: Problemas electrostática con valor en fronteraTema 4: Problemas electrostática con valor en frontera
Tema 4: Problemas electrostática con valor en fronteraFrancisco Sandoval
 

What's hot (20)

Fuente regulable de voltaje
Fuente regulable de voltajeFuente regulable de voltaje
Fuente regulable de voltaje
 
MOSFET uso aplicaciones definicion
MOSFET uso aplicaciones definicionMOSFET uso aplicaciones definicion
MOSFET uso aplicaciones definicion
 
Seguidor de linea
Seguidor de lineaSeguidor de linea
Seguidor de linea
 
Proyecto de Electrónica
Proyecto de ElectrónicaProyecto de Electrónica
Proyecto de Electrónica
 
Transistor como conmutador
Transistor como conmutadorTransistor como conmutador
Transistor como conmutador
 
Mosfet Jfet
Mosfet JfetMosfet Jfet
Mosfet Jfet
 
Circuitos reguladores de tension jhonatan
Circuitos reguladores de tension   jhonatanCircuitos reguladores de tension   jhonatan
Circuitos reguladores de tension jhonatan
 
Scr, triac y diac
Scr, triac y diacScr, triac y diac
Scr, triac y diac
 
CIRCUITO MIXTO-INFORME TÉCNICO
CIRCUITO MIXTO-INFORME TÉCNICO CIRCUITO MIXTO-INFORME TÉCNICO
CIRCUITO MIXTO-INFORME TÉCNICO
 
Practica uno caracteristicas del diodo
Practica uno  caracteristicas del diodoPractica uno  caracteristicas del diodo
Practica uno caracteristicas del diodo
 
Electronica analisis a pequeña señal fet
Electronica  analisis a pequeña señal fetElectronica  analisis a pequeña señal fet
Electronica analisis a pequeña señal fet
 
Transistores
TransistoresTransistores
Transistores
 
3.1. Construcción de Transistor BJT
3.1. Construcción de Transistor BJT3.1. Construcción de Transistor BJT
3.1. Construcción de Transistor BJT
 
Generadores de CD
Generadores de CDGeneradores de CD
Generadores de CD
 
Transistoresfet
TransistoresfetTransistoresfet
Transistoresfet
 
TTL-CMOS
TTL-CMOSTTL-CMOS
TTL-CMOS
 
Sesión 6: Teoría Básica de Transistores BJT
Sesión 6: Teoría Básica de Transistores BJTSesión 6: Teoría Básica de Transistores BJT
Sesión 6: Teoría Básica de Transistores BJT
 
Cuadro comparativo de familias logicas
Cuadro comparativo de familias logicasCuadro comparativo de familias logicas
Cuadro comparativo de familias logicas
 
Tema 4: Problemas electrostática con valor en frontera
Tema 4: Problemas electrostática con valor en fronteraTema 4: Problemas electrostática con valor en frontera
Tema 4: Problemas electrostática con valor en frontera
 
El PIC16F84
El PIC16F84El PIC16F84
El PIC16F84
 

Similar to Teoria de Transistores

Similar to Teoria de Transistores (20)

Transistores
TransistoresTransistores
Transistores
 
Transistores
TransistoresTransistores
Transistores
 
Transistores Bjt
Transistores BjtTransistores Bjt
Transistores Bjt
 
Transistores
TransistoresTransistores
Transistores
 
Transistores
TransistoresTransistores
Transistores
 
Los transistores
Los transistoresLos transistores
Los transistores
 
Los transistores
Los transistoresLos transistores
Los transistores
 
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
 
TRANSITORES
TRANSITORESTRANSITORES
TRANSITORES
 
Transistor Bipolar
Transistor BipolarTransistor Bipolar
Transistor Bipolar
 
Documento inicial bueno (1)
Documento inicial bueno (1)Documento inicial bueno (1)
Documento inicial bueno (1)
 
Documento editado
Documento editadoDocumento editado
Documento editado
 
Transistores
TransistoresTransistores
Transistores
 
Proyecto 3 lab
Proyecto 3 labProyecto 3 lab
Proyecto 3 lab
 
Mejorar documento
Mejorar documentoMejorar documento
Mejorar documento
 
ELECTRÓNICA BÁSICA
ELECTRÓNICA BÁSICAELECTRÓNICA BÁSICA
ELECTRÓNICA BÁSICA
 
Mejorar documento
Mejorar documentoMejorar documento
Mejorar documento
 
Mejorar documentoe
Mejorar documentoeMejorar documentoe
Mejorar documentoe
 
Transistores.doc
Transistores.docTransistores.doc
Transistores.doc
 
Mejorar word
Mejorar wordMejorar word
Mejorar word
 

Recently uploaded

microsoft word manuales para todos tipos de estudiamte
microsoft word manuales para todos tipos de estudiamtemicrosoft word manuales para todos tipos de estudiamte
microsoft word manuales para todos tipos de estudiamte2024020140
 
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptx
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptxTarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptx
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptxVICTORMANUELBEASAGUI
 
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptx
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptxTipos de Datos de Microsoft Access-JOEL GARCIA.pptx
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptxJOELGARCIA849853
 
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdfjuan23xpx
 
Editorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdfEditorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdfYanitza28
 
Imágenes digitales: Calidad de la información
Imágenes digitales: Calidad de la informaciónImágenes digitales: Calidad de la información
Imágenes digitales: Calidad de la informaciónUniversidad de Sonora
 
10°8 - Avances tecnologicos del siglo XXI 10-8
10°8 - Avances tecnologicos del siglo XXI 10-810°8 - Avances tecnologicos del siglo XXI 10-8
10°8 - Avances tecnologicos del siglo XXI 10-8antoniopalmieriluna
 
AVANCES TECNOLOGICOS DEL SIGLO XXI. 10-08..pptx
AVANCES TECNOLOGICOS  DEL SIGLO XXI. 10-08..pptxAVANCES TECNOLOGICOS  DEL SIGLO XXI. 10-08..pptx
AVANCES TECNOLOGICOS DEL SIGLO XXI. 10-08..pptxdulcemonterroza
 
herramientas web para estudiantes interesados en el tema
herramientas web para estudiantes interesados en el temaherramientas web para estudiantes interesados en el tema
herramientas web para estudiantes interesados en el temaJadeVilcscordova
 
Chat GPT para la educación Latinoamerica
Chat GPT para la educación LatinoamericaChat GPT para la educación Latinoamerica
Chat GPT para la educación LatinoamericaEdwinGarca59
 
Desarrollo del Dominio del Internet - Estrada
Desarrollo del Dominio del Internet - EstradaDesarrollo del Dominio del Internet - Estrada
Desarrollo del Dominio del Internet - EstradaRicardoEstrada90
 
el uso de las TIC en la vida cotidiana.pptx
el uso de las TIC en la vida cotidiana.pptxel uso de las TIC en la vida cotidiana.pptx
el uso de las TIC en la vida cotidiana.pptx221112876
 
Introduccion-a-la-electronica-industrial.pptx
Introduccion-a-la-electronica-industrial.pptxIntroduccion-a-la-electronica-industrial.pptx
Introduccion-a-la-electronica-industrial.pptxcj12paz
 
NIA_300_PLANEACION_DE_UNA_AUDITORIA_DE_E.pptx
NIA_300_PLANEACION_DE_UNA_AUDITORIA_DE_E.pptxNIA_300_PLANEACION_DE_UNA_AUDITORIA_DE_E.pptx
NIA_300_PLANEACION_DE_UNA_AUDITORIA_DE_E.pptxDaniloDaz4
 
presentación del desensamble y ensamble del equipo de computo en base a las n...
presentación del desensamble y ensamble del equipo de computo en base a las n...presentación del desensamble y ensamble del equipo de computo en base a las n...
presentación del desensamble y ensamble del equipo de computo en base a las n...axelv9257
 
Ejercicio 1 periodo 2 de Tecnología 2024
Ejercicio 1 periodo 2 de Tecnología 2024Ejercicio 1 periodo 2 de Tecnología 2024
Ejercicio 1 periodo 2 de Tecnología 2024NicolleAndrade7
 
Editorial. Grupo de 12B. La Salle Margarita.pdf
Editorial. Grupo de 12B. La Salle Margarita.pdfEditorial. Grupo de 12B. La Salle Margarita.pdf
Editorial. Grupo de 12B. La Salle Margarita.pdfYanitza28
 
Redes Neuronales profundas convolucionales CNN ́s-1.pdf
Redes Neuronales profundas convolucionales CNN ́s-1.pdfRedes Neuronales profundas convolucionales CNN ́s-1.pdf
Redes Neuronales profundas convolucionales CNN ́s-1.pdfJosAndrRosarioVzquez
 
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptxinfor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptxgustavovasquezv56
 
Tipos de datos en Microsoft Access de Base de Datos
Tipos de datos en Microsoft Access de Base de DatosTipos de datos en Microsoft Access de Base de Datos
Tipos de datos en Microsoft Access de Base de DatosYOMIRAVILLARREAL1
 

Recently uploaded (20)

microsoft word manuales para todos tipos de estudiamte
microsoft word manuales para todos tipos de estudiamtemicrosoft word manuales para todos tipos de estudiamte
microsoft word manuales para todos tipos de estudiamte
 
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptx
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptxTarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptx
Tarea_sesion_15_Reportes Maestro - Detalle con el uso de AJAX.pptx
 
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptx
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptxTipos de Datos de Microsoft Access-JOEL GARCIA.pptx
Tipos de Datos de Microsoft Access-JOEL GARCIA.pptx
 
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf
¡Ya basta! Sanidad Interior - Angela Kellenberger.pdf
 
Editorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdfEditorial. Grupo de 12B de La Salle Margarita.pdf
Editorial. Grupo de 12B de La Salle Margarita.pdf
 
Imágenes digitales: Calidad de la información
Imágenes digitales: Calidad de la informaciónImágenes digitales: Calidad de la información
Imágenes digitales: Calidad de la información
 
10°8 - Avances tecnologicos del siglo XXI 10-8
10°8 - Avances tecnologicos del siglo XXI 10-810°8 - Avances tecnologicos del siglo XXI 10-8
10°8 - Avances tecnologicos del siglo XXI 10-8
 
AVANCES TECNOLOGICOS DEL SIGLO XXI. 10-08..pptx
AVANCES TECNOLOGICOS  DEL SIGLO XXI. 10-08..pptxAVANCES TECNOLOGICOS  DEL SIGLO XXI. 10-08..pptx
AVANCES TECNOLOGICOS DEL SIGLO XXI. 10-08..pptx
 
herramientas web para estudiantes interesados en el tema
herramientas web para estudiantes interesados en el temaherramientas web para estudiantes interesados en el tema
herramientas web para estudiantes interesados en el tema
 
Chat GPT para la educación Latinoamerica
Chat GPT para la educación LatinoamericaChat GPT para la educación Latinoamerica
Chat GPT para la educación Latinoamerica
 
Desarrollo del Dominio del Internet - Estrada
Desarrollo del Dominio del Internet - EstradaDesarrollo del Dominio del Internet - Estrada
Desarrollo del Dominio del Internet - Estrada
 
el uso de las TIC en la vida cotidiana.pptx
el uso de las TIC en la vida cotidiana.pptxel uso de las TIC en la vida cotidiana.pptx
el uso de las TIC en la vida cotidiana.pptx
 
Introduccion-a-la-electronica-industrial.pptx
Introduccion-a-la-electronica-industrial.pptxIntroduccion-a-la-electronica-industrial.pptx
Introduccion-a-la-electronica-industrial.pptx
 
NIA_300_PLANEACION_DE_UNA_AUDITORIA_DE_E.pptx
NIA_300_PLANEACION_DE_UNA_AUDITORIA_DE_E.pptxNIA_300_PLANEACION_DE_UNA_AUDITORIA_DE_E.pptx
NIA_300_PLANEACION_DE_UNA_AUDITORIA_DE_E.pptx
 
presentación del desensamble y ensamble del equipo de computo en base a las n...
presentación del desensamble y ensamble del equipo de computo en base a las n...presentación del desensamble y ensamble del equipo de computo en base a las n...
presentación del desensamble y ensamble del equipo de computo en base a las n...
 
Ejercicio 1 periodo 2 de Tecnología 2024
Ejercicio 1 periodo 2 de Tecnología 2024Ejercicio 1 periodo 2 de Tecnología 2024
Ejercicio 1 periodo 2 de Tecnología 2024
 
Editorial. Grupo de 12B. La Salle Margarita.pdf
Editorial. Grupo de 12B. La Salle Margarita.pdfEditorial. Grupo de 12B. La Salle Margarita.pdf
Editorial. Grupo de 12B. La Salle Margarita.pdf
 
Redes Neuronales profundas convolucionales CNN ́s-1.pdf
Redes Neuronales profundas convolucionales CNN ́s-1.pdfRedes Neuronales profundas convolucionales CNN ́s-1.pdf
Redes Neuronales profundas convolucionales CNN ́s-1.pdf
 
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptxinfor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
infor expo AVANCES TECNOLOGICOS DEL SIGLO 21.pptx
 
Tipos de datos en Microsoft Access de Base de Datos
Tipos de datos en Microsoft Access de Base de DatosTipos de datos en Microsoft Access de Base de Datos
Tipos de datos en Microsoft Access de Base de Datos
 

Teoria de Transistores

  • 1. TRANSISTORES El transistor, inventado en 1951, es el componente electrónico estrella, pues inició una auténtica revolución en la electrónica que ha superado cualquier previsión inicial. Con el transistor vino la miniaturización de los componentes y se llegó al descubrimiento de los circuitos integrados, en los que se colocan, en pocos milímetros cuadrados, miles de transistores. Estos circuitos constituyen el origen de los microprocesadores y, por lo tanto, de los ordenadores actuales. Por otra parte, la sustitución en los montajes electrónicos de las clásicas y antiguas válvulas de vacío por los transistores, reduce al máximo las pérdidas de calor de los equipos. Un transistor es un componente que tiene, básicamente, dos funciones: - Deja pasar o corta señales eléctricas a partir de una PEQUEÑA señal de mando. - Funciona como un elemento AMPLIFICADOR de señales. ¿Cómo es físicamente un transistor? Hay dos tipos básicos de transistor: a) Transistor bipolar o BJT (Bipolar Junction Transistor) b) Transistor de efecto de campo, FET (Field Effect Transistor) o unipolar A) Transistor bipolar Consta de tres cristales semiconductores (usualmente de silicio) unidos entre sí. Según como se coloquen los cristales hay dos tipos básicos de transistores bipolares. - Transistor NPN: en este caso un cristal P está situado entre dos cristales N. Son los más comunes. - Transistor PNP: en este caso un cristal N está situado entre dos cristales P La capa de en medio es mucho más estrecha que las otras dos. En cada uno de estos cristales se realiza un contacto metálico, lo que da origen a tres terminales: • Emisor (E): Se encarga de proporcionar portadores de carga. • Colector (C): Se encarga de recoger portadores de carga.
  • 2. • Base (B): Controla el paso de corriente a través del transistor. Es el cristal de en medio. El conjunto se protege con una funda de plástico o metal. Nos centraremos en el transistor NPN: B) Polarización del transistor Se entiende por polarización del transistor las conexiones adecuadas que hay que realizar con corriente continua para que pueda funcionar correctamente. Si se conectan dos baterías al transistor como se ve en la figura, es decir, con la unión PN de la base-emisor polarizada directamente y la unión PN de la base-colector polarizado inversamente. Siempre que la tensión de la base- emisor supere 0,7 V, diremos que el transistor está polarizado, es decir, que funciona correctamente. Este montaje se llama con emisor común. En este caso, el hecho de que el transistor esté en funcionamiento significa que es capaz de conducir la corriente desde el terminal colector hasta el terminal emisor. Se cumplen dos expresiones para este caso: La primera…
  • 3. IE= IB + IC Donde… IE es la corriente que recorre el terminal emisor. IC es la corriente que recorre el terminal colector. IB es la corriente que recorre el terminal base. Como la corriente de base resulta siempre MUY PEQUEÑA, se puede decir que la corriente del colector y la del emisor prácticamente coinciden. IE ≈ IC La segunda expresión dice IC= β·IB Donde β es una constante que depende de cada transistor llamado ganancia que puede valer entre 50 y 300 (algunos transistores llegan a 1000). La ganancia de un transistor nos habla de la capacidad que tiene para amplificar la corriente. Cuanto mayor es la ganancia de un transistor, más puede amplificar la corriente. Se concluye que la corriente por el colector de un transistor bipolar es proporcional a la corriente por la base, es decir, a mayor corriente en la base, mayor corriente en el colector. En la práctica no se utilizan dos baterías, sino una sola. Según estas dos expresiones el transistor bipolar puede tener tres estados distintos de funcionamiento: a) Corte: En este caso la corriente de base es nula (o casi), es decir, IB = 0, por lo tanto, IC= β·IB= β·0 = 0  IC= 0 En este caso, el transistor no conduce en absoluto. No está funcionando. Se dice que el transistor se comporta como un interruptor abierto.
  • 4. b) Activa: En este caso el transistor conduce parcialmente siguiendo la segunda expresión (IC= β·IB). La corriente del colector es directamente proporcional a la corriente de la base. Ejemplo: Si β = 100, la corriente del colector es 100 veces la corriente de la base. Por eso se dice que el transistor amplifica la corriente. c) Saturación: En este caso, el transistor conduce totalmente y se comporta como un interruptor cerrado. Este estado se alcanza cuando la corriente por la base (IB) alcanza un valor alto. En este caso la expresión (IC= β·IB) ya no tiene sentido pues, por mucho que aumente el valor de la corriente de base (IB), no aumenta el valor de la corriente de colector. Veamos un cuadro resumen con las tensiones de trabajo en los diferentes estados de funcionamiento, así como las corrientes de un transistor conectado a una pila cuya tensión es V Corte Activa Saturación VCE VCE = V 0< VCE < V VCE ≈ 0 IC IC≈ IE = 0 IC= β·IB IE ≈ IC IE ≈ IC IB en cualquier caso IB siempre es una corriente pequeña, es decir, IB << IC IB≈0 IB>0 IB con máximo valor Conducción del transistor No conduce (se comporta como un interruptor abierto) Conduce parcialmente Conduce totalmente (se comporta como un interruptor cerrado) Donde VCE es la tensión que existe entre el colector y el emisor. Si la corriente de base es muy alta, el transistor puede estropearse, por eso, la base del transistor debe protegerse SIEMPRE con una resistencia de una valor alto. Estados de funcionamiento de un transistor