Large amplitude oscillatory shear (LAOS) on thixotropic materials Speaker: Sun, Weixiang Advisor: Prof. Tong, Zhen Research Institute of Materials Science, South China University of Technology, Guangzhou (510641), P. R. China
Locations
Group members Prof. Zhen Tong ( 童真) Ruiwen Shu ( 疏瑞文 ) Yanrui Yang ( 杨燕瑞 ) Weixiang Sun ( 孙尉翔 ) May, 2010
Contents LAOS methods for thixotropic materials Our work: LAOS study on  Laponite?  gel LAOS under time-stable condition LAOS time sweep (in progress)
Viscoelastic materials as a  system Causal G ( t )
Viscoelastic materials as a  system Causal Linear G ( t )
Viscoelastic materials as a  system Causal Linear Time-invariant G ( t )
Viscoelastic materials as a  system G ( t ) Fourier transform G * ( ω ) =  G’  +  iG’’ Oscillatory shear
The structure of Laponite gel charged discs suspension in water   House of Cards a synthetic hectorite,  [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ]Na 0.66 Layer size: 30 nm in diameter & 1 nm in thickness t w
Rheology of Laponite gel Thixotropy Yielding –  nonlinear Aging –  time-dependent t w G Sample loading Pre-shear Aging
Nonlinear  viscoelasticity G ( t, γ ) Fourier transform G * ( ω , γ )
Dealing with nonlinear viscoelasticity Fourier expansion σ 1 σ 3 σ 5 σ 7
Dealing with nonlinear viscoelasticity Fourier expansion σ 1 σ 3 σ 5 σ 7 Medium Amplitude Oscillatory shear (MAOS): avoid varying number of harmonics K, Hyun  et al.   J. Rheol.   2007 ,  51 , 1319-1342
Dealing with nonlinear viscoelasticity Lissajous figure R. Ewoldt  et al. J. Rheol.   2008 ,  52 , 1427-1458
Dealing with nonlinear viscoelasticity Lissajous figure R. Ewoldt  et al. J. Rheol.   2008 ,  52 , 1427-1458 Pedal mucus of snails
ARES in our lab ARES RFS Transducers: 20g & 1K FRT Software: TA Orchestrator 7.2.1, “Arbitrary Waveshape Tests”.
LAOS of time stable gel Experiment window: t w G Sample loading Pre-shear Aging LAOS
LAOS of time stable gel The windows for MAOS is small. Laponite 2.0 wt% NaCl 5.0 mM Fourier transform rheology:
LAOS of time stable gel Laponite 2.0 wt% NaCl 5.0 mM Fourier transform rheology: Plateau values
LAOS of time stable gel MCT prediction Fourier transform rheology: J. M. Brader  et al.   Phys. Rev. E , 2010,  82 , 061401. Plateau values
LAOS of time stable gel Fourier transform rheology: Laponite 2.0 wt% Varying NaCl concentrations Effect of salt concentration γ 0  = 500%
LAOS of time stable gel Fourier transform rheology: Styrene-BA particle suspension Effect of salt concentration S. Kallus  et al.   Rheol. Acta , 2001,  40 , 552-559.
LAOS of time stable gel Fourier transform rheology: Laponite 2.0 wt% NaCl 6.0 mM Maxima in higher harmonics.
LAOS of time stable gel Fourier transform rheology: Maxima in higher harmonics. V. Carrier and G. Petekidis,  J. Rheol. , 2009,  53 , 245-273. 1 Hz 10 Hz Occurs at increasing  ω I 3/1 I 5/1 I 7/1 % PS@PNIPAM suspension
LAOS of time stable gel Fourier transform rheology: Maxima in higher harmonics. Occurs at decreasing particle concentrations I 3/1  (%) V. Carrier and G. Petekidis,  J. Rheol. , 2009,  53 , 245-273. PS@PNIPAM suspension φ v ↑
LAOS of time stable gel γ 0  = 5 % γ 0  = 250 % The gel is turned into viscous fluids under LAOS. Lissajous figures: Laponite 2 wt% NaCl 5 mM
LAOS of time stable gel Lissajous figure parameters: The proposed parameters reproduce the trend of the fundamental harmonic. G M G L
LAOS of time stable gel Lissajous figure parameters: All but the fundamental harmonics are extracted. W. Sun  et al. ,  Polymer , 2011,  52 , 1402-1409.
LAOS of time stable gel Lissajous figure parameters: W. Sun  et al. ,  Polymer , 2011,  52 , 1402-1409. Avoid selecting arbitrary number of harmonics Normalized by the fundamentals
LAOS of time stable gel Problems in current method of obtaining  G L ,  G M , etc.: Software: MITlaos It uses the Fourier transformed results to calculate  G M , etc. Based on a limited number of harmonics
Time-variant  viscoelastic materials G ( t ; t w ) Fourier transform G * ( ω ; t w )
Time-variant  viscoelastic materials G ( t ; t w ) Fourier transform G * ( ω ; t w ) Examples: Thixotropy Physical aging of amorphous polymers Chemical reactions
Time-variant  viscoelastic materials G ( t ; t w ) Fourier transform G * ( ω ; t w ) Shortest time of data acquisition: one cycle (2 π / ω ).
Dealing with time-variant viscoelasticity Traditional frequency sweep: t w G * ( ω ; t w ) … ω t w1 t w2 t w3 Not fast enough
Dealing with time-variant viscoelasticity E. E. Holly  et al.   J. Non-Newtonian Fluid Mech. , 1988,  27 , 17-26. Multiwave method – valid only under linear viscoelastic condition. O ( ω min -1 ) <<  O ( t w )
Dealing with time-variant viscoelasticity J. C. Scanlan  et al.   Macromolecules , 1991,  24 , 47-54. O ( ω min -1 ) <<  O ( t w ) t w ω Dynamic frequency sweep direction Continuous frequency sweep: Data interpolation t w1 t w2 t w3 ω G * ( ω ) ω G * ( ω ) ω G * ( ω )
Dealing with time-variant viscoelasticity t w Δ t  > 2 π / ω   (one cycle) O ( ω min -1 ) <<  O ( t w ) Repeated time sweep:
Dealing with time-variant viscoelasticity Repeated time sweep: ω ↑   The phenomena should be exactly repeated at each  ω . O ( ω min -1 ) <<  O ( t w ) A. S. Negi and C. O. Osuji,  Phys. Rev. E , 2010,  82 , 031404. Laponite gelation
Rheology of Laponite gel Experiment window: t w G Sample loading Pre-shear Aging LAOS time sweep
LAOS time sweep of Laponite gel Aging occurs at large strains γ 0  = 1 ~ 20% ω   = 5.0 rad/s Laponite 2.0 wt% NaCl 6.0 mM
LAOS time sweep of Laponite gel Yielding occurs earlier at larger strains Laponite 2.0 wt% NaCl 6.0 mM γ 0  = 1 ~ 20% ω   = 5.0 rad/s
LAOS time sweep of Laponite gel Laponite 2.0 wt% Varying NaCl concentrations Times and strains of  G’ ,  G’’  crossover:
LAOS time sweep of Laponite gel What about the higher harmonics? The NonLinMon parameter in Orchestrator is  I 3/1 . γ 0  = 1 ~ 20% ω   = 5.0 rad/s
LAOS time sweep of Laponite gel What about the higher harmonics? The Arbitrary Waveshape Test of Orchestrator is not optimized for prolonged tests.
LAOS time sweep of Laponite gel NI USB-9215A with BNC 4 channels / 16 bits / 100 kS/s LabView SignalExpress (Full Edition) The raw data manipulation is formidable manually!
LAOS time sweep of Laponite gel Just-in-time calculation and saving of  I n /1  data. In progress… Identify real fundamental frequency Obtain  G M , etc. avoiding Fourier transform Multi-frequency sweep
Thank you! Open for questions …
4 月份做的事 编 MATLAB 程序 看 Scheutjens-Fleerg 理论 计算势能 调试 ARES 损耗角
把 Laponite 当成半径 a  = 15 nm = 1.5 ×10 -8 m 的球体来考虑。 范德华力: , x  =  h /2 a 位阻作用: , ( h  < 2 δ ) 双电层重叠:
Scheutjens-Fleer 划格子 放链段和溶剂 数构象数、相互作用  G Min{ G } 吸附浓度 平均回转半径
Langevin 函数
Langmuir 吸附
DLVO Total

LAOS for thixotropy

  • 1.
    Large amplitude oscillatoryshear (LAOS) on thixotropic materials Speaker: Sun, Weixiang Advisor: Prof. Tong, Zhen Research Institute of Materials Science, South China University of Technology, Guangzhou (510641), P. R. China
  • 2.
  • 3.
    Group members Prof.Zhen Tong ( 童真) Ruiwen Shu ( 疏瑞文 ) Yanrui Yang ( 杨燕瑞 ) Weixiang Sun ( 孙尉翔 ) May, 2010
  • 4.
    Contents LAOS methodsfor thixotropic materials Our work: LAOS study on Laponite? gel LAOS under time-stable condition LAOS time sweep (in progress)
  • 5.
    Viscoelastic materials asa system Causal G ( t )
  • 6.
    Viscoelastic materials asa system Causal Linear G ( t )
  • 7.
    Viscoelastic materials asa system Causal Linear Time-invariant G ( t )
  • 8.
    Viscoelastic materials asa system G ( t ) Fourier transform G * ( ω ) = G’ + iG’’ Oscillatory shear
  • 9.
    The structure ofLaponite gel charged discs suspension in water House of Cards a synthetic hectorite, [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ]Na 0.66 Layer size: 30 nm in diameter & 1 nm in thickness t w
  • 10.
    Rheology of Laponitegel Thixotropy Yielding – nonlinear Aging – time-dependent t w G Sample loading Pre-shear Aging
  • 11.
    Nonlinear viscoelasticityG ( t, γ ) Fourier transform G * ( ω , γ )
  • 12.
    Dealing with nonlinearviscoelasticity Fourier expansion σ 1 σ 3 σ 5 σ 7
  • 13.
    Dealing with nonlinearviscoelasticity Fourier expansion σ 1 σ 3 σ 5 σ 7 Medium Amplitude Oscillatory shear (MAOS): avoid varying number of harmonics K, Hyun et al. J. Rheol. 2007 , 51 , 1319-1342
  • 14.
    Dealing with nonlinearviscoelasticity Lissajous figure R. Ewoldt et al. J. Rheol. 2008 , 52 , 1427-1458
  • 15.
    Dealing with nonlinearviscoelasticity Lissajous figure R. Ewoldt et al. J. Rheol. 2008 , 52 , 1427-1458 Pedal mucus of snails
  • 16.
    ARES in ourlab ARES RFS Transducers: 20g & 1K FRT Software: TA Orchestrator 7.2.1, “Arbitrary Waveshape Tests”.
  • 17.
    LAOS of timestable gel Experiment window: t w G Sample loading Pre-shear Aging LAOS
  • 18.
    LAOS of timestable gel The windows for MAOS is small. Laponite 2.0 wt% NaCl 5.0 mM Fourier transform rheology:
  • 19.
    LAOS of timestable gel Laponite 2.0 wt% NaCl 5.0 mM Fourier transform rheology: Plateau values
  • 20.
    LAOS of timestable gel MCT prediction Fourier transform rheology: J. M. Brader et al. Phys. Rev. E , 2010, 82 , 061401. Plateau values
  • 21.
    LAOS of timestable gel Fourier transform rheology: Laponite 2.0 wt% Varying NaCl concentrations Effect of salt concentration γ 0 = 500%
  • 22.
    LAOS of timestable gel Fourier transform rheology: Styrene-BA particle suspension Effect of salt concentration S. Kallus et al. Rheol. Acta , 2001, 40 , 552-559.
  • 23.
    LAOS of timestable gel Fourier transform rheology: Laponite 2.0 wt% NaCl 6.0 mM Maxima in higher harmonics.
  • 24.
    LAOS of timestable gel Fourier transform rheology: Maxima in higher harmonics. V. Carrier and G. Petekidis, J. Rheol. , 2009, 53 , 245-273. 1 Hz 10 Hz Occurs at increasing ω I 3/1 I 5/1 I 7/1 % PS@PNIPAM suspension
  • 25.
    LAOS of timestable gel Fourier transform rheology: Maxima in higher harmonics. Occurs at decreasing particle concentrations I 3/1 (%) V. Carrier and G. Petekidis, J. Rheol. , 2009, 53 , 245-273. PS@PNIPAM suspension φ v ↑
  • 26.
    LAOS of timestable gel γ 0 = 5 % γ 0 = 250 % The gel is turned into viscous fluids under LAOS. Lissajous figures: Laponite 2 wt% NaCl 5 mM
  • 27.
    LAOS of timestable gel Lissajous figure parameters: The proposed parameters reproduce the trend of the fundamental harmonic. G M G L
  • 28.
    LAOS of timestable gel Lissajous figure parameters: All but the fundamental harmonics are extracted. W. Sun et al. , Polymer , 2011, 52 , 1402-1409.
  • 29.
    LAOS of timestable gel Lissajous figure parameters: W. Sun et al. , Polymer , 2011, 52 , 1402-1409. Avoid selecting arbitrary number of harmonics Normalized by the fundamentals
  • 30.
    LAOS of timestable gel Problems in current method of obtaining G L , G M , etc.: Software: MITlaos It uses the Fourier transformed results to calculate G M , etc. Based on a limited number of harmonics
  • 31.
    Time-variant viscoelasticmaterials G ( t ; t w ) Fourier transform G * ( ω ; t w )
  • 32.
    Time-variant viscoelasticmaterials G ( t ; t w ) Fourier transform G * ( ω ; t w ) Examples: Thixotropy Physical aging of amorphous polymers Chemical reactions
  • 33.
    Time-variant viscoelasticmaterials G ( t ; t w ) Fourier transform G * ( ω ; t w ) Shortest time of data acquisition: one cycle (2 π / ω ).
  • 34.
    Dealing with time-variantviscoelasticity Traditional frequency sweep: t w G * ( ω ; t w ) … ω t w1 t w2 t w3 Not fast enough
  • 35.
    Dealing with time-variantviscoelasticity E. E. Holly et al. J. Non-Newtonian Fluid Mech. , 1988, 27 , 17-26. Multiwave method – valid only under linear viscoelastic condition. O ( ω min -1 ) << O ( t w )
  • 36.
    Dealing with time-variantviscoelasticity J. C. Scanlan et al. Macromolecules , 1991, 24 , 47-54. O ( ω min -1 ) << O ( t w ) t w ω Dynamic frequency sweep direction Continuous frequency sweep: Data interpolation t w1 t w2 t w3 ω G * ( ω ) ω G * ( ω ) ω G * ( ω )
  • 37.
    Dealing with time-variantviscoelasticity t w Δ t > 2 π / ω (one cycle) O ( ω min -1 ) << O ( t w ) Repeated time sweep:
  • 38.
    Dealing with time-variantviscoelasticity Repeated time sweep: ω ↑ The phenomena should be exactly repeated at each ω . O ( ω min -1 ) << O ( t w ) A. S. Negi and C. O. Osuji, Phys. Rev. E , 2010, 82 , 031404. Laponite gelation
  • 39.
    Rheology of Laponitegel Experiment window: t w G Sample loading Pre-shear Aging LAOS time sweep
  • 40.
    LAOS time sweepof Laponite gel Aging occurs at large strains γ 0 = 1 ~ 20% ω = 5.0 rad/s Laponite 2.0 wt% NaCl 6.0 mM
  • 41.
    LAOS time sweepof Laponite gel Yielding occurs earlier at larger strains Laponite 2.0 wt% NaCl 6.0 mM γ 0 = 1 ~ 20% ω = 5.0 rad/s
  • 42.
    LAOS time sweepof Laponite gel Laponite 2.0 wt% Varying NaCl concentrations Times and strains of G’ , G’’ crossover:
  • 43.
    LAOS time sweepof Laponite gel What about the higher harmonics? The NonLinMon parameter in Orchestrator is I 3/1 . γ 0 = 1 ~ 20% ω = 5.0 rad/s
  • 44.
    LAOS time sweepof Laponite gel What about the higher harmonics? The Arbitrary Waveshape Test of Orchestrator is not optimized for prolonged tests.
  • 45.
    LAOS time sweepof Laponite gel NI USB-9215A with BNC 4 channels / 16 bits / 100 kS/s LabView SignalExpress (Full Edition) The raw data manipulation is formidable manually!
  • 46.
    LAOS time sweepof Laponite gel Just-in-time calculation and saving of I n /1 data. In progress… Identify real fundamental frequency Obtain G M , etc. avoiding Fourier transform Multi-frequency sweep
  • 47.
    Thank you! Openfor questions …
  • 48.
    4 月份做的事 编MATLAB 程序 看 Scheutjens-Fleerg 理论 计算势能 调试 ARES 损耗角
  • 49.
    把 Laponite 当成半径a = 15 nm = 1.5 ×10 -8 m 的球体来考虑。 范德华力: , x = h /2 a 位阻作用: , ( h < 2 δ ) 双电层重叠:
  • 50.
    Scheutjens-Fleer 划格子 放链段和溶剂数构象数、相互作用  G Min{ G } 吸附浓度 平均回转半径
  • 51.
  • 52.
  • 53.