SlideShare a Scribd company logo
1 of 18
Fuentes de campo magnético
La ley de Biot-Savart  Propiedades del campo magnético creado por una corriente eléctrica: El vector d B  es perpendicular tanto a d s  (que es un vector que tiene unidades de longitud y está en la dirección de la corriente) como del vector unitario  dirigido del elemento a P La magnitud de d B  es inversamente proporcional a r 2 , donde r es la distancia del elemento a P. La magnitud de d B  es proporcional a la corriente y a la longitud ds del elemento. La magnitud de d B  es proporcional a sen θ , donde  θ  es el ángulo entre los vectores d s  y  .  o : permeabilidad del espacio libre
Campo magnético alrededor de un conductor recto delgado
Si tenemos un alambre infinito recto:  θ 1  = 0 y  θ 2  =   .
Campo magnético sobre el eje de un lazo de corriente circular
En el centro del lazo (x = 0): En puntos muy lejanos (x >> a): Recordando que    = IA = I  a 2
Fuerza magnética entre dos conductores paralelos Dos alambres que conducen corriente ejercen fuerzas magnéticas entre sí. La dirección de la fuerza depende de la dirección de la corriente.
Conductores paralelos que conducen corriente en la misma dirección se atraen entre sí, en tanto que conductores paralelos que conducen corrientes en direcciones opuestas se repelen entre sí. Si dos alambres paralelos a 1 m de distancia conducen la misma corriente y la fuerza por unidad de longitud de cada alambre es de 2  ×  10  7  N/m, entonces la corriente se define como  1 amperio (A) . Si un conductor conduce una corriente estable de 1 A, entonces la cantidad de carga que fluye por sección transversal del conductor en 1 s es 1 C.
Ley de Ampère La integral de línea de  B · d s  alrededor de cualquier trayectoria cerrada es igual a   0 I, donde I es la corriente estable total que pasa a través de cualquier superficie delimitada por la trayectoria cerrada.
Fuera del toroide ( r<R ):   Dentro del toroide:   Fuera del toroide ( r>R ):
Si suponemos que el solenoide es muy largo comparado con el radio de sus espiras, el campo es aproximadamente uniforme y paralelo al eje en el interior del solenoide y es nulo fuera del solenoide.
Campo magnético producido por un solenoide en un punto de su eje:
En el punto medio del solenoide, suponiendo que el solenoide es largo comparado con a: En el punto extremo del solenoide, suponiendo que el solenoide es largo comparado con a:
Corriente de desplazamiento y la forma general de la ley de Ampère La ley de Ampère de la forma anterior  sólo es válida si el campo eléctrico es constante en el tiempo . Los campos magnéticos son producidos tanto por campos eléctricos constantes como por campos eléctricos que varían con el tiempo. Ley de Ampère-Maxwell: Se debe aclarar que la expresión anterior sólo es válida en el vacío. Si un material magnético está presente, se debe utilizar la permeabilidad y la permitividad características del material.
Vector de magnetización e intensidad de campo magnético El estado magnético de una sustancia se describe por medio de una cantidad denominada  vector de magnetización M , cuya magnitud se define como el momento magnético por unidad de volumen de la sustancia. El campo magnético total en un punto en una sustancia depende tanto del campo externo aplicado como de la magnetización de la sustancia. La  intensidad de campo magnético H  de una sustancia representa el efecto de la corriente de conducción en alambres sobre una sustancia (B ext  =  0 H)
Clasificación de sustancias magnéticas Ferromagnetismo Son sustancias cristalinas cuyos átomos tienen momentos magnéticos permanentes que muestran intensos efectos magnéticos. Todos los materiales ferromagnéticos están constituidos con regiones microscópicas llamadas  dominios . Ejemplos: hierro, cobalto, níquel.
Si sobre un material ferromagnético se aplica una corriente, la magnitud del campo magnético H aumenta linealmente con I. La curva B  versus  H se denomina  curva de magnetización : Este efecto se conoce como  histéresis magnética . La forma y tamaño de la histéresis dependen de las propiedades de la sustancia ferromagnética y de la intensidad del campo aplicado. La histéresis para materiales ferromagnéticos “duros” es característicamente ancha, lo que corresponde a una gran magnetización remanente. El  área encerrada  por la curva de magnetización representa  el trabajo requerido para llevar al material por el ciclo de histéresis .
Paramagnetismo y diamagnetismo Al igual que los ferromagnéticos, los materiales  paramagnéticos  están hechos de átomos que tienen momentos magnéticos permanentes, mientras que los  diamagnéticos  carecen de ellos. Aluminio, calcio, cromo son ejemplos de sustancias paramagnéticas mientras que el cobre, oro y plomo son ejemplos de sustancias diamagnéticas.  Para las sustancias paramagnéticas y diamagnéticas, el vector de magnetización M es proporcional a la intensidad de campo magnético H: Donde    es un factor adimensional llamado  susceptibilidad magnética . Para sustancias paramagnéticas    es positiva y para sustancias diamagnéticas    es negativa.

More Related Content

What's hot

sistemas electrónicos (DIODO IDEAL, REAL Y APLICACIONES)
sistemas electrónicos (DIODO IDEAL, REAL Y APLICACIONES) sistemas electrónicos (DIODO IDEAL, REAL Y APLICACIONES)
sistemas electrónicos (DIODO IDEAL, REAL Y APLICACIONES) Sonerteck Mtz
 
LEY DE FARADAY - LENZ.
LEY DE FARADAY - LENZ.LEY DE FARADAY - LENZ.
LEY DE FARADAY - LENZ.ssuser17f23b
 
Induccion y leyes de maxwell
Induccion y leyes de maxwellInduccion y leyes de maxwell
Induccion y leyes de maxwellGuss Bender
 
Ley De Gauss
Ley De GaussLey De Gauss
Ley De Gaussisrael.1x
 
Interacción entre Campos Magnéticos
Interacción entre Campos MagnéticosInteracción entre Campos Magnéticos
Interacción entre Campos MagnéticosFisicaIVcecyt7
 
Circuitos Magnéticos Alimentados con C.A.
Circuitos Magnéticos Alimentados con C.A.Circuitos Magnéticos Alimentados con C.A.
Circuitos Magnéticos Alimentados con C.A.Gabriel Ortiz Gallardo
 
1-Cargas electricas y Ley de Coulomb.PDF
1-Cargas electricas y Ley de Coulomb.PDF1-Cargas electricas y Ley de Coulomb.PDF
1-Cargas electricas y Ley de Coulomb.PDFRonaldContreras33
 
Representación en series de Fourier
Representación en series de FourierRepresentación en series de Fourier
Representación en series de Fouriermarianyelimendez
 
Transformadores ideales
Transformadores idealesTransformadores ideales
Transformadores idealesJesús Hinojos
 
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS R-L Y R-C
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS  R-L Y R-CDESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS  R-L Y R-C
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS R-L Y R-Cbamz19
 
Ondas electromagneticas
Ondas electromagneticasOndas electromagneticas
Ondas electromagneticasClaupa Parra
 
Curva característica de un diodo Zener y un diodo túnel
Curva característica de un diodo Zener y un diodo túnelCurva característica de un diodo Zener y un diodo túnel
Curva característica de un diodo Zener y un diodo túnelDavid Pacheco Jiménez
 
Tema 3: Campos eléctricos en el espacio material
Tema 3: Campos eléctricos en el espacio materialTema 3: Campos eléctricos en el espacio material
Tema 3: Campos eléctricos en el espacio materialFrancisco Sandoval
 
4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_fronteraFrancisco Sandoval
 

What's hot (20)

sistemas electrónicos (DIODO IDEAL, REAL Y APLICACIONES)
sistemas electrónicos (DIODO IDEAL, REAL Y APLICACIONES) sistemas electrónicos (DIODO IDEAL, REAL Y APLICACIONES)
sistemas electrónicos (DIODO IDEAL, REAL Y APLICACIONES)
 
LEY DE FARADAY - LENZ.
LEY DE FARADAY - LENZ.LEY DE FARADAY - LENZ.
LEY DE FARADAY - LENZ.
 
Induccion y leyes de maxwell
Induccion y leyes de maxwellInduccion y leyes de maxwell
Induccion y leyes de maxwell
 
Ley De Gauss
Ley De GaussLey De Gauss
Ley De Gauss
 
Filtros electronicos pdf
Filtros electronicos pdfFiltros electronicos pdf
Filtros electronicos pdf
 
Campos Electromagneticos - Tema 7
Campos Electromagneticos - Tema 7Campos Electromagneticos - Tema 7
Campos Electromagneticos - Tema 7
 
Interacción entre Campos Magnéticos
Interacción entre Campos MagnéticosInteracción entre Campos Magnéticos
Interacción entre Campos Magnéticos
 
Diseno de amperimetro
Diseno de amperimetroDiseno de amperimetro
Diseno de amperimetro
 
Circuitos Magnéticos Alimentados con C.A.
Circuitos Magnéticos Alimentados con C.A.Circuitos Magnéticos Alimentados con C.A.
Circuitos Magnéticos Alimentados con C.A.
 
1-Cargas electricas y Ley de Coulomb.PDF
1-Cargas electricas y Ley de Coulomb.PDF1-Cargas electricas y Ley de Coulomb.PDF
1-Cargas electricas y Ley de Coulomb.PDF
 
Electrostatica
ElectrostaticaElectrostatica
Electrostatica
 
Magnetismo
MagnetismoMagnetismo
Magnetismo
 
Representación en series de Fourier
Representación en series de FourierRepresentación en series de Fourier
Representación en series de Fourier
 
Transformadores ideales
Transformadores idealesTransformadores ideales
Transformadores ideales
 
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS R-L Y R-C
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS  R-L Y R-CDESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS  R-L Y R-C
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS R-L Y R-C
 
Ondas electromagneticas
Ondas electromagneticasOndas electromagneticas
Ondas electromagneticas
 
Curva característica de un diodo Zener y un diodo túnel
Curva característica de un diodo Zener y un diodo túnelCurva característica de un diodo Zener y un diodo túnel
Curva característica de un diodo Zener y un diodo túnel
 
Tema 3: Campos eléctricos en el espacio material
Tema 3: Campos eléctricos en el espacio materialTema 3: Campos eléctricos en el espacio material
Tema 3: Campos eléctricos en el espacio material
 
4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera4 problemas electrostatica_valor_en_frontera
4 problemas electrostatica_valor_en_frontera
 
Sa fourier con matlab
Sa fourier con matlabSa fourier con matlab
Sa fourier con matlab
 

Similar to Fuentes De Campos Magnéticos

MAGNETISMO Y ELECTRICIDAD.pdf
MAGNETISMO Y ELECTRICIDAD.pdfMAGNETISMO Y ELECTRICIDAD.pdf
MAGNETISMO Y ELECTRICIDAD.pdfLuzHerrera90
 
Fuentes de campo magnetico 2. ing Carlos Moreno. ESPOL
Fuentes de campo magnetico 2. ing Carlos Moreno. ESPOLFuentes de campo magnetico 2. ing Carlos Moreno. ESPOL
Fuentes de campo magnetico 2. ing Carlos Moreno. ESPOLFrancisco Rivas
 
Presentación oficial de magnetismo
Presentación oficial de magnetismoPresentación oficial de magnetismo
Presentación oficial de magnetismoUO
 
Unidad 9. Fuerza magnética y Campo Magnético.pdf
Unidad 9. Fuerza magnética y Campo Magnético.pdfUnidad 9. Fuerza magnética y Campo Magnético.pdf
Unidad 9. Fuerza magnética y Campo Magnético.pdfRicardoCastillo176310
 
Magnetismo1
Magnetismo1Magnetismo1
Magnetismo1mannelig
 
Electromagnetismo
ElectromagnetismoElectromagnetismo
Electromagnetismoguestb1f5c3
 
Electromagnetismo2
Electromagnetismo2Electromagnetismo2
Electromagnetismo2lunaclara123
 
Conceptos Y Leyes Fundamentales Del Electromagnetismo
Conceptos Y Leyes Fundamentales Del ElectromagnetismoConceptos Y Leyes Fundamentales Del Electromagnetismo
Conceptos Y Leyes Fundamentales Del Electromagnetismocemarol
 
Ley de ampere
Ley de ampereLey de ampere
Ley de amperehermerG
 
Diapositivas campo magnetico
Diapositivas campo magneticoDiapositivas campo magnetico
Diapositivas campo magneticoErikCalvopia
 
Magnetismo
MagnetismoMagnetismo
Magnetismoale8819
 
Fuentes de campo magnetico
Fuentes de campo magneticoFuentes de campo magnetico
Fuentes de campo magneticoDiana Lewis
 
Tema 6: Fuerza, materiales y dispositivos magnéticos
Tema 6: Fuerza, materiales y dispositivos magnéticosTema 6: Fuerza, materiales y dispositivos magnéticos
Tema 6: Fuerza, materiales y dispositivos magnéticosFrancisco Sandoval
 
Magnetismo y campo magnetico
Magnetismo y campo magneticoMagnetismo y campo magnetico
Magnetismo y campo magneticoGabriela
 

Similar to Fuentes De Campos Magnéticos (20)

MAGNETISMO Y ELECTRICIDAD.pdf
MAGNETISMO Y ELECTRICIDAD.pdfMAGNETISMO Y ELECTRICIDAD.pdf
MAGNETISMO Y ELECTRICIDAD.pdf
 
Fuentes de campo magnetico 2. ing Carlos Moreno. ESPOL
Fuentes de campo magnetico 2. ing Carlos Moreno. ESPOLFuentes de campo magnetico 2. ing Carlos Moreno. ESPOL
Fuentes de campo magnetico 2. ing Carlos Moreno. ESPOL
 
Presentación oficial de magnetismo
Presentación oficial de magnetismoPresentación oficial de magnetismo
Presentación oficial de magnetismo
 
Unidad 9. Fuerza magnética y Campo Magnético.pdf
Unidad 9. Fuerza magnética y Campo Magnético.pdfUnidad 9. Fuerza magnética y Campo Magnético.pdf
Unidad 9. Fuerza magnética y Campo Magnético.pdf
 
Circuitos magneticos
Circuitos magneticosCircuitos magneticos
Circuitos magneticos
 
Magnetismo1
Magnetismo1Magnetismo1
Magnetismo1
 
Electromagnetismo
ElectromagnetismoElectromagnetismo
Electromagnetismo
 
Electromagnetismo
ElectromagnetismoElectromagnetismo
Electromagnetismo
 
Electromagnetismo2
Electromagnetismo2Electromagnetismo2
Electromagnetismo2
 
Conceptos Y Leyes Fundamentales Del Electromagnetismo
Conceptos Y Leyes Fundamentales Del ElectromagnetismoConceptos Y Leyes Fundamentales Del Electromagnetismo
Conceptos Y Leyes Fundamentales Del Electromagnetismo
 
Ampere y faraday
Ampere y faradayAmpere y faraday
Ampere y faraday
 
Ley de ampere
Ley de ampereLey de ampere
Ley de ampere
 
Diapositivas campo magnetico
Diapositivas campo magneticoDiapositivas campo magnetico
Diapositivas campo magnetico
 
electromagnetismo
electromagnetismoelectromagnetismo
electromagnetismo
 
Ampere y faraday
Ampere y faradayAmpere y faraday
Ampere y faraday
 
Magnetismo
MagnetismoMagnetismo
Magnetismo
 
Fuentes de campo magnetico
Fuentes de campo magneticoFuentes de campo magnetico
Fuentes de campo magnetico
 
Flujo Magnetico
Flujo MagneticoFlujo Magnetico
Flujo Magnetico
 
Tema 6: Fuerza, materiales y dispositivos magnéticos
Tema 6: Fuerza, materiales y dispositivos magnéticosTema 6: Fuerza, materiales y dispositivos magnéticos
Tema 6: Fuerza, materiales y dispositivos magnéticos
 
Magnetismo y campo magnetico
Magnetismo y campo magneticoMagnetismo y campo magnetico
Magnetismo y campo magnetico
 

More from ale8819

Disco Duro
Disco DuroDisco Duro
Disco Duroale8819
 
AWT- JAVA
AWT- JAVAAWT- JAVA
AWT- JAVAale8819
 
Manejo de eventos
Manejo de eventosManejo de eventos
Manejo de eventosale8819
 
Appleofdiscord
AppleofdiscordAppleofdiscord
Appleofdiscordale8819
 
Java is an Object-Oriented Language
Java is an Object-Oriented LanguageJava is an Object-Oriented Language
Java is an Object-Oriented Languageale8819
 
Excepciones
ExcepcionesExcepciones
Excepcionesale8819
 
programacion orientada a objetos
programacion orientada a objetosprogramacion orientada a objetos
programacion orientada a objetosale8819
 

More from ale8819 (10)

Disco Duro
Disco DuroDisco Duro
Disco Duro
 
AWT- JAVA
AWT- JAVAAWT- JAVA
AWT- JAVA
 
Manejo de eventos
Manejo de eventosManejo de eventos
Manejo de eventos
 
Appleofdiscord
AppleofdiscordAppleofdiscord
Appleofdiscord
 
Qubits
QubitsQubits
Qubits
 
Java is an Object-Oriented Language
Java is an Object-Oriented LanguageJava is an Object-Oriented Language
Java is an Object-Oriented Language
 
JAVA
JAVAJAVA
JAVA
 
Excepciones
ExcepcionesExcepciones
Excepciones
 
programacion orientada a objetos
programacion orientada a objetosprogramacion orientada a objetos
programacion orientada a objetos
 
pci
pcipci
pci
 

Fuentes De Campos Magnéticos

  • 1. Fuentes de campo magnético
  • 2. La ley de Biot-Savart Propiedades del campo magnético creado por una corriente eléctrica: El vector d B es perpendicular tanto a d s (que es un vector que tiene unidades de longitud y está en la dirección de la corriente) como del vector unitario dirigido del elemento a P La magnitud de d B es inversamente proporcional a r 2 , donde r es la distancia del elemento a P. La magnitud de d B es proporcional a la corriente y a la longitud ds del elemento. La magnitud de d B es proporcional a sen θ , donde θ es el ángulo entre los vectores d s y .  o : permeabilidad del espacio libre
  • 3. Campo magnético alrededor de un conductor recto delgado
  • 4. Si tenemos un alambre infinito recto: θ 1 = 0 y θ 2 =  .
  • 5. Campo magnético sobre el eje de un lazo de corriente circular
  • 6. En el centro del lazo (x = 0): En puntos muy lejanos (x >> a): Recordando que  = IA = I  a 2
  • 7. Fuerza magnética entre dos conductores paralelos Dos alambres que conducen corriente ejercen fuerzas magnéticas entre sí. La dirección de la fuerza depende de la dirección de la corriente.
  • 8. Conductores paralelos que conducen corriente en la misma dirección se atraen entre sí, en tanto que conductores paralelos que conducen corrientes en direcciones opuestas se repelen entre sí. Si dos alambres paralelos a 1 m de distancia conducen la misma corriente y la fuerza por unidad de longitud de cada alambre es de 2 × 10  7 N/m, entonces la corriente se define como 1 amperio (A) . Si un conductor conduce una corriente estable de 1 A, entonces la cantidad de carga que fluye por sección transversal del conductor en 1 s es 1 C.
  • 9. Ley de Ampère La integral de línea de B · d s alrededor de cualquier trayectoria cerrada es igual a  0 I, donde I es la corriente estable total que pasa a través de cualquier superficie delimitada por la trayectoria cerrada.
  • 10. Fuera del toroide ( r<R ): Dentro del toroide: Fuera del toroide ( r>R ):
  • 11. Si suponemos que el solenoide es muy largo comparado con el radio de sus espiras, el campo es aproximadamente uniforme y paralelo al eje en el interior del solenoide y es nulo fuera del solenoide.
  • 12. Campo magnético producido por un solenoide en un punto de su eje:
  • 13. En el punto medio del solenoide, suponiendo que el solenoide es largo comparado con a: En el punto extremo del solenoide, suponiendo que el solenoide es largo comparado con a:
  • 14. Corriente de desplazamiento y la forma general de la ley de Ampère La ley de Ampère de la forma anterior sólo es válida si el campo eléctrico es constante en el tiempo . Los campos magnéticos son producidos tanto por campos eléctricos constantes como por campos eléctricos que varían con el tiempo. Ley de Ampère-Maxwell: Se debe aclarar que la expresión anterior sólo es válida en el vacío. Si un material magnético está presente, se debe utilizar la permeabilidad y la permitividad características del material.
  • 15. Vector de magnetización e intensidad de campo magnético El estado magnético de una sustancia se describe por medio de una cantidad denominada vector de magnetización M , cuya magnitud se define como el momento magnético por unidad de volumen de la sustancia. El campo magnético total en un punto en una sustancia depende tanto del campo externo aplicado como de la magnetización de la sustancia. La intensidad de campo magnético H de una sustancia representa el efecto de la corriente de conducción en alambres sobre una sustancia (B ext =  0 H)
  • 16. Clasificación de sustancias magnéticas Ferromagnetismo Son sustancias cristalinas cuyos átomos tienen momentos magnéticos permanentes que muestran intensos efectos magnéticos. Todos los materiales ferromagnéticos están constituidos con regiones microscópicas llamadas dominios . Ejemplos: hierro, cobalto, níquel.
  • 17. Si sobre un material ferromagnético se aplica una corriente, la magnitud del campo magnético H aumenta linealmente con I. La curva B versus H se denomina curva de magnetización : Este efecto se conoce como histéresis magnética . La forma y tamaño de la histéresis dependen de las propiedades de la sustancia ferromagnética y de la intensidad del campo aplicado. La histéresis para materiales ferromagnéticos “duros” es característicamente ancha, lo que corresponde a una gran magnetización remanente. El área encerrada por la curva de magnetización representa el trabajo requerido para llevar al material por el ciclo de histéresis .
  • 18. Paramagnetismo y diamagnetismo Al igual que los ferromagnéticos, los materiales paramagnéticos están hechos de átomos que tienen momentos magnéticos permanentes, mientras que los diamagnéticos carecen de ellos. Aluminio, calcio, cromo son ejemplos de sustancias paramagnéticas mientras que el cobre, oro y plomo son ejemplos de sustancias diamagnéticas. Para las sustancias paramagnéticas y diamagnéticas, el vector de magnetización M es proporcional a la intensidad de campo magnético H: Donde  es un factor adimensional llamado susceptibilidad magnética . Para sustancias paramagnéticas  es positiva y para sustancias diamagnéticas  es negativa.

Editor's Notes

  1. http://www.icf.espol.edu.ec