SlideShare a Scribd company logo
1 of 32
Download to read offline
ELETRICIDADE
Prof. Alves
CARGAS ELÉTRICAS
Por convenção, o próton tem carga
elétrica positiva, enquanto o elétron
possui carga negativa. O nêutron não
apresenta carga elétrica.
Legenda: nêutron
próton
elétron
FIQUE SABENDO !!!
Descobertas: elétron, próton e nêutron
ELÉTRON: 1897
Joseph Thomson (inglês, 1856-1940)
PRÓTONS: 1919
Ernest Rutherford (neozelandês, 1871-1937)
PRÓTONS: 1919
Ernest Rutherford (neozelandês, 1871-1937)
NÊUTRON: 1932
James Chadwick (inglês, 1891-1974)
CORPO NEUTRO E CORPO ELETRIZADO
± ± Corpo eletricamente neutro:
± ± ± para cada próton existe um elétron
± ±
+ ± Corpo eletrizado positivamente:
+ ± + existem mais prótons do que elétrons
+ ±+ ±
±-± Corpo eletrizado negativamente:
±-±-± apresenta mais elétrons do que prótons
±-±
ATENÇÃO !!! Um corpo neutro adquire carga positiva ao
perder elétrons. Se eletriza com carga negativa ao
receber elétrons.
A unidade de medida de carga elétrica no
SI é coulomb (símbolo:C), em homenagem a
Charles de Coulomb (francês, 1736-1806).
Principais submúltiplos do coulomb:
milicoulomb ( mC ), onde 1 mC = 10–3 C
microcoulomb ( µC ), onde 1 µC = 10–6 C
nanocoulomb ( nC ), onde 1 nC = 10–9 C
microcoulomb ( µC ), onde 1 µC = 10 C
nanocoulomb ( nC ), onde 1 nC = 10–9 C
Exemplos
a) 2 nC = 2.10-9 C
b) – 5 µC = - 5.10-6 C
c) 3,4 mC = 3,4.10-3 C
d) – 7,2 µC = - 7,2.10-6 C
CARGA DE ELÉTRICA DE UM CORPO
A quantidade de carga elétrica (Q) de um
corpo é dada por:
Q = ± N.e,
onde:
N=número de elétrons (perdidos ou ganhos)
e=carga elétrica elementar
FIQUE SABENDO !!!
(1) Valor da carga elétrica elementar
e = 1,6.10–19 C
(2) Carga elétrica elementar é a menor
quantidade de carga elétrica isolada existente na
natureza. Em valor absoluto (módulo) a carga do
próton e do elétron são iguais a carga elementar. Oupróton e do elétron são iguais a carga elementar. Ou
seja:
Carga do próton: + e = + 1,6.10–19 C
Carga do elétron: - e = – 1,6.10–19 C
(3) A carga elétrica de um corpo é quantizada,
isto é, ela sempre é múltiplo inteiro da carga elétrica
elementar.
VAMOS RESOLVER !!!
1) Uma régua de alumínio, inicialmente
neutra, perde 50 milhões de
elétrons.Determine a carga elétrica
por ela adquirida.
(Dado: e = 1,6.10–19 C)
por ela adquirida.
(Dado: e = 1,6.10–19 C)
Solução
Dados:
N = 50.000.000 elétrons = 5.107 elétrons
e = 1,6.10–19 C
Q = + N.eQ = + N.e
Q = + 5.107.1,6.10–19
Q = + 8.10–12 C
Resp.: Q = + 8.10–12 C
2) Seja uma esfera de ferro e considere
que ela está eletricamente neutra. Caso
ela ganhe 200 bilhões de elétrons,
qual será a sua carga ?
(Dado: e = 1,6.10–19 C)(Dado: e = 1,6.10–19 C)
Solução
Dados:
N = 200.000.000.000 elétrons = 2.1011 elétrons
e = 1,6.10–19 C
Q = – N.eQ = – N.e
Q = – 2.1011.1,6.10–19
Q = – 3,2.10–8 C
Resp.: Q = – 3,2.10–8 C
3) Mercúrio é o elemento químico de número atômico
80 e símbolo Hg. Considerando apenas prótons,
nêutrons e elétrons, responda:
(Dado: e = 1,6.10–19 C)
a) Qual a carga elétrica do núcleo do átomo de
mercúrio.
b) Qual a carga elétrica de sua eletrosfera ?
c) Qual a carga elétrica do átomo em questão.
Solução
Dados: Número atômico = 80 (80 prótons e 80 elétrons)
e = 1,6.10–19 C
a) Qnúcleo = + N.e
Qnúcleo = + 8.10.1,6.10–19
Qnúcleo = + 12,8.10–18 C
Qnúcleo = + 1,28.10–17 C
b) Qeletrosfera = - N.e
Qeletrosfera = - 8.10.1,6.10–19Qeletrosfera = - 8.10.1,6.10–19
Qeletrosfera = - 12,8.10–18 C
Qeletrosfera = - 1,28.10–17 C
c) A carga elétrica de um átomo é NULA ( Qátomo = zero )
Resp.: a) Qnúcleo = + 1,28.10–17 C
b) Qeletrosfera = - 1,28.10–17 C
c) Qátomo = zero
PRINCÍPIO DA ATRAÇÃO E REPULSÃO
Partículas com cargas elétricas de sinais iguais se
repelem, enquanto as partículas eletrizadas com cargas
de sinais opostos se atraem.
PROCESSOS DE ELETRIZAÇÃO
A eletrização de um corpo inicialmente
neutro pode ocorrer:
- Por atrito- Por atrito
- Por contato
- Por indução
• Por atrito
Corpos de materiais diferentes iniciamente
neutros ao serem atritados adquirem cargas
elétricas de mesmo módulo e sinais contrários.
• Por contato
Quando dois ou mais condutores são colocados
em contato, com pelo menos um deles eletrizado,
observa-se uma retribuição da carga elétrica.
ATENÇÃO!!!
Esferas condutoras idênticas (raios iguais)
ao serem contactadas adquirem cargas iguais.ao serem contactadas adquirem cargas iguais.
•• PorPor induçãoindução
A eletrização de um condutor neutro pode
ocorrer por uma simples aproximação de um outro
corpo eletrizado, com o aterramento do neutro. No
processo da indução eletrostática, o corpo induzido
será eletrizado sempre com carga de sinal contrário ao
da carga do indutor.
VAMOS RESOLVER !!!
1)Dois corpos, um de vidro e outro de
plástico, são atritados. Inicialmente ambos
estavam descarregados eletricamente, ou
seja, apresentavam-se neutros. Após o
atrito, o corpo de vidro ficou eletrizado com
uma carga de 8 milicoulombs (8 mC).uma carga de 8 milicoulombs (8 mC).
a) Qual a carga (em coulomb) adquirida pelo
corpo de plástico após o atrito ?
b) O corpo de plástico perdeu ou ganhou
elétrons? E o de vidro ?
Solução
O que ocorre quando corpos neutros e de materiais diferentes
são atritados é que um dos corpos transfere elétrons para o
outro.
Assim:
a) Depois do atrito, o corpo de plástico fica eletrizado com
uma carga de – 8 mC, ou seja, – 8.10-3C.
b) Como o corpo de vidro ficou eletrizado positivamenteb) Como o corpo de vidro ficou eletrizado positivamente
significa que ele perdeu elétrons para o de plástico, que adquiriu
carga negativa.
Resp.:
a) Q plástico = – 8.10-3C
b) Corpo de vidro → Perdeu elétrons
Corpo de plástico → Ganhou elétrons
2) Sejam A e B corpos metálicos.O corpo A
encontra-se eletrizado, enquanto o B, neutro.
Considerando que tais corpos serão postos
em contato:
a) Qual o sinal da carga adquirida pelo
corpo B após serem contactados se o A tem
carga negativa ?
corpo B após serem contactados se o A tem
carga negativa ?
b) Caso o corpo A tivesse eletrizado
positivamente, qual seria o sinal da carga
adquirida pelo corpo B ?
Solução
Verifica-se que corpos condutores, inicialmente um
eletrizado e outro neutro, depois de entrarem em contato
apresentam cargas de sinais iguais.
Assim:
a) O corpo B fica eletrizado negativamente porque o corpo
A transfere elétrons para ele até que seja estabelecido o
equilíbrio eletrostático.
b) O corpo B fica eletrizado positivamente porque ele
transfere elétrons para o corpo A até que seja estabelecido o
equilíbrio eletrostático.
Resp.:
a) Corpo B: carga negativa
b) Corpo B: carga positiva
3) Uma esfera A com carga 15nC
faz contato com a esfera B, com
carga de –7nC. Sendo informado
que as esferas em questão são
idênticas e metálicas, determine,
em coulomb, as cargas de cadaem coulomb, as cargas de cada
esfera após o contato.
Solução
Se esferas condutoras e idênticas forem contactadas,
então suas cargas serão iguais depois do contato.
15nC –7nC q q
Qtotal final = Qtotal inicial
q + q = 15 – 7
2q = 8
q + q = 15 – 7
2q = 8
q = 8/2
q = 4 nC
q = 4.10-9C
Resp.: Esfera A: carga 4.10-9C
Esfera B: carga 4.10-9C
LEI DE COULOMB
Em 1785, Coulomb formulou a lei
que rege as interações entre partículas
eletrizadas.
A intensidade da força de interação
eletrostática (força elétrica:Fe) entre duas
partículas eletrizadas é dada pela fórmula:
Fe = K.IQI.IqI
d2
onde, K: constante eletrostática do meio
IQI e IqI: módulos das cargasIQI e IqI: módulos das cargas
d: distância entre as partículas
ATENÇÃO !!!
A intensidade da força elétrica é diretamente
proporcional ao produto dos módulos das cargas e
inversamente proporcional ao quadrado da distância
entre as partículas.
VAMOS RESOLVER !!!
1) Sejam duas partículas eletrizadas com
cargas Q=2µC e q=–3nC.Tais esferas
estão no vácuo e a distância entre elas é
1 metro. Calcule a intensidade da força
elétrica que uma carga exerce sobre aelétrica que uma carga exerce sobre a
outra. Dado: Constante eletrostática do
vácuo (K) = 9.109 N.m²/C²
Solução
Dados: IQI = 2µC = 2.10-6 C
IqI = 3nC = 3.10-9 C
d = 1 m
K = 9.109 unidades do SI
Pela Lei de Coulomb:
Fe = K.IQI.IqI
d2d2
Fe = 9.109.2.10-6.3.10-9
12
Fe = 54.10-6 N
Fe = 5,4.10-5 N
Resp.: Fe = 5,4.10-5 N
2) Na tabela temos informações sobre cargas
elétricas pontuais (ou puntiformes) localizadas no
vácuo e a distância entre cada par de cargas. Por
sua vez, F1, F2 e F3 correspondem aos módulos
das forças de interação eletrostática entre
cargas Q e q, 3Q e 5q e Q e q,
respectivamente.
Cargas Distância Força elétrica
a) Compare F2 e F1.
b) Compare F3 e F1.
Q e q d F1
3Q e 5q d F2
Q e q 2d F3
Solução
Com base na Lei de Coulomb, Fe = K.IQI.IqI , temos:
d2
F1 = K.Q.q
d2
a) F2 = K.3Q.5q = 15. K.Q.q = 15.F1 , ou seja, F2=15.F1
d2 d2
b) F3 = K.Q.q = K.Q.q = 1. K.Q.q = 1.F1 , isto é, F3 = 1.F1
(2d)2 4d2 4 d² 4 4
Resp.: a) F2 é 15 vezes maior do que F1.
b) F3 é a quarta parte de F1.
QUESTÃO ENEM
Chama-se carga elétrica elementar, indicada por e, a menor
quantidade de carga elétrica isolada existente na natureza. Em módulo,
as cargas do próton e do elétron são iguais a carga elementar e. O valor
da carga elétrica elementar (e = 1,6.10–19 C) foi determinado por Robert
Millikan (norte-americano, 1868-1953) em 1909. Por esse brilhante
trabalho experimental Millikan foi laureado com o Premio Nobel de Física
de 1923. Na década de 1960 Murray Gell-Mann (norte-americano, n.
1929) - Prêmio Nobel de Física de 1969 por seus estudos sobre
partículas subatômicas - levantou a hipótese da existência do quarks. Os
quarks são partículas elementares (experimentalmente detectadas a partir
da década de 1970) formadoras dos prótons e dos nêutrons. Apesar de
existirem 6 tipos de quarks, somente os quarks up e down entram naexistirem 6 tipos de quarks, somente os quarks up e down entram na
composição de prótons e nêutrons. O próton é formado por dois quarks
up e um quark down, por sua vez em cada nêutron há um quark up e dois
quarks up.
A partir dessas informações, é correto concluir, com relação à
carga elementar e, que a carga elétrica dos quarks up e down são,
nesta ordem:
A) + 2e/3 e + 1e/3
B) + 1e/3 e + 2e/3
C) + 1e/3 e – 2e/3
D) – 2 e/3 e + 1e/3
E) + 2e/3 e – 1e/3
Solução
1 próton = 2 quarks up + 1 quark down
1 nêutron = 1 quark up + 2 quarks down.
Sabemos que:
Carga elétrica do próton = + 1,6.10–19 C = + e (carga elementar)
Carga elétrica do nêutron = zero (carga nula).
Testando as alternativas:
A) Próton: 2.(+ 2e/3) + 1.(+ 1e/3) = + 4e/3 + 1e/3 = + 5e/3 (Falsa)
B) Próton: 2.(+ 1e/3) + 1.(+ 2e/3) = + 2e/3 + 2e/3 = + 4e/3 (Falsa)
C) Próton: 2.(+ 1e/3) + 1.(– 2e/3) = + 2e/3 – 2e/3 = zero (Falsa)
D) Próton: 2.(– 2e/3) + 1.(+ 1e/3) = – 4e/3 +1e/3 = – 3e/3 = – e (Falsa)
E) Próton:2.(+2e/3) + 1.(–1e/3) = +4e/3 – 1e/3) = + 3e/3 = +e (Verdadeira)
Nêutron: 1.(+2e/3) + 2.(– 1e/3) = + 2e/3 – 2e/3 = zero (Verdadeira)
Resposta: E

More Related Content

What's hot (20)

Aula sobre tabela periódica
Aula sobre tabela periódicaAula sobre tabela periódica
Aula sobre tabela periódica
 
Propagação de Calor
Propagação de CalorPropagação de Calor
Propagação de Calor
 
Escalas termométricas
Escalas termométricasEscalas termométricas
Escalas termométricas
 
Cinemática introdução
Cinemática introduçãoCinemática introdução
Cinemática introdução
 
Campo elétrico
Campo elétricoCampo elétrico
Campo elétrico
 
Lei de coulomb
Lei de coulombLei de coulomb
Lei de coulomb
 
Eletromagnetismo
EletromagnetismoEletromagnetismo
Eletromagnetismo
 
Corrente elétrica
Corrente elétricaCorrente elétrica
Corrente elétrica
 
Campo elétrico
Campo elétricoCampo elétrico
Campo elétrico
 
Leis De Newton
Leis De NewtonLeis De Newton
Leis De Newton
 
Modelos atômicos
Modelos atômicosModelos atômicos
Modelos atômicos
 
Leis de ohm
Leis de ohmLeis de ohm
Leis de ohm
 
1 ¬ lei da termodinâmica
1 ¬ lei da termodinâmica1 ¬ lei da termodinâmica
1 ¬ lei da termodinâmica
 
Dilatação térmica
Dilatação térmicaDilatação térmica
Dilatação térmica
 
Densidade
DensidadeDensidade
Densidade
 
Eletrostatica
EletrostaticaEletrostatica
Eletrostatica
 
Ondas
OndasOndas
Ondas
 
Corrente elétrica
Corrente elétricaCorrente elétrica
Corrente elétrica
 
Aula 11 associação de resistores
Aula 11   associação de resistoresAula 11   associação de resistores
Aula 11 associação de resistores
 
Eletricidade 9º ano
Eletricidade 9º anoEletricidade 9º ano
Eletricidade 9º ano
 

Viewers also liked

Introdução à eletrostática
Introdução à eletrostáticaIntrodução à eletrostática
Introdução à eletrostática
O mundo da FÍSICA
 

Viewers also liked (20)

Eletrostática
EletrostáticaEletrostática
Eletrostática
 
ELETRICIDADE BASICA T- Aula 1 eletrostática
ELETRICIDADE BASICA T- Aula 1   eletrostáticaELETRICIDADE BASICA T- Aula 1   eletrostática
ELETRICIDADE BASICA T- Aula 1 eletrostática
 
Eletrostática aula
Eletrostática   aulaEletrostática   aula
Eletrostática aula
 
Carga elétrica e eletrização
Carga elétrica e eletrizaçãoCarga elétrica e eletrização
Carga elétrica e eletrização
 
Cargas elétricas
Cargas elétricasCargas elétricas
Cargas elétricas
 
Eletrostática
EletrostáticaEletrostática
Eletrostática
 
Eletrostática
EletrostáticaEletrostática
Eletrostática
 
Introdução à eletrostática
Introdução à eletrostáticaIntrodução à eletrostática
Introdução à eletrostática
 
Eletrostática
EletrostáticaEletrostática
Eletrostática
 
Carga elétrica
Carga elétricaCarga elétrica
Carga elétrica
 
3º EM-FÍSICA
3º EM-FÍSICA3º EM-FÍSICA
3º EM-FÍSICA
 
Processos de eletrizacao
Processos de eletrizacaoProcessos de eletrizacao
Processos de eletrizacao
 
Eletrostática fundamentos
Eletrostática   fundamentosEletrostática   fundamentos
Eletrostática fundamentos
 
Processos de Eletrização
Processos de EletrizaçãoProcessos de Eletrização
Processos de Eletrização
 
Eletrostática - Carga Elétrica
Eletrostática - Carga ElétricaEletrostática - Carga Elétrica
Eletrostática - Carga Elétrica
 
Aula Força Elétrica, cap 4 2º Ano
Aula Força Elétrica, cap 4 2º AnoAula Força Elétrica, cap 4 2º Ano
Aula Força Elétrica, cap 4 2º Ano
 
Fisica: Processos de Eletrização: Eletrização por atrito.
Fisica: Processos de Eletrização: Eletrização por atrito.Fisica: Processos de Eletrização: Eletrização por atrito.
Fisica: Processos de Eletrização: Eletrização por atrito.
 
9 eletrostática
9 eletrostática9 eletrostática
9 eletrostática
 
Força elétrica parte 1
Força elétrica parte 1Força elétrica parte 1
Força elétrica parte 1
 
Campo elétrico
Campo elétricoCampo elétrico
Campo elétrico
 

Similar to Slides eletrostatica

slides-eletrostatica-150808160826-lva1-app6892.pdf
slides-eletrostatica-150808160826-lva1-app6892.pdfslides-eletrostatica-150808160826-lva1-app6892.pdf
slides-eletrostatica-150808160826-lva1-app6892.pdf
Emerson Assis
 
Apostila do 1º semestre de eletrostática
Apostila do 1º semestre de eletrostáticaApostila do 1º semestre de eletrostática
Apostila do 1º semestre de eletrostática
Gabriel Angelo Oliveira
 
Fisica eletriz lei de coulomb
Fisica eletriz lei de coulombFisica eletriz lei de coulomb
Fisica eletriz lei de coulomb
comentada
 
Apostila 1%c2%b0-semestre.190.214
Apostila 1%c2%b0-semestre.190.214Apostila 1%c2%b0-semestre.190.214
Apostila 1%c2%b0-semestre.190.214
Cristilano Pacheco
 
Atividade 01 lab inf 3º ano
Atividade 01 lab inf 3º anoAtividade 01 lab inf 3º ano
Atividade 01 lab inf 3º ano
Prof X
 
Eletrostatica e lei de coulomb
Eletrostatica e lei de coulombEletrostatica e lei de coulomb
Eletrostatica e lei de coulomb
rodrigoateneu
 
Apostila eletricidade - (ita)
Apostila   eletricidade - (ita)Apostila   eletricidade - (ita)
Apostila eletricidade - (ita)
lugu13
 

Similar to Slides eletrostatica (20)

slides-eletrostatica-150808160826-lva1-app6892.pdf
slides-eletrostatica-150808160826-lva1-app6892.pdfslides-eletrostatica-150808160826-lva1-app6892.pdf
slides-eletrostatica-150808160826-lva1-app6892.pdf
 
Eletrostatica
EletrostaticaEletrostatica
Eletrostatica
 
Apostila do 1º semestre de eletrostática
Apostila do 1º semestre de eletrostáticaApostila do 1º semestre de eletrostática
Apostila do 1º semestre de eletrostática
 
Apostila 1°-semestre.190.214
Apostila 1°-semestre.190.214Apostila 1°-semestre.190.214
Apostila 1°-semestre.190.214
 
eletrostática
eletrostáticaeletrostática
eletrostática
 
Princípios de eletricidade estática
Princípios de eletricidade estáticaPrincípios de eletricidade estática
Princípios de eletricidade estática
 
Introdução a eletrostática
Introdução a eletrostáticaIntrodução a eletrostática
Introdução a eletrostática
 
Eletricidade ii unid.
Eletricidade ii unid.Eletricidade ii unid.
Eletricidade ii unid.
 
Fisica eletriz lei de coulomb
Fisica eletriz lei de coulombFisica eletriz lei de coulomb
Fisica eletriz lei de coulomb
 
eletrosttica1-110315230456-phpapp02.pdf
eletrosttica1-110315230456-phpapp02.pdfeletrosttica1-110315230456-phpapp02.pdf
eletrosttica1-110315230456-phpapp02.pdf
 
Apostila 1%c2%b0-semestre.190.214
Apostila 1%c2%b0-semestre.190.214Apostila 1%c2%b0-semestre.190.214
Apostila 1%c2%b0-semestre.190.214
 
Eletricidade
EletricidadeEletricidade
Eletricidade
 
Apostila eletrostática
Apostila eletrostáticaApostila eletrostática
Apostila eletrostática
 
Atividade 01 lab inf 3º ano
Atividade 01 lab inf 3º anoAtividade 01 lab inf 3º ano
Atividade 01 lab inf 3º ano
 
Apresentação ELETRICIDADE BÁSICA - ElectroengE.pdf
Apresentação ELETRICIDADE BÁSICA - ElectroengE.pdfApresentação ELETRICIDADE BÁSICA - ElectroengE.pdf
Apresentação ELETRICIDADE BÁSICA - ElectroengE.pdf
 
Eletrostatica e lei de coulomb
Eletrostatica e lei de coulombEletrostatica e lei de coulomb
Eletrostatica e lei de coulomb
 
Apostila eletricidade - (ita)
Apostila   eletricidade - (ita)Apostila   eletricidade - (ita)
Apostila eletricidade - (ita)
 
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .pptELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
 
Aula 1 física terceiro ano
Aula 1 física terceiro anoAula 1 física terceiro ano
Aula 1 física terceiro ano
 
Aula 1 - Eletroeletrônica
Aula 1 -   EletroeletrônicaAula 1 -   Eletroeletrônica
Aula 1 - Eletroeletrônica
 

Recently uploaded

8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
tatianehilda
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
AntonioVieira539017
 
QUIZ ensino fundamental 8º ano revisão geral
QUIZ ensino fundamental 8º ano revisão geralQUIZ ensino fundamental 8º ano revisão geral
QUIZ ensino fundamental 8º ano revisão geral
AntonioVieira539017
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
lenapinto
 

Recently uploaded (20)

Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
LENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretaçãoLENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretação
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
 
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptxCópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
 
Pesquisa Ação René Barbier Livro acadêmico
Pesquisa Ação René Barbier Livro  acadêmicoPesquisa Ação René Barbier Livro  acadêmico
Pesquisa Ação René Barbier Livro acadêmico
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
QUIZ ensino fundamental 8º ano revisão geral
QUIZ ensino fundamental 8º ano revisão geralQUIZ ensino fundamental 8º ano revisão geral
QUIZ ensino fundamental 8º ano revisão geral
 
3 2 - termos-integrantes-da-oracao-.pptx
3 2 - termos-integrantes-da-oracao-.pptx3 2 - termos-integrantes-da-oracao-.pptx
3 2 - termos-integrantes-da-oracao-.pptx
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptxPoesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
 
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdfAula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
 
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
Renascimento Cultural na Idade Moderna PDF
Renascimento Cultural na Idade Moderna PDFRenascimento Cultural na Idade Moderna PDF
Renascimento Cultural na Idade Moderna PDF
 
Texto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptTexto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.ppt
 

Slides eletrostatica

  • 2. CARGAS ELÉTRICAS Por convenção, o próton tem carga elétrica positiva, enquanto o elétron possui carga negativa. O nêutron não apresenta carga elétrica. Legenda: nêutron próton elétron
  • 3. FIQUE SABENDO !!! Descobertas: elétron, próton e nêutron ELÉTRON: 1897 Joseph Thomson (inglês, 1856-1940) PRÓTONS: 1919 Ernest Rutherford (neozelandês, 1871-1937) PRÓTONS: 1919 Ernest Rutherford (neozelandês, 1871-1937) NÊUTRON: 1932 James Chadwick (inglês, 1891-1974)
  • 4. CORPO NEUTRO E CORPO ELETRIZADO ± ± Corpo eletricamente neutro: ± ± ± para cada próton existe um elétron ± ± + ± Corpo eletrizado positivamente: + ± + existem mais prótons do que elétrons + ±+ ± ±-± Corpo eletrizado negativamente: ±-±-± apresenta mais elétrons do que prótons ±-± ATENÇÃO !!! Um corpo neutro adquire carga positiva ao perder elétrons. Se eletriza com carga negativa ao receber elétrons.
  • 5. A unidade de medida de carga elétrica no SI é coulomb (símbolo:C), em homenagem a Charles de Coulomb (francês, 1736-1806). Principais submúltiplos do coulomb: milicoulomb ( mC ), onde 1 mC = 10–3 C microcoulomb ( µC ), onde 1 µC = 10–6 C nanocoulomb ( nC ), onde 1 nC = 10–9 C microcoulomb ( µC ), onde 1 µC = 10 C nanocoulomb ( nC ), onde 1 nC = 10–9 C Exemplos a) 2 nC = 2.10-9 C b) – 5 µC = - 5.10-6 C c) 3,4 mC = 3,4.10-3 C d) – 7,2 µC = - 7,2.10-6 C
  • 6. CARGA DE ELÉTRICA DE UM CORPO A quantidade de carga elétrica (Q) de um corpo é dada por: Q = ± N.e, onde: N=número de elétrons (perdidos ou ganhos) e=carga elétrica elementar
  • 7. FIQUE SABENDO !!! (1) Valor da carga elétrica elementar e = 1,6.10–19 C (2) Carga elétrica elementar é a menor quantidade de carga elétrica isolada existente na natureza. Em valor absoluto (módulo) a carga do próton e do elétron são iguais a carga elementar. Oupróton e do elétron são iguais a carga elementar. Ou seja: Carga do próton: + e = + 1,6.10–19 C Carga do elétron: - e = – 1,6.10–19 C (3) A carga elétrica de um corpo é quantizada, isto é, ela sempre é múltiplo inteiro da carga elétrica elementar.
  • 8. VAMOS RESOLVER !!! 1) Uma régua de alumínio, inicialmente neutra, perde 50 milhões de elétrons.Determine a carga elétrica por ela adquirida. (Dado: e = 1,6.10–19 C) por ela adquirida. (Dado: e = 1,6.10–19 C)
  • 9. Solução Dados: N = 50.000.000 elétrons = 5.107 elétrons e = 1,6.10–19 C Q = + N.eQ = + N.e Q = + 5.107.1,6.10–19 Q = + 8.10–12 C Resp.: Q = + 8.10–12 C
  • 10. 2) Seja uma esfera de ferro e considere que ela está eletricamente neutra. Caso ela ganhe 200 bilhões de elétrons, qual será a sua carga ? (Dado: e = 1,6.10–19 C)(Dado: e = 1,6.10–19 C)
  • 11. Solução Dados: N = 200.000.000.000 elétrons = 2.1011 elétrons e = 1,6.10–19 C Q = – N.eQ = – N.e Q = – 2.1011.1,6.10–19 Q = – 3,2.10–8 C Resp.: Q = – 3,2.10–8 C
  • 12. 3) Mercúrio é o elemento químico de número atômico 80 e símbolo Hg. Considerando apenas prótons, nêutrons e elétrons, responda: (Dado: e = 1,6.10–19 C) a) Qual a carga elétrica do núcleo do átomo de mercúrio. b) Qual a carga elétrica de sua eletrosfera ? c) Qual a carga elétrica do átomo em questão.
  • 13. Solução Dados: Número atômico = 80 (80 prótons e 80 elétrons) e = 1,6.10–19 C a) Qnúcleo = + N.e Qnúcleo = + 8.10.1,6.10–19 Qnúcleo = + 12,8.10–18 C Qnúcleo = + 1,28.10–17 C b) Qeletrosfera = - N.e Qeletrosfera = - 8.10.1,6.10–19Qeletrosfera = - 8.10.1,6.10–19 Qeletrosfera = - 12,8.10–18 C Qeletrosfera = - 1,28.10–17 C c) A carga elétrica de um átomo é NULA ( Qátomo = zero ) Resp.: a) Qnúcleo = + 1,28.10–17 C b) Qeletrosfera = - 1,28.10–17 C c) Qátomo = zero
  • 14. PRINCÍPIO DA ATRAÇÃO E REPULSÃO Partículas com cargas elétricas de sinais iguais se repelem, enquanto as partículas eletrizadas com cargas de sinais opostos se atraem.
  • 15. PROCESSOS DE ELETRIZAÇÃO A eletrização de um corpo inicialmente neutro pode ocorrer: - Por atrito- Por atrito - Por contato - Por indução
  • 16. • Por atrito Corpos de materiais diferentes iniciamente neutros ao serem atritados adquirem cargas elétricas de mesmo módulo e sinais contrários.
  • 17. • Por contato Quando dois ou mais condutores são colocados em contato, com pelo menos um deles eletrizado, observa-se uma retribuição da carga elétrica. ATENÇÃO!!! Esferas condutoras idênticas (raios iguais) ao serem contactadas adquirem cargas iguais.ao serem contactadas adquirem cargas iguais.
  • 18. •• PorPor induçãoindução A eletrização de um condutor neutro pode ocorrer por uma simples aproximação de um outro corpo eletrizado, com o aterramento do neutro. No processo da indução eletrostática, o corpo induzido será eletrizado sempre com carga de sinal contrário ao da carga do indutor.
  • 19. VAMOS RESOLVER !!! 1)Dois corpos, um de vidro e outro de plástico, são atritados. Inicialmente ambos estavam descarregados eletricamente, ou seja, apresentavam-se neutros. Após o atrito, o corpo de vidro ficou eletrizado com uma carga de 8 milicoulombs (8 mC).uma carga de 8 milicoulombs (8 mC). a) Qual a carga (em coulomb) adquirida pelo corpo de plástico após o atrito ? b) O corpo de plástico perdeu ou ganhou elétrons? E o de vidro ?
  • 20. Solução O que ocorre quando corpos neutros e de materiais diferentes são atritados é que um dos corpos transfere elétrons para o outro. Assim: a) Depois do atrito, o corpo de plástico fica eletrizado com uma carga de – 8 mC, ou seja, – 8.10-3C. b) Como o corpo de vidro ficou eletrizado positivamenteb) Como o corpo de vidro ficou eletrizado positivamente significa que ele perdeu elétrons para o de plástico, que adquiriu carga negativa. Resp.: a) Q plástico = – 8.10-3C b) Corpo de vidro → Perdeu elétrons Corpo de plástico → Ganhou elétrons
  • 21. 2) Sejam A e B corpos metálicos.O corpo A encontra-se eletrizado, enquanto o B, neutro. Considerando que tais corpos serão postos em contato: a) Qual o sinal da carga adquirida pelo corpo B após serem contactados se o A tem carga negativa ? corpo B após serem contactados se o A tem carga negativa ? b) Caso o corpo A tivesse eletrizado positivamente, qual seria o sinal da carga adquirida pelo corpo B ?
  • 22. Solução Verifica-se que corpos condutores, inicialmente um eletrizado e outro neutro, depois de entrarem em contato apresentam cargas de sinais iguais. Assim: a) O corpo B fica eletrizado negativamente porque o corpo A transfere elétrons para ele até que seja estabelecido o equilíbrio eletrostático. b) O corpo B fica eletrizado positivamente porque ele transfere elétrons para o corpo A até que seja estabelecido o equilíbrio eletrostático. Resp.: a) Corpo B: carga negativa b) Corpo B: carga positiva
  • 23. 3) Uma esfera A com carga 15nC faz contato com a esfera B, com carga de –7nC. Sendo informado que as esferas em questão são idênticas e metálicas, determine, em coulomb, as cargas de cadaem coulomb, as cargas de cada esfera após o contato.
  • 24. Solução Se esferas condutoras e idênticas forem contactadas, então suas cargas serão iguais depois do contato. 15nC –7nC q q Qtotal final = Qtotal inicial q + q = 15 – 7 2q = 8 q + q = 15 – 7 2q = 8 q = 8/2 q = 4 nC q = 4.10-9C Resp.: Esfera A: carga 4.10-9C Esfera B: carga 4.10-9C
  • 25. LEI DE COULOMB Em 1785, Coulomb formulou a lei que rege as interações entre partículas eletrizadas.
  • 26. A intensidade da força de interação eletrostática (força elétrica:Fe) entre duas partículas eletrizadas é dada pela fórmula: Fe = K.IQI.IqI d2 onde, K: constante eletrostática do meio IQI e IqI: módulos das cargasIQI e IqI: módulos das cargas d: distância entre as partículas ATENÇÃO !!! A intensidade da força elétrica é diretamente proporcional ao produto dos módulos das cargas e inversamente proporcional ao quadrado da distância entre as partículas.
  • 27. VAMOS RESOLVER !!! 1) Sejam duas partículas eletrizadas com cargas Q=2µC e q=–3nC.Tais esferas estão no vácuo e a distância entre elas é 1 metro. Calcule a intensidade da força elétrica que uma carga exerce sobre aelétrica que uma carga exerce sobre a outra. Dado: Constante eletrostática do vácuo (K) = 9.109 N.m²/C²
  • 28. Solução Dados: IQI = 2µC = 2.10-6 C IqI = 3nC = 3.10-9 C d = 1 m K = 9.109 unidades do SI Pela Lei de Coulomb: Fe = K.IQI.IqI d2d2 Fe = 9.109.2.10-6.3.10-9 12 Fe = 54.10-6 N Fe = 5,4.10-5 N Resp.: Fe = 5,4.10-5 N
  • 29. 2) Na tabela temos informações sobre cargas elétricas pontuais (ou puntiformes) localizadas no vácuo e a distância entre cada par de cargas. Por sua vez, F1, F2 e F3 correspondem aos módulos das forças de interação eletrostática entre cargas Q e q, 3Q e 5q e Q e q, respectivamente. Cargas Distância Força elétrica a) Compare F2 e F1. b) Compare F3 e F1. Q e q d F1 3Q e 5q d F2 Q e q 2d F3
  • 30. Solução Com base na Lei de Coulomb, Fe = K.IQI.IqI , temos: d2 F1 = K.Q.q d2 a) F2 = K.3Q.5q = 15. K.Q.q = 15.F1 , ou seja, F2=15.F1 d2 d2 b) F3 = K.Q.q = K.Q.q = 1. K.Q.q = 1.F1 , isto é, F3 = 1.F1 (2d)2 4d2 4 d² 4 4 Resp.: a) F2 é 15 vezes maior do que F1. b) F3 é a quarta parte de F1.
  • 31. QUESTÃO ENEM Chama-se carga elétrica elementar, indicada por e, a menor quantidade de carga elétrica isolada existente na natureza. Em módulo, as cargas do próton e do elétron são iguais a carga elementar e. O valor da carga elétrica elementar (e = 1,6.10–19 C) foi determinado por Robert Millikan (norte-americano, 1868-1953) em 1909. Por esse brilhante trabalho experimental Millikan foi laureado com o Premio Nobel de Física de 1923. Na década de 1960 Murray Gell-Mann (norte-americano, n. 1929) - Prêmio Nobel de Física de 1969 por seus estudos sobre partículas subatômicas - levantou a hipótese da existência do quarks. Os quarks são partículas elementares (experimentalmente detectadas a partir da década de 1970) formadoras dos prótons e dos nêutrons. Apesar de existirem 6 tipos de quarks, somente os quarks up e down entram naexistirem 6 tipos de quarks, somente os quarks up e down entram na composição de prótons e nêutrons. O próton é formado por dois quarks up e um quark down, por sua vez em cada nêutron há um quark up e dois quarks up. A partir dessas informações, é correto concluir, com relação à carga elementar e, que a carga elétrica dos quarks up e down são, nesta ordem: A) + 2e/3 e + 1e/3 B) + 1e/3 e + 2e/3 C) + 1e/3 e – 2e/3 D) – 2 e/3 e + 1e/3 E) + 2e/3 e – 1e/3
  • 32. Solução 1 próton = 2 quarks up + 1 quark down 1 nêutron = 1 quark up + 2 quarks down. Sabemos que: Carga elétrica do próton = + 1,6.10–19 C = + e (carga elementar) Carga elétrica do nêutron = zero (carga nula). Testando as alternativas: A) Próton: 2.(+ 2e/3) + 1.(+ 1e/3) = + 4e/3 + 1e/3 = + 5e/3 (Falsa) B) Próton: 2.(+ 1e/3) + 1.(+ 2e/3) = + 2e/3 + 2e/3 = + 4e/3 (Falsa) C) Próton: 2.(+ 1e/3) + 1.(– 2e/3) = + 2e/3 – 2e/3 = zero (Falsa) D) Próton: 2.(– 2e/3) + 1.(+ 1e/3) = – 4e/3 +1e/3 = – 3e/3 = – e (Falsa) E) Próton:2.(+2e/3) + 1.(–1e/3) = +4e/3 – 1e/3) = + 3e/3 = +e (Verdadeira) Nêutron: 1.(+2e/3) + 2.(– 1e/3) = + 2e/3 – 2e/3 = zero (Verdadeira) Resposta: E