SlideShare a Scribd company logo
1 of 30
Michel Velázquez
Química
viernes 1 de mayo del
2014
INTRODUCCION
• En el siguiente tema sabremos
que es la elasticidad y como se
compone la ya mencionada
La
elasticidad
•INTRODUCCION:
• La elasticidad es estudiada por la teoría de la elasticidad, que
a su vez es parte de la mecánica de sólidos deformables. La
teoría de la elasticidad (ETE) como la mecánica de sólidos
(MS) deformables describe cómo un sólido (o fluido
totalmente confinado) se mueve y deforma como respuesta a
fuerzas exteriores. La diferencia entre la TE y la MS es que la
primera sólo trata sólidos en que las deformaciones son
termodinámicamente reversibles y en los que el estado
tensiones en un punto en un instante dado dependen sólo
de las deformaciones en el mismo punto y no de las
deformaciones anteriores (ni el valor de otras magnitudes en
un instante anterior). Para un sólido elástico la ecuación
constitutivafuncionalmente es de la forma:
donde denota el conjunto de tensores simétricos de segundo orden
del espacio euclídeo. Si el sólido es homogéneo el valor de la función
anterior no dependerá del segundo argumento.
La propiedad elástica de los materiales está relacionada, como se ha
mencionado, con la capacidad de un sólido de
sufrirtransformaciones termodinámicas reversibles e
independencia de la velocidad de deformación (los sólidos
viscoelásticos y los fluidos, por ejemplo, presentan tensiones
dependientes de la velocidad de deformación). Cuando sobre un
sólido deformable actúan fuerzas exteriores y éste se deforma se
produce un trabajo de estas fuerzas que se almacena en el cuerpo
en forma de energía potencial elástica y por tanto se producirá un
aumento de la energía interna. El sólido se comportará
elásticamente si este incremento de energía puede realizarse de
forma reversible, en este caso se dice que el sólido es elástico.
¿Qué es la elasticidad?
• La elasticidad es una medida de la sensibilidad de la
cantidad demandada o de la cantidad ofrecida ante el
cambio en alguno de sus factores determinates.
Los compradores normalmente compran una cantidad
mayor de un bien cuando su precio se reduce, cuando
su renta es mayor, cuando los precios de los bienes
sustitutivos son más altos o cuando los precios de los
bienes complementarios son más bajos. En función de
la variable en la que basemos nuestro análisis
tendremos distintos tipos de elasticidad.
• Elasticidad-precio de la demanda. Mide el
grado en que la cantidad demandada
responde a una variación del precio del bien.
• Elasticidad renta de la demanda. Mide el
grado en que la cantidad demandada de un
bien responde a una variación de la renta de
los consumidores: variación porcentual de la
cantidad demandada entre la variación
porcentual de la renta.
• Elasticidad cruzada de la demanda. Variación
porcentual de la cantidad demandada del
bien i entre la variación porcentual del precio
del bien j.
• Elasticidad de la oferta. Variación porcentual
experimentada por la cantidad ofrecida de un
bien cuando varía su precio en 1 por
100, manteniéndose constantes los demás
factores que afectan a la cantidad ofrecida.
• La elasticidad es estudiada por la teoría de la elasticidad, que
a su vez es parte de la mecánica de sólidos deformables. La
teoría de la elasticidad (ETE) como la mecánica de sólidos
(MS) deformables describe cómo un sólido (o fluido
totalmente confinado) se mueve y deforma como respuesta a
fuerzas exteriores. La diferencia entre la TE y la MS es que la
primera sólo trata sólidos en que las deformaciones son
termodinámicamente reversibles y en los que el estado
tensiones en un punto en un instante dado dependen sólo
de las deformaciones en el mismo punto y no de las
deformaciones anteriores (ni el valor de otras magnitudes en
un instante anterior). Para un sólido elástico la ecuación
constitutiva funcionalmente es de la forma
• donde denota el conjunto de tensores simétricos de segundo orden del
espacio euclídeo. Si el sólido es homogéneo el valor de la función anterior
no penderá del segundo argumento.
• La propiedad elástica de los materiales está relacionada, como se ha
mencionado, con la capacidad de un sólido de sufrir transformaciones
termodinámicas reversibles e independencia de la velocidad de
deformación (los sólidos viscoelásticos y los fluidos, por
ejemplo, presentan tensiones dependientes de la velocidad de
deformación). Cuando sobre un sólido deformable actúan fuerzas
exteriores y éste se deforma se produce un trabajo de estas fuerzas que se
almacena en el cuerpo en forma de energía potencial elástica y por tanto
se producirá un aumento de laenergía interna. El sólido se comportará
elásticamente si este incremento de energía puede realizarse de forma
reversible, en este caso se dice que el sólido es elástico.
• Elasticidad lineal [editar]
• Un caso particular de sólido elástico se presenta cuando las
tensiones y las deformaciones están relacionadas
linealmente, mediante la siguiente ecuación constitutiva:
• Cuando eso sucede se dice que el sólido es elástico lineal. La teoría
de la elasticidad lineal es el estudio de sólidos elásticos lineales
sometidos a pequeñas deformaciones de tal manera que además
los desplazamientos y deformaciones sean "lineales", es decir, que
las componentes del campo de desplazamientos u sean muy
aproximadamente una combinación lineal de las componentes
del tensor deformación del sólido. En general un sólido elástico
lineal sometido a grandes desplazamientos no cumplirá esta
condición. Por tanto la teoría de la elasticidad lineal sólo es
aplicable a:
• Sólidos elásticos lineales, en los que tensiones y
deformaciones estén relacionadas linealmente (linealidad
material).
• Deformaciones pequeñas, es el caso en que deformaciones
y desplazamientos están relacionados linealmente. En este
caso puede usarse el tensor deformación lineal de Green-
Lagrange para representar el estado de deformación de un
sólido (linealidad geométrica).
• Debido a los pequeños desplazamientos y deformaciones a
los que son sometidos los cuerpos, se usan las siguientes
simplificaciones y aproximaciones para sistemas estables:
• Las tensiones se relacionan con las superficies
no deformadas
• Las condiciones de equilibrio se presentan
para el sistema no deformado
• Para determinar la estabilidad de un sistema
hay presentar las condiciones de equilibrio
para el sistema deformado.
• Tensión
• Componentes del tensor tensión en un punto P de un
sólido deformable.
• La tensión en un punto se define como el límite de la fuerza
aplicada sobre una pequeña región sobre un plano π que
contenga al punto dividida del área de la región, es decir, la
tensión es la fuerza aplicada por unidad de superficie y
depende del punto elegido, del estado tensional de sólido y
de la orientación del plano escogido para calcular el límite.
Puede probarse que la normal al plano escogido nπ y la
tensión tπ en un punto están relacionadas por:
• Donde T es el llamado tensor tensión, también
llamado tensor de tensiones, que fijada una base vectorial
ortogonal viene representado p or una matriz
simétrica 3x3:Donde la primera matriz es la forma común
de escribir el tensor tensión en física y la segunda forma
usa las convenciones comunes en ingeniería. Dada una
región en forma de ortoedro con caras paralelas a los ejes
coordenados situado en el interior un sólido elástico
tensionado las componentes σxx, σyy y σzz dan cuenta de
cambios de longitud en las tres direcciones, pero que no
distorsinan los ángulos del ortoedro, mientras que las
componentes σxy, σyz y σzx están relacionadas con la
distorsión angular que convertiría el ortoedro en un
paralelepípedo.
• Deformación [editar]
• En teoría lineal de la elasticidad dada la pequeñez
de las deformaciones es una condición necesaria
para poder asegurar que existe una relación lineal
entre los desplazamientos y la deformación. Bajo
esas condiciones la deformación puede
representarse adecuadamente mediante
el tensor deformación infinitesimal que viene
dada por:
• Los componentes de la diagonal principal
contienen los alargamientos
(dilataciones), mientras que el resto de los
componentes del tensor son los medios
desplazamientos. Las componentes están
linealmente relacionadas con los
desplazmientos mediante esta relación:
Ecuaciones constitutivas de Lamé-Hooke
Las ecuaciones de Lamé-Hooke son
las ecuaciones constitutivas de un
sólido elástico lineal, homogéneo e
isótropo, tienen la forma:
En el caso de un problema
unidimensional, σ = σ11, ε =
ε11, C11 = E y la ecuación anterior se
reduce a:
• Donde E es el módulo de elasticidad
longitudinal o módulo de Young y G el módulo de
elasticidad transversal. Para caracterizar el
comportamiento de un sólido elástico lineal e
isótropo se requieren además del módulo de
Young otra constante elástica, llamada coeficiente
de Poisson (ν) y el coeficiente de temperatura (α).
Por otro lado, las ecuaciones de Lamé para un
sólido elástico lineal e isótropo pueden ser
deducidas del teorema de Rivlin-Ericksen, que
pueden escribirse en la forma:
Ciertos materiales muestran un comportamiento sólo
aproximadamente elástico, mostrando por ejemplo
variación de la deformación con el tiempo o fluencia
lenta. Estas deformaciones pueden ser permanentes o
tras descargar el cuerpo pueden desaparecer (parcial o
completamente) con el tiempo
(viscoplasticidad, viscoelasticidad
). Además algunos materiales pueden
presentarplasticidad es decir pueden llegar a exhibir
pequeñas deformaciones permanentes, por lo que las
ecuaciones anteriores en muchos casos tampoco
constituyen una buena aproximación al
comportamiento de estos materiales.
Ecuaciones de equilibrio
Equilibrio interno [editar]
Cuando las deformaciones no
varían con el tiempo, el campo
de tensiones dado por el tensor
tensión representa un estado de
equilibrio con las fuerzas de
volumen b = (bx,by,bz) en todo
punto del sólido, lo cual implica
que el campo de tensiones
satisface estas condiciones de
equilibrio:
Elasticidad no lineal
En principio, el abandono del supuesto de pequeñas deformaciones obliga a usar
un tensor deformación no lineal y no infinitesimal, como en la teoría lineal de la
elasticidad donde se usaba el tensor deformación lineal infinitesimal de Green-
Lagrange. Eso complica mucho las ecuaciones de compatibilidad. Además
matemáticamente el problema se complica, porque las ecuaciones resultantes de
la anulación de ese supuesto incluyen fenómenos de no linealidad
geométrica(pandeo, abolladura, snap-through,...).
Si además de eso el sólido bajo estudio no es un sólido elástico lineal nos vemos
obligados a substituir la ecuaciones de Lamé-Hooke por otro tipo de ecuaciones
constitutivas capaces de dar cuenta de la no linealidad material. Además de las
mencionadas existen otras no linealidades en una teoría de la elasticidad para
grandes deformaciones. Resumiendo las fuentes de no linealidad serían:1
• El tensor deformación no se relaciona linealmente con el
desplazamiento , concretamente es una aplicación cuadrática
del gradiente de deformación: .
• Para muchos materiales la ecuación constitutiva es no lineal.
• Las ecuaciones de equilibrio sobre el dominio ocupado por el
sólido, escrito en términos del segundo tensor de Piola-Kirchhoff son
nolineales: y . Donde es el difeomorfismo que da la relación entre
los puntos antes y después de la deformación.
• En algunos casos, como las cargas muertas las fuerzas que aparecen
en los segundos miembros de las ecuaciones experesados en el
dominio de referencia incluyen no linealidades, por ejemplo cuando
en la configuración deformada aparece una presión normal a la
superficie, eso comporta que
• Las condiciones de incomprensibilidad, de positividad del jacobiano
de la deformación, o de la inyectividad en el caso de contactos que
evian la autopenetración del sólido deformado también imponen
ecuaciones adicionales que se expresan en forma de ecuaciones no
lineales.
Ejemplo de la elasticidad ficica:
conclusión
A la conclusión que llegamos fue que la elasticidad es
una medida de la sensibilidad la cantidad demandada
o de la cantidad ofrecida ante el cambio en alguno de
sus factores determinates. Los compradores
normalmente compran una cantidad mayor de un
bien cuando su precio se reduce, cuando su renta es
mayor, cuando los precios de los bienes sustitutivos
son más altos o cuando los precios de los bienes
complementarios son más bajos. En función de la
variable en la que basemos nuestro análisis
tendremos distintos tipos de elasticidad.
•Gracias por su
atencion
prestada al tema

More Related Content

What's hot (20)

Semejanza geometrica
Semejanza geometricaSemejanza geometrica
Semejanza geometrica
 
Sesión5 mecánica
Sesión5 mecánicaSesión5 mecánica
Sesión5 mecánica
 
Deformacion elastica
Deformacion elastica Deformacion elastica
Deformacion elastica
 
informe del M.A.S fisica 2
informe del M.A.S fisica 2informe del M.A.S fisica 2
informe del M.A.S fisica 2
 
TORSION 10% 2DO CORTE RESISTENCIA DE MATERIALES II
TORSION 10% 2DO CORTE RESISTENCIA DE MATERIALES IITORSION 10% 2DO CORTE RESISTENCIA DE MATERIALES II
TORSION 10% 2DO CORTE RESISTENCIA DE MATERIALES II
 
Pendulo de torsion
Pendulo de torsionPendulo de torsion
Pendulo de torsion
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Semana 4 dinámica traslacional
Semana 4 dinámica traslacionalSemana 4 dinámica traslacional
Semana 4 dinámica traslacional
 
Esfuerzo y Deformacion.
Esfuerzo y Deformacion.Esfuerzo y Deformacion.
Esfuerzo y Deformacion.
 
Movimiento relativo en un sistema de referencia en traslacion
Movimiento relativo en un sistema de referencia en traslacionMovimiento relativo en un sistema de referencia en traslacion
Movimiento relativo en un sistema de referencia en traslacion
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 
Cinematica trabajo
Cinematica trabajoCinematica trabajo
Cinematica trabajo
 
Presentación física elasticidad.
Presentación física elasticidad.Presentación física elasticidad.
Presentación física elasticidad.
 
Fisica pract 3 lab
Fisica pract 3 labFisica pract 3 lab
Fisica pract 3 lab
 
8. ed capítulo viii cinemática de la partícula
8. ed capítulo viii cinemática de la partícula8. ed capítulo viii cinemática de la partícula
8. ed capítulo viii cinemática de la partícula
 
Momento angular.
Momento angular.Momento angular.
Momento angular.
 
Torsion (3)
Torsion (3)Torsion (3)
Torsion (3)
 
Ciclo carnot
Ciclo carnotCiclo carnot
Ciclo carnot
 
momento de una fuerza
momento de una fuerzamomento de una fuerza
momento de una fuerza
 
Dinamica y estática
Dinamica y estáticaDinamica y estática
Dinamica y estática
 

Similar to Elasticidad

Similar to Elasticidad (20)

Reporte1 gremli
Reporte1 gremliReporte1 gremli
Reporte1 gremli
 
Ley de los Resortes
Ley de los ResortesLey de los Resortes
Ley de los Resortes
 
Elasticidad y resortes
Elasticidad y resortesElasticidad y resortes
Elasticidad y resortes
 
Deformacion-plástica-clases
Deformacion-plástica-clasesDeformacion-plástica-clases
Deformacion-plástica-clases
 
Capítulo I, II y III
Capítulo I, II y IIICapítulo I, II y III
Capítulo I, II y III
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Jean L
Jean LJean L
Jean L
 
www.slideshare. Jean Luis
www.slideshare. Jean Luiswww.slideshare. Jean Luis
www.slideshare. Jean Luis
 
Ley de hooke
Ley de hookeLey de hooke
Ley de hooke
 
Resumen.docx
Resumen.docxResumen.docx
Resumen.docx
 
Clase Ii
Clase IiClase Ii
Clase Ii
 
Esfuerzo y Deformación. Elementos de Máquina S5
Esfuerzo y Deformación. Elementos de Máquina S5Esfuerzo y Deformación. Elementos de Máquina S5
Esfuerzo y Deformación. Elementos de Máquina S5
 
CAPITULO I, II, III
CAPITULO I, II, IIICAPITULO I, II, III
CAPITULO I, II, III
 
Instituto universitario de tecnología
Instituto universitario de tecnologíaInstituto universitario de tecnología
Instituto universitario de tecnología
 
Jeannnnnnnnnnnnnnn
JeannnnnnnnnnnnnnnJeannnnnnnnnnnnnnn
Jeannnnnnnnnnnnnnn
 
Informe 3-ley-de-hooke-utp v2015 (1)
Informe 3-ley-de-hooke-utp v2015 (1)Informe 3-ley-de-hooke-utp v2015 (1)
Informe 3-ley-de-hooke-utp v2015 (1)
 
Revista
RevistaRevista
Revista
 
Leyes que rigen los resortes
Leyes que rigen los resortesLeyes que rigen los resortes
Leyes que rigen los resortes
 
capitulos 1,2 y 3
capitulos 1,2 y 3capitulos 1,2 y 3
capitulos 1,2 y 3
 
Presentación benito
Presentación benitoPresentación benito
Presentación benito
 

Recently uploaded

SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 

Recently uploaded (20)

SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 

Elasticidad

  • 2. INTRODUCCION • En el siguiente tema sabremos que es la elasticidad y como se compone la ya mencionada
  • 5. • La elasticidad es estudiada por la teoría de la elasticidad, que a su vez es parte de la mecánica de sólidos deformables. La teoría de la elasticidad (ETE) como la mecánica de sólidos (MS) deformables describe cómo un sólido (o fluido totalmente confinado) se mueve y deforma como respuesta a fuerzas exteriores. La diferencia entre la TE y la MS es que la primera sólo trata sólidos en que las deformaciones son termodinámicamente reversibles y en los que el estado tensiones en un punto en un instante dado dependen sólo de las deformaciones en el mismo punto y no de las deformaciones anteriores (ni el valor de otras magnitudes en un instante anterior). Para un sólido elástico la ecuación constitutivafuncionalmente es de la forma:
  • 6. donde denota el conjunto de tensores simétricos de segundo orden del espacio euclídeo. Si el sólido es homogéneo el valor de la función anterior no dependerá del segundo argumento. La propiedad elástica de los materiales está relacionada, como se ha mencionado, con la capacidad de un sólido de sufrirtransformaciones termodinámicas reversibles e independencia de la velocidad de deformación (los sólidos viscoelásticos y los fluidos, por ejemplo, presentan tensiones dependientes de la velocidad de deformación). Cuando sobre un sólido deformable actúan fuerzas exteriores y éste se deforma se produce un trabajo de estas fuerzas que se almacena en el cuerpo en forma de energía potencial elástica y por tanto se producirá un aumento de la energía interna. El sólido se comportará elásticamente si este incremento de energía puede realizarse de forma reversible, en este caso se dice que el sólido es elástico.
  • 7. ¿Qué es la elasticidad? • La elasticidad es una medida de la sensibilidad de la cantidad demandada o de la cantidad ofrecida ante el cambio en alguno de sus factores determinates. Los compradores normalmente compran una cantidad mayor de un bien cuando su precio se reduce, cuando su renta es mayor, cuando los precios de los bienes sustitutivos son más altos o cuando los precios de los bienes complementarios son más bajos. En función de la variable en la que basemos nuestro análisis tendremos distintos tipos de elasticidad.
  • 8. • Elasticidad-precio de la demanda. Mide el grado en que la cantidad demandada responde a una variación del precio del bien. • Elasticidad renta de la demanda. Mide el grado en que la cantidad demandada de un bien responde a una variación de la renta de los consumidores: variación porcentual de la cantidad demandada entre la variación porcentual de la renta.
  • 9. • Elasticidad cruzada de la demanda. Variación porcentual de la cantidad demandada del bien i entre la variación porcentual del precio del bien j. • Elasticidad de la oferta. Variación porcentual experimentada por la cantidad ofrecida de un bien cuando varía su precio en 1 por 100, manteniéndose constantes los demás factores que afectan a la cantidad ofrecida.
  • 10. • La elasticidad es estudiada por la teoría de la elasticidad, que a su vez es parte de la mecánica de sólidos deformables. La teoría de la elasticidad (ETE) como la mecánica de sólidos (MS) deformables describe cómo un sólido (o fluido totalmente confinado) se mueve y deforma como respuesta a fuerzas exteriores. La diferencia entre la TE y la MS es que la primera sólo trata sólidos en que las deformaciones son termodinámicamente reversibles y en los que el estado tensiones en un punto en un instante dado dependen sólo de las deformaciones en el mismo punto y no de las deformaciones anteriores (ni el valor de otras magnitudes en un instante anterior). Para un sólido elástico la ecuación constitutiva funcionalmente es de la forma
  • 11. • donde denota el conjunto de tensores simétricos de segundo orden del espacio euclídeo. Si el sólido es homogéneo el valor de la función anterior no penderá del segundo argumento. • La propiedad elástica de los materiales está relacionada, como se ha mencionado, con la capacidad de un sólido de sufrir transformaciones termodinámicas reversibles e independencia de la velocidad de deformación (los sólidos viscoelásticos y los fluidos, por ejemplo, presentan tensiones dependientes de la velocidad de deformación). Cuando sobre un sólido deformable actúan fuerzas exteriores y éste se deforma se produce un trabajo de estas fuerzas que se almacena en el cuerpo en forma de energía potencial elástica y por tanto se producirá un aumento de laenergía interna. El sólido se comportará elásticamente si este incremento de energía puede realizarse de forma reversible, en este caso se dice que el sólido es elástico.
  • 12. • Elasticidad lineal [editar] • Un caso particular de sólido elástico se presenta cuando las tensiones y las deformaciones están relacionadas linealmente, mediante la siguiente ecuación constitutiva: • Cuando eso sucede se dice que el sólido es elástico lineal. La teoría de la elasticidad lineal es el estudio de sólidos elásticos lineales sometidos a pequeñas deformaciones de tal manera que además los desplazamientos y deformaciones sean "lineales", es decir, que las componentes del campo de desplazamientos u sean muy aproximadamente una combinación lineal de las componentes del tensor deformación del sólido. En general un sólido elástico lineal sometido a grandes desplazamientos no cumplirá esta condición. Por tanto la teoría de la elasticidad lineal sólo es aplicable a:
  • 13. • Sólidos elásticos lineales, en los que tensiones y deformaciones estén relacionadas linealmente (linealidad material). • Deformaciones pequeñas, es el caso en que deformaciones y desplazamientos están relacionados linealmente. En este caso puede usarse el tensor deformación lineal de Green- Lagrange para representar el estado de deformación de un sólido (linealidad geométrica). • Debido a los pequeños desplazamientos y deformaciones a los que son sometidos los cuerpos, se usan las siguientes simplificaciones y aproximaciones para sistemas estables:
  • 14. • Las tensiones se relacionan con las superficies no deformadas • Las condiciones de equilibrio se presentan para el sistema no deformado • Para determinar la estabilidad de un sistema hay presentar las condiciones de equilibrio para el sistema deformado.
  • 15. • Tensión • Componentes del tensor tensión en un punto P de un sólido deformable. • La tensión en un punto se define como el límite de la fuerza aplicada sobre una pequeña región sobre un plano π que contenga al punto dividida del área de la región, es decir, la tensión es la fuerza aplicada por unidad de superficie y depende del punto elegido, del estado tensional de sólido y de la orientación del plano escogido para calcular el límite. Puede probarse que la normal al plano escogido nπ y la tensión tπ en un punto están relacionadas por:
  • 16. • Donde T es el llamado tensor tensión, también llamado tensor de tensiones, que fijada una base vectorial ortogonal viene representado p or una matriz simétrica 3x3:Donde la primera matriz es la forma común de escribir el tensor tensión en física y la segunda forma usa las convenciones comunes en ingeniería. Dada una región en forma de ortoedro con caras paralelas a los ejes coordenados situado en el interior un sólido elástico tensionado las componentes σxx, σyy y σzz dan cuenta de cambios de longitud en las tres direcciones, pero que no distorsinan los ángulos del ortoedro, mientras que las componentes σxy, σyz y σzx están relacionadas con la distorsión angular que convertiría el ortoedro en un paralelepípedo.
  • 17. • Deformación [editar] • En teoría lineal de la elasticidad dada la pequeñez de las deformaciones es una condición necesaria para poder asegurar que existe una relación lineal entre los desplazamientos y la deformación. Bajo esas condiciones la deformación puede representarse adecuadamente mediante el tensor deformación infinitesimal que viene dada por:
  • 18. • Los componentes de la diagonal principal contienen los alargamientos (dilataciones), mientras que el resto de los componentes del tensor son los medios desplazamientos. Las componentes están linealmente relacionadas con los desplazmientos mediante esta relación:
  • 19. Ecuaciones constitutivas de Lamé-Hooke Las ecuaciones de Lamé-Hooke son las ecuaciones constitutivas de un sólido elástico lineal, homogéneo e isótropo, tienen la forma: En el caso de un problema unidimensional, σ = σ11, ε = ε11, C11 = E y la ecuación anterior se reduce a:
  • 20. • Donde E es el módulo de elasticidad longitudinal o módulo de Young y G el módulo de elasticidad transversal. Para caracterizar el comportamiento de un sólido elástico lineal e isótropo se requieren además del módulo de Young otra constante elástica, llamada coeficiente de Poisson (ν) y el coeficiente de temperatura (α). Por otro lado, las ecuaciones de Lamé para un sólido elástico lineal e isótropo pueden ser deducidas del teorema de Rivlin-Ericksen, que pueden escribirse en la forma:
  • 21. Ciertos materiales muestran un comportamiento sólo aproximadamente elástico, mostrando por ejemplo variación de la deformación con el tiempo o fluencia lenta. Estas deformaciones pueden ser permanentes o tras descargar el cuerpo pueden desaparecer (parcial o completamente) con el tiempo (viscoplasticidad, viscoelasticidad
  • 22. ). Además algunos materiales pueden presentarplasticidad es decir pueden llegar a exhibir pequeñas deformaciones permanentes, por lo que las ecuaciones anteriores en muchos casos tampoco constituyen una buena aproximación al comportamiento de estos materiales. Ecuaciones de equilibrio
  • 23. Equilibrio interno [editar] Cuando las deformaciones no varían con el tiempo, el campo de tensiones dado por el tensor tensión representa un estado de equilibrio con las fuerzas de volumen b = (bx,by,bz) en todo punto del sólido, lo cual implica que el campo de tensiones satisface estas condiciones de equilibrio:
  • 24.
  • 25. Elasticidad no lineal En principio, el abandono del supuesto de pequeñas deformaciones obliga a usar un tensor deformación no lineal y no infinitesimal, como en la teoría lineal de la elasticidad donde se usaba el tensor deformación lineal infinitesimal de Green- Lagrange. Eso complica mucho las ecuaciones de compatibilidad. Además matemáticamente el problema se complica, porque las ecuaciones resultantes de la anulación de ese supuesto incluyen fenómenos de no linealidad geométrica(pandeo, abolladura, snap-through,...). Si además de eso el sólido bajo estudio no es un sólido elástico lineal nos vemos obligados a substituir la ecuaciones de Lamé-Hooke por otro tipo de ecuaciones constitutivas capaces de dar cuenta de la no linealidad material. Además de las mencionadas existen otras no linealidades en una teoría de la elasticidad para grandes deformaciones. Resumiendo las fuentes de no linealidad serían:1
  • 26. • El tensor deformación no se relaciona linealmente con el desplazamiento , concretamente es una aplicación cuadrática del gradiente de deformación: . • Para muchos materiales la ecuación constitutiva es no lineal. • Las ecuaciones de equilibrio sobre el dominio ocupado por el sólido, escrito en términos del segundo tensor de Piola-Kirchhoff son nolineales: y . Donde es el difeomorfismo que da la relación entre los puntos antes y después de la deformación. • En algunos casos, como las cargas muertas las fuerzas que aparecen en los segundos miembros de las ecuaciones experesados en el dominio de referencia incluyen no linealidades, por ejemplo cuando en la configuración deformada aparece una presión normal a la superficie, eso comporta que • Las condiciones de incomprensibilidad, de positividad del jacobiano de la deformación, o de la inyectividad en el caso de contactos que evian la autopenetración del sólido deformado también imponen ecuaciones adicionales que se expresan en forma de ecuaciones no lineales.
  • 27. Ejemplo de la elasticidad ficica:
  • 28.
  • 29. conclusión A la conclusión que llegamos fue que la elasticidad es una medida de la sensibilidad la cantidad demandada o de la cantidad ofrecida ante el cambio en alguno de sus factores determinates. Los compradores normalmente compran una cantidad mayor de un bien cuando su precio se reduce, cuando su renta es mayor, cuando los precios de los bienes sustitutivos son más altos o cuando los precios de los bienes complementarios son más bajos. En función de la variable en la que basemos nuestro análisis tendremos distintos tipos de elasticidad.