SlideShare a Scribd company logo
1 of 50
Download to read offline
 
   
Do dollars decide in 
Africa whether a child 
should live or not? 
Association of health expenditure on health 
outcomes in Africa 
 
Health expenditures have a statistically significant effect, 
although low, on infant, neonatal and under‐five mortality 
in Africa. 
Supervisor: professor Whitehead 
Author: Soheila Abachi 
11/17/2014 
 
 
2 
Table of Contents 
1.  Abstract ................................................................................................................................................ 3 
2.  Introduction .......................................................................................................................................... 4 
3.  Methods ................................................................................................................................................ 5 
4.  Analysis ................................................................................................................................................. 5 
4.1.  Linear regression .......................................................................................................................... 5 
4.1.1.  Assumption of the linear regression .................................................................................... 5 
4.2.  Principal component analysis ...................................................................................................... 6 
4.2.1.  Assumption of principal component analysis ..................................................................... 6 
4.3.  Redundancy analysis .................................................................................................................... 7 
5.  Results................................................................................................................................................... 7 
5.1.  General linear model .................................................................................................................... 7 
5.2.  Principal component analysis ...................................................................................................... 8 
5.2.1.  PCA on all the variables ............................................................................................................ 8 
5.2.2.  PCA on 2 sets of variables ........................................................................................................ 9 
5.3.  Redundancy analysis .................................................................................................................. 10 
6.  Discussion ........................................................................................................................................... 10 
7.  Acknowledgments .............................................................................................................................. 10 
8.  References .......................................................................................................................................... 11 
 
   
 
3 
1. Abstract  
Health expenditures have a statistically significant effect on infant, neonatal and under‐
five mortality. For African countries, our results imply that total health expenditures (as well as 
the government component) are certainly important contributor to health outcomes in terms 
of  child  mortality  rates.  Per  capita  government  expenditure  on  health  seemed  to  be  more 
significant  on  models  especially  per  capita  government  expenditure  on  health  for  the  year 
1995. Inter correlation of the two sets of variables, health expenditures and mortality rates, are 
strong but not between the variables. Infant, neonatal and under‐five mortalities are negatively 
correlated  with  the  health  expenditure  in  the  Sub‐Saharan  African  countries  studied.  Health 
care expenditure seems to be only one of the many factors important in improving the health 
status of a member. The analysis presented in this paper finds evidence of a weak statistically 
significant relationship between per capita health spending, and health outcomes. Each of the 
health outcomes can be an indication of the  other health outcome. Neonatal mortality rate 
itself is an indication of how high or low the infant mortality is going to be in a specific year in a 
country. This may be due to the infection caused death among the under five which accounts 
for 73% of under 5 death in Africa. In countries with high infant mortality rate, the absence of a 
strong statistical relationship may be due to model misspecification or may reflect the fact that 
at high levels of population health, the returns for the increases in health spending are small. 
For future studies, other variables should be included.  
 
 
 
 
 
 
 
 
Abbreviations  
PC95TEXH  1995 Per capita total expenditure on health (PPP int. $) 
PC05TEXH  2005 Per capita total expenditure on health (PPP int. $) 
PC95GEXH  1995 Per capita government expenditure on health (PPP int. $) 
PC05GEXH  2005 Per capita government expenditure on health (PPP int. $) 
UFD00  2000 Number of under‐five deaths (thousands) 
UFD10  2010 Number of under‐five deaths (thousands) 
ID00  2000 Number of infant deaths (thousands), 
ID10  2010 Number of infant deaths (thousands) 
ND00  2000 Number of neonatal deaths (thousands) 
ND10  2010 Number of neonatal deaths (thousands) 
 
4 
2. Introduction  
Life expectancy is linked to economic growth and, 10% increase in life expectancy at 
birth will increase the economic growth rate by 0.35% a year, according to WHO (world health 
organization). There is evidence that empowering health will bring significant benefits for the 
economy (1). Low health status is a heavy financial burden and according to Commission on 
Macroeconomics and Health (2001) economic growth of wealthy and poor countries is about 
50% different due to the life expectancy and health status. Economists consider child health 
and mortality as important indicators of the success or failure of a government policy especially 
when studying developing countries (2). Health definitely is linked with sustainable economic 
growth  and  development.  This  could  be  due  to  the  fact  that  healthy  population  is  more 
productive at work, spend more time in the workplace, stay in labor force longer,  invest in their 
own and children’s education leading to the increased productivity and generally earn higher 
incomes which could potentially be the funds available for investment in the economy (3).  
Two‐thirds  of  deaths  occur  in  just  10  countries.  Child  mortality  in  West  and  Central 
Africa is the highest. In these regions, more than 150 of every 1,000 children born die under age 
five in compare to 6 of every 1,000 children born in a wealthy country (North America, Western 
Europe  and  Japan)  (UNICEF).  Health  care  expenditure  per  person  per  year  in  high‐income 
countries  exceeded  US$  2,000  while  in  Africa  it  averaged  between  US$13‐$21  in  2001 
(Commission for Africa, 2004). In sub‐ Saharan Africa the expenditure should rise to US$ 38 by 
2015 just to deliver basic treatment and care for the major communicable diseases (HIV/AIDS, 
TB and malaria), and early childhood and maternal illnesses (Commission for Macroeconomics 
and Health, 2001). Total spending on health has shown minimal to no impact on child mortality 
in  some  of  earlier  studies(4,  5).  These  studies  have  recorded  empirical  evidence  that  public 
spending on health is not the main cause of child mortality outcomes (6). The variation could be 
very  well  explained  by  other  factors  such  as  income,  income  inequality,  female  education, 
mother literacy, degree of ethnolinguistic fractionalization and findings show that these all play 
significant  role  in  child  mortality  across  countries  (7‐9).  These  results  mean  that  reduced 
poverty, income inequality, and increased female education would reduce child mortality as 
much than just increasing public spending on health. Despite public belief, study has shown 
that  government  health  expenditures  account  for  less  than  one‐seventh  of  one  percent 
variation in under‐five mortality across countries and the conclusion was drawn that 95% of the 
variation  in  under‐5  mortality  can  be  enlightened  by  factors  such  as  a  country’s  per  capita 
income, female educational level, resources at hospital, managed care and choice of region (10, 
11).  The  same  applies  to  low‐income  countries  where  no  significant  relationship  between 
health  expenditure  spending  and  infant  mortality  was  found  (12).  Enhanced  sanitation  as  a 
public health measure have proved to play a bigger role in improving child health in the past 
150 years than even the most advanced personal medical care technologies (13, 14). Therefore, 
child mortality may be not a good measure of social and economic conditions such as public 
health, insurance coverage, or economic crises in all countries but certainly is considered good 
indicator for African countries. In 2000, the United Nations (UN) set eight targets, known as 
Millennium Development Goals, aiming to promote human development of which four are in 
direct  or  indirect  relation  to  child  mortality  rate.  The  key  targets  to  be  reached  by  2015 
throughout the world are in the areas of poverty reduction, health improvements, education 
attainment,  gender  equality,  environmental  sustainability,  and  fostering  global  partnerships 
 
5 
(figure 1). The fourth goal to reduce child mortality by two‐thirds requires action on the first 
goal, halving extreme poverty and hunger, since malnutrition caused by chronic hunger causes 
the death of more than 5 million children each year globally (15).  
3. Methods 
The  dataset  contains  12  continuous  variables  with  the  sample  size  of  45  (45  African 
countries) which is large and good enough for the central limit theorem (CLT) [approximately 
normally distributed]. It is hypothesized that child yearly death rate as an indicator of health 
outcome, depend upon variance in government and total health expenditure (figure 4, 5, 6). In 
this  research,  the  economical  consequences  of  health  spending  on  child  death  rate  will  be 
studied and results will be reported. The questions to be answered are as below; 
1. Neonatal mortality rate 2010 is a response of government and total health expenditure of 
1995 and 2005 
2. Neonatal mortality rate 2010 is a response of government and total health expenditure 
2005 
3. Infant mortality rate 2010 is a response of government and total health expenditure of 
1995 and 2005 
4. Infant mortality rate 2010 is a response of government and total health expenditure 2005  
5. Under 5‐mortality rate 2010 is a response of government and total health expenditure of 
1995 and 2005 
6. Under 5‐mortality rate 2010 is a response of government and total health expenditure 
2005 
7. Neonatal mortality rate 2000 is a response of government and total health expenditure 
1995 
8. Infant mortality rate 2000 is a response of government and total health expenditure 1995  
9. Under 5‐mortality rate 2000 is a response of government and total health expenditure 
1995 
4. Analysis  
4.1. Linear regression  
Performing linear regression about child mortality (response) and explanatory variables 
(government and total health expenditures) would tell us if there is any relationship between 
the  response  and  the  explanatory  variables  thus  there  might  be  some  collinearity  or 
multicollinearity  among  the  independent  variables  (exact  collinearity  should  be  considered 
because  if  there  is  any  then  the  regression  coefficient  cannot  be  calculated).  Correlations 
whether positive, negative, and associations whether strong or weak can be determined in this 
step.  
4.1.1. Assumption of the linear regression  
To  check  the  normality  of  each  variable, Shapiro‐Wilk  normality  test  was  performed 
and the p‐values were analyzed on both original dataset and the log10 transformed dataset 
(table 3). For the original data, the p‐values for all the variables are less than alpha so the null 
hypothesis  is  rejected  in  the  favor  of  alternative  hypothesis.  To  make  the  data  of  normal 
distribution log10 transformation was applied to the dataset. P‐values were improved but still 
most  of  the  variables  are  of  non‐normal  distribution.  PC95TEXH,  PC05GEXH,  UFD10  have  p‐
values  above  alpha  so  Ho  is  accepted  and  these  variables  are  of  normal  distribution. 
 
6 
Transforming improved the normality but not to satisfactory level thus since listwise deletion of 
outliers has the risk of losing some influential observation then I decided to keep all the data in 
the analysis. The hypothesis for Shapiro‐Wilk normality test is as follows; 
Ho: data is normal             
Ha: data is non‐normal 
The null hypothesis for multiple linear regression is that all the slopes are equal to zero 
and the alternative hypothesis is that at least one slope does not equal to zero. 
Ho: β1=β2=β3=β4=βi=0 
Ha: at least one βi is different 
Best  fit  could  be  interpreted  as  “how  good  is  the  proposed  model  (regression 
equation)”and if “it could predict the y values reasonably.” In other words how good is the 
fitted model for describing the relationship between x and y and so for predicting value of y for 
a given x within the acceptable x range. Goodness of fit could be measured by coefficient of 
determination (R2
). General rule of thumb is that R2
 greater than 60% would make a proposed 
model safe enough for making predictions. 
4.2. Principal component analysis  
Textbooks state that “principal component analysis is performed on a matrix of Pearson 
correlation coefficients therefore data should satisfy the assumptions for this statistic”.  
To extract the important variables out of the 12 variables in the original dataset and 
reduce the dimensionality principal component analysis is to be performed. Components are 
orthogonal to each other (uncorrelated). PCA is more sensible when data are highly correlated 
(correlation coefficients bigger than 0.3 and smaller than ‐0.3) and even though normality of 
the dataset is not essential but would be preferred. If all the variables on the same scale, only 
then  the  predictions  and  interpretation  would  be  rational  and  this  could  be  achieved  by 
standardizing the data and performing transformation. 
4.2.1. Assumption of principal component analysis  
Linearity is preferred and so the relationship between all observed variables should be 
linear. Normal distribution of each observed variable is also desirable but not necessary. For the 
latter reason variables that demonstrate skewness may be transformed to better approximate 
the normality. One could also assume the normality of the dataset if the sample size is greater 
than 25 because the Pearson correlation coefficient is robust against violations of the normality 
assumption. According to Dr. Whitehead if dataset does not contain any zero values then it can 
be analyzed by principal component analysis. In addition, normality is preferred not essential, 
and independence is not required. 
The dataset  contains  no  missing values  but  some  unusually large  or  small  values  are 
present which maybe outliers contributing to the non‐normal distribution of the dataset. I kept 
all the units in because these values maybe influential not outliers.  
Variables  are  relatively  correlated  for  example;  per  capita  health  expenditure, 
government  and  total,  are  positively  related  meaning  that  increase  in  one  would  lead  in 
increasing the other (table 2).  
Normality of the original dataset was tested but the data were non‐linear therefore, two 
forms of transformation were performed, square root and log10. Square root transforming of 
all the variables did not much help the linearity and normality whereas log10 transforming of 
 
7 
all  the  variables  induced  the  normality  to  some  degree  keeping  its  original  characteristics 
(Figure 9, 10).   
4.3. Redundancy analysis 
Redundancy  analysis  is  done  to  show  that  there  is  a  linear  dependence  of  the  child 
mortality  variables,  Y  on  the  health  expenditure  variables,  X.  In  redundancy  analysis  linear 
regression  is  applied  to  represent  response  variable  (child  mortality)  as  linear  function  of 
explanatory variable (health expenditure) and then to use PCA in order to visualize the result. 
Among  those  components  of  Y  which  can  be  linearly  explained  with  X  (multivariate  linear 
regression) one could take those components which represent most of the variance. 
5. Results  
5.1. General linear model  
Several multiple linear models were tested with the null hypothesis that the slopes are 
all equal to zero. All the tested models have p‐values smaller than alpha (0.5) leading to the 
rejection of null hypothesis in favor of alternative hypothesis meaning that at least one β is 
different from zero. There is significant relationship between the independent and the response 
variable and so changes in x would affect the changes in y.  
All the possible models were tested. The answers for biological questions are as follows; 
Biological question 1: Neonatal mortality rate 2010 has association with the government and 
total health expenditure of 1995 and 2005 at the significance level of 5%. Stepwise regression 
shows that it is more dependent on the 1995 government health expenditure (table 4). 
Biological question 2: Neonatal mortality rate 2010 has association with the government and 
total health expenditure 2005 at the significance level of 5%. Stepwise regression shows that it 
is more dependent on the 2005 government health expenditure (table 4). 
Biological question 3: Infant mortality rate 2010 has association with the government and total 
health expenditure of 1995 and 2005 at the significance level of 5%. Stepwise regression shows 
that it is more dependent on the 1995 government health expenditure (table 4). 
Biological question 4: Infant mortality rate 2010 has association with the government and total 
health expenditure 2005 at the significance level of 5%. Stepwise regression shows that it is 
more dependent on the 2005 government health expenditure (table 4). 
Biological question 5: Under 5‐mortality rate 2010 has association with the government and 
total health expenditure of 1995 and 2005 at the significance level of 5%. Stepwise regression 
shows that it is more dependent on the 1995 government health expenditure (table 4). 
Biological question 6: Under 5‐mortality rate 2010 has association with the government and 
total health expenditure 2005 at the significance level of 5%. Stepwise regression shows that it 
is more dependent on the 2005 government health expenditure (table 4). 
Biological question 7: Neonatal mortality rate 2000 has association with the government and 
total health expenditure 1995 at the significance level of 5%. Stepwise regression shows that it 
is more dependent on the 1995 government health expenditure (table 4). 
Biological question 8: Infant mortality rate 2000 has association with the government and total 
health expenditure 1995 at the significance level of 5%. Stepwise regression shows that it is 
more dependent on the 1995 government health expenditure (table 4). 
 
8 
Biological question 9: Under 5‐mortality rate 2000 has association with the government and 
total health expenditure 1995 at the significance level of 5%. Stepwise regression shows that it 
is more dependent on the 1995 government health expenditure (table 4). 
Testing the dependence of child mortality rate of 2010, neonatal, infant, and under five, 
the conclusion can be made that all these variables are more dependent on the government 
expenditure 1995 and 2005. Another interpretation of the models could be that government 
expenditure of year 1995 had big influence on the child mortality rates of 2010 (table 4).  
Also testing for the dependence of child mortality rate of 2000, neonatal, infant, and 
under five, the conclusion can be made that all these variables are more dependent on the 
government expenditure of 1995 (table 4). 
The overall interpretation could be that child mortality rates are more dependent on the 
government expenditure rather than on the total health expenditure (table 4). 
Quality of fit of the abovementioned models were assessed one by one (figure 13‐19, 
34, 35). 
To evaluate the quality of fit a model, few assumptions shall be met; 
• Normality of error terms by Normal Q‐Q plot 
• Constant variance by plotting residuals vs. fitted values 
• Independence of error terms by auto‐correlation analysis (time series) 
• Presence of influential observations by Cook’s D 
For example, the quality of fit of the model 6 was evaluated. The plots show no evident 
pattern to the residuals vs. fitted values plot and give almost an impression of horizontal band 
confirming that constant variance assumption is met. The Normal Q‐Q plot passes the pen test 
and so the normality assumption is met. The residuals vs. leverage plot checks out the absence 
of  influential  observations  as  observation  30  (country;  Mauritania)  that  was  previously 
introduced as influential is out of the Cook’s distance range. Therefore, we conclude that all 
assumptions are met and none is violated. It is interesting to know that Mauritania is classified 
as low‐income country by World Bank but has relatively high per capita total and government 
expenditure with significantly low child death rates. 
Bonferonni outlier test was done for the models that initially have adjusted r‐squared 
values of above 90%. According to this test observation 4 and 30 are outliers (table 8).  
Reduced models for all the tested models were the best models as they were simple 
and had lower AIC compare to the full models (table 4). 
5.2. Principal component analysis  
5.2.1. PCA on all the variables  
PCA on correlation matrix (Log10 transformed data) revealed two principal components 
with  Eigen  values  more  than  or  equal  to  1  (pc1:  2.97,  pc2:  1.57).  These  two  principal 
components cumulatively account for 94.4% of the variance in the dataset (table 6).  
Loadings for the correlation matrix (Log10 transformed data) analysis are summarized 
(table 6) and as noted loadings for child death rates are positively loaded on first component. 
The  per  capita  health  expenditure  load  negatively  on  the  second  component  therefore  2nd 
component could explain the variance on the expenditure (table 6). On the first component, 
decrease  in  the  health  expenditure  causes  increase  in  the  child  mortality  rate.  Below  is  the 
formula for the 1st
 principal component: 
 
9 
1st
 pc (Correlation Matrix) = ‐0.27 (PC95TEXH) ‐0.27 (PC05TEXH) ‐0.26 (PC12TEXH) ‐0.29 
(PC95GEXH) ‐0.27 (PC05GEXH) ‐0.27 (PC12GEXH) +0.3 (UFD00) +0.3 (UFD10) +0.3 (ID00) +0.29 
(ID10) +0.3 (ND00) +0.28 (ND10)          
Scree  plot  can  be  performed  to  decide  which  components  to  keep  for  the  Varimax 
rotation  analysis.  Looking  at  the  plots  for  PCA  on  correlation  would  reveal  that  only  two 
components  are  important,  as  drop  is  obvious  after  these  two  components.  For  further 
analysis, only first two components were maintained. This would plot the eigenvalue associated 
with  a  principal  component  versus  the  number  of  the  component  to  expose  the  relative 
magnitude of eigenvalues (Figure 20). 
Looking at the biplot, one can say that death rates whether infant, neonatal or under 5 
are  highly  correlated  for  2000  and  2010.  Moreover  per  capita  government  and  total  health 
expenditure are also highly correlated (Figure 21). Both health expenditure and mortality rates 
load high on the first component and so most of the variance on the 1st
 component in explained 
by the two set of variables but in different direction. Their importance on the component are 
more or less the same because the size of arrows are almost equal.  
Examining the scores plot of correlation matrix analysis, prediction can be made that 
countries relatively spending big on the health and have very low mortality rates have negative 
scores (Algeria) on the 1st
 and 2nd
 component and countries with very low spending and high 
mortality have positive scores on the 1st
 component (Nigeria). Seychelles that spend high and 
have  almost  to  none  mortality  rate  have  high  negative  scores  on  the  1st
  and  relatively  high 
negative score on the 2nd
 component (Figure 22).   
Varimax plot makes the interpretation easy as it reveals the relationship of each original 
variable to the factor. This rotation maximizes the high correlations while minimizing the low 
correlations. Varimax plot for correlation matrix shows that the countries with relatively big 
health expenditure have negative scores on both the components and in converse countries 
with low to minimal health expenditure have positive scores on both the components (Figure 
23). 
5.2.2. PCA on 2 sets of variables  
Principal component analysis was done on the independent and dependent variable as 
two set. Since the measurements are on the same scale, therefore analysis were done with the 
covariance matrix. 
PCA of the child mortality rates revealed all the principal components with Eigen values 
more than or equal to 1. These two principal components cumulatively account for 99.9% of 
the variance in the dataset. Below is the formula for the 1st
 principal component: 
1st  pc  for  child  mortality  rates  (covariance  matrix)  =  ‐0.63(UFD00)  ‐0.54(UFD10)  ‐
0.39(ID00) ‐0.30(ID10) ‐0.17(ND00) ‐0.170(ND10)   
PCA of the health expenditure revealed all the principal components with Eigen values 
more than or equal to 1. These two principal components cumulatively account for 97.1% of 
the variance in the dataset. Scree plots for both set of PCA confirms the importance of the first 
2 components (figure 26‐27). Below is the formula for the 1st
 principal component: 
1st pc for health expenditures (covariance matrix) = ‐0.45(PC95TEXH) ‐0.69(PC05TEXH) ‐
0.305(PC95GEXH) ‐0.467(PC05GEXH) 
Looking at the biplot for the PCA of mortality rates, one can say that death rates of 2000 
are highly correlated so are the 2010 death rates. Based on the size of arrows, importance of 
 
10 
the  under  five  death  rate  is  more  significant  the  neonatal  and  the  infant.  Biplot  of  health 
expenditures  shows  that  health  expenditures  of  1995  are  correlated  and  so  are  the  2005 
expenditure thus importance of total expenditure of 2005 is more significant than the others 
(1995 government expenditure has the least importance) (figure 28‐29).  
Looking at score plot of PCA of the mortality rates, all the variables load negatively on 
the pc1, some high and some low (figure 32). Score plot of PCA of the expenditures shows that 
all the variables have loaded negatively and relatively high on pc1 (figure 33). 
Varimax  plot  for  PCA  of  mortality rates  shows  that  the  countries  with  high  mortality 
rates load highly negative on both the components such as Nigeria (figure 30).  
Varimax  plot  for  PCA  of  expenditures  shows  that  the  countries  with  both  high 
government and high total health expenditures load negatively high on the first and positively 
high  on  the  2nd
  component  such  as  Seychelles.  In  converse,  countries  with  high  total  and 
relatively lower government health expenditures load highly negative on the first and positively 
but relatively lower on the 2nd
 component such as south Africa (figure 31).  
5.3. Redundancy analysis 
For the variable UFD00, a one unit increase in under 5 death leads to a 1.33 decrease (‐
1.33) in the first canonical variate of set 2 when all of the other variables are held constant. 
Table  7  presents  the  standardized canonical  coefficients  for  the  first  two  dimensions 
across  both  sets  of  variables.  For  the  expenditure  variables,  the  first  canonical  dimension  is 
most strongly influenced by PC05TEXH (0.25) and for the second dimension (1.00). 
 For the mortality variables, the first dimension was most strongly influenced by UFD00 ‐
1.33 and ID00 1.41 and the second dimension the ND00 ‐1.64 was the dominant variable (figure 
24‐25). 
6. Discussion  
The overall picture is that health expenditure has impact on the child mortality rate and 
the results are relatively statistically significant. This may be because HIV prevalence has been 
high in the sub‐Saharan Africa in the two past decades (figure 3). This is in accordance to UN 
report 2000 saying that “trend in HIV infection will have a profound impact on future rates of 
infant, child and maternal mortality, life expectancy and economic growth.” 
Although all the multiple linear regression models tested were accepted in the favor of 
the  alternative  hypothesis  that  there  is  relationship  between  mortality  rates  and  health 
expenditure however the factors of the models usually were not statistically significant except 
the health mortality rates e.g. dependence of infant mortality rate on neonatal and under 5 
mortality rates with low p‐values and high t values (table 5). Negative loadings of the health 
expenditure leads to positive relatively high loading of the health outcome, represented as child 
mortality.  One  could  say  that  health  expenditure  has  some  impact  even  though  low  on  the 
mortality rates but other variables have to be included in the analysis to decide its significance. 
Variables that can be included in the study could be the female education, income, access to 
vaccines, HIV prevalence, number of trained health professionals, hunger, sanitation, etc.   
The results of this analysis are confirmatory to the other similar studies that have found 
little to no impact of the health expenditure on the health outcomes.  
7. Acknowledgments  
 
11 
I would like to acknowledge the use of data from WHO organization. Data were selected 
individually and then they were combined in one dataset.  
8. References  
1.  Acemoglu, D.; Johnson, S. Disease and development: the effect of life expectancy on economic 
growth; National Bureau of Economic Research: 2006. 
2.  Sen, A., Mortality as an indicator of economic success and failure. The Economic Journal 1998, 
108, 1‐25. 
3.  Bloom, D.; Canning, D., The health and poverty of nations: from theory to practice. Journal of 
Human Development 2003, 4, 47‐71. 
4.  Sandiford, P.; Cassel, J.; Montenegro, M.; Sanchez, G., The impact of women's literacy on child 
health and its interaction with access to health services. Population studies 1995, 49, 5‐17. 
5.  Rutherford, M. E.; Mulholland, K.; Hill, P. C., How access to health care relates to under‐five 
mortality in sub‐Saharan Africa: systematic review. Tropical Medicine & International Health 2010, 15, 
508‐519. 
6.  Gupta, S.; Verhoeven, M.; Tiongson, E., Does higher government spending buy better results in 
education and health care? International Monetary Fund: 1999. 
7.  Black, R. E.; Morris, S. S.; Bryce, J., Where and why are 10 million children dying every year? The 
Lancet 2003, 361, 2226‐2234. 
8.  Lawn, J. E.; Cousens, S.; Zupan, J., 4 million neonatal deaths: when? Where? Why? The Lancet 
2005, 365, 891‐900. 
9.  Kiros, G.‐E.; Hogan, D. P., War, famine and excess child mortality in Africa: the role of parental 
education. International Journal of Epidemiology 2001, 30, 447‐455. 
10.  Filmer, D.; Pritchett, L., The impact of public spending on health: does money matter? Social 
science & medicine 1999, 49, 1309‐1323. 
11.  Filmer, D.; Pritchett, L., Child mortality and public spending on health: how much does money 
matter? World Bank Publications: 1997; Vol. 1864. 
12.  Burnside, C.; Dollar, D., Aid, the incentive regime, and poverty reduction. World Bank, 
Development Research Group, Macroeconomics and Growth: 1998. 
13.  Preston, S. H., Mortality trends. Annual Review of Sociology 1977, 163‐178. 
14.  U.N., Common Database. 2005. 
15.  Human Development Report 2003. 
 
 
Assignment 2d, Soheila Abachi 
 
Figure 1:
Figure 2:
: adapted fro
: adapted fro
om UN 
om world baank  
 
 
 
122 
 
13 
Figure 3: adapted from UNAIDS 
Figure 4: bar graph of the health expenditures (total and government) for the year 2005 and 
health outcomes (Infant, neonatal, under 5mortality rates) for the year 2010 
0
100
200
300
400
500
600
700
800
900 Per capita total &  government expenditure 2005 and child mortality rate 2010
PC05TEXH PC05GEXH UFD10 ID10 ND10
0
100
200
300
400
500
600
700
800
900
1000
Comparison of 2000 & 2010 mortality rates for all groups 
UFD00 UFD10 ID00 ID10 ND10 ND00
 
14 
Figure 5: bar graph of health outcomes (Infant, neonatal, under 5mortality rates) for the 
years 2000 and 2010 
Figure 6: bar graph of the health expenditures (total and government) for the year 1995 and 
health outcomes (Infant, neonatal, under 5mortality rates) for the year 2000 
Figure 7: box plot of original dataset  
0
100
200
300
400
500
600
700
800
900
1000
Per capita total &  government health expenditure 1995 and child mortality rate 
2000
PC95TEXH PC95GEXH UFD00 ID00 ND00
PC95TEXH PC12GEXH ID10
04008001200
 
15 
Figure 8: scatter plot matrix for original dataset 
Figure 9: box plot of log10 transformed dataset  
ID00
0 300 0 150 0 400 0 800 0 300 0 400
0
0
ID10
ND00
0
0
ND10
PC05GEXH
0
0
PC05TEXH
PC12GEXH
0
0
PC12TEXH
PC95GEXH
0
0
PC95TEXH
UFD00
0
0 300
0
0 150 0 400 0 600 0 300 0 600
UFD10
PC95TEXH PC12TEXH PC05GEXH UFD00 ID00 ID10 ND00
0.00.51.01.52.02.53.0
 
16 
Figure 10: scatter plot matrix for log10 transformed dataset 
Figure 11: box plot of square root transformed dataset  
ID00
0.0 1.5 0.0 1.5 1.5 2.5 1.5 3.0 1.0 2.5 0.0 2.0
0.0
0.0
ID10
ND00
0.0
0.0
ND10
PC05GEXH
0.5
1.5
PC05TEXH
PC12GEXH
1.0
1.5
PC12TEXH
PC95GEXH
0.0
1.0
PC95TEXH
UFD00
0.0
0.0 1.5
0.0
0.0 1.5 0.5 2.0 1.0 2.5 0.0 2.0 0.0 2.0
UFD10
PC95TEXH PC12TEXH PC05GEXH UFD00 ID00 ID10 ND00
0102030
 
17 
 
Figure 12: aq .plot of log10 transformed dataset 
Figure 13: model  1 basic diagnostic plots  
-4 -2 0 2
-2-1012
1 2
3
4
5
67
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
4344
45
0 500 1000 1500
0.00.40.8
Ordered squared robust distance
Cumulativeprobability
23453288214352720129412613313442441029323340172618392235163719124251114387364 15 30
5%Quantile
AdjustedQuantile
-4 -2 0 2
-2-1012
Outliers based on 97.5% quantile
1
4
7
11
14
15
16
19
24
25
30
36
37
38 2
3
5
6
8
9
10
12
13
17
18
20
21
22
23
26
27 28
29 31
32
33
34
35
39
40
41
42
4344
45
-4 -2 0 2-2-1012
Outliers based on adjusted quantile
1
4
7
11
14
15
16
19
24
25
30
36
37
38 2
3
5
6
8
9
10
12
13
17
18
20
21
22
23
26
27 28
29 31
32
33
34
35
39
40
41
42
4344
45
0.5 1.0 1.5
-1.5
Fitted values
Residuals
Residuals vs Fitted
34
11
40
-2 0 1 2
-22
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
34
11
40
0.5 1.0 1.5
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
341140
0.00 0.10
-22
Leverage
Standardizedresiduals
Cook's dist
0.5
0.5
Residuals vs Leverage
4034
25
lm(ID10 ~ PC05GEXH + PC05TEXH)
 
18 
Figure 14: model  2 basic diagnostic plots 
Figure 15: model 3 basic diagnostic plots 
0.0 1.0 2.0
-1.0
Fitted values
Residuals
Residuals vs Fitted
34240
-2 0 1 2
-22
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
34
25
2
0.0 1.0 2.0
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
34 252
0.0 0.2 0.4
-22
Leverage
Standardizedresiduals
Cook's dist
10.5
0.51
Residuals vs Leverage
25
40
15
~ PC05GEXH + PC05TEXH + PC95GEXH + PC
0.5 1.5 2.5
-1.0
Fitted values
Residuals
Residuals vs Fitted
342
36
-2 0 1 2
-22
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
25
342
0.5 1.5 2.5
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
25342
0.0 0.2 0.4
-22
Leverage
Standardizedresiduals
Cook's dist
10.5
0.51
Residuals vs Leverage
25
40
14
~ PC05GEXH + PC05TEXH + PC95GEXH + P
 
19 
Figure 16: model  5 basic diagnostic plots 
Figure 17: model  4 basic diagnostic plots 
0.5 1.0 1.5
-1.0
Fitted values
Residuals
Residuals vs Fitted
34
2511
-2 0 1 2
-22
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
34
2511
0.5 1.0 1.5
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
34 2511
0.00 0.10 0.20
-22
Leverage
Standardizedresiduals
Cook's dist
0.5
0.5
1
Residuals vs Leverage
25
40
15
lm(ND10 ~ PC05TEXH + PC95TEXH)
0.0 1.0 2.0
-1.01.5
Fitted values
Residuals
Residuals vs Fitted
342
25
-2 0 1 2
-22
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
25
342
0.0 1.0 2.0
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
25342
0.0 0.2 0.4
-31
Leverage
Standardizedresiduals
Cook's dist
10.5
0.51
Residuals vs Leverage
25
15
40
~ PC05GEXH + PC05TEXH + PC95GEXH + PC
 
20 
Figure 18: model  31 basic diagnostic plots 
Figure 19: model  13 basic diagnostic plots 
0.0 1.0 2.0
-1.01.5
Fitted values
Residuals
Residuals vs Fitted
342
25
-2 0 1 2
-22
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
25
342
0.0 1.0 2.0
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
25342
0.0 0.2 0.4
-31
Leverage
Standardizedresiduals
Cook's dist
10.5
0.51
Residuals vs Leverage
25
15
40
~ PC05GEXH + PC05TEXH + PC95GEXH + PC
0.5 1.5 2.5
-1.0
Fitted values
Residuals
Residuals vs Fitted
3440
11
-2 0 1 2
-21
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
3440
11
0.5 1.5 2.5
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
344011
0.0 0.2 0.4
-22
Leverage
Standardizedresiduals
Cook's dist
10.5
0.51
Residuals vs Leverage
40
25
14
 
21 
Figure 34: model  14 basic diagnostic plots 
Figure 35: model  16 basic diagnostic plots 
0.0 1.0 2.0
-1.01.5
Fitted values
Residuals
Residuals vs Fitted
34
40 2
-2 0 1 2
-12
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
34
402
0.0 1.0 2.0
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
3440 2
0.0 0.2 0.4
-22
Leverage
Standardizedresiduals
Cook's dist
10.5
0.51
Residuals vs Leverage
25
4034
lm(ND00 ~ PC95GEXH + PC95TEXH)
0.0 1.0 2.0
-1.01.5
Fitted values
Residuals
Residuals vs Fitted
34
40 2
-2 0 1 2
-12
Theoretical Quantiles
Standardizedresiduals
Normal Q-Q
34
402
0.0 1.0 2.0
0.01.5
Fitted values
Standardizedresiduals
Scale-Location
3440 2
0.0 0.2 0.4
-22
Leverage
Standardizedresiduals
Cook's dist
10.5
0.51
Residuals vs Leverage
25
4034
lm(ND00 ~ PC95GEXH + PC95TEXH)
 
22 
Figure 20: scree plot of PCA on correltaion matrix  
Figure 21: plot of PCA on correltaion matrix 
Comp.1 Comp.4 Comp.7 Comp.10
Scree plot for PCA1Inertia
02468
-0.4 -0.2 0.0 0.2
-0.4-0.20.00.2
Biplot pca1
Comp.1
Comp.2
1 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1718
19
20
21
22
23
24
25
26
27
28
29
30 3132
33
34
35
36
37
38
39
40
41
42
434445
-8 -6 -4 -2 0 2 4 6
-8-6-4-20246
PC95TEXH
PC05TEXHPC12TEXH
PC95GEXH
PC05GEXHPC12GEXH UFD0UFD1ID00ID10ND0ND10
 
23 
Figure 22:  
Figure 23: 
-5 0 5
-4-202
Scores plot pca1
1st principal component
2ndprincipalcomponent
Algeria
Angola
Benin
Botsw ana
Burkina Faso
Burundi
Cabo Verde
Cameroon
Central African Republic
Chad
Comoros
Congo
Côte d'Ivoire
Democratic Republic of the Congo
Equatorial Guinea
Eritrea
EthiopiaGabon
Gambia
Ghana
Guinea
Guinea-Bissau
Kenya
Lesotho
Liberia
Madagascar
Malaw i
Mali
Mauritania
Mauritius
Mozambique
Namibia
Niger
Nigeria
Rw anda
Sao Tome and Principe
Senegal
Seychelles
Sierra Leone
South Africa
Sw aziland
Togo
UgandaUnited Republic of TanzaniaZambia
-10 -5 0 5 10
-6
-4
-2
0
2
4
Varimax Scores plot(pca1)
1st varimax component
2ndvarimaxcomponent
Algeria
Angola
Benin
Botsw ana
Burkina Faso
Burundi
Cabo Verde
Cameroon
Central African Republic
Chad
Comoros
Congo
Côte d'Ivoire
Democratic Republic of the Congo
Equatorial Guinea
Eritrea
Ethiopia
Gabon
Gambia
Ghana
Guinea
Guinea-Bissau
Kenya
Lesotho
Liberia
Madagascar
Malaw iMali
Mauritania
Mauritius
Mozambique
Namibia
Niger
Nigeria
Rw anda
Sao Tome and Principe
Senegal
Seychelles
Sierra Leone
South Africa
Sw aziland
Togo UgandaUnited Republic of Tanzania
Zambia
CountryPC95TEXHPC05TEXHPC12TEXHPC95GEXHPC05GEXH
PC12GEXHUFD00UFD10ID00ID10ND00
ND10
Child death rates 
Health expenditure  
 
24 
Figure 24: redundancy analysis plot, child mortality rates vs. health expenditure 2005 
Figure 25: redundancy analysis plot, child mortality rates vs. health expenditure 1995 
   
-4 -2 0 2 4
-2.0-1.5-1.0-0.50.00.51.0
RDA1
RDA2
type2log.PC05TEXH
type2log.PC05GEXH
1
2
3
4
5
6
7
8
9
10
1112
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
type2log.UFD00
type2log.UFD10
type2log.ID00type2log.ID10
type2log.ND00
type2log.ND10
-6 -4 -2 0 2 4 6
-3-2-1012
RDA1
RDA2
type2log.PC95TEXH
type2log.PC95GEXH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 42
43
4445
type2log.UFD00
type2log.UFD10
type2log.ID00
type2log.ID10
type2log.ND00
type2log.ND10
-10
Comp.1 Comp.3 Comp.5
Scree plot for PCA MortRate
Inertia
0100003000050000
Comp.1 Comp.2 Comp.3 Comp.4
Scree plot for PCA Expd
Inertia
0200004000060000
 
25 
Figure 26: Scree plot  for covariance 
matrix of child mortality rates  
Figure 27: Scree plot  for covariance matrix of 
health expenditures  
Figure 28: Bi plot  for covariance matrix 
of child mortality rates 
Figure 29: Bi plot  for covariance matrix of health 
expenditures 
Figure 30: Varimax plot  for covariance 
matrix of child mortality rates 
Figure 31: Varimax plot  for covariance matrix of 
health expenditures 
-0.8 -0.6 -0.4 -0.2 0.0 0.2
-0.8-0.6-0.4-0.20.00.2
Biplot pca MortRate
Comp.1
Comp.2
1
2
345678 9
10
111213
14
1516
17
1819
20
21
2223 24
25
2627
282930
31
32
33
34
35
36
37
3839
404142
43
44
45
-1000 -600 -200 0 200
-1000-600-2000200
FD00
UFD10
ID00
ID10
ND00
ND10
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.6-0.4-0.20.00.20.40.6
Biplot pca Expd
Comp.1
Comp.2
1
2 3
4
567
8
9
10
1112
1314
15
16
17
18
192021
22
232425262728
29
30
31
32
33
34
353637
38
39
40
41
42
43
4445
-1000 -500 0 500 1000
-1000-50005001000
PC95TEXH
05TEXH
PC95GEXH
PC05GEXH
-1000 -600 -200 0 200
-800
-600
-400
-200
0
Varimax Scores plot(pca Mort Rate)
1st varimax component
2ndvarimaxcomponent
Algeria
Angola
Benin
Botsw ana
Burkina Faso
Burundi
Cabo Verde
Cameroon
Central African Rep
Chad
ComorosCongo
Côte d'Ivoire
Democratic Republic of the Congo
Equatorial GuineEritrea
Ethiopia
GabonGambia
GhanaGuinea
Guinea-Bissau
Kenya
LesothoLiberia
MadagascarMalaw iMali
MauritaniaMauritius
Mozambique
Namibia
Niger
Nigeria
Rw anda
Sao Tome and Prin
Senegal
Seychelles
Sierra Leone
South Africa
Sw azilandTogo
UgandaUnited Republic of Tanzania
ZambiaCountryPC95TEXHPC05TEXHPC12TEXHPC95GEXHPC05GEXHPC12GEXHUFD00UFD10ID00ID10ND00ND10
-800 -600 -400 -200 0 200
0
200
400
600
800
Varimax Scores plot(pca Expd)
1st varimax component
2ndvarimaxcomponent
Algeria
Angola
Benin
Botsw ana
Burkina FasoBurundi
Cabo Verde
CameroonCentral African RepublicChadComoros
Congo
Côte d'Ivoire
Democratic Republic of the Co
Equatorial Guinea
EritreaEthiopia
Gabon
GambiaGhana
Guinea
Guinea-Bissau
KenyaLesotho
Liberia
MadagascarMalaw iMali
Mauritania
Mauritius
Mozambique
Namibia
NigerNigeria
Rw anda
Sao Tome and Principe
Senegal
Seychelles
Sierra Leone
South Africa
Sw aziland
TogoUgandaUnited Republic of Tanzania
Zambia
 
26 
Figure 32: Scores plot  for covariance 
matrix of child mortality rates 
Figure 33: Scores plot  for covariance matrix of 
health expenditures 
Table 2:  Correlation coefficients  
  PC95 
TEXH 
PC05 
TEXH 
PC12 
TEXH 
PC95 
GEXH 
PC05
GEXH 
PC12
GEXH  UFD00  UFD10  ID00  ID10  ND00  ND10 
PC95TEXH  1.00  0.89   0.78  0.92  0.87  0.83 ‐0.21  ‐0.18 ‐0.20  ‐0.18 ‐0.21 ‐0.18
PC05TEXH  0.89  1.00  0.91  0.80   0.92 0.87 ‐0.19 ‐0.16 ‐0.19  ‐0.16 ‐0.20 ‐0.17
PC12TEXH  0.78   0.91    1.00   0.74    0.86   0.94 ‐0.20 ‐0.18 ‐0.19  ‐0.17 ‐0.20 ‐0.18
PC95GEXH  0.92   0.80   0.74    1.00   0.90   0.88 ‐0.20 ‐0.18 ‐0.20  ‐0.17 ‐0.20 ‐0.18
PC05GEXH  0.87    0.92    0.86   0.90    1.00  0.93 ‐0.21 ‐0.19 ‐0.21  ‐0.19 ‐0.21 ‐0.19
PC12GEXH  0.83  0.87   0.94    0.88   0.93 1.00 ‐0.22  ‐0.20 ‐0.22  ‐0.19 ‐0.22 ‐0.20
UFD00  ‐0.21   ‐0.19  ‐0.20  ‐0.20  ‐0.21 ‐0.22 1.00  0.98  0.99   0.98  0.99  0.99
UFD10  ‐0.18   ‐0.16  ‐0.18  ‐0.18  ‐0.19 ‐0.20 0.98  1.00  0.98   0.99  0.96  0.99
ID00   ‐0.20  ‐0.19  ‐0.19  ‐0.20  ‐0.21 ‐0.22 0.99  0.98  1.00   0.98  0.99   0.99
ID10   ‐0.18   ‐0.16  ‐0.17  ‐0.17  ‐0.19 ‐0.19 0.98  0.99  0.98   1.00  0.96 0.99
ND00  ‐0.21   ‐0.20  ‐0.20  ‐0.20  ‐0.21 ‐0.22 0.99   0.96  0.99   0.96  1.00   0.98
ND10   ‐0.18  ‐0.17  ‐0.18  ‐0.18  ‐0.19 ‐0.20 0.99  0.99  0.99   0.99  0.98 1.00
Table 3: summary of Shapiro‐Wilk normality test‐p values  
Shapiro‐Wilk normality test‐p values
  Original data Log10 transformed data 
PC95TEXH  2.221e‐09 0.437
PC05TEXH  6.416e‐09 0.01336
PC12TEXH  3.201e‐09 0.03242
PC95GEXH  4.121e‐11 0.08201
PC05GEXH  8.008e‐10 0.1731
PC12GEXH  9.39e‐10 0.01635
UFD00  6.136e‐11 0.03946
UFD10  1.899e‐11 0.06938
ID00  6.361e‐11 0.0312
ID10  1.363e‐11 0.01937
ND00  5.93e‐11 0.005314
ND10  2.557e‐11 0.01495
Original data set including all variables   2.24e‐13
-1000 -500 0
-600-2000200600
Scores plot pca Mort Rate
1st principal component
2ndprincipalcomponent
AlgeriaAngola
BeninBotsw aBurkina FasoBurundiCabo VeCameroonCentral African RChadComoroCongoCôte d'Ivoire
Democratic Republic of the CongoEquatorial GEritrea
Ethiopia
GabonGambiaGhanaGuineaGuinea-BisKenyaLesothLiberiaMadagascarMalaw iMaliMauritanMauritiuMozambiqueNamibiNiger
Nigeria
Rw anda
Sao Tome andSenegalSeychelSierra LeonSouth AfricaSw azilaTogoUgandaUnited Republic of TanzanZambiaCountryPC95TEXHPC05TEXHPC12TEXHPC95GEXHPC05GEXHPC12GEXHUFD00UFD10ID00ID10ND00ND10
-1000 -600 -200 0 200
-4000200400
Scores plot pca Expd
1st principal component
2ndprincipalcomponent
Algeria
AngolaBenin
Botsw ana
Burkina FasoBurundiCabo VerdeCameroon
Central AfricanChadComorosCongo
Côte d'IvoireDemocratic Republic
Equatorial Guinea
EritreaEthiopia
Gabon
GambiaGhanaGuinea
Guinea-Bissau
KenyaLesothoLiberiaMadagascMalaw iMaliMauritania
Mauritius
Mozambiqu
Namibia
Niger
NigeriaRw andaSao Tome and PrincipeSenegal
ychelles
Sierra Leone
South Africa
Sw aziland
TogoUganda
United Republic ofZambiaCountryPC95TEXHPC05TEXHPC12TEXHPC95GEXHPC05GEXHPC12GEXHUFD00UFD10ID00ID10ND00ND10
 
27 
Log10 transformed data  including all variables 1.79e‐13
Table 4: summary of multiple regression models tested  
  General  linear model and  
Reduced model with lowest AIC  
Adjusted 
R‐
squared 
p‐value   AIC 
Reg1ID10  ID10=2.27‐0.74PC05GEXH+0.01PC05TEXH  0.2438  0.001065   ‐41.53 
Reduced 
Reg1ID10 
ID10 ~ PC05GEXH    ‐43.53
         
Reg2ID10  ID10=1.77‐0.19PC05GEXH+0.56PC05TEXH‐ 
0.92PC95GEXH‐0.12PC95TEXH 
0.3177   0.0006102 ‐44.35 
Reduced 
Reg2ID10 
ID10 ~ PC95GEXH    ‐49.57
         
Reg31ID10  UFD10=2.55‐0.83PC05GEXH+0.06PC05TEXH  0.2578  0.0007182 ‐38.36 
Reduced 
Reg31ID10 
UFD10 ~ PC05GEXH      ‐40.35
       
Reg3UFD10  FD10=2.03‐0.27PC05GEXH+0.71PC05TEXH ‐ 
0.94PC95GEXH‐0.2PC95TEXH 
0.3379  0.0003494  ‐41.69 
Reduced 
Reg3UFD10 
UFD10 ~ PC95GEXH    ‐46.68
         
Reg5ND10  ND10=2.15+0.21PC05TEXH‐0.93PC05GEXH  0.2226  0.001903  ‐49.83 
Reduced 
Reg5ND10 
ND10 ~ PC05GEXH     ‐51.65
         
Reg4ND10  ND10=1.39‐0.14PC05GEXH+0.68PC05TEXH‐ 
0.82PC95GEXH‐0.25PC95TEXH 
0.2808  0.001613  ‐51.53 
Reduced 
Reg4ND10 
ND10 ~ PC95TEXH 
 
  ‐56.12
         
Reg13ID00  ID00=2.33‐0.87PC95GEXH+0.06PC95TEXH  0.3603   3.168e‐05  ‐46.38 
Reduced 
Reg13ID00 
ID00 ~ PC95GEXH 
 
  ‐48.36
 
         
Reg14ND00  ND00=1.94‐0.78PC95GEXH+0.02PC95TEXH  0.3638    2.825e‐05  ‐55.04 
Reduced 
Reg14ND00 
ND00 ~ PC95GEXH 
 
  ‐57.03
         
Reg16UFD00 
 
UFD00=2.59‐0.96PC95GEXH + 
0.08PC95TEXH 
0.3856  1.36e‐05  ‐45.19 
Reduced 
Reg16UFD00 
UFD00 ~ PC95GEXH      ‐45.2
 
Table 5: summary of the selected models coefficients and p‐values  
 
28 
 
 
Table 6: summary of loading on the first 2 components of PCA  
PCA on correlation matrix   Comp 1   Comp 2 
PC95TEXH   ‐0.278  ‐0.263
PC05TEXH   ‐0.276  ‐0.343
PC12TEXH   ‐0.268  ‐0.337  
PC95GEXH   ‐0.294  ‐0.228
PC05GEXH   ‐0.279  ‐0.310  
PC12GEXH   ‐0.276  ‐0.302  
UFD00       0.303  ‐0.261  
UFD10       0.301  ‐0.272
ID00        0.300  ‐0.280  
ID10        0.299  ‐0.281
ND00        0.302  ‐0.270  
ND10        0.285  ‐0.296
Table 7: standardized canonical coefficients of the canonical correlation analysis  
  1  2 
First set of variable 
PC05TEXH   0.25   1.00 
PC05GEXH  0.09  ‐0.84 
Second set of Variable     
UFD00   ‐1.33  ‐0.06 
UFD10    0.34  0.34 
ID00     1.  0.53 
ID10    ‐0.16  0.36  
type2log.ND00    ‐0.56  ‐1.64 
type2log.ND10     0.17  0.47 
Table 8: Summary of Bonferonni outlier test on the selected models  
  Outlier     rstudent   unadjusted p‐value  Bonferonni p 
Reg6ND10  30  12.34386          1.0987e‐14     4.9442e‐13 
Reg7 ID10  30  ‐3.909981         0.00037968       0.017086 
Reg8 UFD10  4  3.436218           0.0014719       0.066235 
Reg9 ND10  30  13.33186          1.0957e‐16     4.9307e‐15 
Reg10 UFD10  4  3.651499          0.00073142       0.032914 
Reg11 UFD10  4  3.18752           0.0027092       0.12191 
Reg12 ID10  30  ‐4.224568         0.00012999      0.0058494 
 
 
 
 
 
29 
> str(type2) 
'data.frame':   45 obs. of  13 variables: 
 $ Country : Factor w/ 45 levels "Algeria","Angola",..: 1 2 3 4 5 6 7 8 9 10 ... 
 $ PC95TEXH: num  164.7 84.2 43.1 249.4 29.4 ... 
 $ PC05TEXH: num  219.5 139 60.6 628.5 73.7 ... 
 $ PC12TEXH: num  439 212.1 69.6 871.8 90.1 ... 
 $ PC95GEXH: num  119 59.5 19.4 130.6 11.4 ... 
 $ PC05GEXH: num  159.6 69.5 30.1 457.2 43.9 ... 
 $ PC12GEXH: num  369.3 131.9 35.8 491.3 49 ... 
 $ UFD00   : num  24 143 41 4 94 40 1 95 24 76 ... 
 $ UFD10   : num  26 162 33 3 72 36 1 79 22 85 ... 
 $ ID00    : num  20 86 26 3 49 25 1 58 16 43 ... 
 $ ID10    : num  23 72 16 1 41 17 1 37 12 44 ... 
 $ ND00    : num  12 36 11 1 20 11 1 23 7 18 ... 
 $ ND10    : num  15 44 10 1 19 13 1 23 7 22 ... 
> summary(type2) 
         Country      PC95TEXH         PC05TEXH        PC12TEXH      
 Algeria     : 1   Min.   :  6.50   Min.   : 15.6   Min.   :  16.5   
 Angola      : 1   1st Qu.: 29.40   1st Qu.: 48.8   1st Qu.:  67.3   
 Benin       : 1   Median : 45.50   Median : 77.1   Median : 107.8   
 Botswana    : 1   Mean   : 94.69   Mean   :149.5   Mean   : 241.4   
 Burkina Faso: 1   3rd Qu.: 94.40   3rd Qu.:135.9   3rd Qu.: 204.9   
 Burundi     : 1   Max.   :629.30   Max.   :739.9   Max.   :1431.7   
 (Other)     :39                                                     
    PC95GEXH         PC05GEXH         PC12GEXH          UFD00        
 Min.   :  0.50   Min.   :  3.70   Min.   :   7.8   Min.   :  1.00   
 1st Qu.: 10.70   1st Qu.: 20.60   1st Qu.:  28.8   1st Qu.:  7.00   
 Median : 18.10   Median : 30.70   Median :  45.7   Median : 41.00   
 Mean   : 49.37   Mean   : 81.88   Mean   : 141.1   Mean   : 86.02   
 3rd Qu.: 48.70   3rd Qu.: 69.50   3rd Qu.: 128.8   3rd Qu.: 94.00   
 Max.   :535.90   Max.   :640.90   Max.   :1116.2   Max.   :934.00   
                                                                    
     UFD10             ID00             ID10            ND00        
 Min.   :  1.00   Min.   :  1.00   Min.   :  1.0   Min.   :  1.00   
 1st Qu.:  6.00   1st Qu.:  5.00   1st Qu.:  4.0   1st Qu.:  2.00   
 Median : 33.00   Median : 26.00   Median : 21.0   Median : 12.00   
 Mean   : 68.87   Mean   : 53.13   Mean   : 38.4   Mean   : 23.47   
 3rd Qu.: 79.00   3rd Qu.: 55.00   3rd Qu.: 44.0   3rd Qu.: 23.00   
 Max.   :830.00   Max.   :567.00   Max.   :470.0   Max.   :245.00   
                                                                    
      ND10        
 Min.   :  1.00   
 1st Qu.:  3.00   
 Median : 13.00   
 Mean   : 22.62   
 3rd Qu.: 23.00   
 Max.   :257.00   
> cor(type2[,2:13]) 
           PC95TEXH   PC05TEXH   PC12TEXH   PC95GEXH   PC05GEXH   PC12GEXH 
PC95TEXH  1.0000000  0.8963071  0.7825579  0.9256020  0.8738156  0.8307543 
PC05TEXH  0.8963071  1.0000000  0.9181442  0.8042933  0.9218915  0.8758135 
PC12TEXH  0.7825579  0.9181442  1.0000000  0.7406167  0.8695250  0.9479927 
PC95GEXH  0.9256020  0.8042933  0.7406167  1.0000000  0.9084133  0.8809864 
PC05GEXH  0.8738156  0.9218915  0.8695250  0.9084133  1.0000000  0.9342122 
PC12GEXH  0.8307543  0.8758135  0.9479927  0.8809864  0.9342122  1.0000000 
UFD00    ‐0.2130300 ‐0.1960245 ‐0.2030396 ‐0.2039303 ‐0.2186197 ‐0.2243362 
UFD10    ‐0.1859243 ‐0.1695941 ‐0.1813526 ‐0.1812701 ‐0.1978687 ‐0.2039448 
ID00     ‐0.2090670 ‐0.1923454 ‐0.1988736 ‐0.2006420 ‐0.2159624 ‐0.2204190 
ID10     ‐0.1816682 ‐0.1663914 ‐0.1770696 ‐0.1777267 ‐0.1937291 ‐0.1988588 
ND00     ‐0.2149649 ‐0.2016752 ‐0.2051136 ‐0.2016774 ‐0.2182470 ‐0.2224618 
ND10     ‐0.1897916 ‐0.1719560 ‐0.1805229 ‐0.1815529 ‐0.1974623 ‐0.2023317 
              UFD00      UFD10       ID00       ID10       ND00       ND10 
PC95TEXH ‐0.2130300 ‐0.1859243 ‐0.2090670 ‐0.1816682 ‐0.2149649 ‐0.1897916 
PC05TEXH ‐0.1960245 ‐0.1695941 ‐0.1923454 ‐0.1663914 ‐0.2016752 ‐0.1719560 
PC12TEXH ‐0.2030396 ‐0.1813526 ‐0.1988736 ‐0.1770696 ‐0.2051136 ‐0.1805229 
PC95GEXH ‐0.2039303 ‐0.1812701 ‐0.2006420 ‐0.1777267 ‐0.2016774 ‐0.1815529 
 
30 
PC05GEXH ‐0.2186197 ‐0.1978687 ‐0.2159624 ‐0.1937291 ‐0.2182470 ‐0.1974623 
PC12GEXH ‐0.2243362 ‐0.2039448 ‐0.2204190 ‐0.1988588 ‐0.2224618 ‐0.2023317 
UFD00     1.0000000  0.9837326  0.9986441  0.9841675  0.9950972  0.9917506 
UFD10     0.9837326  1.0000000  0.9813491  0.9984373  0.9679026  0.9948934 
ID00      0.9986441  0.9813491  1.0000000  0.9829444  0.9966409  0.9915310 
ID10      0.9841675  0.9984373  0.9829444  1.0000000  0.9694700  0.9952155 
ND00      0.9950972  0.9679026  0.9966409  0.9694700  1.0000000  0.9846367 
ND10      0.9917506  0.9948934  0.9915310  0.9952155  0.9846367  1.0000000 
Expenditure 2005 
> summary(type2log) 
    PC95TEXH         PC05TEXH        PC12TEXH        PC95GEXH      
 Min.   :0.8129   Min.   :1.193   Min.   :1.217   Min.   :‐0.301   
 1st Qu.:1.4683   1st Qu.:1.688   1st Qu.:1.828   1st Qu.: 1.029   
 Median :1.6580   Median :1.887   Median :2.033   Median : 1.258   
 Mean   :1.7465   Mean   :1.954   Mean   :2.113   Mean   : 1.350   
 3rd Qu.:1.9750   3rd Qu.:2.133   3rd Qu.:2.312   3rd Qu.: 1.688   
 Max.   :2.7989   Max.   :2.869   Max.   :3.156   Max.   : 2.729   
    PC05GEXH         PC12GEXH          UFD00            UFD10        
 Min.   :0.5682   Min.   :0.8921   Min.   :0.0000   Min.   :0.0000   
 1st Qu.:1.3139   1st Qu.:1.4594   1st Qu.:0.8451   1st Qu.:0.7782   
 Median :1.4871   Median :1.6599   Median :1.6128   Median :1.5185   
 Mean   :1.5973   Mean   :1.7953   Mean   :1.4376   Mean   :1.3523   
 3rd Qu.:1.8420   3rd Qu.:2.1099   3rd Qu.:1.9731   3rd Qu.:1.8976   
 Max.   :2.8068   Max.   :3.0477   Max.   :2.9703   Max.   :2.9191   
      ID00            ID10             ND00            ND10        
 Min.   :0.000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000   
 1st Qu.:0.699   1st Qu.:0.6021   1st Qu.:0.301   1st Qu.:0.4771   
 Median :1.415   Median :1.3222   Median :1.079   Median :1.1139   
 Mean   :1.254   Mean   :1.1161   Mean   :0.938   Mean   :0.9479   
 3rd Qu.:1.740   3rd Qu.:1.6435   3rd Qu.:1.362   3rd Qu.:1.3617   
 Max.   :2.754   Max.   :2.6721   Max.   :2.389   Max.   :2.4099   
> expend <‐data.frame(type2log$PC05TEXH, type2log$PC05GEXH) 
> mort <‐ data.frame (type2log$UFD00, type2log$ UFD10, type2log$ID00, type2log$ID10, type2log$ND00, type2log$ND10) 
> OK <‐complete.cases(expend,mort) 
> ccca<‐cancor(expend[OK,],mort[OK,]) 
> ccca 
$cor 
[1] 0.6317665 0.3706533 
$xcoef 
                        [,1]       [,2] 
type2log.PC05TEXH 0.25222659  1.0012115 
type2log.PC05GEXH 0.09470577 ‐0.8434111 
$ycoef 
                     [,1]        [,2]        [,3]        [,4]       [,5] 
type2log.UFD00 ‐1.3302539 ‐0.06290979 ‐1.94885071  1.25602481 ‐1.0760095 
type2log.UFD10  0.3484259  0.34575788 ‐0.04634281 ‐1.48775584  1.6856152 
type2log.ID00   1.4100238  0.53170842  2.10010546 ‐1.57746324 ‐0.4809551 
type2log.ID10  ‐0.1676133  0.36381980  0.04142259  2.01909388 ‐1.0925449 
type2log.ND00  ‐0.5656447 ‐1.64824239  0.08531634 ‐0.32304602  0.8547105 
type2log.ND10   0.1705373  0.47222108 ‐0.02619021  0.09337854  0.2456990 
                     [,6] 
type2log.UFD00 ‐1.7878817 
type2log.UFD10  1.2030900 
type2log.ID00   0.5829623 
type2log.ID10   0.3455343 
type2log.ND00   0.5902689 
type2log.ND10  ‐0.9375137 
$xcenter 
type2log.PC05TEXH type2log.PC05GEXH  
         1.953798          1.597318  
$ycenter 
type2log.UFD00 type2log.UFD10  type2log.ID00  type2log.ID10  type2log.ND00  
     1.4375796      1.3523235      1.2541245      1.1161151      0.9379719  
 type2log.ND10  
     0.9478903  
> summary(ccca) 
 
31 
        Length Class  Mode    
cor      2     ‐none‐ numeric 
xcoef    4     ‐none‐ numeric 
ycoef   36     ‐none‐ numeric 
xcenter  2     ‐none‐ numeric 
ycenter  6     ‐none‐ numeric 
> rdda<‐rda(expend[OK,],mort[OK,]) 
> rdda 
Call: rda(X = expend[OK, ], Y = mort[OK, ]) 
              Inertia Proportion Rank 
Total          0.4292     1.0000      
Constrained    0.1667     0.3885    2 
Unconstrained  0.2625     0.6115    2 
Inertia is variance  
Eigenvalues for constrained axes: 
    RDA1     RDA2  
0.164933 0.001816  
Eigenvalues for unconstrained axes: 
    PC1     PC2  
0.25120 0.01127  
> plot(rdda) 
Expenditure 2012  
> expend12 <‐data.frame(type2log$PC12TEXH, type2log$PC12GEXH) 
> mort <‐ data.frame (type2log$UFD00, type2log$ UFD10, type2log$ID00, type2log$ID10, type2log$ND00, type2log$ND10) 
> OK <‐complete.cases(expend12,mort) 
> ccca12 <‐cancor(expend12[OK,],mort[OK,]) 
> ccca12 
$cor 
[1] 0.6541995 0.2365056 
$xcoef 
                        [,1]       [,2] 
type2log.PC12TEXH 0.08656742  1.0774556 
type2log.PC12GEXH 0.21318541 ‐0.9196562 
$ycoef 
                     [,1]       [,2]       [,3]       [,4]       [,5] 
type2log.UFD00 ‐1.2053364 ‐0.6583229 ‐1.3734335  0.7705718 ‐1.2113809 
type2log.UFD10  0.1090623  0.4883119 ‐0.5411692 ‐1.1762698  1.5199605 
type2log.ID00   1.6458202  1.2901258  1.6781640 ‐1.1449367 ‐0.1223899 
type2log.ID10  ‐0.2818023 ‐0.2427037  0.1256273  1.8570530 ‐1.3927446 
type2log.ND00  ‐0.5694125 ‐1.4389385  0.4872880 ‐0.5387228  1.0715744 
type2log.ND10   0.1623827  0.6458826 ‐0.1969300  0.2275852  0.2744305 
                      [,6] 
type2log.UFD00 ‐2.38111298 
type2log.UFD10  1.58371100 
type2log.ID00   1.10708377 
type2log.ID10   0.09736615 
type2log.ND00   0.39563066 
type2log.ND10  ‐0.76899942 
$xcenter 
type2log.PC12TEXH type2log.PC12GEXH  
         2.112754          1.795255  
$ycenter 
type2log.UFD00 type2log.UFD10  type2log.ID00  type2log.ID10  type2log.ND00  
     1.4375796      1.3523235      1.2541245      1.1161151      0.9379719  
 type2log.ND10  
     0.9478903  
> rdda12 <‐rda(expend12[OK,],mort[OK,]) 
> rdda12 
Call: rda(X = expend12[OK, ], Y = mort[OK, ]) 
              Inertia Proportion Rank 
Total          0.4893     1.0000      
Constrained    0.2047     0.4184    2 
Unconstrained  0.2846     0.5816    2 
Inertia is variance  
Eigenvalues for constrained axes: 
     RDA1      RDA2  
 
32 
0.2040830 0.0006333  
Eigenvalues for unconstrained axes: 
    PC1     PC2  
0.27391 0.01064  
> plot(rdda12) 
 
> expend95 <‐data.frame(type2log$PC95TEXH, type2log$PC95GEXH) 
> mort <‐ data.frame (type2log$UFD00, type2log$ UFD10, type2log$ID00, type2log$ID10, type2log$ND00, type2log$ND10) 
> OK <‐complete.cases(expend95,mort) 
> ccca<‐cancor(expend95[OK,],mort[OK,]) 
> ccca 
$cor 
[1] 0.6994977 0.3100254 
$xcoef 
                        [,1]       [,2] 
type2log.PC95TEXH 0.06660944  0.8773772 
type2log.PC95GEXH 0.22907259 ‐0.6585852 
$ycoef 
                      [,1]       [,2]        [,3]        [,4]        [,5] 
type2log.UFD00 ‐1.20708317 ‐0.1060889 ‐2.16784849  1.73946259 ‐0.68511662 
type2log.UFD10  0.38616941  0.4910146  0.11621581 ‐2.03093054  1.26932812 
type2log.ID00   0.95348626 ‐0.5139874  2.19106357 ‐1.67922471 ‐0.93209836 
type2log.ID10   0.04566393  0.9328908  0.06985725  1.88383771 ‐1.00816905 
type2log.ND00  ‐0.34496571 ‐0.9789245 ‐0.02747850  0.07542098  1.42980090 
type2log.ND10   0.01333914  0.1955510  0.01406220 ‐0.01910233  0.05312349 
                     [,6] 
type2log.UFD00 ‐1.3566434 
type2log.UFD10  0.7782270 
type2log.ID00   0.2796347 
type2log.ID10   0.3308526 
type2log.ND00   1.0484146 
type2log.ND10  ‐1.0765585 
$xcenter 
type2log.PC95TEXH type2log.PC95GEXH  
         1.746545          1.349832  
$ycenter 
type2log.UFD00 type2log.UFD10  type2log.ID00  type2log.ID10  type2log.ND00  
     1.4375796      1.3523235      1.2541245      1.1161151      0.9379719  
 type2log.ND10  
     0.9478903  
> rdda31<‐rda(expend95[OK,],mort[OK,]) 
> rdda31 
Call: rda(X = expend95[OK, ], Y = mort[OK, ]) 
 
              Inertia Proportion Rank 
Total          0.4778     1.0000      
Constrained    0.2253     0.4715    2 
Unconstrained  0.2525     0.5285    2 
Inertia is variance  
Eigenvalues for constrained axes: 
    RDA1     RDA2  
0.223500 0.001813  
Eigenvalues for unconstrained axes: 
    PC1     PC2  
0.23563 0.01688  
> plot(rdda31) 
 
Principal component analysis  
> pca1 <‐ princomp(type2log, cor=TRUE,scores=TRUE) ######### correlation matrix 
> summary(pca1) 
Importance of components: 
                          Comp.1    Comp.2     Comp.3     Comp.4      Comp.5 
Standard deviation     2.9755211 1.5732152 0.54369657 0.36797783 0.302917671 
Proportion of Variance 0.7378105 0.2062505 0.02463383 0.01128397 0.007646593 
Cumulative Proportion  0.7378105 0.9440610 0.96869480 0.97997877 0.987625368 
                           Comp.6      Comp.7     Comp.8       Comp.9 
 
33 
Standard deviation     0.26580451 0.200503950 0.12978737 0.0978056623 
Proportion of Variance 0.00588767 0.003350153 0.00140373 0.0007971623 
Cumulative Proportion  0.99351304 0.996863190 0.99826692 0.9990640827 
                            Comp.10      Comp.11      Comp.12 
Standard deviation     0.0734262542 0.0655267695 0.0393171153 
Proportion of Variance 0.0004492846 0.0003578131 0.0001288196 
Cumulative Proportion  0.9995133672 0.9998711804 1.0000000000 
> pca2 <‐ princomp(type2log, cor=FALSE,scores=TRUE) ######### covariance matrix  
> summary(pca2) 
Importance of components: 
                          Comp.1    Comp.2     Comp.3     Comp.4      Comp.5 
Standard deviation     1.8398147 0.8387488 0.26442295 0.19669923 0.174423322 
Proportion of Variance 0.7926782 0.1647451 0.01637371 0.00906054 0.007124557 
Cumulative Proportion  0.7926782 0.9574234 0.97379708 0.98285762 0.989982182 
                            Comp.6      Comp.7      Comp.8      Comp.9 
Standard deviation     0.132818086 0.096927625 0.084810118 0.066385757 
Proportion of Variance 0.004131076 0.002200108 0.001684396 0.001032045 
Cumulative Proportion  0.994113258 0.996313366 0.997997761 0.999029806 
                           Comp.10     Comp.11      Comp.12 
Standard deviation     0.047964249 0.031864686 0.0287579929 
Proportion of Variance 0.000538746 0.000237776 0.0001936716 
Cumulative Proportion  0.999568552 0.999806328 1.0000000000 
  
> screeplot(pca1,main="Scree plot for PCA1") 
> screeplot(pca2,main="Scree plot for PCA2") 
> print(loadings(pca1),cutoff=0.00)   
Loadings: 
         Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 
PC95TEXH ‐0.278 ‐0.263 ‐0.621  0.355  0.021 ‐0.009 ‐0.526  0.162 ‐0.112 ‐0.111  
PC05TEXH ‐0.276 ‐0.343 ‐0.058  0.298 ‐0.211 ‐0.411  0.356 ‐0.139  0.031  0.461  
PC12TEXH ‐0.268 ‐0.337  0.378  0.456  0.022  0.256  0.335  0.131  0.113 ‐0.422  
PC95GEXH ‐0.294 ‐0.228 ‐0.411 ‐0.455  0.286  0.478  0.404 ‐0.062 ‐0.006  0.071  
PC05GEXH ‐0.279 ‐0.310  0.102 ‐0.574 ‐0.161 ‐0.544 ‐0.056  0.084 ‐0.001 ‐0.283  
PC12GEXH ‐0.276 ‐0.302  0.514 ‐0.133  0.147  0.284 ‐0.546 ‐0.153 ‐0.040  0.265  
UFD00     0.303 ‐0.261  0.042  0.042  0.357 ‐0.146  0.061  0.016 ‐0.452 ‐0.014  
UFD10     0.301 ‐0.272 ‐0.076  0.046  0.248 ‐0.130 ‐0.024 ‐0.542  0.001 ‐0.462  
ID00      0.300 ‐0.280  0.062  0.021  0.260 ‐0.055  0.070  0.228 ‐0.242  0.408  
ID10      0.299 ‐0.281 ‐0.100 ‐0.011  0.045  0.006 ‐0.105 ‐0.176  0.764  0.203  
ND00      0.302 ‐0.270  0.002 ‐0.110 ‐0.093  0.069 ‐0.018  0.693  0.196 ‐0.145  
ND10      0.285 ‐0.296 ‐0.058 ‐0.081 ‐0.747  0.339 ‐0.005 ‐0.214 ‐0.296  0.007  
         Comp.11 Comp.12 
PC95TEXH  0.116  ‐0.014  
PC05TEXH ‐0.376   0.021  
PC12TEXH  0.277  ‐0.001  
PC95GEXH ‐0.064   0.015  
PC05GEXH  0.271  ‐0.017  
PC12GEXH ‐0.236   0.012  
UFD00     0.039   0.691  
UFD10    ‐0.330  ‐0.363  
ID00      0.386  ‐0.571  
ID10      0.302   0.246  
ND00     ‐0.520  ‐0.025  
ND10      0.115   0.034  
               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 
SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000 
Proportion Var  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083 
Cumulative Var  0.083  0.167  0.250  0.333  0.417  0.500  0.583  0.667  0.750 
               Comp.10 Comp.11 Comp.12 
SS loadings      1.000   1.000   1.000 
Proportion Var   0.083   0.083   0.083 
Cumulative Var   0.833   0.917   1.000 
> print(loadings(pca2),cutoff=0.00)   
Loadings: 
         Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 
PC95TEXH ‐0.163 ‐0.296 ‐0.518 ‐0.152  0.422 ‐0.093 ‐0.434 ‐0.351  0.245 ‐0.006  
PC05TEXH ‐0.151 ‐0.347 ‐0.048 ‐0.021  0.339 ‐0.390  0.323  0.126 ‐0.100 ‐0.096  
 
34 
PC12TEXH ‐0.162 ‐0.377  0.351 ‐0.061  0.451  0.238  0.364  0.046 ‐0.206  0.162  
PC95GEXH ‐0.223 ‐0.354 ‐0.511 ‐0.080 ‐0.424  0.524  0.275  0.139 ‐0.026 ‐0.004  
PC05GEXH ‐0.190 ‐0.400  0.063  0.166 ‐0.504 ‐0.625  0.023 ‐0.015  0.002  0.004  
PC12GEXH ‐0.196 ‐0.407  0.529  0.029 ‐0.139  0.297 ‐0.547 ‐0.014  0.111 ‐0.030  
UFD00     0.400 ‐0.176  0.100 ‐0.381 ‐0.071 ‐0.040  0.145 ‐0.004  0.426 ‐0.022  
UFD10     0.383 ‐0.183 ‐0.090 ‐0.269  0.013 ‐0.097 ‐0.206  0.548  0.014  0.502  
ID00      0.377 ‐0.192  0.116 ‐0.223 ‐0.060  0.054  0.192 ‐0.238  0.156 ‐0.538  
ID10      0.366 ‐0.187 ‐0.134  0.006  0.011  0.003 ‐0.287  0.067 ‐0.729 ‐0.343  
ND00      0.344 ‐0.162  0.001  0.198 ‐0.109  0.051  0.126 ‐0.649 ‐0.181  0.540  
ND10      0.316 ‐0.190 ‐0.107  0.795  0.173  0.113  0.020  0.235  0.324 ‐0.115  
         Comp.11 Comp.12 
PC95TEXH  0.183  ‐0.049  
PC05TEXH ‐0.659   0.119  
PC12TEXH  0.487  ‐0.058  
PC95GEXH ‐0.079   0.031  
PC05GEXH  0.350  ‐0.068  
PC12GEXH ‐0.302   0.053  
UFD00     0.120   0.656  
UFD10    ‐0.049  ‐0.363  
ID00     ‐0.052  ‐0.585  
ID10      0.107   0.257  
ND00     ‐0.201  ‐0.006  
ND10      0.061   0.031  
               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 
SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000 
Proportion Var  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083 
Cumulative Var  0.083  0.167  0.250  0.333  0.417  0.500  0.583  0.667  0.750 
               Comp.10 Comp.11 Comp.12 
SS loadings      1.000   1.000   1.000 
Proportion Var   0.083   0.083   0.083 
Cumulative Var   0.833   0.917   1.000 
> vari1<‐varimax(pca1$loadings[,1:2])  
> vari2<‐varimax(pca2$loadings[,1:2])  
> vscores1<‐pca1$scores[,1:2]%*%vari1$rotmat  
> vscores1 
         [,1]         [,2] 
1   0.3720739 ‐2.955009293 
2   2.4999021 ‐1.327818614 
3   0.4105807  0.871136570 
4  ‐3.2447201 ‐4.360971822 
5   1.5873217  0.733732839 
6   0.5429265  2.041756424 
7  ‐4.1307077 ‐1.201212581 
8   1.7146026  0.586077082 
9  ‐0.2334898  2.435015489 
10  1.5361068  1.632877897 
11 ‐3.8249512  1.084925998 
12 ‐1.3626646 ‐0.602673957 
13  1.7782585  0.036833366 
14  4.0771283  4.664696946 
15 ‐3.3567977 ‐3.746702190 
16 ‐1.1532265  3.646743265 
17  3.8715380  2.858754747 
18 ‐3.2885421 ‐3.631301646 
19 ‐2.3017920  0.357439459 
20  1.4247199  0.051331356 
21  0.9978187  2.012574998 
22 ‐1.7977978  1.092356120 
23  2.3295742  0.864449984 
24 ‐1.9668199 ‐0.707810827 
25 ‐0.7203986  3.001047761 
26  1.2038387  1.876521266 
27  1.2986547  0.997999199 
28  1.8219064  0.985985871 
29 ‐1.1372082 ‐0.302660640 
30 ‐3.4512141 ‐3.817948791 
 
35 
31  2.2244894  1.635346558 
32 ‐3.1002496 ‐3.600526342 
33  1.8583462  2.018351870 
34  5.3608300 ‐0.006155771 
35  0.9581852  1.005744587 
36 ‐4.1250968 ‐0.849891763 
37  0.7298086  0.346200785 
38 ‐4.1852269 ‐5.727464852 
39  0.4873818 ‐0.044551489 
40  1.3677764 ‐4.611692538 
41 ‐3.0836505 ‐3.072763999 
42 ‐0.2937982  1.290569526 
43  2.5093508  1.129988938 
44  2.5854837  1.312551976 
45  1.2097482 ‐0.003853761 
> vscores2<‐pca2$scores[,1:2]%*%vari2$rotmat  
> vscores2 
         [,1]        [,2] 
1   0.2375530 ‐1.45186294 
2   1.7449469 ‐0.66932551 
3   0.3057144  0.40091176 
4  ‐2.2391976 ‐2.04564423 
5   1.1097202  0.33414821 
6   0.3780727  0.97078498 
7  ‐2.9073978 ‐0.60210840 
8   1.1922214  0.32192590 
9  ‐0.1393674  1.13741534 
10  1.0817394  0.79865695 
11 ‐2.6496926  0.49823870 
12 ‐0.9124563 ‐0.31943867 
13  1.2377169  0.05947280 
14  2.8025331  2.26308629 
15 ‐2.3479731 ‐1.77521358 
16 ‐0.7610612  1.70776094 
17  2.6719684  1.31366803 
18 ‐2.2608175 ‐1.68149566 
19 ‐1.5944909  0.18670145 
20  0.9816870 ‐0.00943937 
21  0.6992733  1.00629122 
22 ‐1.2174828  0.58449939 
23  1.6208569  0.39535141 
24 ‐1.3651976 ‐0.36977208 
25 ‐0.5042434  1.41003043 
26  0.8473727  0.87437590 
27  0.9084763  0.43657562 
28  1.2726480  0.45388477 
29 ‐0.7819927 ‐0.17706630 
30 ‐2.5399899 ‐1.80113202 
31  1.5455099  0.73323205 
32 ‐2.1258282 ‐1.70436360 
33  1.3104108  0.98380921 
34  3.7044953  0.01505979 
35  0.6671602  0.44732756 
36 ‐2.9044284 ‐0.35850893 
37  0.5000609  0.16496364 
38 ‐2.9372286 ‐2.74178608 
39  0.3441797  0.07836710 
40  0.9583286 ‐2.15394289 
41 ‐2.1177089 ‐1.46051324 
42 ‐0.1986811  0.61900882 
43  1.7351108  0.57573466 
44  1.7913994  0.58782237 
45  0.8560798 ‐0.03749178 
plot(vscores1[,1],vscores1[,2],col=type2$Country,asp=1,xlab="1st varimax component",ylab="2nd varimax component",main="Varimax Scores 
plot(pca1)", las=1)  
text(vscores1[,1]‐0.1,vscores1[,2]‐0.1,type2$Country,cex=0.7) 
 
36 
arrows(0,0,vari1$loadings [,1],vari1$loadings[,2],col="green") 
text(vari1$loadings[,1],vari1$loadings[,2],names(type2),asp=1,cex=0.7 ,col="blue") 
 
plot(vscores2[,1],vscores2[,2],col=type2$Country,asp=1,xlab="1st varimax component",ylab="2nd varimax component",main="Varimax Scores 
plot(pca2)", las=1)  
text(vscores2[,1]‐0.1,vscores2[,2]‐0.1,type2$Country,cex=0.7) 
arrows(0,0,vari2$loadings [,1],vari2$loadings[,2],col="green") 
text(vari2$loadings[,1],vari2$loadings[,2],names(type2),asp=1,cex=0.7 ,col="blue") 
 
 
plot(pca1$scores[,1],pca1$scores[,2],col=type2$Country,asp=1,xlab="1st principal component",ylab="2nd principal component",main="Scores 
plot pca1")   
text(pca1$scores[,1]‐0.1,pca1$scores[,2]‐0.1,type2$Country,cex=0.7)  
arrows(0,0,pca1$loadings [,1],pca1$loadings[,2],col="red") 
text(pca1$loadings[,1]‐0.1,pca1$loadings[,2]‐0.1,names(type2),asp=1,cex=0.7 ,col="blue") 
 
 
plot(pca2$scores[,1],pca2$scores[,2],col=type2$Country,asp=1,xlab="1st principal component",ylab="2nd principal component",main="Scores 
plot pca2")   
text(pca2$scores[,1]‐0.1,pca2$scores[,2]‐0.1,type2$Country,cex=0.7)  
arrows(0,0,pca2$loadings [,1],pca2$loadings[,2],col="red") 
text(pca2$loadings[,1]‐0.1,pca2$loadings[,2]‐0.1,names(type2),asp=1,cex=0.7 ,col="blue") 
 
biplot(pca1,main="Biplot pca1") 
biplot(pca2,main="Biplot pca2") 
 
 
Reg1ID10 <‐ lm(ID10~ PC05GEXH+ PC05TEXH, data=type2log)  
Reg2ID10 <‐ lm(ID10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH, data=type2log)  
Reg3UFD10 <‐ lm(UFD10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH, data=type2log) 
Reg4ND10 <‐ lm(ND10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH, data=type2log) 
Reg5ND10 <‐ lm(ND10~ PC05TEXH+ PC95TEXH, data=type2log) 
Reg6ND10 <‐ lm(ND10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH+ ID10+ UFD10, data=type2log) 
Reg7ID10 <‐ lm(ID10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH+ ND10+ UFD10, data=type2log) 
Reg8UFD10 <‐ lm(UFD10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH+ ID10+ ND10, data=type2log) 
Reg9ND10 <‐ lm(ND10~ ID10, data=type2log) 
Reg10UFD10 <‐ lm(UFD10 ~ PC05GEXH +ID10, data=type2log) 
Reg11UFD10 <‐ lm(UFD10 ~ ID10, data=type2log) 
Reg12ID10 <‐ lm(ID10~ ND10+ UFD10, data=type2log) 
summary(Reg1ID10) 
summary(Reg2ID10) 
summary(Reg3ID10) 
summary(Reg4ND10) 
summary(Reg5ND10) 
summary(Reg6ND10) 
summary(Reg7ID10) 
summary(Reg8UFD10) 
summary(Reg9ND10) 
summary(Reg10UFD10) 
summary(Reg11UFD10) 
summary(Reg12ID10) 
 
 
> Reg1ID10 <‐ lm(ID10~ PC05GEXH+ PC05TEXH, data=type2log)  
> Reg2ID10 <‐ lm(ID10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH, data=type2log)  
> Reg3UFD10 <‐ lm(UFD10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH, data=type2log) 
> Reg4ND10 <‐ lm(ND10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH, data=type2log) 
> Reg5ND10 <‐ lm(ND10~ PC05TEXH+ PC95TEXH, data=type2log) 
> Reg6ND10 <‐ lm(ND10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH+ ID10+ UFD10, data=type2log) 
> Reg7ID10 <‐ lm(ID10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH+ ND10+ UFD10, data=type2log) 
> Reg8UFD10 <‐ lm(UFD10~ PC05GEXH+ PC05TEXH+ PC95GEXH+ PC95TEXH+ ID10+ ND10, data=type2log) 
> Reg9ND10 <‐ lm(ND10~ ID10, data=type2log) 
> Reg10UFD10 <‐ lm(UFD10 ~ PC05GEXH +ID10, data=type2log) 
> Reg11UFD10 <‐ lm(UFD10 ~ ID10, data=type2log) 
> Reg12ID10 <‐ lm(ID10~ ND10+ UFD10, data=type2log) 
> summary(Reg1ID10) 
 
37 
Call: 
lm(formula = ID10 ~ PC05GEXH + PC05TEXH, data = type2log) 
Residuals: 
     Min       1Q   Median       3Q      Max  
‐1.25751 ‐0.36580  0.00243  0.44775  1.50333  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.27288    0.54868   4.142 0.000162 *** 
PC05GEXH    ‐0.74391    0.51809  ‐1.436 0.158444     
PC05TEXH     0.01612    0.63028   0.026 0.979715     
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.6104 on 42 degrees of freedom 
Multiple R‐squared:  0.2782,    Adjusted R‐squared:  0.2438  
F‐statistic: 8.092 on 2 and 42 DF,  p‐value: 0.001065 
> summary(Reg2ID10) 
Call: 
lm(formula = ID10 ~ PC05GEXH + PC05TEXH + PC95GEXH + PC95TEXH,  
    data = type2log) 
Residuals: 
     Min       1Q   Median       3Q      Max  
‐0.94914 ‐0.34997  0.01544  0.42213  1.34457  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.7753     0.5616   3.161  0.00299 ** 
PC05GEXH     ‐0.1923     0.6205  ‐0.310  0.75822    
PC05TEXH      0.5677     0.8621   0.659  0.51397    
PC95GEXH     ‐0.9201     0.5266  ‐1.747  0.08829 .  
PC95TEXH     ‐0.1256     0.7100  ‐0.177  0.86052    
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.5798 on 40 degrees of freedom 
Multiple R‐squared:  0.3798,    Adjusted R‐squared:  0.3177  
F‐statistic: 6.123 on 4 and 40 DF,  p‐value: 0.0006102 
> summary(Reg3ID10) 
Call: 
lm(formula = UFD10 ~ PC05GEXH + PC05TEXH + PC95GEXH + PC95TEXH,  
    data = type2log) 
Residuals: 
     Min       1Q   Median       3Q      Max  
‐1.14798 ‐0.31673 ‐0.03463  0.39619  1.33012  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   2.0306     0.5784   3.510  0.00112 ** 
PC05GEXH     ‐0.2752     0.6392  ‐0.431  0.66911    
PC05TEXH      0.7153     0.8880   0.805  0.42531    
PC95GEXH     ‐0.9451     0.5424  ‐1.742  0.08915 .  
PC95TEXH     ‐0.2064     0.7314  ‐0.282  0.77925    
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.5973 on 40 degrees of freedom 
Multiple R‐squared:  0.3981,    Adjusted R‐squared:  0.3379  
F‐statistic: 6.613 on 4 and 40 DF,  p‐value: 0.0003494 
> summary(Reg4ND10) 
 
Call: 
lm(formula = ND10 ~ PC05GEXH + PC05TEXH + PC95GEXH + PC95TEXH,  
    data = type2log) 
Residuals: 
     Min       1Q   Median       3Q      Max  
‐0.96955 ‐0.31210  0.01745  0.38764  1.25601  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   1.3982     0.5185   2.697   0.0102 * 
PC05GEXH     ‐0.1416     0.5729  ‐0.247   0.8060   
PC05TEXH      0.6849     0.7960   0.860   0.3947   
PC95GEXH     ‐0.8242     0.4862  ‐1.695   0.0978 . 
PC95TEXH     ‐0.2575     0.6556  ‐0.393   0.6966   
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
38 
Residual standard error: 0.5354 on 40 degrees of freedom 
Multiple R‐squared:  0.3462,    Adjusted R‐squared:  0.2808  
F‐statistic: 5.296 on 4 and 40 DF,  p‐value: 0.001613 
> summary(Reg5ND10) 
Call: 
lm(formula = ND10 ~ PC05TEXH + PC95TEXH, data = type2log) 
Residuals: 
     Min       1Q   Median       3Q      Max  
‐1.10455 ‐0.32213  0.06968  0.38158  1.44247  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.1598     0.4062   5.318 3.77e‐06 *** 
PC05TEXH      0.2124     0.5114   0.415   0.6800     
PC95TEXH     ‐0.9315     0.4955  ‐1.880   0.0671 .   
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.5566 on 42 degrees of freedom 
Multiple R‐squared:  0.2579,    Adjusted R‐squared:  0.2226  
F‐statistic: 7.299 on 2 and 42 DF,  p‐value: 0.001903 
> summary(Reg6ND10) 
Call: 
lm(formula = ND10 ~ PC05GEXH + PC05TEXH + PC95GEXH + PC95TEXH +  
    ID10 + UFD10, data = type2log) 
Residuals: 
     Min       1Q   Median       3Q      Max  
‐0.28540 ‐0.06882 ‐0.01318  0.05960  0.87147  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) ‐0.03657    0.20549  ‐0.178    0.860     
PC05GEXH    ‐0.01190    0.19457  ‐0.061    0.952     
PC05TEXH     0.25679    0.27244   0.943    0.352     
PC95GEXH    ‐0.03069    0.17001  ‐0.181    0.858     
PC95TEXH    ‐0.18526    0.22209  ‐0.834    0.409     
ID10         1.34080    0.28712   4.670  3.7e‐05 *** 
UFD10       ‐0.46567    0.27874  ‐1.671    0.103     
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.1804 on 38 degrees of freedom 
Multiple R‐squared:  0.9295,    Adjusted R‐squared:  0.9183  
F‐statistic: 83.48 on 6 and 38 DF,  p‐value: < 2.2e‐16 
> summary(Reg7ID10) 
Call: 
lm(formula = ID10 ~ PC05GEXH + PC05TEXH + PC95GEXH + PC95TEXH +  
    ND10 + UFD10, data = type2log) 
Residuals: 
      Min        1Q    Median        3Q       Max  
‐0.206511 ‐0.043103  0.000377  0.055819  0.130839  
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) ‐0.096069   0.091262  ‐1.053    0.299     
PC05GEXH     0.048276   0.087281   0.553    0.583     
PC05TEXH    ‐0.143789   0.121913  ‐1.179    0.246     
PC95GEXH    ‐0.001895   0.076598  ‐0.025    0.980     
PC95TEXH     0.096026   0.099726   0.963    0.342     
ND10         0.271952   0.058235   4.670  3.7e‐05 *** 
UFD10        0.734343   0.052201  14.068  < 2e‐16 *** 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.08125 on 38 degrees of freedom 
Multiple R‐squared:  0.9884,    Adjusted R‐squared:  0.9866  
F‐statistic: 541.1 on 6 and 38 DF,  p‐value: < 2.2e‐16 
> summary(Reg8UFD10) 
Call: 
lm(formula = UFD10 ~ PC05GEXH + PC05TEXH + PC95GEXH + PC95TEXH +  
    ID10 + ND10, data = type2log) 
Residuals: 
      Min        1Q    Median        3Q       Max  
‐0.199873 ‐0.061220  0.004548  0.044997  0.277463  
Coefficients: 
 
39 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.20790    0.11044   1.882   0.0674 .   
PC05GEXH    ‐0.07629    0.10860  ‐0.703   0.4866     
PC05TEXH     0.16733    0.15242   1.098   0.2792     
PC95GEXH    ‐0.01512    0.09551  ‐0.158   0.8751     
PC95TEXH    ‐0.10078    0.12483  ‐0.807   0.4245     
ID10         1.14240    0.08121  14.068   <2e‐16 *** 
ND10        ‐0.14694    0.08795  ‐1.671   0.1030     
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.1013 on 38 degrees of freedom 
Multiple R‐squared:  0.9835,    Adjusted R‐squared:  0.9809  
F‐statistic: 378.4 on 6 and 38 DF,  p‐value: < 2.2e‐16 
> summary(Reg9ND10) 
Call: 
lm(formula = ND10 ~ ID10, data = type2log) 
Residuals: 
     Min       1Q   Median       3Q      Max  
‐0.24440 ‐0.06061 ‐0.01183  0.02462  1.01541  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) ‐0.01541    0.05066  ‐0.304    0.762     
ID10         0.86309    0.03854  22.392   <2e‐16 *** 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.1795 on 43 degrees of freedom 
Multiple R‐squared:  0.921,     Adjusted R‐squared:  0.9192  
F‐statistic: 501.4 on 1 and 43 DF,  p‐value: < 2.2e‐16 
> summary(Reg10UFD10) 
Call: 
lm(formula = UFD10 ~ PC05GEXH + ID10, data = type2log) 
Residuals: 
      Min        1Q    Median        3Q       Max  
‐0.200100 ‐0.035128 ‐0.001316  0.035550  0.303160  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.26660    0.07723   3.452  0.00128 **  
PC05GEXH    ‐0.03483    0.03549  ‐0.981  0.33205     
ID10         1.02261    0.02559  39.966  < 2e‐16 *** 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.1012 on 42 degrees of freedom 
Multiple R‐squared:  0.9818,    Adjusted R‐squared:  0.981  
F‐statistic:  1136 on 2 and 42 DF,  p‐value: < 2.2e‐16 
> summary(Reg11UFD10) 
Call: 
lm(formula = UFD10 ~ ID10, data = type2log) 
Residuals: 
      Min        1Q    Median        3Q       Max  
‐0.196194 ‐0.039393  0.002385  0.040477  0.280927  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.19619    0.02856   6.869 1.99e‐08 *** 
ID10         1.03585    0.02173  47.669  < 2e‐16 *** 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.1012 on 43 degrees of freedom 
Multiple R‐squared:  0.9814,    Adjusted R‐squared:  0.981  
F‐statistic:  2272 on 1 and 43 DF,  p‐value: < 2.2e‐16 
> summary(Reg12ID10) 
Call: 
lm(formula = ID10 ~ ND10 + UFD10, data = type2log) 
Residuals: 
      Min        1Q    Median        3Q       Max  
‐0.223507 ‐0.046779  0.009083  0.038863  0.139237  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) ‐0.12621    0.02625  ‐4.809 1.98e‐05 *** 
ND10         0.26492    0.05595   4.735 2.51e‐05 *** 
UFD10        0.73296    0.04813  15.230  < 2e‐16 *** 
 
40 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.07906 on 42 degrees of freedom 
Multiple R‐squared:  0.9879,    Adjusted R‐squared:  0.9873  
F‐statistic:  1713 on 2 and 42 DF,  p‐value: < 2.2e‐16 
> Reg13ID00 <‐ lm(ID00~ PC95GEXH+ PC95TEXH, data=type2log) 
> summary(Reg13ID00) 
Call: 
lm(formula =  
ID00 ~ PC95GEXH + PC95TEXH, data = type2log) 
0.3603 
3.168e‐05 
Residuals: 
     Min       1Q   Median       3Q      Max  
‐1.16781 ‐0.31009 ‐0.01399  0.41798  1.36909  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.33200    0.45444   5.132 *** 
PC95GEXH    ‐0.87670    0.40332  ‐2.174   0.0354 *   
PC95TEXH     0.06042    0.50895   0.119   0.9061     
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.5784 on 42 degrees of freedom 
Multiple R‐squared:  0.3894,    Adjusted R‐squared:  0.3603  
F‐statistic: 13.39 on 2 and 42 DF,  p‐value: 3.168e‐05 
> step(Reg13ID00) 
Start:  AIC=‐46.38 
ID00 ~ PC95GEXH + PC95TEXH 
 
           Df Sum of Sq    RSS     AIC 
‐ PC95TEXH  1   0.00471 14.056 ‐48.362 
<none>                  14.052 ‐46.377 
‐ PC95GEXH  1   1.58081 15.632 ‐43.579 
Step:  AIC=‐48.36 
ID00 ~ PC95GEXH 
           Df Sum of Sq    RSS     AIC 
<none>                  14.056 ‐48.362 
‐ PC95GEXH  1    8.9567 23.013 ‐28.177 
Call: 
lm(formula = ID00 ~ PC95GEXH, data = type2log) 
Coefficients: 
(Intercept)     PC95GEXH   
     2.3783      ‐0.8328 
> Reg14ND00 <‐ lm(ND00~ PC95GEXH+ PC95TEXH, data=type2log) 
> summary(Reg14ND00) 
Call: 
lm(formula =  
ND00 ~ PC95GEXH + PC95TEXH, data = type2log) 
0.3638  
2.825e‐05 
Residuals: 
    Min      1Q  Median      3Q     Max  
‐0.8634 ‐0.3571  0.0345  0.3797  1.3348  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.94348    0.41275   4.709 2.73e‐05 *** 
PC95GEXH    ‐0.78351    0.36632  ‐2.139   0.0383 *   
PC95TEXH     0.02983    0.46226   0.065   0.9489     
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.5254 on 42 degrees of freedom 
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not

More Related Content

Similar to Do dollars decide in africa whether a child should live or not

Experiences in Outsourcing Nonclinical Services Among Public Hospitals in Bot...
Experiences in Outsourcing Nonclinical Services Among Public Hospitals in Bot...Experiences in Outsourcing Nonclinical Services Among Public Hospitals in Bot...
Experiences in Outsourcing Nonclinical Services Among Public Hospitals in Bot...HFG Project
 
Integrating the Nutrition Education and Counseling (NEC) intervention into th...
Integrating the Nutrition Education and Counseling (NEC) intervention into th...Integrating the Nutrition Education and Counseling (NEC) intervention into th...
Integrating the Nutrition Education and Counseling (NEC) intervention into th...Florence Tushemerirwe
 
Challenges Facing utilization of ITNs
Challenges Facing utilization of ITNsChallenges Facing utilization of ITNs
Challenges Facing utilization of ITNsErnest Kirui
 
Alswh major report g sept12
Alswh major report g sept12Alswh major report g sept12
Alswh major report g sept12One Small Planet
 
Dissertation (revised 20150123)
Dissertation (revised 20150123)Dissertation (revised 20150123)
Dissertation (revised 20150123)凱弘 廖
 
Disparity of access_quality_review_of_maternal_mortality_in_5_regions_in_indo...
Disparity of access_quality_review_of_maternal_mortality_in_5_regions_in_indo...Disparity of access_quality_review_of_maternal_mortality_in_5_regions_in_indo...
Disparity of access_quality_review_of_maternal_mortality_in_5_regions_in_indo...tetitejayanti1969
 
Health insurance-2012 acharya-report
Health insurance-2012 acharya-reportHealth insurance-2012 acharya-report
Health insurance-2012 acharya-reportDr Lendy Spires
 
UEA_MSc_IE_2016_Dissertation
UEA_MSc_IE_2016_DissertationUEA_MSc_IE_2016_Dissertation
UEA_MSc_IE_2016_DissertationAminul Khandaker
 
Global-Strategy-Consultations-Round-2_Final-Report_12-June-2015
Global-Strategy-Consultations-Round-2_Final-Report_12-June-2015Global-Strategy-Consultations-Round-2_Final-Report_12-June-2015
Global-Strategy-Consultations-Round-2_Final-Report_12-June-2015Temitayo Erogbogbo
 
Innovation and Diversification Policies for Natural R
Innovation and Diversification Policies  for Natural RInnovation and Diversification Policies  for Natural R
Innovation and Diversification Policies for Natural RLaticiaGrissomzz
 
AIDSTAR-One Report: Community Perceptions of PMTCT Services and Safe Male Cir...
AIDSTAR-One Report: Community Perceptions of PMTCT Services and Safe Male Cir...AIDSTAR-One Report: Community Perceptions of PMTCT Services and Safe Male Cir...
AIDSTAR-One Report: Community Perceptions of PMTCT Services and Safe Male Cir...AIDSTAROne
 
2 supplementary-webappendix-if-lancet-paper
2 supplementary-webappendix-if-lancet-paper2 supplementary-webappendix-if-lancet-paper
2 supplementary-webappendix-if-lancet-paperIndonesia AIDS Coalition
 
2 supplementary-webappendix-if-lancet-paper
2 supplementary-webappendix-if-lancet-paper2 supplementary-webappendix-if-lancet-paper
2 supplementary-webappendix-if-lancet-paperIndonesia AIDS Coalition
 
Health Financing in Botswana: A Landscape Analysis
Health Financing in Botswana: A Landscape AnalysisHealth Financing in Botswana: A Landscape Analysis
Health Financing in Botswana: A Landscape AnalysisHFG Project
 
Medical parasitology
Medical parasitologyMedical parasitology
Medical parasitologynizhgma.ru
 

Similar to Do dollars decide in africa whether a child should live or not (20)

Experiences in Outsourcing Nonclinical Services Among Public Hospitals in Bot...
Experiences in Outsourcing Nonclinical Services Among Public Hospitals in Bot...Experiences in Outsourcing Nonclinical Services Among Public Hospitals in Bot...
Experiences in Outsourcing Nonclinical Services Among Public Hospitals in Bot...
 
Integrating the Nutrition Education and Counseling (NEC) intervention into th...
Integrating the Nutrition Education and Counseling (NEC) intervention into th...Integrating the Nutrition Education and Counseling (NEC) intervention into th...
Integrating the Nutrition Education and Counseling (NEC) intervention into th...
 
MDHS2010 report
MDHS2010 reportMDHS2010 report
MDHS2010 report
 
Challenges Facing utilization of ITNs
Challenges Facing utilization of ITNsChallenges Facing utilization of ITNs
Challenges Facing utilization of ITNs
 
Alswh major report g sept12
Alswh major report g sept12Alswh major report g sept12
Alswh major report g sept12
 
Dissertation (revised 20150123)
Dissertation (revised 20150123)Dissertation (revised 20150123)
Dissertation (revised 20150123)
 
Disparity of access_quality_review_of_maternal_mortality_in_5_regions_in_indo...
Disparity of access_quality_review_of_maternal_mortality_in_5_regions_in_indo...Disparity of access_quality_review_of_maternal_mortality_in_5_regions_in_indo...
Disparity of access_quality_review_of_maternal_mortality_in_5_regions_in_indo...
 
Health insurance-2012 acharya-report
Health insurance-2012 acharya-reportHealth insurance-2012 acharya-report
Health insurance-2012 acharya-report
 
IFEH-magazine-2015_v17-2
IFEH-magazine-2015_v17-2IFEH-magazine-2015_v17-2
IFEH-magazine-2015_v17-2
 
UEA_MSc_IE_2016_Dissertation
UEA_MSc_IE_2016_DissertationUEA_MSc_IE_2016_Dissertation
UEA_MSc_IE_2016_Dissertation
 
Global-Strategy-Consultations-Round-2_Final-Report_12-June-2015
Global-Strategy-Consultations-Round-2_Final-Report_12-June-2015Global-Strategy-Consultations-Round-2_Final-Report_12-June-2015
Global-Strategy-Consultations-Round-2_Final-Report_12-June-2015
 
Innovation and Diversification Policies for Natural R
Innovation and Diversification Policies  for Natural RInnovation and Diversification Policies  for Natural R
Innovation and Diversification Policies for Natural R
 
AIDSTAR-One Report: Community Perceptions of PMTCT Services and Safe Male Cir...
AIDSTAR-One Report: Community Perceptions of PMTCT Services and Safe Male Cir...AIDSTAR-One Report: Community Perceptions of PMTCT Services and Safe Male Cir...
AIDSTAR-One Report: Community Perceptions of PMTCT Services and Safe Male Cir...
 
2 supplementary-webappendix-if-lancet-paper
2 supplementary-webappendix-if-lancet-paper2 supplementary-webappendix-if-lancet-paper
2 supplementary-webappendix-if-lancet-paper
 
2 supplementary-webappendix-if-lancet-paper
2 supplementary-webappendix-if-lancet-paper2 supplementary-webappendix-if-lancet-paper
2 supplementary-webappendix-if-lancet-paper
 
Health Financing in Botswana: A Landscape Analysis
Health Financing in Botswana: A Landscape AnalysisHealth Financing in Botswana: A Landscape Analysis
Health Financing in Botswana: A Landscape Analysis
 
Essential osh revised 2706 final
Essential osh revised 2706 final Essential osh revised 2706 final
Essential osh revised 2706 final
 
“Contraception in adolescence” (WHO) 2004
“Contraception in adolescence” (WHO) 2004“Contraception in adolescence” (WHO) 2004
“Contraception in adolescence” (WHO) 2004
 
Weaving_the_Net
Weaving_the_NetWeaving_the_Net
Weaving_the_Net
 
Medical parasitology
Medical parasitologyMedical parasitology
Medical parasitology
 

More from Université Laval

Defense soheila abachi- june2021
Defense soheila abachi- june2021Defense soheila abachi- june2021
Defense soheila abachi- june2021Université Laval
 
S. abachi outline of proposed research citations
S. abachi outline of proposed research citationsS. abachi outline of proposed research citations
S. abachi outline of proposed research citationsUniversité Laval
 
S. abachi contributions and statements
S. abachi contributions and statementsS. abachi contributions and statements
S. abachi contributions and statementsUniversité Laval
 
Sample scholarship research proposal
Sample scholarship research proposalSample scholarship research proposal
Sample scholarship research proposalUniversité Laval
 
Sample scholarship application
Sample scholarship applicationSample scholarship application
Sample scholarship applicationUniversité Laval
 
S. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicalsS. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicalsUniversité Laval
 
Phytochemical community open house dalhousie university truro campus
Phytochemical community open house dalhousie university truro campusPhytochemical community open house dalhousie university truro campus
Phytochemical community open house dalhousie university truro campusUniversité Laval
 
Impact of health expenditure on child death in africa
Impact of health expenditure on child death in africaImpact of health expenditure on child death in africa
Impact of health expenditure on child death in africaUniversité Laval
 

More from Université Laval (9)

Defense soheila abachi- june2021
Defense soheila abachi- june2021Defense soheila abachi- june2021
Defense soheila abachi- june2021
 
S. abachi outline of proposed research citations
S. abachi outline of proposed research citationsS. abachi outline of proposed research citations
S. abachi outline of proposed research citations
 
S. abachi contributions and statements
S. abachi contributions and statementsS. abachi contributions and statements
S. abachi contributions and statements
 
Sample scholarship research proposal
Sample scholarship research proposalSample scholarship research proposal
Sample scholarship research proposal
 
Sample scholarship application
Sample scholarship applicationSample scholarship application
Sample scholarship application
 
Sample research proposal
Sample research proposalSample research proposal
Sample research proposal
 
S. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicalsS. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicals
 
Phytochemical community open house dalhousie university truro campus
Phytochemical community open house dalhousie university truro campusPhytochemical community open house dalhousie university truro campus
Phytochemical community open house dalhousie university truro campus
 
Impact of health expenditure on child death in africa
Impact of health expenditure on child death in africaImpact of health expenditure on child death in africa
Impact of health expenditure on child death in africa
 

Recently uploaded

Control of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronicControl of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronicMedicoseAcademics
 
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Sheetaleventcompany
 
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...Sheetaleventcompany
 
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptxANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptxSwetaba Besh
 
Shazia Iqbal 2024 - Bioorganic Chemistry.pdf
Shazia Iqbal 2024 - Bioorganic Chemistry.pdfShazia Iqbal 2024 - Bioorganic Chemistry.pdf
Shazia Iqbal 2024 - Bioorganic Chemistry.pdfTrustlife
 
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsAppMost Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsAppjimmihoslasi
 
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...Sheetaleventcompany
 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan 087776558899
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...Sheetaleventcompany
 
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...Sheetaleventcompany
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...Sheetaleventcompany
 
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...Sheetaleventcompany
 
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...Sheetaleventcompany
 
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Sheetaleventcompany
 
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana GuptaLifecare Centre
 
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service DehradunDehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service DehradunSheetaleventcompany
 
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋mahima pandey
 
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Oleg Kshivets
 
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...Sheetaleventcompany
 

Recently uploaded (20)

Control of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronicControl of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronic
 
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
 
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
Premium Call Girls Nagpur {9xx000xx09} ❤️VVIP POOJA Call Girls in Nagpur Maha...
 
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Shahdol Just Call 8250077686 Top Class Call Girl Service Available
 
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptxANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF REPRODUCTIVE SYSTEM.pptx
 
Shazia Iqbal 2024 - Bioorganic Chemistry.pdf
Shazia Iqbal 2024 - Bioorganic Chemistry.pdfShazia Iqbal 2024 - Bioorganic Chemistry.pdf
Shazia Iqbal 2024 - Bioorganic Chemistry.pdf
 
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsAppMost Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
Most Beautiful Call Girl in Chennai 7427069034 Contact on WhatsApp
 
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
Dehradun Call Girls Service {8854095900} ❤️VVIP ROCKY Call Girl in Dehradun U...
 
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
Cara Menggugurkan Kandungan Dengan Cepat Selesai Dalam 24 Jam Secara Alami Bu...
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
 
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
Gorgeous Call Girls Dehradun {8854095900} ❤️VVIP ROCKY Call Girls in Dehradun...
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
 
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
❤️Call Girl Service In Chandigarh☎️9814379184☎️ Call Girl in Chandigarh☎️ Cha...
 
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
 
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
 
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
7 steps How to prevent Thalassemia : Dr Sharda Jain & Vandana Gupta
 
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service DehradunDehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
 
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
 
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
 

Do dollars decide in africa whether a child should live or not