SlideShare a Scribd company logo
1 of 273
The Normal
Skull Base
Normal skull base
• Concept of fossa does not work well for the
skull base, because the bony anatomy spills
over from one fossa to the next.
• Perspective of individual bones
– Components
– Apertures
– Transmitted structures
Normal skull base
• Extend
– root of nose anteriorly to the superior nuchal line
posteriorly
Normal skull base
• 5 bones:
– Frontal
– Ethmoid
– Sphenoid
– Temporal
– Occipital
Normal skull base
• Most important part:
– Basisphenoid (anterior aspect of sella)
– Basiocciput (posterior lip of the foramen magnum)
• The cranial nerves and cerebral vasculature traverse
the skull base here.
Bones Of
Skull Base
Occipital bone
• Floor of the posterior
fossa
• 3 distinct areas:
– Basiocciput (clivus and
jugulare tubercles)
– Condylar (lateral)
portion
– Squamous (posterior)
portion
Occipital bone
• Floor of the posterior
fossa
• 3 distinct areas:
– Basiocciput (clivus and
jugulare tubercles)
– Condylar (lateral)
portion
– Squamous (posterior)
portion
Occipital bone
• Apertures:
– Foramen magnum
– Posterior condylar canal
– Hypoglossal canal
Temporal bone
• Petrous pyramid and mastoid
process form most of the skull
base between the posterior and
middle skull base.
• Apex of the petrous pyramid joins
the anterolateral margin of the
clivus (i.e., basiocciput) and the
posteromedial aspect of the
greater wing of sphenoid along
the basisphenoid synchondrosis.
• Apertures:
– Jugular foramen
– Internal auditory canal
– Facial nerve canal
– Petrous carotid canal
– Eustachian tube
Sphenoid bone
• Mid section of the skull base
• Anterior wall of middle cranial fossa
Sphenoid bone
• 3 compartments:
– Basisphenoid:
• Dorsum sella, posterior
clinoids, sella turcica,
tuberculum sella, sphenoid
sinus
• Fused to clivus in adult
– Greater wing of sphenoid
• Medial two-thirds and anterior
wall of the middle cranial fossa
floor
– Lesser wing of sphenoid
• Medial and superior aspects of
the anterior wall of the middle
cranial fossa and the anterior
clinoids
• Superior and medial edges of
the superior orbital fissure
Sphenoid bone
• 3 compartments:
– Basisphenoid:
• Dorsum sella, posterior
clinoids, sella turcica,
tuberculum sella, sphenoid
sinus
• Fused to clivus in adult
– Greater wing of sphenoid
• Medial two-thirds and anterior
wall of the middle cranial fossa
floor
– Lesser wing of sphenoid
• Medial and superior aspects of
the anterior wall of the middle
cranial fossa and the anterior
clinoids
• Superior and medial edges of
the superior orbital fissure
Sphenoid bone
• Apertures:
– Foramen ovale
– Foramen spinosum
– Foramen rotundum
– Optic canal
– Superior orbital fissure
– Precavernous carotid canal
– Foramen lacerum
• Not a true foramen
• Thinning of skull base, filled with fibrocartilage in life
Frontal bone
• Anterior cranial fossa is
anteriorly and laterally
bound by frontal bone;
majority by orbital plate
of frontal bone
• Foramen caecum
– Indentation in the medial
anterior frontal bone
– Normal (should not be
confused with
cephalocoele)
– Complete bony floor
(protrude through a gap in
the frontal bone)
– Prominent at birth and
gradually shrinks over first
10 years of life
Frontal bone
Ethmoid bone
• 2 distinct pieces:
– Cribriform plate
– Crista galli
Ethmoid bone
• Cribriform plate is
perforated by approx 20
holes on each side of the
crista galli
• Nerve fibres of olfactory
nerve (CN I) pass from nasal
mucosa to olfactory bulb
• Crista galli serves as the
anchor for anterior margin
of the falx cerebri
Ethmoid bone
• Cribriform plate is
perforated by approx 20
holes on each side of the
crista galli
• Nerve fibres of olfactory
nerve (CN I) pass from nasal
mucosa to olfactory bulb
• Crista galli serves as the
anchor for anterior margin
of the falx cerebri
BONES OF BASE OF SKULL IN CT
EMBRYOLOGY
Development of the skull base
• Development of the skull base begins only
after the spinal cord, cranial nerves, and blood
vessels have formed.
• The cranial base is relatively stable during
development as compared with the rapid
growth and expansion of the calvaria.
• Study of fetal developmental anatomy may
lead to a better understanding of congenital
skull base disorders.
The skull base originates predominately from cartilaginous
precursors with a small contribution from membranous bone.
The components of the skull base are derived from neural crest cells
and mesoderm during the fourth week of fetal life to form the
cartilaginous and bony components of the cranial base.
Ossification of the skull base progresses in an
orderly pattern from posterior to anterior.
RADIOGRAPHY
OF SKULL BASE
Submento-vertical
• Position of patient and cassette
– The patient may be imaged erect or supine.
If the patient is unsteady, then a supine
technique is advisable.
• Supine
– The patient’s shoulders are raised and the
neck is hyperextended to bring the vertex of
the skull in contact with the grid cassette or
table.
– The head is adjusted to bring the external
auditory meatuses equidistant from the
cassette.
– The median sagittal plane should be at right-
angles to the cassette along its midline.
– The orbito-meatal plane should be as near as
possible parallel to the cassette.
• Erect
– The patient sits a short distance away from a vertical Bucky.
– The neck is hyperextended to allow the head to fall back
until the vertex of the skull makes contact with the centre
of the vertical Bucky.
Submento-vertical
• Position of patient and cassette
– The patient may be imaged erect or supine.
If the patient is unsteady, then a supine
technique is advisable.
• Supine
– The patient’s shoulders are raised and the
neck is hyperextended to bring the vertex of
the skull in contact with the grid cassette or
table.
– The head is adjusted to bring the external
auditory meatuses equidistant from the
cassette.
– The median sagittal plane should be at right-
angles to the cassette along its midline.
– The orbito-meatal plane should be as near as
possible parallel to the cassette.
• Erect
– The patient sits a short distance away from a vertical Bucky.
– The neck is hyperextended to allow the head to fall back
until the vertex of the skull makes contact with the centre
of the vertical Bucky.
Submento-vertical
• Direction and centring of the
X-ray beam
– The central ray is directed at
right-angles to the orbito-meatal
plane and centred midway
between the external auditory
meatuses.
Submento-vertical
Essential image characteristics
• A correct projection will
show the angles of the
mandible clear of the
petrous portions of the
temporal bone.
• The foramina of the
middle cranial fossa
should be seen
symmetrically either
side of the midline.
Essential image characteristics
POSITIONING
• No rotation is evidenced by
 The lateral borders of the foramen
magnum are equidistant from the
lateral borders of the skull.
• No tilt is evidenced by
• The vomer and the bony nasal
septum are aligned with the long
axis of the film.
Jugular foramina:
Submento-vertical 20 degrees caudad
• The jugular foramina lie in
the posterior cranial fossa
between the petrous
temporal and occipital
bones on each side of the
foramen magnum.
• Both sides are imaged
simultaneously on a -
single image by
undertaking a submento-
vertical (SMV) 20 degrees
caudad projection.
Jugular foramina:
Submento-vertical 20 degrees caudad
• Position of patient and
cassette
– As per the SMV
projection described
previously.
Jugular foramina:
Submento-vertical 20 degrees caudad
• Direction and centring
of the X-ray beam
– Using a well-collimated
beam, the central ray is
angled caudally so that
it makes an angle of 70
degrees to the
orbitomeatal plane and
centred in the midline to
pass midway between
the external auditory
meatuses.
Notes: Alternative Technique
• With the patient’s neck
less extended, the head
can be positioned with
the orbito-meatal plane
at an angle of 20
degrees to the Bucky, in
which case a horizontal
central ray will make
the required angle of 70
degrees to the base
plane (see photograph).
Jugular foramina:
Submento-vertical 20 degrees caudad
The Pathological
Skull Base
Role of imaging
• Diagnosis
• Extend of disease – criteria of surgical
resectability
• Treatment planning – surgical approach
• Follow up – recurrence vs post ttreatment
changes
Anterior skull base lesions
• Bones:
– Orbital plates of frontal
bones
– Cribriform plate of
ethmoid bone
– Planum sphenoidale
Anterior Skull Base Lesions
Common:
Malignant sinonasal tumor (eg., SCC,
RMS)
Meningioma
Metastases
Uncommon
Mucocoele
Osteoma
Polyposis
Inverted papilloma
Esthesioneuroblastoma
Lymphoma
Complicated sinusitis (bacterial,
fungal, granulomatous)
Rare
Cephalocoele
Dermoid cyst
• Lesions arise:
– Extracranially
• From the nasal vault, frontal and ethmoid sinuses
– Intrinsically
• From the skull base itself
– Intracranially
• From the brain, meninges and CSF spaces
• Lesions arise:
– Extracranially
• From the nasal vault, frontal and ethmoid sinuses
– Intrinsically
• From the skull base itself
– Intracranially
• From the brain, meninges and CSF spaces
Extra cranial lesions
• Most arise from the nose and paranasal
sinuses
Common Benign Lesions
Mucocoele
Polyposis
Inverted papilloma
Osteoma
Common Malignant Lesions
Squamous cell carcinoma
Rhabdomyosarcoma
Adenoid cystic carcinoma
Esthesioneuroblastoma
Mucocoele
• Accumulation of
impacted mucus behind
an occluded draining
sinus ostium.
• Obstruction -
Inflammatory > post
traumatic, neoplastic
• Frontal > Ethmoid >
Maxillary > Sphenoid
Mucocoele - Imaging
• Well delineated soft tissue mass with bony
expansion and remodelling.
• Low density on NECT; inspissated secretions
may appear hyperdense.
• MR signal is variable.
• Aggressive bone erosion seen in 10 – 12% of
cases.
Mucocele
A: Coronal T1 magnetic resonance image. The sphenoid sinus is enlarged and its contents are of high signal. Mucocele also
involves the left anterior clinoid (arrow), which is markedly expanded and filled with the same high-signal contents as the
rest of the sinus.
B: Sagittal T1 magnetic resonance image again shows marked enlargement of the left anterior clinoid (large arrow).
Mucopyocoele
• Mucocoeles when
infected
Axial T1 C+ MR shows left frontal mucopyocoele with thick, peripheral enhancement.
Note linear enhancement of the anterior fossa dura (arrows) consistent with meningitis.
Inverted Papilloma
• Benign slow growing
epithelial neoplasm.
• 1 to 4% of sinonasal
neoplasms
• Arise near the nasal vault
near the junction of
ethmoid and maxillary
sinuses.
• The surface epithelium
proliferates by inverting
into underlying stroma
rather than growing
outward.
Inverted Papilloma
• Benign slow growing
epithelial neoplasm.
• 1 to 4% of sinonasal
neoplasms
• Arise near the nasal vault
near the junction of
ethmoid and maxillary
sinuses.
• The surface epithelium
proliferates by inverting
into underlying stroma
rather than growing
outward.
Inverted sinonasal or Schneiderian papilloma shows
endophytic or “inverted” growth pattern. These nests of
squamous epithelial cells grow down into the myxomatous
to fibrous stroma with chronic inflammatory cells and
vascularity
Inverted Papilloma - Imaging
• A unilateral, polypoid nasal
fossa soft tissue mass
• widens the nasal vault
• sometimes destroying bone
and extending into the
adjacent ethmoid and
maxillary sinuses
• Focal erosion of the cribriform
plate with cephalad extension
occassionally occurs. (DD:
sinonasal malignancies)
• No definitive MR findings to
differentiate from various
malignant tumors.
Inverted Papilloma - Imaging
• A unilateral, polypoid nasal
fossa soft tissue mass
• widens the nasal vault
• sometimes destroying bone
and extending into the
adjacent ethmoid and
maxillary sinuses
• Focal erosion of the cribriform
plate with cephalad extension
occassionally occurs. (DD:
sinonasal malignancies)
• No definitive MR findings to
differentiate from various
malignant tumors.
Osteoma
• Benign bony tumor
• Mature well delineated
cortical bone as their
primary component.
• Most common site:
frontal sinus
• Expands and erodes the
posterior and superior
frontal sinus walls
Malignant Sinonasal Tumors
• Intracranial extension
occurs in upto one-third of
cases
• Squamous cell carcinoma
• Esthesioneuroblastoma
• Adenocarcinoma
• Melanoma
• Non-Hodgkin Lymphoma
Rhabdomyosarcoma
• In children the most common extracranial
malignancy that affects the skull base is
Rhabdomyosarcoma.
• It is the most common soft tissue sarcoma in
children.
• Head and neck is the most common site.
• Orbit & nasopharynx > PNS & middle ear
• Anterior skull base invasion or cavernous sinus
invasion - approx. 35% of nasopharyngeal
RMS.
• Bulky soft tissue mass with areas of bone
destruction.
• Isointense to muscle on T1, hyperintense on
T2; some contrast enhancement.
• Meningeal and perineural spread are common
Nasal cavity RMS with extension through
sinonasal roof, along the anterior cranial fossa
Intracranial extension of masticator
fossa RMS through foramen ovale
Other Malignancies
• 98% of nasopharyngeal tumors in adults are
carcinomas.
• Squamous cell carcinoma accounts for 80% of
these tumors, and adenocarcinoma (most
commonly from minor salivary glands) represent
18%.
• Nasopharyngeal carcinomas spread directly into
skull base as well as along muscles and their
tendinous insertions.
• They extend intracranially along neural and
vascular bundles via osseous foramina.
• A nasopharyngeal mass
with obliterated soft
tisssue planes and
adjacent bone
destruction are the
typical imaging findings
with direct tumor
invasion.
• Serous otitis media can
be seen because the
eustachian tube is
frequently obstructed. T1C+ : NP Ca has destroyed large area of skull base
bone (arrows) surrounding the foramen ovale.
Opposite foramen ovale has V3 traversing it (open
arrow).
• Perineural tumor spread most commonly
involves the second and third divisions of
trigeminal nerve and facial nerve.
• Sometimes no dominant mass is present.
• Enhancement of the affected nerve or
denervation atrophy of the muscles of
mastication and face may be the only
detectable abnormalities.
Esthesioneuroblastoma
• Olfactory
neuroblastoma
• Bipolar sensory
receptor cells in the
olfactory mucosa.
(neural crest origin)
• Any age – bimodal peak
(2nd and 4th/5th decade)
Esthesioneuroblastoma - imaging
• Often confined to nasal
cavity; may extend to PNS
or anterior cranial fossa
(through cribriform plate)
• High nasal vault with focal
bone destruction
• Variable signal intensity on
MR
• Moderate but
inhomogenous
enhancement
• CNS dissemination as a late
manifestation
CECT - right nasal cavity ENB with destruction
of the cribriform plate (arrow) and lamina
papyracea (open arrow).
Esthesioneuroblastoma - imaging
• Often confined to nasal
cavity; may extend to PNS
or anterior cranial fossa
(through cribriform plate)
• High nasal vault with focal
bone destruction
• Variable signal intensity on
MR
• Moderate but
inhomogenous
enhancement
• CNS dissemination as a late
manifestation
Miscellaneous
• Bacterial or fungal
sinusitis
Misc
• Sarcoidosis
Misc
• Sinonasal lymphoma
Misc
• Cocaine granulomatosis
– History of coccaine
abuse
– Septal perforation with
nasal inflammatory
changes
Misc
• Wegner granulomatosis
– Soft tissue mass in nose
with septal and non-
septal bone destruction
Enhancing soft tissue in maxillary sinuses
extending into nasopharynx (arrows) with
large septal perforation.
• Lesions arise:
– Extracranially
• From the nasal vault, frontal and ethmoid sinuses
– Intrinsically
• From the skull base itself
– Intracranially
• From the brain, meninges and CSF spaces
Intrinsic anterior skull base lesions
Intrinsic anterior skull base lesions
Fibrous dysplasia
Paget disease
Osteopetrosis
• Lesions arise:
– Extracranially
• From the nasal vault, frontal and ethmoid sinuses
– Intrinsically
• From the skull base itself
– Intracranially
• From the brain, meninges and CSF spaces
Intracranial lesions
• Arise from:
– Meninges
– CSF spaces
– Brain
Meningioma
• Most common meningeal lesion to involve anterior skull
base
• Planum sphenoidale and olfactory groove – 10-15% of all
meningiomas
• Broad based, anterior basal subfrontal mass that enhances
strongly and relatively uniformly after contrast
administration is typical.
• Presence of tumor-brain interface or cleft with compressed
cortex and white matter buckling indicate extraaxial
location.
• Blistering and hyperostosis of the adjacent bone.
• Enlargement of the air-containing ethmoid sinus
(pneumosinus dilatans) or even frank bone destruction is
sometimes observed.
Figure. (A) Enlarged, air-filled ethmoid sinus extending into an isointense intracranial mass on T1-
weighted MRI, which enhances uniformly on contrast agent administration (B). (C) Axial CT shows
expansion of sinus beyond its normal boundaries into the meningioma, where the plate of bone
lining the pneumosinus dilatans is preserved
Mai A et al. Neurology 2003;60:1861-1861
©2003 by Lippincott Williams & Wilkins
Cephalocoele
• The most common
anterior skull base
lesion that arises from
the brain is
nasoethmoidal
cephalocoele.
• 15% of basal
cephalocoeles occur in
the frontonasal area.
Cephalocoele
• The most common
anterior skull base
lesion that arises from
the brain is
nasoethmoidal
cephalocoele.
• 15% of basal
cephalocoeles occur in
the frontonasal area.
Misc
• Nasal dermoid sinuses and nasal cerebral
heterotopias (nasal gliomas) are less common
congenital lesions that occur in this location.
• Occasionally, a slow growing peripherally located
primary brain neoplasms such as
ganglioneuroma cause pressure erosion of the
adjacent skull.
• Frank dural invasion or calvarial destruction can
occur with anaplastic astrocytoma and
glioblastoma multiforme, but uncommon.
Destructive Central Skull Base Lesions
Common
Metastases
Nasopharyngeal malignancy
Haematogenous
Uncommon
Osteomyelitis
Fungal sinusitis
Non fungal granulomas
Wegner granulomatosis
Cocaine abuse
Midline granuloma (probably a lymphoma variant)
Aggressive pituitary adenoma
Lymphoma
Myeloma
Meningioma
Juvenile nasopharyngeal angiofibroma
Chordoma
Rare
Leprosy
Rhinoscleroma
Syphilis
Sarcoidosis
Middle skull base
Central skull base
• It includes:
– Upper clivus
– Sella turcica
– Cavernous sinuses
– Sphenoid alae
Central Skull Base Lesions
• Lesions affecting the central skull base
originate from:
– Cavernous sinus
– Pituitary gland
– Basisphenoid bone
– Nasopharynx
Cavernous sinus
• Multiseptated, extradural venous spaces that
lie on both sides of the sella turcica.
• They communicate extensively with each
other, the intracranial dural sinuses, and deep
facial venous plexuses.
• Lateral wall is composed of
2 layers:
– Thick outer dural layer
– Thin inner membranous layer
• The inner layer is formed by
the perineurium of CNs III,
IV, V1 and sometimes V2.
These nerves lie within the
lateral wall, whereas the
internal carotid artery and
CN VI are inside the
cavernous sinus proper.
• Medially, a thin poorly
delineated medial dural
wall separates the
cavernous sinus from
sella turcica.
• Meckel’s cave and its
contents, the trigeminal
ganglion, CSF, and
investing arachnoid,
invaginate into the
cavernous sinus
posteriorly.
Cavernous Sinus Masses
Unilateral Bilateral
Common Common
Schwannoma Invasive pituitary adenoma
Meningioma Meningioma
Metastasis Metastases
Aneurysm (Cavernous ICA)
Carotid-cavernous fistula
Uncommon Uncommon
Chordoma Lymphoma
Lymphoma Cavernous sinus thrombosis
Rare
Lipoma
Epidermoid
Cavernous haemangioma
Osteocartilagiomnous tumors
Plexiform neurofibroma (NF 1)
CENTRAL SKULL BASE LESIONS
Congenital/Developmental lesions Neoplasms
Cephalocoele Benign
Encephalocoele Pituitary adenoma
Meningocoele Meningioma
Trauma Nerve sheath tumors
Fractures Juvenile nasopharyngeal angiofibroma
CSF fistula Chordoma
Infection and Inflammatory disease Osteocartilaginous tumors
Osteomyelitis Tumor like lesions
Bacteral sinusitis Epidermoid tumor
Fungal sinusitis Lipoma
Wegner granulomatosis Malignant tumors
Leishmaniasis Nasopharyngeal carcinoma
Sarcoidosis Rhabdomyosarcoma
Leprosy, Treponemes, Mycobacteria,
Rhinoscleroma
Multiple myeloma or Solitary
plasmocytoma
Cocaine abuse Osteosarcoma
Midline lethal granuloma (T-cell
lymphoma)
Chondrosarcoma
Miscellaneous Metastatic disease
Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas
Radiation necrosis Lymphoma – primary / secondary
Congenital/Developmental lesions Neoplasms
Cephalocoele Benign
Encephalocoele Pituitary adenoma
Meningocoele Meningioma
Trauma Nerve sheath tumors
Fractures Juvenile nasopharyngeal angiofibroma
CSF fistula Chordoma
Infection and Inflammatory disease Osteocartilaginous tumors
Osteomyelitis Tumor like lesions
Bacteral sinusitis Epidermoid tumor
Fungal sinusitis Lipoma
Wegner granulomatosis Malignant tumors
Leishmaniasis Nasopharyngeal carcinoma
Sarcoidosis Rhabdomyosarcoma
Leprosy, Treponemes, Mycobacteria,
Rhinoscleroma
Multiple myeloma or Solitary
plasmocytoma
Cocaine abuse Osteosarcoma
Midline lethal granuloma (T-cell
lymphoma)
Chondrosarcoma
Miscellaneous Metastatic disease
Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas
Radiation necrosis Lymphoma – primary / secondary
Cephalocoele
• Axial CT scan (b) photographed
with bone window and coronal
CT scan (c) photographed with
soft-tissue window reveal the
presence of a persistent
craniopharyngeal canal (arrow)
in the sphenoid bone.
• Coronal (d) and midsagittal (e) Ti -
weighted MR images through the
central skull base demonstrate
herniation of the pituitary gland
into the craniopharyngeal canal
through the sphenoidal defect
(arrow) . Note the proximity of
the pituitary gland to the roof of
the nasopharynx.
Congenital/Developmental lesions Neoplasms
Cephalocoele Benign
Encephalocoele Pituitary adenoma
Meningocoele Meningioma
Trauma Nerve sheath tumors
Fractures Juvenile nasopharyngeal angiofibroma
CSF fistula Chordoma
Infection and Inflammatory disease Osteocartilaginous tumors
Osteomyelitis Tumor like lesions
Bacteral sinusitis Epidermoid tumor
Fungal sinusitis Lipoma
Wegner granulomatosis Malignant tumors
Leishmaniasis Nasopharyngeal carcinoma
Sarcoidosis Rhabdomyosarcoma
Leprosy, Treponemes, Mycobacteria,
Rhinoscleroma
Multiple myeloma or Solitary
plasmocytoma
Cocaine abuse Osteosarcoma
Midline lethal granuloma (T-cell
lymphoma)
Chondrosarcoma
Miscellaneous Metastatic disease
Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas
Radiation necrosis Lymphoma – primary / secondary
Fractures
• Most commonly occur
as extensions of cranial-
vault fractures.
• Petrous temporal bone
> orbital surface of the
frontal bone >
basiocciput.
Multiple skull-base fractures in a 23-year-old
man after an automobile accident.
CSF fistula
• The most common cause of CSF fistula is skull-base trauma
– Fractures through the frontoethmoidal complex and middle cranial
fossa.
• Nontraumatic cause of leakage:
– Tumors, especially those arising from the pituitary gland
– congenital anomalies, such as encephaloceles
Coronal CT scans through the sphenoid sinus
were obtained before (a) and after (b) the
intrathecal instillation of water-soluble
contrast material. A mass with attenuation
values of soft tissue (arrow in a) is seen
involving the right lateral floor of the
sphenoid sinus. After contrast enhancement
increased attenuation is seen in this region,
consistent with the accumulation of contrast
material (curved arrow in b) . This finding
confirms the presence of a CSF fistula.
Congenital/Developmental lesions Neoplasms
Cephalocoele Benign
Encephalocoele Pituitary adenoma
Meningocoele Meningioma
Trauma Nerve sheath tumors
Fractures Juvenile nasopharyngeal angiofibroma
CSF fistula Chordoma
Infection and Inflammatory disease Osteocartilaginous tumors
Osteomyelitis Tumor like lesions
Bacteral sinusitis Epidermoid tumor
Fungal sinusitis Lipoma
Wegner granulomatosis Malignant tumors
Leishmaniasis Nasopharyngeal carcinoma
Sarcoidosis Rhabdomyosarcoma
Leprosy, Treponemes, Mycobacteria,
Rhinoscleroma
Multiple myeloma or Solitary
plasmocytoma
Cocaine abuse Osteosarcoma
Midline lethal granuloma (T-cell
lymphoma)
Chondrosarcoma
Miscellaneous Metastatic disease
Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas
Radiation necrosis Lymphoma – primary / secondary
Osteomyelitis
• Potentially lethal complication of:
– Immunocompromised states
– Diabetes
– Chronic mastoiditis
– Paranasal sinus inection
– Trauma
– Necrotising otitis externa
• Occasionally in the absence of predisposing
factors
Bacterial sinusitis complicating
Osteomyelitis
• Infection can extend :
– Directly from frontal, ethmoid or sphenoid sinuses
– Intracranially via emissary veins and the cavernous
sinus.
• May result in:
– Cerebral infarct
– Meningitis
– Subdural empyema
– Brain abscess
Left frontal SDE with leptomeningeal enhancement in a
patient with left pansinusitis
Paranasal sinus fungal infections
• 4 different patterns:
– Extramucosal disease with cavitating mycetoma
(fungus ball)
– Allergic fungal sinusitis
– Mucosal thickening from indolent, penetrating
fungal sinusitis
– Fulminant invasive mycosis
• Manifestations include:
– Multiple cranial nerve palsies
– Septic cavernous sinus thrombosis
– Internal carotid occlusion
– Brain infarction
– Brain abscess
Fungal sinusitis - Imaging
• Multisinus nodular mucoperiosteal thickening
• High attenuation foci in soft tissue masses on
CT
17-year-old boy with allergic fungal sinusitis complicated by compression of right optic nerve. Painless decreased
vision had been present in the right eye for 2 months. Coronal (A–C) and axial (D) CT images show high-attenuation
opacification of left maxillary, left ethmoidal, and bilateral sphenoidal sinuses with bone expansion and thinning.
Compression of right optic nerve (straight arrow, B and D) is caused by expanded right anterior clinoid process
(asterisk, B and D). Bone dehiscence is present at left lamina papyracea (curved arrow,A and D) and around left
optic nerve (arrowhead, B and D), and internal carotid arteries (arrows, C). These structures are at risk of injury
during functional endoscopic sinus surgery.
Mycetomas
• Best diagnostic clue: single PNS contains high density
mass with fine round to linear matrix calcifications
• Very hypointense on MR with a high signal rim
surrounding the fungal ball.
Aggressive mycosis
• Extensive skull base destruction
• Cavernous sinus thrombosis, blood vessel
invasion and rapid intracranial dissemination
can occur
• CEMR / CECT – multiple filling defects within
the cavernous sinus.
• Extensive skull base erosion is
indistinguishable from nasopharyngeal
malignancy
• Biopsy-proved aspergillosis in a 23- year
oId black woman with right-sided facial
pain.
• Axial (a) and coronal (b, c) non-contrast-
enhanced CT scans show a large soft-
tissue mass (*) with extensive bone
destruction of the right maxillary sinus (m),
nasopharynx (n), pterygoid plate (p), and
sphenoid sinus (s) . The central high
attenatuation may represent calcium
deposits in mycetoma.
• T1-weighted MR images obtained before
(d) and after (e) administration of
gadopentetate dimeglumine show the
extent of skull base and sinus ivolvement.
• The central low-signal-intensity areas
within the sinus may represent inspissated
secretions or fungal mycetoma containing
metals.
Sarcoidosis
• Due to its propensity for leptomeningeal invasion,
sinus and nasopharyngeal sarcoidosis is recognized as a
more common cause of cranial nerve neuropathy.
• Central nervous system involvement occurs in 3%-8%
of patients with sarcoidosis.
• The most frequent problem is cranial neuropathy
secondary to facial, acoustic, optic, or trigeminal nerve
involvement.
• Sarcoidosis should be considered when both the
meninges and the cranial nerves are involved in a
pathologic process.
Other granulomatous diseases
• Wegner granulomatosis
• Leishmaniasis
• Leprosy
• Rhinoscleroma
• Mycobacteria
• Treponemes
• Cocaine abuse
• Midline lethal granuloma (T-cell lymphoma)
Congenital/Developmental lesions Neoplasms
Cephalocoele Benign
Encephalocoele Pituitary adenoma
Meningocoele Meningioma
Trauma Nerve sheath tumors
Fractures Juvenile nasopharyngeal angiofibroma
CSF fistula Chordoma
Infection and Inflammatory disease Osteocartilaginous tumors
Osteomyelitis Tumor like lesions
Bacteral sinusitis Epidermoid tumor
Fungal sinusitis Lipoma
Wegner granulomatosis Malignant tumors
Leishmaniasis Nasopharyngeal carcinoma
Sarcoidosis Rhabdomyosarcoma
Leprosy, Treponemes, Mycobacteria,
Rhinoscleroma
Multiple myeloma or Solitary
plasmocytoma
Cocaine abuse Osteosarcoma
Midline lethal granuloma (T-cell
lymphoma)
Chondrosarcoma
Miscellaneous Metastatic disease
Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas
Radiation necrosis Lymphoma – primary / secondary
Pituitary Adenoma
• Usually indolent, non agresssive tumors that
expand and slowly erode the bony sella
turcica.
• Typically extend superorly through the
diaphragma sellae and laterlally into the
cavernous sinus.
• Occasionally, some variants behave more
aggressively and may cause extensive
destruction of the central skull base.
Meningioma
• Meningiomas of the central skull base are located
along
– the sphenoid wing,
– diaphragma sellae,
– clivus and
– cavernous sinus
• Focal, globose or flat, en-plaque lesions
• Occasionally, bony destruction or hyperostosis.
• Cavernous sinus meningiomas cause multiple
cranial nerve palsies.
Medial sphenoid wing meningioma
Clival meningioma
Nerve Sheath Tumors
• Those involving the central skull base often
affects the cavernous sinus and Meckel’s cave.
– Plexiform neurofibromas
– Schwanommas
Plexiform neurofibromas
• Unencapsulated diffusely infiltrating masses
that originate along peripheral nerve, usually
ophthalmic division of trigeminal nerve, and
involve BOS by central extension.
• Extension along mandibular and maxillary
divisions of trigeminal nerve is also common.
Schwannoma
• Encapsulated, well delineated tumors.
• Most are quite vascular
• Haemorrhage or necrosis may occur
Trigeminal Schwannoma
• Most common schwannoma to involve the central BOS and
cavernous sinus is a trigeminal schwannoma.
• Its symptoms, signs, and imaging appearance varies with
the part of the nerve involved, direction and extent of
tumor growth.
– Meckel’s cave – extend into skull base
– Cisternal – CP angle mass
• Cisternal and ganglion – “dumbbell” configuration
• Circumscribed, rounded or lobulated soft tissue masses
that enhance strongly but heterogenously.
• Most are isodense with brain on CT
• Isointense on T1WI, hyperintense on T2WI
On an axial T1-weighted image, a normal nonenhancing Meckel’s cave is seen on the
right side (arrow). In the left Meckel’s cave, a heterogeneous enhancing mass
arrowheads) is depicted, extending in the cavernous sinus: trigeminal schwannoma.
Juvenile Angiofibroma
• Highly vascular, locally
invasive lesion
• Originates near
sphenopalatine foramen
• Adolescent males
• Most common benign
nasopharyngeal tumor
• Typically spread along
natural foramina and
fissures into
pterygopalatine fossa, orbit,
middle cranial fossa,
sphenoid sinus, and
cavernous sinus.
• Imaging – strongly
enhancing, highly
vascular
nasopharyngeal soft
tissue mass.
Chordoma
• Slowly growing
destructive tumor
• Histologically benign,
but locally invasive
• One-third in
sphenooccipital region
– Most in midline;
primarily involve clivus
– Other – petrous apex
and Meckel’s cave
Destructive lesion in the central skull base
– T1 hypontense and T2 hyperintense
Osteocartilaginous neoplasms
• Clivus and skull base – cartilaginous
neurocranium by endochondral ossification
vs
• Calvarium – mesenchymal membranous
neurocranium by intramembranous ossification
• Therefore, a spectrum of benign and malignant
osteocartilaginous neoplasms can arise in the
central skull base.
Enchondroma
• The most common benign osteocartilaginous
tumor in this location.
• CT
– Expansile lobulated soft tissue mass with scalloped
endosteal bone resorption and curvilinear matrix
mineralisation
• MRI
– isointense on T1; hyperintense on T2
– Post contrast – enhancement of scalloped margins
and curvilinear septae (ring-and-arc pattern)
Multiple myeloma
• Diffuse skull vault and calvarial vault
destruction.
• Solitary plasmacytoma
– Focal destructive sphenoid sinus or calvarial vault
mass is typical, though nonspecific
– Best diagnostic clue:
• CT shows solitary intraosseous osteolytic soft tissue
mass with nonsclerotic margins
Osteosarcoma
• Craniofacial osteosarcomas are uncommon - when
present, present in older patients, and commonly
affect the maxilla or mandible.
• Skull base osteosarcomas are rare.
– May occur spontaneously or
– In association with Paget disease or previous radiation
therapy.
• A soft tissue mass with tumor matrix mineralisation
and aggressive bone destruction is characteristic.
• DD:
– Radiation osteitis, metastatic carcinoma, myeloma
MRIs of a radiation–induced osteosarcoma in a patient with severe fibrous dysplasia of the skull
and skull base.
(A)Gadolinium–enhanced, T1–weighted axial image with fat suppression shows a large tumor in
the region of the sphenoid and sella.
(B)T2–weighted fast spin–echo, axial and (C) gadolinium–enhanced, T1–weighted coronal image
with fat suppression of the same lesion.
Chondrosarcoma
• Rare in skull base
• Slow growing, locally invasive tumors
• Soft tissue mass with focal bone destruction is
typical.
• Matrix mineralisation in half of cases.
• MR:
– low to intermediate signal on T1
– Hyperintense on T2
– Strong but heterogeneous enhancement
• Chondrosarcoma in a 65-year-
old man with epistaxis and facial
pain.
• (a) Axial CT scan with bone
windows reveals the presence of
a midline destructive lesion
involving the sphenoid body and
extending anteriorly to the
ethmoid bones and nasal fossa
with tumor calcification (arrow),
within the mass.
• (b) Axial T1 -weighted MR image
a relatively homogeneous
midline mass (*) that is slightly
less intense than brain and
associated destruction of the
clivus (arrows) .
• (c) Midsagittal T1-weighted MR
image shows a destructive mass
in the midline of the ethmoid
bones and nasal fossa extending
posteriorly and causing
destruction of the sphenoid
body and clivus(*).
Metastatic disease
• Central skull base metastases are more
common than primary bone neoplasms.
• Arise via
– regional extension of head and neck malignancies
or
– perineural spread from regional or remote
malignancies or
– haematogenous spread from extracranial sites
• Prostate, lung and breast
carcinomas are the most
common.
• Lung and breast – focal or
diffuse lytic destructive
lesions
• Prostate – mixed
hyperostoses and bone
destruction with an
associated soft tissue mass
(resembles meningioma).
– Lateral orbital wall – favourite
site
Lymphoma
• CNS involvement – primary or secondary
• Leptomeningeal involvement (most common type)
• Cranial nerve palsies (most common presenting signs)
• Focal masses or perineural tumor can occur
• MR:
– Replacement of normal high signal marrow with infiltrating
soft tissue that has decreased signal intensity
• Cavernous sinus lymphoma can be unilateral or
bilateral.
Unenhanced (A) and contrast-enhanced (B) axial T1-weighted images reveal
homogeneous infiltrating lesions (arrow) in cavernous sinus, which exhibits
homogeneous, intense enhancement.
Posterior Cranial Fossa
• Largest and the deepest
of the 3 cranial fossae.
• Roughly two-fifths of
the base of skull.
• Surrounds the foramen
magnum
• Includes:
– clivus below the
sphenooccipital
synchondrosis
– petrous temporal bone
– pars lateralis and
– squamae of occipital
bone
NOTE!!!
• MR signal of normal clivus and posterior skull base depends
on the amount and nature of the marrow elements the
comprise the cancellous bone.
• Red marrow (haematopoetic tissue) predominates upto
approximately 3 years of age and results in low and high
intensity portions mixed in various proportions on T1WI.
• Enhancement of normal clivus marrow sometimes follows
contrast administration.
• This is mild and infrequent in adults, but is common and
may even be quite striking in young children.
• The skull base in children normally has signal irregularity
and patchy enhancement.
Posterior Skull Base Lesions
Posterior Skull Base Lesions - location
• CP Angle – IAC cistern
• Temporal bone
• Clival and paraclival
• Jugular foramen
• Foramen magnum
Posterior Skull Base Lesions - location
• CP Angle – IAC cistern
• Temporal bone
• Clival and paraclival
• Jugular foramen
• Foramen magnum
CEREBELLO PONTINE ANGLE –
INTENAL AUDITORY CANAL CISTERN
Normal anatomy
• CPA cistern lies between
the anterolateral surface
of pons & cerebellum
and the posterior surface
of the petrous temporal
bone.
• Important structures:
– Nerves – CNs V, VII and VIII
– Arteries – SCA, AICA
– Tributaries of superior
petrosal veins
– Others – Flocculus, choroid
plexus
CPA-IAC cistern lesions
Normal variants in CPA-lAC
• Normal structures, when unusually prominent, trouble radiologist
evaluating CPA – lAC.
• AICA loop flow void on high-resolution T2 MR
– Will not prominently enhance on Tl1C+ MR
– Subtle enhancement in lAC on TI C+ MR may be mistaken for small acoustic
schwannoma
• Choroid plexus protruding through lateral recess of 4th ventricle
– T1 C+ MR shows enhancing bilateral tear-shaped masses of CPA cistern
– Symmetry &. characteristic appearance make diagnosis
• Cerebellar flocculus is a lobule of cerebellum projecting into
posterolateral aspect of CPA cistern
– Signal follows intensity of cerebellum on all MR sequences
• Marrow space foci in walls of lAC can mimic lAC tumor on Tl C+ MR
images
– Correlate location of foci with lAC cistern
– Bone CT of T-bone may be necessary to identify this normal variant
• High jugular bulb
• Prominent jugular tubercles
Normal variants in CPA-lAC
• Normal structures, when unusually prominent, trouble radiologist
evaluating CPA – lAC.
• AICA loop flow void on high-resolution T2 MR
– Will not prominently enhance on Tl1C+ MR
– Subtle enhancement in lAC on TI C+ MR may be mistaken for small acoustic
schwannoma
• Choroid plexus protruding through lateral recess of 4th ventricle
– T1 C+ MR shows enhancing bilateral tear-shaped masses of CPA cistern
– Symmetry &. characteristic appearance make diagnosis
• Cerebellar flocculus is a lobule of cerebellum projecting into
posterolateral aspect of CPA cistern
– Signal follows intensity of cerebellum on all MR sequences
• Marrow space foci in walls of lAC can mimic lAC tumor on Tl C+ MR
images
– Correlate location of foci with lAC cistern
– Bone CT of T-bone may be necessary to identify this normal variant
• High jugular bulb
• Prominent jugular tubercles
Cerebellopontine angle cistern masses
• Uncommon in children; very common in adults
Cerebellopontine angle cistern masses
Common Uncommon
Acoustic schwannoma (75%) Arachnoid cyst
Meningioma (8 to 10%) Lipoma
Epidermoid (5%) Demoid
Other schwannomas Exophytic cerebellar/brainstem
astrostoma
Vascular (VB ectasia, aneurysm, VM) Chordoma
Metastases Osteocartilaginous tumors
Paraganglioma
Ependymoma
Choroid plexus papilloma
Internal Auditory Canal Masses
Internal Auditory Canal Masses
Common Uncommon
Intracanalicular acoustic
schwannoma
Neuritis (eg., Bell’s palsy, Ramsay
Hunt syndrome)
Post operative fibrosis Haemangioma
Lymphoma
Metastases
Sarcoidosis
Meningioma
Posterior Skull Base Lesions - location
• CP Angle – IAC cistern
• Temporal bone
• Clival and paraclival
• Jugular foramen
• Foramen magnum
TEMPORAL BONE LESIONS
• Primary temporal bone lesions:
– Gradenigo’s syndrome
– Malignant otitis externa
– Cholesterol granulomas
– Paraganglioma (glomus tympanicum)
Gradenigo’s Syndrome
• Osteomyelitis of
petrous apex with sixth
nerve palsy, otorrhea,
and retroorbital pain.
• NECT:
– Destructive lesion of the
petrous apex with fliud
in the adjacent middle
ear and mastoid.
Gradenigo’s Syndrome
• Osteomyelitis of
petrous apex with sixth
nerve palsy, otorrhea,
and retroorbital pain.
• NECT:
– Destructive lesion of the
petrous apex with fliud
in the adjacent middle
ear and mastoid.
Malignant otitis externa
• Uncommon but fulminant
form of temporal bone
osteomyelitis
• Typical in insulin-
dependent diabetics and
immunocompromised
patients
• Extension into parotid
and masticator spaces,
skull base, and
occassionally the CPA
cistern may occur.
Malignant otitis externa
• Uncommon but fulminant
form of temporal bone
osteomyelitis
• Typical in insulin-
dependent diabetics and
immunocompromised
patients
• Extension into parotid
and masticator spaces,
skull base, and
occassionally the CPA
cistern may occur.
Cholesterol granulomas
• Expansile cystic lesions
of petrous apex that
contain haemorrhage
and cholesterol crystals.
• Hyperintense on T1 and
T2
Paragangliomas
• Slow growing
hypervascular tumors
• Arise from neural crest
cells
• Locaised to cochlear
promontory in the
middle ear cavity –
glomus tympanicum
tumors
Paragangliomas
• Glomus
jugulotympanicum
tumors extend from the
jugular foramen into
middle ear cavity.
• Large masses also
extend into CPA cistern.
The axial post-gadolinium T1-weighted image above shows an enhancing lesion involving almost
the entire petrous temporal bone and extending through the external auditory canal to
protrude from the external ear (green arrow). The tumour extended beyond the skull base into
the carotid sheath, and bulged into the posterior fossa
Posterior Skull Base Lesions - location
• CP Angle – IAC cistern
• Temporal bone
• Clival and paraclival
• Jugular foramen
• Foramen magnum
Clival and Paraclival Lesions
• Chordoma and Metastasis are the most common
causes of destructive clival masses.
• The same infectious and inflammatory processes
and primary and metastatic tumors that affect
the anterior and central skull base can also
involve the clivus.
• Replacement of the normal marrow that forms
the cancellous clival bone by soft tissue masses is
easily identified on MR studies in these cases.
• Compared to brain, most abnormalities exhibit
low signal on T1 and high signal on T2WI.
Axial computed tomography shows a large midline
chordoma involving the petrous apex bilaterally.
Posterior Skull Base Lesions - location
• CP Angle – IAC cistern
• Temporal bone
• Clival and paraclival
• Jugular foramen
• Foramen magnum
Jugular foramen
• Jugular foramen:
– Located in the floor of
the posterior fossa,
between the petrous
temporal bone
anterolaterally and the
occipital bone
posteromedially.
– Anterior and inferior to it
is the hypoglossal canal
• Hypoglossal nerve
Divided into:
• Pars nervosa
• (smaller anteromedial
compartment)
• CN IX
• Pars vascularis
• (larger posterolateral
compartment)
• CN X and XI
• Jugular vein
Jugular Foramen Masses
Non Neoplastic Masses
Common
Large jugular bulb (normal variant)
Jugular vein thrombosis
Uncommon
Osteomyelitis
Malignant otitis external
Neoplasms
Common
Paraganglioma
Metastasis
Nasopharyngeal carcinoma
Haematogenous
Uncommon
Scwannoma
neurofibroma
Epidermoid tumor
Prominent jugular bulb
• Normal variant
• Most common “pseudomass” in the jugular
foramen.
Glomus Jugulare
• The glomus jugulare is
situated in the jugular
bulb adventitia
immediately below the
middle ear.
• .
Glomus Jugulare
• Expand the jugular
foramen, eroding the
jugular spine and
surrounding cortex.
Glomus Jugulare
• T1 : low signal
• T2 : high signal
• T1 C+ (Gd) : marked intense
enhancement
• Salt and pepper appearance
is seen on both T1 and T2
weighted sequences; the
salt representing blood
products from haemorrhage
or slow flow and the pepper
representing flow voids due
to high vascularity.
Glomus Jugulare
• T1 : low signal
• T2 : high signal
• T1 C+ (Gd) : marked intense
enhancement
• Salt and pepper appearance
is seen on both T1 and T2
weighted sequences; the
salt representing blood
products from haemorrhage
or slow flow and the pepper
representing flow voids due
to high vascularity.
Glomus Jugulare
• Carotid arteriography
is necessary for
preoperative
evaluation and/or
embolization
Nerve Sheath Tumors
• Jugular foramen is uncommon
location for nerve sheath
tumors.
• Schwannomas of CNs IX to XI
• smooth well delineated
rounded or lobulated soft
tissue masses that expand the
jugular foramen.
• Pressure erosion is common
(frank invasion is rare; c.f.
paragangliomas)
• Isointense to brain on T1;
hyperintense on T2
• Strong homogenous contrast
enhancement
Nerve Sheath Tumors
• Jugular foramen is uncommon
location for nerve sheath
tumors.
• Schwannomas of CNs IX to XI
• smooth well delineated
rounded or lobulated soft
tissue masses that expand the
jugular foramen.
• Pressure erosion is common
(frank invasion is rare; c.f.
paragangliomas)
• Isointense to brain on T1;
hyperintense on T2
• Strong homogenous contrast
enhancement
Nerve Sheath Tumors
• Jugular foramen is uncommon
location for nerve sheath
tumors.
• Schwannomas of CNs IX to XI
• smooth well delineated
rounded or lobulated soft
tissue masses that expand the
jugular foramen.
• Pressure erosion is common
(frank invasion is rare; c.f.
paragangliomas)
• Isointense to brain on T1;
hyperintense on T2
• Strong homogenous contrast
enhancement
Posterior Skull Base Lesions - location
• CP Angle – IAC cistern
• Temporal bone
• Clival and paraclival
• Jugular foramen
• Foramen magnum
FORAMEN MAGNUM MASSES
Normal Aantomy
• Large aperture in the occipital
bone though which posterior
fossa communicates with the
cervical spinal canal.
• It transmits:
– Medulla and its meninges
– Spinal segment of CN XI
– 2 vertebral arteries
– Anterior and posterior spinal
arteries
– Vertebral veins
• Bony elements that contain
these structures are
collectively termed the
craniovertebral junction (CVJ).
CVJ
• Formed by the occiput
and the C1 and C2
vertebrae.
• 4 joints are present here:
– Atlanto occipital
– Anterior median atlanto
axial
– Posterior median atlanto
axial
– Lateral atlanto axial joints
Pathology
• Intraaxial
(cervicomedullary)
masses
• Extramedullary
intradural masses
– Anterior
– Posterior
• Extradural masses
– CVJ
– Clivus & Skull base
Cervicomedullary masses Extradural masses
Common Craniovertbral junction
Syringohydromyelia Trauma
Demyelinating disease Arthropathies
Glioma Congenital anomalies
Fourth ventricle tumor Clivus and skull base
Uncommon Metastases
Haemangioblastoma Chordoma
Metastases Osteocartilaginous tumors
Anterior extramedullary intradural masses Posterior extramedullary intradural masses
Common Common
Vertebrobasilar dolichoectasia Tonsillar herniation
Meningioma Ependymoma/subependymoma
Aneurysm (VA, PICA) Medulloblastoma
Uncommon
Schwannoma
Epidermoid tumor
Paraganglioma
Metastases
Arachnoid cyst
Cervicomedullary masses Extradural masses
Common Craniovertbral junction
Syringohydromyelia Trauma
Demyelinating disease Arthropathies
Glioma Congenital anomalies
Fourth ventricle tumor Clivus and skull base
Uncommon Metastases
Haemangioblastoma Chordoma
Metastases Osteocartilaginous tumors
Anterior extramedullary intradural masses Posterior extramedullary intradural masses
Common Common
Vertebrobasilar dolichoectasia Tonsillar herniation
Meningioma Ependymoma/subependymoma
Aneurysm (VA, PICA) Medulloblastoma
Uncommon
Schwannoma
Epidermoid tumor
Paraganglioma
Metastases
Arachnoid cyst
Intraaxial (cervicomedullary) masses
• Non neoplastic
intraaxial lesions
– Syringohydromyelia
• 25% of patients with
Chiari I malformation
• Acquired syrinxes –
trauma, cystic neoplasms
– Demyelinating diseases
• Including multiple
sclerosis
• In medulla and upper
cervical spinal cord
Cervicothoracic ganglioneuroblastoma
Intraaxial (cervicomedullary) masses
• Non neoplastic
intraaxial lesions
– Syringohydromyelia
• 25% of patients with
Chiari I malformation
• Acquired syrinxes –
trauma, cystic neoplasms
– Demyelinating diseases
• Including multiple
sclerosis
• In medulla and upper
cervical spinal cord
Demyelination extends from the cervicomedullary
junction to the T2 vertebral level. ADEM post liver
transplantation
Intraaxial (cervicomedullary) masses
• Neoplasms
– Half of brain stem gliomas
occur here
– Cephalad extension of cervical
spinal cord tumors into distal
medulla is also common
– Most are low grade
astrocytomas
– Inferior extension of
medulloblastoma in children
and haemangioblastoma in
adults are common are the
common nonglial neoplasms of
the cervicomedullary junction.
– Intraaxial metastases are rare
in this location.
Cervicomedullary masses Extradural masses
Common Craniovertbral junction
Syringohydromyelia Trauma
Demyelinating disease Arthropathies
Glioma Congenital anomalies
Fourth ventricle tumor Clivus and skull base
Uncommon Metastases
Haemangioblastoma Chordoma
Metastases Osteocartilaginous tumors
Anterior extramedullary intradural masses Posterior extramedullary intradural masses
Common Common
Vertebrobasilar dolichoectasia Tonsillar herniation
Meningioma Ependymoma/subependymoma
Aneurysm (VA, PICA) Medulloblastoma
Uncommon
Schwannoma
Epidermoid tumor
Paraganglioma
Metastases
Arachnoid cyst
Extramedullary Intradural Masses
• Anterior foramen
magnum masses
– Most arise anterior to
cervicomedullary
junction.
• Posterior foramen
magnum masses
Cervicomedullary masses Extradural masses
Common Craniovertbral junction
Syringohydromyelia Trauma
Demyelinating disease Arthropathies
Glioma Congenital anomalies
Fourth ventricle tumor Clivus and skull base
Uncommon Metastases
Haemangioblastoma Chordoma
Metastases Osteocartilaginous tumors
Anterior extramedullary intradural masses Posterior extramedullary intradural masses
Common Common
Vertebrobasilar dolichoectasia Tonsillar herniation
Meningioma Ependymoma/subependymoma
Aneurysm (VA, PICA) Medulloblastoma
Uncommon
Schwannoma
Epidermoid tumor
Paraganglioma
Metastases
Arachnoid cyst
Anterior foramen magnum masses
• Vascular lesions
– Ectatic Vertebral Artery
– Aneurysms
• Neoplasms
– Meningioma
– Schwannoma
– Epidermoid tumors
– Paragangliomas
– Metastases
• Non-vascular Non-neoplastic lesions
– Arachnoid, inflammatory and neurenteric cysts
– Extraosseous intradural chordomas
– Intradural rheumatiod nodules
Anterior foramen magnum masses –
vascular lesions
• Ectatic vertebral artery
– Most common intradural
mass anterior to the medulla
– There is no correlation
between neurologic deficit
and the presence of vascular
grooves along the brainstem,
regardless of their size.
• Aneurysms
– Vertebral artery
– Posterior inferior cerebellar
artery
PICA aneurysm
Anterior foramen magnum masses -
neoplasms
• Meningioma:
– The most common primary intradural extramedullary
neoplasm in this location.
• Nerve sheath tumors
– Second most frequently encountered neoplasms
– Schwannomas of CNs IX to XI
– Neurofibromas from exiting spinal nerve segments
• Misc:
– Epidermoid tumors
– Paragangliomas
– Metastases – cistenal, perineural and skull base
Left: Sagittal T2-weighted MR image obtained in a 48-year-old man, demonstrating an anteriorly situated foramen magnum
meningioma (long arrow) causing compression and displacement of the rostral spinal cord (short arrow).
Right: Axial T1-weighted Gd-enhanced MR image obtained at the level of the foramen magnum. The homogeneously
enhancing tumor arises predominantly in an anterior location with some left lateral contribution. The large tumor occupies
slightly more than half of the transverse diameter of the foramen magnum and affords an adequate surgical corridor of
approximately 1 cm. The rostral spinal cord (arrow) is compressed and displaced posteriorly.
Anterior foramen magnum masses -
Non-vascular Non-neoplastic lesions
• They are uncommon.
– Arachnoid, inflammatory and neurenteric cysts
– Extraosseous intradural chordomas or
notochordal remnants
– Intradural rheumatoid nodules
Cervicomedullary masses Extradural masses
Common Craniovertbral junction
Syringohydromyelia Trauma
Demyelinating disease Arthropathies
Glioma Congenital anomalies
Fourth ventricle tumor Clivus and skull base
Uncommon Metastases
Haemangioblastoma Chordoma
Metastases Osteocartilaginous tumors
Anterior extramedullary intradural masses Posterior extramedullary intradural masses
Common Common
Vertebrobasilar dolichoectasia Tonsillar herniation
Meningioma Ependymoma/subependymoma
Aneurysm (VA, PICA) Medulloblastoma
Uncommon
Schwannoma
Epidermoid tumor
Paraganglioma
Metastases
Arachnoid cyst
Posterior Foramen Magnum Masses
• Herniated tonsils
– 5 to 10% of all foramen
magnum masses
– Most frequent
extramedullary
intradural mass posterior
to the cervicomedullary
junction.
Posterior Foramen Magnum Masses
• Herniated tonsils
– Congenital
• Occur with Chiari I
malformations
– Acquired
• Causd by increased
intracranial pressure or
posterior fossa masses.
• After lumboperitoneal
shunting of subarachnoid
spinal space.
• Reported with multiple
traumatic lumbar
punctures
Posterior Foramen Magnum Masses
• Ependymoma
• Subependymoma
• Medulloblastoma
– Are intraaxial neoplastic
masses that sometimes
extend posteroinferiorly
behind the medulla
Posterior Foramen Magnum Masses
• Ependymoma
• Subependymoma
• Medulloblastoma
– Are intraaxial neoplastic
masses that sometimes
extend posteroinferiorly
behind the medulla
Cervicomedullary masses Extradural masses
Common Craniovertebral junction
Syringohydromyelia Trauma
Demyelinating disease Arthropathies
Glioma Congenital anomalies
Fourth ventricle tumor Clivus and skull base
Uncommon Metastases
Haemangioblastoma Chordoma
Metastases Osteocartilaginous tumors
Anterior extramedullary intradural masses Posterior extramedullary intradural masses
Common Common
Vertebrobasilar dolichoectasia Tonsillar herniation
Meningioma Ependymoma/subependymoma
Aneurysm (VA, PICA) Medulloblastoma
Uncommon
Schwannoma
Epidermoid tumor
Paraganglioma
Metastases
Arachnoid cyst
Extradural Masses
• Most extradural masses at the
foramen magnum are osseous
lesions.
– Trauma
– Arthropathies
– Congenital malformations
– Tumors
• High resolution MR delineates
relationship between the osseous
abnormalities, neural canal, and
spinal cord in CVJ malformations.
• Plain film tomography and CT
with multiplanar 3D
reconstruction are helpful for
detailing the complicated osseous
abnormalities seen in these
disorders.
Trauma
• Odontoid fractures
– Relatively common
– 20% of all cervical fractures
– 25 to 40% cause death at
the site of accident.
– Survivors do not
experience immediate
neurologic impairment.
– Late-onset myelopathy
secondary to non united
dens fracture may occur.
– Chronic instability can lead
to spinal stenosis and
irreversible cord damage.
The Anderson and D’Alonzo classification of odontoid fracture. Type I fractures involve
avulsion near the tip of the dens. Type II fractures occur at the base of the odontoid
process. Type III fracture lines extend into the body of the axis.
Trauma
• Odontoid fractures
– CT – delineates the
osseous abnormalities.
– MR – best delineates the
relation to the spinal
subarachnoid space and
cord itself.
Trauma
• Odontoid fractures
– CT – delineates the
osseous abnormalities.
– MR – best delineates the
relation to the spinal
subarachnoid space and
cord itself.
Arthropathies
• True synovial joints
– Full spectrum of degenerative and inflammatory arthropathies
occur.
• Rheumatoid arthritis of spine is second in incidence only to
that of hands and feet.
• Cervical spine is affected in 80% of patients.
• Prominent pannus and atlantoaxial subluxation may cause
severe CVJ narrowing with spinal cord compression.
• Occasionally, rheumatoid nodules may be present within
the dura and perineurium.
• Less common CVJ lesions include:
– Osteoarthritis, Paget disease, CPPD disorders, osteomyelitis with
or without epidural abscess.
MRI of rheumatoid arthritis of the cervical spine.
A sagittal spin-echo T1-weighted MR image shows inflammatory pannus eroding
odontoid (arrow), and cranial settling with cephalad migration of C-2 impinging on the
medulla oblongata (open arrow).
Congenital anomalies
• Congenital CVJ anomalies are relatively uncommon,
and include:
– Vertrabralisation of occipital condyles
– Arch hypoplasias and aplasias
– Os odontoideum
– Odontoid hypoplasia
– Assimilations and
– Ligament laxity
• Occur in isolation or with basilar invagination.
• May be associated with other congenital abnormalities
like Down syndrome, Chiari I malformations, or
syringohydromyelia.
Neoplasms
• Primary and metastatic tumors
• Most extradural tumors affect clivus and are therfore anterior to
medulla.
• Primary neoplasms include:
– Chordoma
– Osteocartilaginous tumors (chondroma, chondrosarcoma)
• Metastases
– Haematogenous
– Local extensions (nasopharyngeal or skull base tumors)
• All lesions replace normal fatty marrow
– Hypointense on T1; hyperintense on T2 (regardless of etiology)
• Exception is Chordoma:
– Very high, but heterogenous signal intensity on T2
Metastasis from a renal cell carcinoma
at the jugular foramen and FM region
Contrast-enhanced computed tomographyshows an
enhancing mass at the base of the left posterior fossa
destroying the lower clivus, occipital squama, and lateral mass
of C1.
MRI shows large enhancing soft tissue mass in the region
of the left jugular foramen and lateral to the foramen
magnum.
DIFFUSE SKULL BASE MASSES
• Lesions that can occur
in any or all BOS
locations
Diffuse Skull Base Lesions
Non Neoplastic Masses
Uncommon
Fibrous dysplasia
Paget’s disease
Langerhans’ cell histiocytosis
Neoplastic Masses
Common
Metastasis
Uncommon
Myeloma
Anaemias
Meningioma
Meningioma
Lymphoma
Rhabdomyosarcoma
Fibrous dysplasia
• Among the most common
skeletal disorders.
• Adolescents and young
adults
• Monoostotic (70%) or
polyostotic
• Skull and facial bone
involvement:
– 25% of patients with
monoostotic FD
– 40 to 60% of patients with
polyostotic FD
• Expands and replaces the normal
bone medullary spaces with
vascular fibrocellular tissue.
• Varying degrees of ossification
may be seen.
• CT:
– Thickened sclerotic bone with a
“ground-glass” appearance.
• Cystic components may be
present in the early active stage.
• MR:
– Low to intermediate signal on T1
and T2; scattered hyperintense
regions may be present.
• Variable contrast enhancement.
• Expands and replaces the normal
bone medullary spaces with
vascular fibrocellular tissue.
• Varying degrees of ossification
may be sen.
• CT:
– Thickened sclerotic bone with a
“ground-glass” appearance.
• Cystic components may be
present in the early active stage.
• MR:
– Low to intermediate signal on T1
and T2; scattered hyperintense
regions may be present.
• Variable contrast enhancement.
Paget disease
• Osseous lesion of
unknown etiology
• Monoostotic or
polyostotic
• Focal or diffuse
• 3 phases are identified:
– Early destructive phase
– Intermediate phase with
combined destruction
and healing
– Late sclerotic phase.
• Imaging findings vary with
stage.
• Both CT and MRI scans show
expanded bone of the skull
base associated with calvarial
involvement.
• MRI better demonstrates the
basilar invagination often
seen because of bone
softening.
CT scan of the skull included an axial view at midcranial level (bone window), which confirmed the
asymmetric broadening of the skull, increased density of the calvarium, and disturbance of the trabecular
architecture due to diffuse mineralisation of the diploe with corticomedullary dedifferentiation.
• Imaging findings vary with
stage.
• Both CT and MRI scans show
expanded bone of the skull
base associated with calvarial
involvement.
• MRI better demonstrates the
basilar invagination often
seen because of bone
softening.
MRI of the skullshows on the axial T2- weighted MR-
image of the posterior fossa showing thickening of the
skull with corticomedullary dedifferentiation and non-
homogeneous, low to intermediate signal intensity of
the diploe.
Langerhan Cell Histiocytosis
• Solitary or monoostotic Eosinophilic
Granuloma is the most common
presentation.
• Children between 5 and 15 years;
occassionally in young to middle-
aged adults.
• Typically affects skull vault
• However, striking diffuse osteolytic
skull base and calvarial lesions can
occur.
• Single or multiple areas of pure
osteolysis are seen in the skull base
and calvarium of children (i.e.,
eosinophilic granuloma).
• A soft tissue mass may be associated
(i.e., Hand-Schuller-Christian or
Letterer-Siwe disease)
Langerhan Cell Histiocytosis
• Solitary or monoostotic Eosinophilic
Granuloma is the most common
presentation.
• Children between 5 and 15 years;
occassionally in young to middle-
aged adults.
• Typically affects skull vault
• However, striking diffuse osteolytic
skull base and calvarial lesions can
occur.
• Single or multiple areas of pure
osteolysis are seen in the skull base
and calvarium of children (i.e.,
eosinophilic granuloma).
• A soft tissue mass may be associated
(i.e., Hand-Schuller-Christian or
Letterer-Siwe disease)
Metastases
• Most common malignancy
of skull base
• Direct or haematogenous
spread
• MC primary – lung, breast
and prostate
• CT – destructive mass
infiltrating the skull base
• MRI – T1WI show a
“muscle” intensity mass
within the skull base with
loss of normal, low intensity
cortical bone signal Metastasis to the sphenoid triangle (greater wing of
sphenoid). The tumor (T) expands in all directions,
pushing the temporalis muscle laterally, extending
into the middle cranial fossa, and impinging on the
orbit causing proptosis.
Myeloma
• Multiple myeloma or
solitary plasmacytoma
is possible
• Indistinguishable from
osteolytic metastases
on CT or MRI
• In the diffuse form, all
bones of the skull base
are involved, with
permeative changes.
Bone window images demonstrates
destruction of clivus, petrous apex,
sphenoid bone, lateral mass of C1, and the
pedicle of C2 on left side
Anemias
CT of the 6 years old with thalassemia showing extensive hypertrophy of the diploic spaces
mostly in the maxillary walls, skull base and frontal bones. Note obliteration of the maxillary,
sphenoid and frontal sinuses. Also note increased trabeculation in the diploë. This results from
bone marrow hypertrophy due to ineffective erythropoiesis.
Interventional Neuroradiology in
Skull Base
Interventional Neuroradiology in Skull Base
• Image guided biopsy
• Radio-frequency Ablation and Cryoablation for Tumors
• Percutaneous Sclerotherapy – venous malformations
• Preoperative Tumor Embolization
• Management of Bleeding from the Head and Neck
– Transarterial Embolization for Epistaxis
– Bleeding from Carcinoma of the Head and Neck
– Carotid Blowout Syndrome
• Other lesions of vascular etiology
– AVF
– Dural AVF – Transverse, Sigmoid
– CCF
– Aneurysms
• Intra-Arterial Chemotherapy for Head and Neck Carcinoma
Image-Guided Biopsies
• A, Paramaxillary approach to the left
parapharyngeal space mass, proven to
be an oncocytoma. Slight turning of
the head to the opposite side simplifies
the approach to this parapharyngeal
space lesion.
• B, Subzygomatic approach to the
masticator space mass via the
intercondylar notch. The core
specimens in this patient with
previously treated squamous cell
carcinoma revealed scar tissue with no
evidence of malignant cells.
• C, CT image in a patient with a mass at
the C2 level reveals a subtle left-sided
epidural soft-tissue (arrow) and
cortical irregularity of the vertebral
body (arrowhead). This image was
acquired with contrast to map the
location of the adjacent vertebral A.
• D, A posterolateral approach to the
epidural mass was planned. A 22-gauge
Franseen needle is advanced through a
guiding needle, and aspiration biopsy is
performed. Aspiration biopsy was
consistent with a diagnosis of
chordoma
Radio-frequency Ablation and
Cryoablation for Tumors
• A 59-year-old man with severe
dyspnea and dysphagia secondary
to a large squamous cell
carcinoma treated with radio-
frequency ablation.
• A, Axial contrast-enhanced CT scan
demonstrates a large necrotic
tumor (arrows) in the floor of the
mouth and hypopharynx.
• B, 3D volume-rendered
reconstruction demonstrates the
radio-frequency probe and
electrode deployment within the
tumor by means of a submental
approach.
• Note that the tumor anterior and
posterior to the hyoid bone could
be ablated simultaneously.
Left cheek venous
vascular malformation
(A)Clinical picture before treatment
showing left cheek mass.
(B)T2-weighted, fat-saturated axial MR
image showing a mass with
heterogeneous signal intensity in the
left masseter muscle extending to the
masticator space.
(C)Injection of 75% ethanol mixed with
Ethiodol under live subtraction mode
showing accumulation of the sclerosing
agent in the lesion.
(D)Further injection of the sclerosing
agent with compression of the venous
outflow of the lesion.
(E)Non-subtracted image of the head
after sclerotherapy showing stasis of
the sclerosing agent within the lesion.
(F)Clinical picture 5 months after
treatment showing decreased size of
the left cheek mass.
Preoperative Tumor Embolization
• The tumors that require embolization in the head and neck most
commonly include
– glomus tumors,
– angiofibromas, and
– meningiomas.
• Many other types of tumors that may also require preoperative
embolization include the following:
– hypervascular metastases,
– esthesioneuroblastomas,
– schwannomas,
– rhabdomyosarcomas,
– plasmacytomas,
– chordomas, and
– hemangiopericytomas.
Preoperative Tumor Embolization
• The embolic agents in common use are:
– polyvinyl alcohol (PVA),
– Embospheres (Bio- Sphere Medical, Rockland, Mass),
– liquid embolic agents (glue, ethylvinyl alcohol copolymer, or Onyx),
– gelatin sponge (Gelfoam), and
– coils.
Glomus jugulare tumor.
• (A) Contrast-enhanced head CT shows an enhancing
mass extending into right temporal bone at cerebellar
pontine angle level (arrow).
• (B) Bony expansion and destruction at jugular fossa
level (arrow) is seen on thin section temporal bone CT.
• (C) Axial and (D) coronal contrast-enhanced MRI shows
a corresponding intensely enhancing mass (arrows),
consistent with glomus jugulare paraganglioma tumor.
• Diagnostic angiography confirms dense tumor blush,
consistent with glomus tumor.
• Multiple feeding arteries were found, indicating a
multicompartmental tumor, and these feeding
pedicles were embolized to stasis with polyvinyl
alcohol particles.
• (E) Lateral view during injection of a common trunk of
the right occipital artery and ascending pharyngeal
shows dense stain from ascending pharyngeal artery.
AP, ascending pharyngeal artery; Occ, occipital artery.
• (F) Tumor blush seen on selective catheterization of a
feeding pedicle from posterior division of the right
ascending pharyngeal artery.
Juvenile nasal angiofibroma
• (A) Axial and (B) coronal T1-weighted
MRI with contrast confirms the
intensely enhancing mucosal mass in
left nasal cavity, with rightward
displacement of the nasal septum
(arrows).
• (C) Unsubtracted and (D) subtracted
cerebral angiogram demonstrates
intense tumor blush in nasal cavity
during internal maxillary artery.
• (E) Postembolization angiogram of
the sphenopalatine artery shows no
residual tumor blush.
• The tumor subsequently was
resected endoscopically, with an
estimated total blood loss of 75 cm3.
Bleeding from Carcinoma of the Head
and Neck
• An elderly man with a recurrent head and neck cancer presenting with pulsatile bleeding
through the oral cavity.
• A, CT angiogram of the neck shows an ulcerated left oropharyngeal mass (arrowheads) that
encases the left ECA (arrow).
• B, Common carotid angiogram reveals a long-segment tumor encasement of the left ECA. C,
The ECA is embolized with fibered and detachable platinum coils. The patient did not have
additional episodes of bleeding after the embolization.
Maxillary arteriovenous
malformation
• (A) Clinical picture before treatment
showing a soft tissue pulsatile mass in
the left gingiva and palate.
• (B, C) Early (B) and late (C) phases of the
left external carotid artery angiogram in
the lateral projection showing a left
maxillary arteriovenous malformation
with large draining venous channel inside
the maxilla.
• (D) Lateral view of the superselective
angiogram of the left descending
palatine artery showing arteriovenous
shunts to the intraosseous vein.
• (E) N-butyl cyanoacrylate (NBCA) cast
injected from the same microcatheter
position as in (D), showing penetration of
NBCA into the vein.
• (F) Lateral view of the external carotid
artery angiogram after multiple
embolization showing disappearance of
the arteriovenous malformation.
• (G) Clinical picture after embolization
showing ulceration of the left palate. No
further hemorrhagic episodes were
experienced.
Lower-grade dural arteriovenous
fistula of the left sigmoid sinus
• Study confirms low-grade dural arteriovenous
fistula of the left sigmoid sinus, with multiple
feeding arteries, including (A) occipital artery,
(B) ascending pharyngeal artery, (C) middle
meningeal artery, and (D), and left vertebral
artery.
• Each of these feeding arteries was embolized to
stasis using polyvinyl alcohol particles. Coils
were placed in the distal occipital artery to
protect the cutaneous branches from the effects
of the proximal embolization (∗, seen in B).
• Following transarterial embolization of the
feeding arteries, transvenous embolization was
performed for a combined transarterial-
transvenous approach, resulting in complete
obliteration of the fistula.
• This combined transarterial and transvenous
treatment results in durable cure of this fistula
without open surgery.
Higher-grade dural arteriovenous
fistula of the torcular region
• Diagnostic angiogram confirms
DAVF of the torcular region, with
supply from multiple arteries
including the middle meningeal
artery and opacification of
multiple cerebellar veins.
• Transvenous embolization of this
fistula is not practical.
• After transarterial embolization
with NBCA tissue adhesive,
resulting in a glue cast of the
distal feeding arteries and
proximal recipient veins, the
fistula is obliterated.
• CV, cerebellar veins; MC,
microcatheter in middle
meningeal artery; MMA, middle
meningeal artery.
Direct (high-flow) carotid cavernous
fistula – post traumatic
• (A) Coronal T1-weighted MRI
shows dilated superior
ophthalmic vein (SOV).
• (B) Axial image from MR
angiogram also shows a dilated
superior ophthalmic vein (SOV).
• (C) Angiogram of left internal
carotid artery (IAC) (lateral
projection) confirms a fistula
(CCF) with opacification of
cavernous sinus and retrograde
flow in superior ophthalmic vein
(SOV), draining to facial veins
(FV).
• (D) After embolization with
detachable balloons, the fistula is
closed.
Symptomatic mid-basilar aneurysm
• (A) 3-D reconstructions from
magnetic resonance
angiography.
• (B) Diagnostic cerebral
angiogram, anteroposterior
projection from
• (C) 3-D rotational angiography.
(D) Lateral projection from
cerebral angiogram obtained
after endovascular treatment
with a combination of
endovascular stents for
reconstruction of the arterial
lumen, followed by coiling.
• Patient's symptoms resolved
following this treatment.
Intra-Arterial Chemotherapy for Head
and Neck Carcinoma
ADVANCES
Advances in Skull Base Imaging
• Advances in the areas of diagnostic imaging,
interventional radiology, surgical approaches
and techniques, as well as electrophysiological
monitoring, have all advanced the treatment
of skull base tumors and disorders.
Advances in CT & MR technologies
• Better and precise diagnosis
• Facilitated aggressive skull base surgery by
allowing precise preoperative delineation of
the extent of lesions
• Post operative follow-up
Advanced image-guided skull base surgery.
Advanced image-guided skull base surgery.
The early localization of the major vessels or neural structures during transtumoral
decompression is beneficial. A: Instrument points to the petrous portion of the internal carotid
artery (ICA) during decompression of a cavernous sinus meningioma.
B: Instrument points to the basilar artery (BA) during removal of a craniopharyngioma
CT/MR Fusion For Skull Base Imaging
CT/MR Fusion For Skull Base Imaging
• A: Axial CT visualized at bone window
settings demonstrates lytic lesion with well-
defined margins in left petrous apex (M).
Note extent of bone erosion involving cortex
of the posterior petrous portion of the
temporal bone (curved arrow) and bony
covering (straight arrows) of the petrous
segment of the internal carotid artery (C).
• B: Axial T1-weighted noncontrast- enhanced
MR imaging performed in same patient
shows a high signal intensity mass located
within the left petrous apex (curved arrow)
which is characteristic of a cholesterol
granuloma. Note relationship of the mass to
the basilar artery (straight arrow).
• There is excellent visualization of the soft
tissues of the brain and masticator spaces
(M); however, the relationship of the mass to
the carotid artery (c) and the extent of bone
erosion is better seen on CT than on MR
imaging.
CT/MR Fusion For Skull Base Imaging
Conclusion
• The central skull base is a highly complex
region.
• Knowledge of the normal development and
anatomic relationships will lead to more
accurate diagnoses.
• This in turn helps in decision making,
especially regarding challenging surgical
procedures.
Skull Base Bones and Anatomy

More Related Content

Similar to Skull Base Bones and Anatomy

Exraoral and intraoral radiography
Exraoral and intraoral radiographyExraoral and intraoral radiography
Exraoral and intraoral radiographyRahma Mohammed
 
Mastoid diseases imaging
Mastoid diseases imagingMastoid diseases imaging
Mastoid diseases imagingMilan Silwal
 
temporalbone-141009084034-conversion-gate02 (1).pdf
temporalbone-141009084034-conversion-gate02 (1).pdftemporalbone-141009084034-conversion-gate02 (1).pdf
temporalbone-141009084034-conversion-gate02 (1).pdfjoanluciya
 
Temporal bone radiology
Temporal bone radiologyTemporal bone radiology
Temporal bone radiologySatish Naga
 
Radiographic technique of skull
Radiographic technique of skullRadiographic technique of skull
Radiographic technique of skullSaruGosain
 
SKULL_RADIOGRAPHY.G.pptx
SKULL_RADIOGRAPHY.G.pptxSKULL_RADIOGRAPHY.G.pptx
SKULL_RADIOGRAPHY.G.pptxDavidKimunyan
 
SKULL_RADIOGRAPHY.G.pptx
SKULL_RADIOGRAPHY.G.pptxSKULL_RADIOGRAPHY.G.pptx
SKULL_RADIOGRAPHY.G.pptxDavidKimunyan
 
X ray c-spine
X ray c-spine X ray c-spine
X ray c-spine Rajaoct
 
Skull x ray plain evaluations
Skull  x ray  plain evaluations Skull  x ray  plain evaluations
Skull x ray plain evaluations Tarek Mansour
 
Roentgenology of skull
Roentgenology of skullRoentgenology of skull
Roentgenology of skullakshay_gursale
 
Skull base anatomy by Dr. Aditya Tiwari
Skull base anatomy by Dr. Aditya TiwariSkull base anatomy by Dr. Aditya Tiwari
Skull base anatomy by Dr. Aditya TiwariAditya Tiwari
 
Ct temporal bone
Ct temporal bone Ct temporal bone
Ct temporal bone Yasha Gupta
 
positioningofskull-130812100608-phpapp01.pdf
positioningofskull-130812100608-phpapp01.pdfpositioningofskull-130812100608-phpapp01.pdf
positioningofskull-130812100608-phpapp01.pdfEmmanuelOluseyi1
 
Basic Skull Anatomy
Basic Skull AnatomyBasic Skull Anatomy
Basic Skull AnatomyHadi Munib
 
THE BONY PELVIS - Maternal pelvis and fetal skull.ppt
THE BONY PELVIS - Maternal pelvis and fetal skull.pptTHE BONY PELVIS - Maternal pelvis and fetal skull.ppt
THE BONY PELVIS - Maternal pelvis and fetal skull.pptPuiteaChhangte
 
FETAL SKULL.pptx
FETAL SKULL.pptxFETAL SKULL.pptx
FETAL SKULL.pptxMrsP6
 
fetalskullandmaternalpelvis-by teju.pptx
fetalskullandmaternalpelvis-by teju.pptxfetalskullandmaternalpelvis-by teju.pptx
fetalskullandmaternalpelvis-by teju.pptxDrTejaswini7
 

Similar to Skull Base Bones and Anatomy (20)

Exraoral and intraoral radiography
Exraoral and intraoral radiographyExraoral and intraoral radiography
Exraoral and intraoral radiography
 
Mastoid diseases imaging
Mastoid diseases imagingMastoid diseases imaging
Mastoid diseases imaging
 
temporalbone-141009084034-conversion-gate02 (1).pdf
temporalbone-141009084034-conversion-gate02 (1).pdftemporalbone-141009084034-conversion-gate02 (1).pdf
temporalbone-141009084034-conversion-gate02 (1).pdf
 
Temporal bone radiology
Temporal bone radiologyTemporal bone radiology
Temporal bone radiology
 
Radiographic technique of skull
Radiographic technique of skullRadiographic technique of skull
Radiographic technique of skull
 
SKULL_RADIOGRAPHY.G.pptx
SKULL_RADIOGRAPHY.G.pptxSKULL_RADIOGRAPHY.G.pptx
SKULL_RADIOGRAPHY.G.pptx
 
SKULL_RADIOGRAPHY.G.pptx
SKULL_RADIOGRAPHY.G.pptxSKULL_RADIOGRAPHY.G.pptx
SKULL_RADIOGRAPHY.G.pptx
 
X ray c-spine
X ray c-spine X ray c-spine
X ray c-spine
 
Fetal skull
Fetal skullFetal skull
Fetal skull
 
Skull x ray plain evaluations
Skull  x ray  plain evaluations Skull  x ray  plain evaluations
Skull x ray plain evaluations
 
Roentgenology of skull
Roentgenology of skullRoentgenology of skull
Roentgenology of skull
 
Skull base anatomy by Dr. Aditya Tiwari
Skull base anatomy by Dr. Aditya TiwariSkull base anatomy by Dr. Aditya Tiwari
Skull base anatomy by Dr. Aditya Tiwari
 
Ct temporal bone
Ct temporal bone Ct temporal bone
Ct temporal bone
 
positioningofskull-130812100608-phpapp01.pdf
positioningofskull-130812100608-phpapp01.pdfpositioningofskull-130812100608-phpapp01.pdf
positioningofskull-130812100608-phpapp01.pdf
 
Positioning of skull
Positioning of skullPositioning of skull
Positioning of skull
 
Basic Skull Anatomy
Basic Skull AnatomyBasic Skull Anatomy
Basic Skull Anatomy
 
THE BONY PELVIS - Maternal pelvis and fetal skull.ppt
THE BONY PELVIS - Maternal pelvis and fetal skull.pptTHE BONY PELVIS - Maternal pelvis and fetal skull.ppt
THE BONY PELVIS - Maternal pelvis and fetal skull.ppt
 
FETAL SKULL.pptx
FETAL SKULL.pptxFETAL SKULL.pptx
FETAL SKULL.pptx
 
fetalskullandmaternalpelvis-by teju.pptx
fetalskullandmaternalpelvis-by teju.pptxfetalskullandmaternalpelvis-by teju.pptx
fetalskullandmaternalpelvis-by teju.pptx
 
The orbit of eye
The orbit of eyeThe orbit of eye
The orbit of eye
 

Recently uploaded

VIP Call Girl Cuttack Aashi 8250192130 Independent Escort Service Cuttack
VIP Call Girl Cuttack Aashi 8250192130 Independent Escort Service CuttackVIP Call Girl Cuttack Aashi 8250192130 Independent Escort Service Cuttack
VIP Call Girl Cuttack Aashi 8250192130 Independent Escort Service CuttackSuhani Kapoor
 
do's and don'ts in Telephone Interview of Job
do's and don'ts in Telephone Interview of Jobdo's and don'ts in Telephone Interview of Job
do's and don'ts in Telephone Interview of JobRemote DBA Services
 
办理学位证(纽伦堡大学文凭证书)纽伦堡大学毕业证成绩单原版一模一样
办理学位证(纽伦堡大学文凭证书)纽伦堡大学毕业证成绩单原版一模一样办理学位证(纽伦堡大学文凭证书)纽伦堡大学毕业证成绩单原版一模一样
办理学位证(纽伦堡大学文凭证书)纽伦堡大学毕业证成绩单原版一模一样umasea
 
Ioannis Tzachristas Self-Presentation for MBA.pdf
Ioannis Tzachristas Self-Presentation for MBA.pdfIoannis Tzachristas Self-Presentation for MBA.pdf
Ioannis Tzachristas Self-Presentation for MBA.pdfjtzach
 
VIP Call Girls in Cuttack Aarohi 8250192130 Independent Escort Service Cuttack
VIP Call Girls in Cuttack Aarohi 8250192130 Independent Escort Service CuttackVIP Call Girls in Cuttack Aarohi 8250192130 Independent Escort Service Cuttack
VIP Call Girls in Cuttack Aarohi 8250192130 Independent Escort Service CuttackSuhani Kapoor
 
定制(UOIT学位证)加拿大安大略理工大学毕业证成绩单原版一比一
 定制(UOIT学位证)加拿大安大略理工大学毕业证成绩单原版一比一 定制(UOIT学位证)加拿大安大略理工大学毕业证成绩单原版一比一
定制(UOIT学位证)加拿大安大略理工大学毕业证成绩单原版一比一Fs sss
 
办理(NUS毕业证书)新加坡国立大学毕业证成绩单原版一比一
办理(NUS毕业证书)新加坡国立大学毕业证成绩单原版一比一办理(NUS毕业证书)新加坡国立大学毕业证成绩单原版一比一
办理(NUS毕业证书)新加坡国立大学毕业证成绩单原版一比一F La
 
阿德莱德大学本科毕业证成绩单咨询(书英文硕士学位证)
阿德莱德大学本科毕业证成绩单咨询(书英文硕士学位证)阿德莱德大学本科毕业证成绩单咨询(书英文硕士学位证)
阿德莱德大学本科毕业证成绩单咨询(书英文硕士学位证)obuhobo
 
VIP Russian Call Girls in Bhilai Deepika 8250192130 Independent Escort Servic...
VIP Russian Call Girls in Bhilai Deepika 8250192130 Independent Escort Servic...VIP Russian Call Girls in Bhilai Deepika 8250192130 Independent Escort Servic...
VIP Russian Call Girls in Bhilai Deepika 8250192130 Independent Escort Servic...Suhani Kapoor
 
定制(NYIT毕业证书)美国纽约理工学院毕业证成绩单原版一比一
定制(NYIT毕业证书)美国纽约理工学院毕业证成绩单原版一比一定制(NYIT毕业证书)美国纽约理工学院毕业证成绩单原版一比一
定制(NYIT毕业证书)美国纽约理工学院毕业证成绩单原版一比一2s3dgmej
 
Delhi Call Girls Preet Vihar 9711199171 ☎✔👌✔ Whatsapp Body to body massage wi...
Delhi Call Girls Preet Vihar 9711199171 ☎✔👌✔ Whatsapp Body to body massage wi...Delhi Call Girls Preet Vihar 9711199171 ☎✔👌✔ Whatsapp Body to body massage wi...
Delhi Call Girls Preet Vihar 9711199171 ☎✔👌✔ Whatsapp Body to body massage wi...shivangimorya083
 
加利福尼亚大学伯克利分校硕士毕业证成绩单(价格咨询)学位证书pdf
加利福尼亚大学伯克利分校硕士毕业证成绩单(价格咨询)学位证书pdf加利福尼亚大学伯克利分校硕士毕业证成绩单(价格咨询)学位证书pdf
加利福尼亚大学伯克利分校硕士毕业证成绩单(价格咨询)学位证书pdfobuhobo
 
原版快速办理MQU毕业证麦考瑞大学毕业证成绩单留信学历认证
原版快速办理MQU毕业证麦考瑞大学毕业证成绩单留信学历认证原版快速办理MQU毕业证麦考瑞大学毕业证成绩单留信学历认证
原版快速办理MQU毕业证麦考瑞大学毕业证成绩单留信学历认证nhjeo1gg
 
Storytelling, Ethics and Workflow in Documentary Photography
Storytelling, Ethics and Workflow in Documentary PhotographyStorytelling, Ethics and Workflow in Documentary Photography
Storytelling, Ethics and Workflow in Documentary PhotographyOrtega Alikwe
 
Notes of bca Question paper for exams and tests
Notes of bca Question paper for exams and testsNotes of bca Question paper for exams and tests
Notes of bca Question paper for exams and testspriyanshukumar97908
 
VIP Call Girls Service Jamshedpur Aishwarya 8250192130 Independent Escort Ser...
VIP Call Girls Service Jamshedpur Aishwarya 8250192130 Independent Escort Ser...VIP Call Girls Service Jamshedpur Aishwarya 8250192130 Independent Escort Ser...
VIP Call Girls Service Jamshedpur Aishwarya 8250192130 Independent Escort Ser...Suhani Kapoor
 
Black and White Minimalist Co Letter.pdf
Black and White Minimalist Co Letter.pdfBlack and White Minimalist Co Letter.pdf
Black and White Minimalist Co Letter.pdfpadillaangelina0023
 
Business Development and Product Strategy for a SME named SARL based in Leban...
Business Development and Product Strategy for a SME named SARL based in Leban...Business Development and Product Strategy for a SME named SARL based in Leban...
Business Development and Product Strategy for a SME named SARL based in Leban...Soham Mondal
 
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...Suhani Kapoor
 
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call GirlsDelhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girlsshivangimorya083
 

Recently uploaded (20)

VIP Call Girl Cuttack Aashi 8250192130 Independent Escort Service Cuttack
VIP Call Girl Cuttack Aashi 8250192130 Independent Escort Service CuttackVIP Call Girl Cuttack Aashi 8250192130 Independent Escort Service Cuttack
VIP Call Girl Cuttack Aashi 8250192130 Independent Escort Service Cuttack
 
do's and don'ts in Telephone Interview of Job
do's and don'ts in Telephone Interview of Jobdo's and don'ts in Telephone Interview of Job
do's and don'ts in Telephone Interview of Job
 
办理学位证(纽伦堡大学文凭证书)纽伦堡大学毕业证成绩单原版一模一样
办理学位证(纽伦堡大学文凭证书)纽伦堡大学毕业证成绩单原版一模一样办理学位证(纽伦堡大学文凭证书)纽伦堡大学毕业证成绩单原版一模一样
办理学位证(纽伦堡大学文凭证书)纽伦堡大学毕业证成绩单原版一模一样
 
Ioannis Tzachristas Self-Presentation for MBA.pdf
Ioannis Tzachristas Self-Presentation for MBA.pdfIoannis Tzachristas Self-Presentation for MBA.pdf
Ioannis Tzachristas Self-Presentation for MBA.pdf
 
VIP Call Girls in Cuttack Aarohi 8250192130 Independent Escort Service Cuttack
VIP Call Girls in Cuttack Aarohi 8250192130 Independent Escort Service CuttackVIP Call Girls in Cuttack Aarohi 8250192130 Independent Escort Service Cuttack
VIP Call Girls in Cuttack Aarohi 8250192130 Independent Escort Service Cuttack
 
定制(UOIT学位证)加拿大安大略理工大学毕业证成绩单原版一比一
 定制(UOIT学位证)加拿大安大略理工大学毕业证成绩单原版一比一 定制(UOIT学位证)加拿大安大略理工大学毕业证成绩单原版一比一
定制(UOIT学位证)加拿大安大略理工大学毕业证成绩单原版一比一
 
办理(NUS毕业证书)新加坡国立大学毕业证成绩单原版一比一
办理(NUS毕业证书)新加坡国立大学毕业证成绩单原版一比一办理(NUS毕业证书)新加坡国立大学毕业证成绩单原版一比一
办理(NUS毕业证书)新加坡国立大学毕业证成绩单原版一比一
 
阿德莱德大学本科毕业证成绩单咨询(书英文硕士学位证)
阿德莱德大学本科毕业证成绩单咨询(书英文硕士学位证)阿德莱德大学本科毕业证成绩单咨询(书英文硕士学位证)
阿德莱德大学本科毕业证成绩单咨询(书英文硕士学位证)
 
VIP Russian Call Girls in Bhilai Deepika 8250192130 Independent Escort Servic...
VIP Russian Call Girls in Bhilai Deepika 8250192130 Independent Escort Servic...VIP Russian Call Girls in Bhilai Deepika 8250192130 Independent Escort Servic...
VIP Russian Call Girls in Bhilai Deepika 8250192130 Independent Escort Servic...
 
定制(NYIT毕业证书)美国纽约理工学院毕业证成绩单原版一比一
定制(NYIT毕业证书)美国纽约理工学院毕业证成绩单原版一比一定制(NYIT毕业证书)美国纽约理工学院毕业证成绩单原版一比一
定制(NYIT毕业证书)美国纽约理工学院毕业证成绩单原版一比一
 
Delhi Call Girls Preet Vihar 9711199171 ☎✔👌✔ Whatsapp Body to body massage wi...
Delhi Call Girls Preet Vihar 9711199171 ☎✔👌✔ Whatsapp Body to body massage wi...Delhi Call Girls Preet Vihar 9711199171 ☎✔👌✔ Whatsapp Body to body massage wi...
Delhi Call Girls Preet Vihar 9711199171 ☎✔👌✔ Whatsapp Body to body massage wi...
 
加利福尼亚大学伯克利分校硕士毕业证成绩单(价格咨询)学位证书pdf
加利福尼亚大学伯克利分校硕士毕业证成绩单(价格咨询)学位证书pdf加利福尼亚大学伯克利分校硕士毕业证成绩单(价格咨询)学位证书pdf
加利福尼亚大学伯克利分校硕士毕业证成绩单(价格咨询)学位证书pdf
 
原版快速办理MQU毕业证麦考瑞大学毕业证成绩单留信学历认证
原版快速办理MQU毕业证麦考瑞大学毕业证成绩单留信学历认证原版快速办理MQU毕业证麦考瑞大学毕业证成绩单留信学历认证
原版快速办理MQU毕业证麦考瑞大学毕业证成绩单留信学历认证
 
Storytelling, Ethics and Workflow in Documentary Photography
Storytelling, Ethics and Workflow in Documentary PhotographyStorytelling, Ethics and Workflow in Documentary Photography
Storytelling, Ethics and Workflow in Documentary Photography
 
Notes of bca Question paper for exams and tests
Notes of bca Question paper for exams and testsNotes of bca Question paper for exams and tests
Notes of bca Question paper for exams and tests
 
VIP Call Girls Service Jamshedpur Aishwarya 8250192130 Independent Escort Ser...
VIP Call Girls Service Jamshedpur Aishwarya 8250192130 Independent Escort Ser...VIP Call Girls Service Jamshedpur Aishwarya 8250192130 Independent Escort Ser...
VIP Call Girls Service Jamshedpur Aishwarya 8250192130 Independent Escort Ser...
 
Black and White Minimalist Co Letter.pdf
Black and White Minimalist Co Letter.pdfBlack and White Minimalist Co Letter.pdf
Black and White Minimalist Co Letter.pdf
 
Business Development and Product Strategy for a SME named SARL based in Leban...
Business Development and Product Strategy for a SME named SARL based in Leban...Business Development and Product Strategy for a SME named SARL based in Leban...
Business Development and Product Strategy for a SME named SARL based in Leban...
 
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
VIP Call Girls Firozabad Aaradhya 8250192130 Independent Escort Service Firoz...
 
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call GirlsDelhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
Delhi Call Girls In Atta Market 9711199012 Book Your One night Stand Call Girls
 

Skull Base Bones and Anatomy

  • 1.
  • 3.
  • 4.
  • 5.
  • 6. Normal skull base • Concept of fossa does not work well for the skull base, because the bony anatomy spills over from one fossa to the next. • Perspective of individual bones – Components – Apertures – Transmitted structures
  • 7. Normal skull base • Extend – root of nose anteriorly to the superior nuchal line posteriorly
  • 8. Normal skull base • 5 bones: – Frontal – Ethmoid – Sphenoid – Temporal – Occipital
  • 9.
  • 10. Normal skull base • Most important part: – Basisphenoid (anterior aspect of sella) – Basiocciput (posterior lip of the foramen magnum) • The cranial nerves and cerebral vasculature traverse the skull base here.
  • 12. Occipital bone • Floor of the posterior fossa • 3 distinct areas: – Basiocciput (clivus and jugulare tubercles) – Condylar (lateral) portion – Squamous (posterior) portion
  • 13. Occipital bone • Floor of the posterior fossa • 3 distinct areas: – Basiocciput (clivus and jugulare tubercles) – Condylar (lateral) portion – Squamous (posterior) portion
  • 14. Occipital bone • Apertures: – Foramen magnum – Posterior condylar canal – Hypoglossal canal
  • 15. Temporal bone • Petrous pyramid and mastoid process form most of the skull base between the posterior and middle skull base. • Apex of the petrous pyramid joins the anterolateral margin of the clivus (i.e., basiocciput) and the posteromedial aspect of the greater wing of sphenoid along the basisphenoid synchondrosis.
  • 16. • Apertures: – Jugular foramen – Internal auditory canal – Facial nerve canal – Petrous carotid canal – Eustachian tube
  • 17. Sphenoid bone • Mid section of the skull base • Anterior wall of middle cranial fossa
  • 18. Sphenoid bone • 3 compartments: – Basisphenoid: • Dorsum sella, posterior clinoids, sella turcica, tuberculum sella, sphenoid sinus • Fused to clivus in adult – Greater wing of sphenoid • Medial two-thirds and anterior wall of the middle cranial fossa floor – Lesser wing of sphenoid • Medial and superior aspects of the anterior wall of the middle cranial fossa and the anterior clinoids • Superior and medial edges of the superior orbital fissure
  • 19. Sphenoid bone • 3 compartments: – Basisphenoid: • Dorsum sella, posterior clinoids, sella turcica, tuberculum sella, sphenoid sinus • Fused to clivus in adult – Greater wing of sphenoid • Medial two-thirds and anterior wall of the middle cranial fossa floor – Lesser wing of sphenoid • Medial and superior aspects of the anterior wall of the middle cranial fossa and the anterior clinoids • Superior and medial edges of the superior orbital fissure
  • 20. Sphenoid bone • Apertures: – Foramen ovale – Foramen spinosum – Foramen rotundum – Optic canal – Superior orbital fissure – Precavernous carotid canal – Foramen lacerum • Not a true foramen • Thinning of skull base, filled with fibrocartilage in life
  • 21. Frontal bone • Anterior cranial fossa is anteriorly and laterally bound by frontal bone; majority by orbital plate of frontal bone
  • 22. • Foramen caecum – Indentation in the medial anterior frontal bone – Normal (should not be confused with cephalocoele) – Complete bony floor (protrude through a gap in the frontal bone) – Prominent at birth and gradually shrinks over first 10 years of life Frontal bone
  • 23. Ethmoid bone • 2 distinct pieces: – Cribriform plate – Crista galli
  • 24. Ethmoid bone • Cribriform plate is perforated by approx 20 holes on each side of the crista galli • Nerve fibres of olfactory nerve (CN I) pass from nasal mucosa to olfactory bulb • Crista galli serves as the anchor for anterior margin of the falx cerebri
  • 25. Ethmoid bone • Cribriform plate is perforated by approx 20 holes on each side of the crista galli • Nerve fibres of olfactory nerve (CN I) pass from nasal mucosa to olfactory bulb • Crista galli serves as the anchor for anterior margin of the falx cerebri
  • 26. BONES OF BASE OF SKULL IN CT
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 40. Development of the skull base • Development of the skull base begins only after the spinal cord, cranial nerves, and blood vessels have formed. • The cranial base is relatively stable during development as compared with the rapid growth and expansion of the calvaria. • Study of fetal developmental anatomy may lead to a better understanding of congenital skull base disorders.
  • 41. The skull base originates predominately from cartilaginous precursors with a small contribution from membranous bone.
  • 42. The components of the skull base are derived from neural crest cells and mesoderm during the fourth week of fetal life to form the cartilaginous and bony components of the cranial base.
  • 43.
  • 44. Ossification of the skull base progresses in an orderly pattern from posterior to anterior.
  • 46. Submento-vertical • Position of patient and cassette – The patient may be imaged erect or supine. If the patient is unsteady, then a supine technique is advisable. • Supine – The patient’s shoulders are raised and the neck is hyperextended to bring the vertex of the skull in contact with the grid cassette or table. – The head is adjusted to bring the external auditory meatuses equidistant from the cassette. – The median sagittal plane should be at right- angles to the cassette along its midline. – The orbito-meatal plane should be as near as possible parallel to the cassette. • Erect – The patient sits a short distance away from a vertical Bucky. – The neck is hyperextended to allow the head to fall back until the vertex of the skull makes contact with the centre of the vertical Bucky.
  • 47. Submento-vertical • Position of patient and cassette – The patient may be imaged erect or supine. If the patient is unsteady, then a supine technique is advisable. • Supine – The patient’s shoulders are raised and the neck is hyperextended to bring the vertex of the skull in contact with the grid cassette or table. – The head is adjusted to bring the external auditory meatuses equidistant from the cassette. – The median sagittal plane should be at right- angles to the cassette along its midline. – The orbito-meatal plane should be as near as possible parallel to the cassette. • Erect – The patient sits a short distance away from a vertical Bucky. – The neck is hyperextended to allow the head to fall back until the vertex of the skull makes contact with the centre of the vertical Bucky.
  • 48. Submento-vertical • Direction and centring of the X-ray beam – The central ray is directed at right-angles to the orbito-meatal plane and centred midway between the external auditory meatuses.
  • 50. Essential image characteristics • A correct projection will show the angles of the mandible clear of the petrous portions of the temporal bone. • The foramina of the middle cranial fossa should be seen symmetrically either side of the midline.
  • 51. Essential image characteristics POSITIONING • No rotation is evidenced by  The lateral borders of the foramen magnum are equidistant from the lateral borders of the skull. • No tilt is evidenced by • The vomer and the bony nasal septum are aligned with the long axis of the film.
  • 52. Jugular foramina: Submento-vertical 20 degrees caudad • The jugular foramina lie in the posterior cranial fossa between the petrous temporal and occipital bones on each side of the foramen magnum. • Both sides are imaged simultaneously on a - single image by undertaking a submento- vertical (SMV) 20 degrees caudad projection.
  • 53. Jugular foramina: Submento-vertical 20 degrees caudad • Position of patient and cassette – As per the SMV projection described previously.
  • 54. Jugular foramina: Submento-vertical 20 degrees caudad • Direction and centring of the X-ray beam – Using a well-collimated beam, the central ray is angled caudally so that it makes an angle of 70 degrees to the orbitomeatal plane and centred in the midline to pass midway between the external auditory meatuses.
  • 55. Notes: Alternative Technique • With the patient’s neck less extended, the head can be positioned with the orbito-meatal plane at an angle of 20 degrees to the Bucky, in which case a horizontal central ray will make the required angle of 70 degrees to the base plane (see photograph).
  • 58. Role of imaging • Diagnosis • Extend of disease – criteria of surgical resectability • Treatment planning – surgical approach • Follow up – recurrence vs post ttreatment changes
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64. Anterior skull base lesions • Bones: – Orbital plates of frontal bones – Cribriform plate of ethmoid bone – Planum sphenoidale
  • 65. Anterior Skull Base Lesions Common: Malignant sinonasal tumor (eg., SCC, RMS) Meningioma Metastases Uncommon Mucocoele Osteoma Polyposis Inverted papilloma Esthesioneuroblastoma Lymphoma Complicated sinusitis (bacterial, fungal, granulomatous) Rare Cephalocoele Dermoid cyst
  • 66. • Lesions arise: – Extracranially • From the nasal vault, frontal and ethmoid sinuses – Intrinsically • From the skull base itself – Intracranially • From the brain, meninges and CSF spaces
  • 67. • Lesions arise: – Extracranially • From the nasal vault, frontal and ethmoid sinuses – Intrinsically • From the skull base itself – Intracranially • From the brain, meninges and CSF spaces
  • 68. Extra cranial lesions • Most arise from the nose and paranasal sinuses Common Benign Lesions Mucocoele Polyposis Inverted papilloma Osteoma Common Malignant Lesions Squamous cell carcinoma Rhabdomyosarcoma Adenoid cystic carcinoma Esthesioneuroblastoma
  • 69. Mucocoele • Accumulation of impacted mucus behind an occluded draining sinus ostium. • Obstruction - Inflammatory > post traumatic, neoplastic • Frontal > Ethmoid > Maxillary > Sphenoid
  • 70. Mucocoele - Imaging • Well delineated soft tissue mass with bony expansion and remodelling. • Low density on NECT; inspissated secretions may appear hyperdense. • MR signal is variable. • Aggressive bone erosion seen in 10 – 12% of cases.
  • 71. Mucocele A: Coronal T1 magnetic resonance image. The sphenoid sinus is enlarged and its contents are of high signal. Mucocele also involves the left anterior clinoid (arrow), which is markedly expanded and filled with the same high-signal contents as the rest of the sinus. B: Sagittal T1 magnetic resonance image again shows marked enlargement of the left anterior clinoid (large arrow).
  • 72. Mucopyocoele • Mucocoeles when infected Axial T1 C+ MR shows left frontal mucopyocoele with thick, peripheral enhancement. Note linear enhancement of the anterior fossa dura (arrows) consistent with meningitis.
  • 73. Inverted Papilloma • Benign slow growing epithelial neoplasm. • 1 to 4% of sinonasal neoplasms • Arise near the nasal vault near the junction of ethmoid and maxillary sinuses. • The surface epithelium proliferates by inverting into underlying stroma rather than growing outward.
  • 74. Inverted Papilloma • Benign slow growing epithelial neoplasm. • 1 to 4% of sinonasal neoplasms • Arise near the nasal vault near the junction of ethmoid and maxillary sinuses. • The surface epithelium proliferates by inverting into underlying stroma rather than growing outward. Inverted sinonasal or Schneiderian papilloma shows endophytic or “inverted” growth pattern. These nests of squamous epithelial cells grow down into the myxomatous to fibrous stroma with chronic inflammatory cells and vascularity
  • 75. Inverted Papilloma - Imaging • A unilateral, polypoid nasal fossa soft tissue mass • widens the nasal vault • sometimes destroying bone and extending into the adjacent ethmoid and maxillary sinuses • Focal erosion of the cribriform plate with cephalad extension occassionally occurs. (DD: sinonasal malignancies) • No definitive MR findings to differentiate from various malignant tumors.
  • 76. Inverted Papilloma - Imaging • A unilateral, polypoid nasal fossa soft tissue mass • widens the nasal vault • sometimes destroying bone and extending into the adjacent ethmoid and maxillary sinuses • Focal erosion of the cribriform plate with cephalad extension occassionally occurs. (DD: sinonasal malignancies) • No definitive MR findings to differentiate from various malignant tumors.
  • 77. Osteoma • Benign bony tumor • Mature well delineated cortical bone as their primary component. • Most common site: frontal sinus • Expands and erodes the posterior and superior frontal sinus walls
  • 78. Malignant Sinonasal Tumors • Intracranial extension occurs in upto one-third of cases • Squamous cell carcinoma • Esthesioneuroblastoma • Adenocarcinoma • Melanoma • Non-Hodgkin Lymphoma
  • 79. Rhabdomyosarcoma • In children the most common extracranial malignancy that affects the skull base is Rhabdomyosarcoma. • It is the most common soft tissue sarcoma in children. • Head and neck is the most common site. • Orbit & nasopharynx > PNS & middle ear
  • 80. • Anterior skull base invasion or cavernous sinus invasion - approx. 35% of nasopharyngeal RMS. • Bulky soft tissue mass with areas of bone destruction. • Isointense to muscle on T1, hyperintense on T2; some contrast enhancement. • Meningeal and perineural spread are common
  • 81. Nasal cavity RMS with extension through sinonasal roof, along the anterior cranial fossa
  • 82. Intracranial extension of masticator fossa RMS through foramen ovale
  • 83. Other Malignancies • 98% of nasopharyngeal tumors in adults are carcinomas. • Squamous cell carcinoma accounts for 80% of these tumors, and adenocarcinoma (most commonly from minor salivary glands) represent 18%. • Nasopharyngeal carcinomas spread directly into skull base as well as along muscles and their tendinous insertions. • They extend intracranially along neural and vascular bundles via osseous foramina.
  • 84. • A nasopharyngeal mass with obliterated soft tisssue planes and adjacent bone destruction are the typical imaging findings with direct tumor invasion. • Serous otitis media can be seen because the eustachian tube is frequently obstructed. T1C+ : NP Ca has destroyed large area of skull base bone (arrows) surrounding the foramen ovale. Opposite foramen ovale has V3 traversing it (open arrow).
  • 85. • Perineural tumor spread most commonly involves the second and third divisions of trigeminal nerve and facial nerve. • Sometimes no dominant mass is present. • Enhancement of the affected nerve or denervation atrophy of the muscles of mastication and face may be the only detectable abnormalities.
  • 86. Esthesioneuroblastoma • Olfactory neuroblastoma • Bipolar sensory receptor cells in the olfactory mucosa. (neural crest origin) • Any age – bimodal peak (2nd and 4th/5th decade)
  • 87. Esthesioneuroblastoma - imaging • Often confined to nasal cavity; may extend to PNS or anterior cranial fossa (through cribriform plate) • High nasal vault with focal bone destruction • Variable signal intensity on MR • Moderate but inhomogenous enhancement • CNS dissemination as a late manifestation CECT - right nasal cavity ENB with destruction of the cribriform plate (arrow) and lamina papyracea (open arrow).
  • 88. Esthesioneuroblastoma - imaging • Often confined to nasal cavity; may extend to PNS or anterior cranial fossa (through cribriform plate) • High nasal vault with focal bone destruction • Variable signal intensity on MR • Moderate but inhomogenous enhancement • CNS dissemination as a late manifestation
  • 89. Miscellaneous • Bacterial or fungal sinusitis
  • 92. Misc • Cocaine granulomatosis – History of coccaine abuse – Septal perforation with nasal inflammatory changes
  • 93. Misc • Wegner granulomatosis – Soft tissue mass in nose with septal and non- septal bone destruction Enhancing soft tissue in maxillary sinuses extending into nasopharynx (arrows) with large septal perforation.
  • 94. • Lesions arise: – Extracranially • From the nasal vault, frontal and ethmoid sinuses – Intrinsically • From the skull base itself – Intracranially • From the brain, meninges and CSF spaces
  • 95. Intrinsic anterior skull base lesions Intrinsic anterior skull base lesions Fibrous dysplasia Paget disease Osteopetrosis
  • 96. • Lesions arise: – Extracranially • From the nasal vault, frontal and ethmoid sinuses – Intrinsically • From the skull base itself – Intracranially • From the brain, meninges and CSF spaces
  • 97. Intracranial lesions • Arise from: – Meninges – CSF spaces – Brain
  • 98. Meningioma • Most common meningeal lesion to involve anterior skull base • Planum sphenoidale and olfactory groove – 10-15% of all meningiomas • Broad based, anterior basal subfrontal mass that enhances strongly and relatively uniformly after contrast administration is typical. • Presence of tumor-brain interface or cleft with compressed cortex and white matter buckling indicate extraaxial location. • Blistering and hyperostosis of the adjacent bone. • Enlargement of the air-containing ethmoid sinus (pneumosinus dilatans) or even frank bone destruction is sometimes observed.
  • 99. Figure. (A) Enlarged, air-filled ethmoid sinus extending into an isointense intracranial mass on T1- weighted MRI, which enhances uniformly on contrast agent administration (B). (C) Axial CT shows expansion of sinus beyond its normal boundaries into the meningioma, where the plate of bone lining the pneumosinus dilatans is preserved Mai A et al. Neurology 2003;60:1861-1861 ©2003 by Lippincott Williams & Wilkins
  • 100. Cephalocoele • The most common anterior skull base lesion that arises from the brain is nasoethmoidal cephalocoele. • 15% of basal cephalocoeles occur in the frontonasal area.
  • 101. Cephalocoele • The most common anterior skull base lesion that arises from the brain is nasoethmoidal cephalocoele. • 15% of basal cephalocoeles occur in the frontonasal area.
  • 102. Misc • Nasal dermoid sinuses and nasal cerebral heterotopias (nasal gliomas) are less common congenital lesions that occur in this location. • Occasionally, a slow growing peripherally located primary brain neoplasms such as ganglioneuroma cause pressure erosion of the adjacent skull. • Frank dural invasion or calvarial destruction can occur with anaplastic astrocytoma and glioblastoma multiforme, but uncommon.
  • 103.
  • 104. Destructive Central Skull Base Lesions Common Metastases Nasopharyngeal malignancy Haematogenous Uncommon Osteomyelitis Fungal sinusitis Non fungal granulomas Wegner granulomatosis Cocaine abuse Midline granuloma (probably a lymphoma variant) Aggressive pituitary adenoma Lymphoma Myeloma Meningioma Juvenile nasopharyngeal angiofibroma Chordoma Rare Leprosy Rhinoscleroma Syphilis Sarcoidosis
  • 106. Central skull base • It includes: – Upper clivus – Sella turcica – Cavernous sinuses – Sphenoid alae
  • 107. Central Skull Base Lesions • Lesions affecting the central skull base originate from: – Cavernous sinus – Pituitary gland – Basisphenoid bone – Nasopharynx
  • 108. Cavernous sinus • Multiseptated, extradural venous spaces that lie on both sides of the sella turcica. • They communicate extensively with each other, the intracranial dural sinuses, and deep facial venous plexuses.
  • 109. • Lateral wall is composed of 2 layers: – Thick outer dural layer – Thin inner membranous layer • The inner layer is formed by the perineurium of CNs III, IV, V1 and sometimes V2. These nerves lie within the lateral wall, whereas the internal carotid artery and CN VI are inside the cavernous sinus proper.
  • 110. • Medially, a thin poorly delineated medial dural wall separates the cavernous sinus from sella turcica. • Meckel’s cave and its contents, the trigeminal ganglion, CSF, and investing arachnoid, invaginate into the cavernous sinus posteriorly.
  • 111. Cavernous Sinus Masses Unilateral Bilateral Common Common Schwannoma Invasive pituitary adenoma Meningioma Meningioma Metastasis Metastases Aneurysm (Cavernous ICA) Carotid-cavernous fistula Uncommon Uncommon Chordoma Lymphoma Lymphoma Cavernous sinus thrombosis Rare Lipoma Epidermoid Cavernous haemangioma Osteocartilagiomnous tumors Plexiform neurofibroma (NF 1)
  • 112. CENTRAL SKULL BASE LESIONS
  • 113. Congenital/Developmental lesions Neoplasms Cephalocoele Benign Encephalocoele Pituitary adenoma Meningocoele Meningioma Trauma Nerve sheath tumors Fractures Juvenile nasopharyngeal angiofibroma CSF fistula Chordoma Infection and Inflammatory disease Osteocartilaginous tumors Osteomyelitis Tumor like lesions Bacteral sinusitis Epidermoid tumor Fungal sinusitis Lipoma Wegner granulomatosis Malignant tumors Leishmaniasis Nasopharyngeal carcinoma Sarcoidosis Rhabdomyosarcoma Leprosy, Treponemes, Mycobacteria, Rhinoscleroma Multiple myeloma or Solitary plasmocytoma Cocaine abuse Osteosarcoma Midline lethal granuloma (T-cell lymphoma) Chondrosarcoma Miscellaneous Metastatic disease Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas Radiation necrosis Lymphoma – primary / secondary
  • 114. Congenital/Developmental lesions Neoplasms Cephalocoele Benign Encephalocoele Pituitary adenoma Meningocoele Meningioma Trauma Nerve sheath tumors Fractures Juvenile nasopharyngeal angiofibroma CSF fistula Chordoma Infection and Inflammatory disease Osteocartilaginous tumors Osteomyelitis Tumor like lesions Bacteral sinusitis Epidermoid tumor Fungal sinusitis Lipoma Wegner granulomatosis Malignant tumors Leishmaniasis Nasopharyngeal carcinoma Sarcoidosis Rhabdomyosarcoma Leprosy, Treponemes, Mycobacteria, Rhinoscleroma Multiple myeloma or Solitary plasmocytoma Cocaine abuse Osteosarcoma Midline lethal granuloma (T-cell lymphoma) Chondrosarcoma Miscellaneous Metastatic disease Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas Radiation necrosis Lymphoma – primary / secondary
  • 115. Cephalocoele • Axial CT scan (b) photographed with bone window and coronal CT scan (c) photographed with soft-tissue window reveal the presence of a persistent craniopharyngeal canal (arrow) in the sphenoid bone. • Coronal (d) and midsagittal (e) Ti - weighted MR images through the central skull base demonstrate herniation of the pituitary gland into the craniopharyngeal canal through the sphenoidal defect (arrow) . Note the proximity of the pituitary gland to the roof of the nasopharynx.
  • 116. Congenital/Developmental lesions Neoplasms Cephalocoele Benign Encephalocoele Pituitary adenoma Meningocoele Meningioma Trauma Nerve sheath tumors Fractures Juvenile nasopharyngeal angiofibroma CSF fistula Chordoma Infection and Inflammatory disease Osteocartilaginous tumors Osteomyelitis Tumor like lesions Bacteral sinusitis Epidermoid tumor Fungal sinusitis Lipoma Wegner granulomatosis Malignant tumors Leishmaniasis Nasopharyngeal carcinoma Sarcoidosis Rhabdomyosarcoma Leprosy, Treponemes, Mycobacteria, Rhinoscleroma Multiple myeloma or Solitary plasmocytoma Cocaine abuse Osteosarcoma Midline lethal granuloma (T-cell lymphoma) Chondrosarcoma Miscellaneous Metastatic disease Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas Radiation necrosis Lymphoma – primary / secondary
  • 117. Fractures • Most commonly occur as extensions of cranial- vault fractures. • Petrous temporal bone > orbital surface of the frontal bone > basiocciput. Multiple skull-base fractures in a 23-year-old man after an automobile accident.
  • 118. CSF fistula • The most common cause of CSF fistula is skull-base trauma – Fractures through the frontoethmoidal complex and middle cranial fossa. • Nontraumatic cause of leakage: – Tumors, especially those arising from the pituitary gland – congenital anomalies, such as encephaloceles Coronal CT scans through the sphenoid sinus were obtained before (a) and after (b) the intrathecal instillation of water-soluble contrast material. A mass with attenuation values of soft tissue (arrow in a) is seen involving the right lateral floor of the sphenoid sinus. After contrast enhancement increased attenuation is seen in this region, consistent with the accumulation of contrast material (curved arrow in b) . This finding confirms the presence of a CSF fistula.
  • 119. Congenital/Developmental lesions Neoplasms Cephalocoele Benign Encephalocoele Pituitary adenoma Meningocoele Meningioma Trauma Nerve sheath tumors Fractures Juvenile nasopharyngeal angiofibroma CSF fistula Chordoma Infection and Inflammatory disease Osteocartilaginous tumors Osteomyelitis Tumor like lesions Bacteral sinusitis Epidermoid tumor Fungal sinusitis Lipoma Wegner granulomatosis Malignant tumors Leishmaniasis Nasopharyngeal carcinoma Sarcoidosis Rhabdomyosarcoma Leprosy, Treponemes, Mycobacteria, Rhinoscleroma Multiple myeloma or Solitary plasmocytoma Cocaine abuse Osteosarcoma Midline lethal granuloma (T-cell lymphoma) Chondrosarcoma Miscellaneous Metastatic disease Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas Radiation necrosis Lymphoma – primary / secondary
  • 120. Osteomyelitis • Potentially lethal complication of: – Immunocompromised states – Diabetes – Chronic mastoiditis – Paranasal sinus inection – Trauma – Necrotising otitis externa • Occasionally in the absence of predisposing factors
  • 121. Bacterial sinusitis complicating Osteomyelitis • Infection can extend : – Directly from frontal, ethmoid or sphenoid sinuses – Intracranially via emissary veins and the cavernous sinus. • May result in: – Cerebral infarct – Meningitis – Subdural empyema – Brain abscess
  • 122. Left frontal SDE with leptomeningeal enhancement in a patient with left pansinusitis
  • 123. Paranasal sinus fungal infections • 4 different patterns: – Extramucosal disease with cavitating mycetoma (fungus ball) – Allergic fungal sinusitis – Mucosal thickening from indolent, penetrating fungal sinusitis – Fulminant invasive mycosis
  • 124. • Manifestations include: – Multiple cranial nerve palsies – Septic cavernous sinus thrombosis – Internal carotid occlusion – Brain infarction – Brain abscess
  • 125. Fungal sinusitis - Imaging • Multisinus nodular mucoperiosteal thickening • High attenuation foci in soft tissue masses on CT
  • 126. 17-year-old boy with allergic fungal sinusitis complicated by compression of right optic nerve. Painless decreased vision had been present in the right eye for 2 months. Coronal (A–C) and axial (D) CT images show high-attenuation opacification of left maxillary, left ethmoidal, and bilateral sphenoidal sinuses with bone expansion and thinning. Compression of right optic nerve (straight arrow, B and D) is caused by expanded right anterior clinoid process (asterisk, B and D). Bone dehiscence is present at left lamina papyracea (curved arrow,A and D) and around left optic nerve (arrowhead, B and D), and internal carotid arteries (arrows, C). These structures are at risk of injury during functional endoscopic sinus surgery.
  • 127. Mycetomas • Best diagnostic clue: single PNS contains high density mass with fine round to linear matrix calcifications • Very hypointense on MR with a high signal rim surrounding the fungal ball.
  • 128. Aggressive mycosis • Extensive skull base destruction • Cavernous sinus thrombosis, blood vessel invasion and rapid intracranial dissemination can occur • CEMR / CECT – multiple filling defects within the cavernous sinus. • Extensive skull base erosion is indistinguishable from nasopharyngeal malignancy
  • 129. • Biopsy-proved aspergillosis in a 23- year oId black woman with right-sided facial pain. • Axial (a) and coronal (b, c) non-contrast- enhanced CT scans show a large soft- tissue mass (*) with extensive bone destruction of the right maxillary sinus (m), nasopharynx (n), pterygoid plate (p), and sphenoid sinus (s) . The central high attenatuation may represent calcium deposits in mycetoma. • T1-weighted MR images obtained before (d) and after (e) administration of gadopentetate dimeglumine show the extent of skull base and sinus ivolvement. • The central low-signal-intensity areas within the sinus may represent inspissated secretions or fungal mycetoma containing metals.
  • 130. Sarcoidosis • Due to its propensity for leptomeningeal invasion, sinus and nasopharyngeal sarcoidosis is recognized as a more common cause of cranial nerve neuropathy. • Central nervous system involvement occurs in 3%-8% of patients with sarcoidosis. • The most frequent problem is cranial neuropathy secondary to facial, acoustic, optic, or trigeminal nerve involvement. • Sarcoidosis should be considered when both the meninges and the cranial nerves are involved in a pathologic process.
  • 131.
  • 132. Other granulomatous diseases • Wegner granulomatosis • Leishmaniasis • Leprosy • Rhinoscleroma • Mycobacteria • Treponemes • Cocaine abuse • Midline lethal granuloma (T-cell lymphoma)
  • 133. Congenital/Developmental lesions Neoplasms Cephalocoele Benign Encephalocoele Pituitary adenoma Meningocoele Meningioma Trauma Nerve sheath tumors Fractures Juvenile nasopharyngeal angiofibroma CSF fistula Chordoma Infection and Inflammatory disease Osteocartilaginous tumors Osteomyelitis Tumor like lesions Bacteral sinusitis Epidermoid tumor Fungal sinusitis Lipoma Wegner granulomatosis Malignant tumors Leishmaniasis Nasopharyngeal carcinoma Sarcoidosis Rhabdomyosarcoma Leprosy, Treponemes, Mycobacteria, Rhinoscleroma Multiple myeloma or Solitary plasmocytoma Cocaine abuse Osteosarcoma Midline lethal granuloma (T-cell lymphoma) Chondrosarcoma Miscellaneous Metastatic disease Paget disease, Fibrous dyspasia Prostate, lung and breast carcinomas Radiation necrosis Lymphoma – primary / secondary
  • 134. Pituitary Adenoma • Usually indolent, non agresssive tumors that expand and slowly erode the bony sella turcica. • Typically extend superorly through the diaphragma sellae and laterlally into the cavernous sinus. • Occasionally, some variants behave more aggressively and may cause extensive destruction of the central skull base.
  • 135.
  • 136. Meningioma • Meningiomas of the central skull base are located along – the sphenoid wing, – diaphragma sellae, – clivus and – cavernous sinus • Focal, globose or flat, en-plaque lesions • Occasionally, bony destruction or hyperostosis. • Cavernous sinus meningiomas cause multiple cranial nerve palsies.
  • 137. Medial sphenoid wing meningioma
  • 139. Nerve Sheath Tumors • Those involving the central skull base often affects the cavernous sinus and Meckel’s cave. – Plexiform neurofibromas – Schwanommas
  • 140. Plexiform neurofibromas • Unencapsulated diffusely infiltrating masses that originate along peripheral nerve, usually ophthalmic division of trigeminal nerve, and involve BOS by central extension. • Extension along mandibular and maxillary divisions of trigeminal nerve is also common.
  • 141. Schwannoma • Encapsulated, well delineated tumors. • Most are quite vascular • Haemorrhage or necrosis may occur
  • 142. Trigeminal Schwannoma • Most common schwannoma to involve the central BOS and cavernous sinus is a trigeminal schwannoma. • Its symptoms, signs, and imaging appearance varies with the part of the nerve involved, direction and extent of tumor growth. – Meckel’s cave – extend into skull base – Cisternal – CP angle mass • Cisternal and ganglion – “dumbbell” configuration • Circumscribed, rounded or lobulated soft tissue masses that enhance strongly but heterogenously. • Most are isodense with brain on CT • Isointense on T1WI, hyperintense on T2WI
  • 143. On an axial T1-weighted image, a normal nonenhancing Meckel’s cave is seen on the right side (arrow). In the left Meckel’s cave, a heterogeneous enhancing mass arrowheads) is depicted, extending in the cavernous sinus: trigeminal schwannoma.
  • 144. Juvenile Angiofibroma • Highly vascular, locally invasive lesion • Originates near sphenopalatine foramen • Adolescent males • Most common benign nasopharyngeal tumor • Typically spread along natural foramina and fissures into pterygopalatine fossa, orbit, middle cranial fossa, sphenoid sinus, and cavernous sinus.
  • 145. • Imaging – strongly enhancing, highly vascular nasopharyngeal soft tissue mass.
  • 146. Chordoma • Slowly growing destructive tumor • Histologically benign, but locally invasive • One-third in sphenooccipital region – Most in midline; primarily involve clivus – Other – petrous apex and Meckel’s cave
  • 147. Destructive lesion in the central skull base – T1 hypontense and T2 hyperintense
  • 148. Osteocartilaginous neoplasms • Clivus and skull base – cartilaginous neurocranium by endochondral ossification vs • Calvarium – mesenchymal membranous neurocranium by intramembranous ossification • Therefore, a spectrum of benign and malignant osteocartilaginous neoplasms can arise in the central skull base.
  • 149. Enchondroma • The most common benign osteocartilaginous tumor in this location. • CT – Expansile lobulated soft tissue mass with scalloped endosteal bone resorption and curvilinear matrix mineralisation • MRI – isointense on T1; hyperintense on T2 – Post contrast – enhancement of scalloped margins and curvilinear septae (ring-and-arc pattern)
  • 150. Multiple myeloma • Diffuse skull vault and calvarial vault destruction. • Solitary plasmacytoma – Focal destructive sphenoid sinus or calvarial vault mass is typical, though nonspecific – Best diagnostic clue: • CT shows solitary intraosseous osteolytic soft tissue mass with nonsclerotic margins
  • 151.
  • 152. Osteosarcoma • Craniofacial osteosarcomas are uncommon - when present, present in older patients, and commonly affect the maxilla or mandible. • Skull base osteosarcomas are rare. – May occur spontaneously or – In association with Paget disease or previous radiation therapy. • A soft tissue mass with tumor matrix mineralisation and aggressive bone destruction is characteristic. • DD: – Radiation osteitis, metastatic carcinoma, myeloma
  • 153. MRIs of a radiation–induced osteosarcoma in a patient with severe fibrous dysplasia of the skull and skull base. (A)Gadolinium–enhanced, T1–weighted axial image with fat suppression shows a large tumor in the region of the sphenoid and sella. (B)T2–weighted fast spin–echo, axial and (C) gadolinium–enhanced, T1–weighted coronal image with fat suppression of the same lesion.
  • 154. Chondrosarcoma • Rare in skull base • Slow growing, locally invasive tumors • Soft tissue mass with focal bone destruction is typical. • Matrix mineralisation in half of cases. • MR: – low to intermediate signal on T1 – Hyperintense on T2 – Strong but heterogeneous enhancement
  • 155. • Chondrosarcoma in a 65-year- old man with epistaxis and facial pain. • (a) Axial CT scan with bone windows reveals the presence of a midline destructive lesion involving the sphenoid body and extending anteriorly to the ethmoid bones and nasal fossa with tumor calcification (arrow), within the mass. • (b) Axial T1 -weighted MR image a relatively homogeneous midline mass (*) that is slightly less intense than brain and associated destruction of the clivus (arrows) . • (c) Midsagittal T1-weighted MR image shows a destructive mass in the midline of the ethmoid bones and nasal fossa extending posteriorly and causing destruction of the sphenoid body and clivus(*).
  • 156. Metastatic disease • Central skull base metastases are more common than primary bone neoplasms. • Arise via – regional extension of head and neck malignancies or – perineural spread from regional or remote malignancies or – haematogenous spread from extracranial sites
  • 157. • Prostate, lung and breast carcinomas are the most common. • Lung and breast – focal or diffuse lytic destructive lesions • Prostate – mixed hyperostoses and bone destruction with an associated soft tissue mass (resembles meningioma). – Lateral orbital wall – favourite site
  • 158. Lymphoma • CNS involvement – primary or secondary • Leptomeningeal involvement (most common type) • Cranial nerve palsies (most common presenting signs) • Focal masses or perineural tumor can occur • MR: – Replacement of normal high signal marrow with infiltrating soft tissue that has decreased signal intensity • Cavernous sinus lymphoma can be unilateral or bilateral.
  • 159. Unenhanced (A) and contrast-enhanced (B) axial T1-weighted images reveal homogeneous infiltrating lesions (arrow) in cavernous sinus, which exhibits homogeneous, intense enhancement.
  • 160.
  • 161. Posterior Cranial Fossa • Largest and the deepest of the 3 cranial fossae. • Roughly two-fifths of the base of skull. • Surrounds the foramen magnum
  • 162. • Includes: – clivus below the sphenooccipital synchondrosis – petrous temporal bone – pars lateralis and – squamae of occipital bone
  • 163. NOTE!!! • MR signal of normal clivus and posterior skull base depends on the amount and nature of the marrow elements the comprise the cancellous bone. • Red marrow (haematopoetic tissue) predominates upto approximately 3 years of age and results in low and high intensity portions mixed in various proportions on T1WI. • Enhancement of normal clivus marrow sometimes follows contrast administration. • This is mild and infrequent in adults, but is common and may even be quite striking in young children. • The skull base in children normally has signal irregularity and patchy enhancement.
  • 165. Posterior Skull Base Lesions - location • CP Angle – IAC cistern • Temporal bone • Clival and paraclival • Jugular foramen • Foramen magnum
  • 166. Posterior Skull Base Lesions - location • CP Angle – IAC cistern • Temporal bone • Clival and paraclival • Jugular foramen • Foramen magnum
  • 167. CEREBELLO PONTINE ANGLE – INTENAL AUDITORY CANAL CISTERN
  • 168. Normal anatomy • CPA cistern lies between the anterolateral surface of pons & cerebellum and the posterior surface of the petrous temporal bone. • Important structures: – Nerves – CNs V, VII and VIII – Arteries – SCA, AICA – Tributaries of superior petrosal veins – Others – Flocculus, choroid plexus
  • 170. Normal variants in CPA-lAC • Normal structures, when unusually prominent, trouble radiologist evaluating CPA – lAC. • AICA loop flow void on high-resolution T2 MR – Will not prominently enhance on Tl1C+ MR – Subtle enhancement in lAC on TI C+ MR may be mistaken for small acoustic schwannoma • Choroid plexus protruding through lateral recess of 4th ventricle – T1 C+ MR shows enhancing bilateral tear-shaped masses of CPA cistern – Symmetry &. characteristic appearance make diagnosis • Cerebellar flocculus is a lobule of cerebellum projecting into posterolateral aspect of CPA cistern – Signal follows intensity of cerebellum on all MR sequences • Marrow space foci in walls of lAC can mimic lAC tumor on Tl C+ MR images – Correlate location of foci with lAC cistern – Bone CT of T-bone may be necessary to identify this normal variant • High jugular bulb • Prominent jugular tubercles
  • 171.
  • 172. Normal variants in CPA-lAC • Normal structures, when unusually prominent, trouble radiologist evaluating CPA – lAC. • AICA loop flow void on high-resolution T2 MR – Will not prominently enhance on Tl1C+ MR – Subtle enhancement in lAC on TI C+ MR may be mistaken for small acoustic schwannoma • Choroid plexus protruding through lateral recess of 4th ventricle – T1 C+ MR shows enhancing bilateral tear-shaped masses of CPA cistern – Symmetry &. characteristic appearance make diagnosis • Cerebellar flocculus is a lobule of cerebellum projecting into posterolateral aspect of CPA cistern – Signal follows intensity of cerebellum on all MR sequences • Marrow space foci in walls of lAC can mimic lAC tumor on Tl C+ MR images – Correlate location of foci with lAC cistern – Bone CT of T-bone may be necessary to identify this normal variant • High jugular bulb • Prominent jugular tubercles
  • 173. Cerebellopontine angle cistern masses • Uncommon in children; very common in adults Cerebellopontine angle cistern masses Common Uncommon Acoustic schwannoma (75%) Arachnoid cyst Meningioma (8 to 10%) Lipoma Epidermoid (5%) Demoid Other schwannomas Exophytic cerebellar/brainstem astrostoma Vascular (VB ectasia, aneurysm, VM) Chordoma Metastases Osteocartilaginous tumors Paraganglioma Ependymoma Choroid plexus papilloma
  • 174. Internal Auditory Canal Masses Internal Auditory Canal Masses Common Uncommon Intracanalicular acoustic schwannoma Neuritis (eg., Bell’s palsy, Ramsay Hunt syndrome) Post operative fibrosis Haemangioma Lymphoma Metastases Sarcoidosis Meningioma
  • 175. Posterior Skull Base Lesions - location • CP Angle – IAC cistern • Temporal bone • Clival and paraclival • Jugular foramen • Foramen magnum
  • 177. • Primary temporal bone lesions: – Gradenigo’s syndrome – Malignant otitis externa – Cholesterol granulomas – Paraganglioma (glomus tympanicum)
  • 178. Gradenigo’s Syndrome • Osteomyelitis of petrous apex with sixth nerve palsy, otorrhea, and retroorbital pain. • NECT: – Destructive lesion of the petrous apex with fliud in the adjacent middle ear and mastoid.
  • 179. Gradenigo’s Syndrome • Osteomyelitis of petrous apex with sixth nerve palsy, otorrhea, and retroorbital pain. • NECT: – Destructive lesion of the petrous apex with fliud in the adjacent middle ear and mastoid.
  • 180. Malignant otitis externa • Uncommon but fulminant form of temporal bone osteomyelitis • Typical in insulin- dependent diabetics and immunocompromised patients • Extension into parotid and masticator spaces, skull base, and occassionally the CPA cistern may occur.
  • 181. Malignant otitis externa • Uncommon but fulminant form of temporal bone osteomyelitis • Typical in insulin- dependent diabetics and immunocompromised patients • Extension into parotid and masticator spaces, skull base, and occassionally the CPA cistern may occur.
  • 182. Cholesterol granulomas • Expansile cystic lesions of petrous apex that contain haemorrhage and cholesterol crystals. • Hyperintense on T1 and T2
  • 183. Paragangliomas • Slow growing hypervascular tumors • Arise from neural crest cells • Locaised to cochlear promontory in the middle ear cavity – glomus tympanicum tumors
  • 184. Paragangliomas • Glomus jugulotympanicum tumors extend from the jugular foramen into middle ear cavity. • Large masses also extend into CPA cistern. The axial post-gadolinium T1-weighted image above shows an enhancing lesion involving almost the entire petrous temporal bone and extending through the external auditory canal to protrude from the external ear (green arrow). The tumour extended beyond the skull base into the carotid sheath, and bulged into the posterior fossa
  • 185. Posterior Skull Base Lesions - location • CP Angle – IAC cistern • Temporal bone • Clival and paraclival • Jugular foramen • Foramen magnum
  • 186. Clival and Paraclival Lesions • Chordoma and Metastasis are the most common causes of destructive clival masses. • The same infectious and inflammatory processes and primary and metastatic tumors that affect the anterior and central skull base can also involve the clivus. • Replacement of the normal marrow that forms the cancellous clival bone by soft tissue masses is easily identified on MR studies in these cases. • Compared to brain, most abnormalities exhibit low signal on T1 and high signal on T2WI.
  • 187. Axial computed tomography shows a large midline chordoma involving the petrous apex bilaterally.
  • 188. Posterior Skull Base Lesions - location • CP Angle – IAC cistern • Temporal bone • Clival and paraclival • Jugular foramen • Foramen magnum
  • 189. Jugular foramen • Jugular foramen: – Located in the floor of the posterior fossa, between the petrous temporal bone anterolaterally and the occipital bone posteromedially. – Anterior and inferior to it is the hypoglossal canal • Hypoglossal nerve
  • 190. Divided into: • Pars nervosa • (smaller anteromedial compartment) • CN IX • Pars vascularis • (larger posterolateral compartment) • CN X and XI • Jugular vein
  • 191. Jugular Foramen Masses Non Neoplastic Masses Common Large jugular bulb (normal variant) Jugular vein thrombosis Uncommon Osteomyelitis Malignant otitis external Neoplasms Common Paraganglioma Metastasis Nasopharyngeal carcinoma Haematogenous Uncommon Scwannoma neurofibroma Epidermoid tumor
  • 192. Prominent jugular bulb • Normal variant • Most common “pseudomass” in the jugular foramen.
  • 193. Glomus Jugulare • The glomus jugulare is situated in the jugular bulb adventitia immediately below the middle ear. • .
  • 194. Glomus Jugulare • Expand the jugular foramen, eroding the jugular spine and surrounding cortex.
  • 195. Glomus Jugulare • T1 : low signal • T2 : high signal • T1 C+ (Gd) : marked intense enhancement • Salt and pepper appearance is seen on both T1 and T2 weighted sequences; the salt representing blood products from haemorrhage or slow flow and the pepper representing flow voids due to high vascularity.
  • 196. Glomus Jugulare • T1 : low signal • T2 : high signal • T1 C+ (Gd) : marked intense enhancement • Salt and pepper appearance is seen on both T1 and T2 weighted sequences; the salt representing blood products from haemorrhage or slow flow and the pepper representing flow voids due to high vascularity.
  • 197. Glomus Jugulare • Carotid arteriography is necessary for preoperative evaluation and/or embolization
  • 198. Nerve Sheath Tumors • Jugular foramen is uncommon location for nerve sheath tumors. • Schwannomas of CNs IX to XI • smooth well delineated rounded or lobulated soft tissue masses that expand the jugular foramen. • Pressure erosion is common (frank invasion is rare; c.f. paragangliomas) • Isointense to brain on T1; hyperintense on T2 • Strong homogenous contrast enhancement
  • 199. Nerve Sheath Tumors • Jugular foramen is uncommon location for nerve sheath tumors. • Schwannomas of CNs IX to XI • smooth well delineated rounded or lobulated soft tissue masses that expand the jugular foramen. • Pressure erosion is common (frank invasion is rare; c.f. paragangliomas) • Isointense to brain on T1; hyperintense on T2 • Strong homogenous contrast enhancement
  • 200. Nerve Sheath Tumors • Jugular foramen is uncommon location for nerve sheath tumors. • Schwannomas of CNs IX to XI • smooth well delineated rounded or lobulated soft tissue masses that expand the jugular foramen. • Pressure erosion is common (frank invasion is rare; c.f. paragangliomas) • Isointense to brain on T1; hyperintense on T2 • Strong homogenous contrast enhancement
  • 201. Posterior Skull Base Lesions - location • CP Angle – IAC cistern • Temporal bone • Clival and paraclival • Jugular foramen • Foramen magnum
  • 203. Normal Aantomy • Large aperture in the occipital bone though which posterior fossa communicates with the cervical spinal canal. • It transmits: – Medulla and its meninges – Spinal segment of CN XI – 2 vertebral arteries – Anterior and posterior spinal arteries – Vertebral veins • Bony elements that contain these structures are collectively termed the craniovertebral junction (CVJ).
  • 204. CVJ • Formed by the occiput and the C1 and C2 vertebrae. • 4 joints are present here: – Atlanto occipital – Anterior median atlanto axial – Posterior median atlanto axial – Lateral atlanto axial joints
  • 205. Pathology • Intraaxial (cervicomedullary) masses • Extramedullary intradural masses – Anterior – Posterior • Extradural masses – CVJ – Clivus & Skull base
  • 206. Cervicomedullary masses Extradural masses Common Craniovertbral junction Syringohydromyelia Trauma Demyelinating disease Arthropathies Glioma Congenital anomalies Fourth ventricle tumor Clivus and skull base Uncommon Metastases Haemangioblastoma Chordoma Metastases Osteocartilaginous tumors Anterior extramedullary intradural masses Posterior extramedullary intradural masses Common Common Vertebrobasilar dolichoectasia Tonsillar herniation Meningioma Ependymoma/subependymoma Aneurysm (VA, PICA) Medulloblastoma Uncommon Schwannoma Epidermoid tumor Paraganglioma Metastases Arachnoid cyst
  • 207. Cervicomedullary masses Extradural masses Common Craniovertbral junction Syringohydromyelia Trauma Demyelinating disease Arthropathies Glioma Congenital anomalies Fourth ventricle tumor Clivus and skull base Uncommon Metastases Haemangioblastoma Chordoma Metastases Osteocartilaginous tumors Anterior extramedullary intradural masses Posterior extramedullary intradural masses Common Common Vertebrobasilar dolichoectasia Tonsillar herniation Meningioma Ependymoma/subependymoma Aneurysm (VA, PICA) Medulloblastoma Uncommon Schwannoma Epidermoid tumor Paraganglioma Metastases Arachnoid cyst
  • 208. Intraaxial (cervicomedullary) masses • Non neoplastic intraaxial lesions – Syringohydromyelia • 25% of patients with Chiari I malformation • Acquired syrinxes – trauma, cystic neoplasms – Demyelinating diseases • Including multiple sclerosis • In medulla and upper cervical spinal cord Cervicothoracic ganglioneuroblastoma
  • 209. Intraaxial (cervicomedullary) masses • Non neoplastic intraaxial lesions – Syringohydromyelia • 25% of patients with Chiari I malformation • Acquired syrinxes – trauma, cystic neoplasms – Demyelinating diseases • Including multiple sclerosis • In medulla and upper cervical spinal cord Demyelination extends from the cervicomedullary junction to the T2 vertebral level. ADEM post liver transplantation
  • 210. Intraaxial (cervicomedullary) masses • Neoplasms – Half of brain stem gliomas occur here – Cephalad extension of cervical spinal cord tumors into distal medulla is also common – Most are low grade astrocytomas – Inferior extension of medulloblastoma in children and haemangioblastoma in adults are common are the common nonglial neoplasms of the cervicomedullary junction. – Intraaxial metastases are rare in this location.
  • 211. Cervicomedullary masses Extradural masses Common Craniovertbral junction Syringohydromyelia Trauma Demyelinating disease Arthropathies Glioma Congenital anomalies Fourth ventricle tumor Clivus and skull base Uncommon Metastases Haemangioblastoma Chordoma Metastases Osteocartilaginous tumors Anterior extramedullary intradural masses Posterior extramedullary intradural masses Common Common Vertebrobasilar dolichoectasia Tonsillar herniation Meningioma Ependymoma/subependymoma Aneurysm (VA, PICA) Medulloblastoma Uncommon Schwannoma Epidermoid tumor Paraganglioma Metastases Arachnoid cyst
  • 212. Extramedullary Intradural Masses • Anterior foramen magnum masses – Most arise anterior to cervicomedullary junction. • Posterior foramen magnum masses
  • 213. Cervicomedullary masses Extradural masses Common Craniovertbral junction Syringohydromyelia Trauma Demyelinating disease Arthropathies Glioma Congenital anomalies Fourth ventricle tumor Clivus and skull base Uncommon Metastases Haemangioblastoma Chordoma Metastases Osteocartilaginous tumors Anterior extramedullary intradural masses Posterior extramedullary intradural masses Common Common Vertebrobasilar dolichoectasia Tonsillar herniation Meningioma Ependymoma/subependymoma Aneurysm (VA, PICA) Medulloblastoma Uncommon Schwannoma Epidermoid tumor Paraganglioma Metastases Arachnoid cyst
  • 214. Anterior foramen magnum masses • Vascular lesions – Ectatic Vertebral Artery – Aneurysms • Neoplasms – Meningioma – Schwannoma – Epidermoid tumors – Paragangliomas – Metastases • Non-vascular Non-neoplastic lesions – Arachnoid, inflammatory and neurenteric cysts – Extraosseous intradural chordomas – Intradural rheumatiod nodules
  • 215. Anterior foramen magnum masses – vascular lesions • Ectatic vertebral artery – Most common intradural mass anterior to the medulla – There is no correlation between neurologic deficit and the presence of vascular grooves along the brainstem, regardless of their size. • Aneurysms – Vertebral artery – Posterior inferior cerebellar artery PICA aneurysm
  • 216. Anterior foramen magnum masses - neoplasms • Meningioma: – The most common primary intradural extramedullary neoplasm in this location. • Nerve sheath tumors – Second most frequently encountered neoplasms – Schwannomas of CNs IX to XI – Neurofibromas from exiting spinal nerve segments • Misc: – Epidermoid tumors – Paragangliomas – Metastases – cistenal, perineural and skull base
  • 217. Left: Sagittal T2-weighted MR image obtained in a 48-year-old man, demonstrating an anteriorly situated foramen magnum meningioma (long arrow) causing compression and displacement of the rostral spinal cord (short arrow). Right: Axial T1-weighted Gd-enhanced MR image obtained at the level of the foramen magnum. The homogeneously enhancing tumor arises predominantly in an anterior location with some left lateral contribution. The large tumor occupies slightly more than half of the transverse diameter of the foramen magnum and affords an adequate surgical corridor of approximately 1 cm. The rostral spinal cord (arrow) is compressed and displaced posteriorly.
  • 218. Anterior foramen magnum masses - Non-vascular Non-neoplastic lesions • They are uncommon. – Arachnoid, inflammatory and neurenteric cysts – Extraosseous intradural chordomas or notochordal remnants – Intradural rheumatoid nodules
  • 219. Cervicomedullary masses Extradural masses Common Craniovertbral junction Syringohydromyelia Trauma Demyelinating disease Arthropathies Glioma Congenital anomalies Fourth ventricle tumor Clivus and skull base Uncommon Metastases Haemangioblastoma Chordoma Metastases Osteocartilaginous tumors Anterior extramedullary intradural masses Posterior extramedullary intradural masses Common Common Vertebrobasilar dolichoectasia Tonsillar herniation Meningioma Ependymoma/subependymoma Aneurysm (VA, PICA) Medulloblastoma Uncommon Schwannoma Epidermoid tumor Paraganglioma Metastases Arachnoid cyst
  • 220. Posterior Foramen Magnum Masses • Herniated tonsils – 5 to 10% of all foramen magnum masses – Most frequent extramedullary intradural mass posterior to the cervicomedullary junction.
  • 221. Posterior Foramen Magnum Masses • Herniated tonsils – Congenital • Occur with Chiari I malformations – Acquired • Causd by increased intracranial pressure or posterior fossa masses. • After lumboperitoneal shunting of subarachnoid spinal space. • Reported with multiple traumatic lumbar punctures
  • 222. Posterior Foramen Magnum Masses • Ependymoma • Subependymoma • Medulloblastoma – Are intraaxial neoplastic masses that sometimes extend posteroinferiorly behind the medulla
  • 223. Posterior Foramen Magnum Masses • Ependymoma • Subependymoma • Medulloblastoma – Are intraaxial neoplastic masses that sometimes extend posteroinferiorly behind the medulla
  • 224. Cervicomedullary masses Extradural masses Common Craniovertebral junction Syringohydromyelia Trauma Demyelinating disease Arthropathies Glioma Congenital anomalies Fourth ventricle tumor Clivus and skull base Uncommon Metastases Haemangioblastoma Chordoma Metastases Osteocartilaginous tumors Anterior extramedullary intradural masses Posterior extramedullary intradural masses Common Common Vertebrobasilar dolichoectasia Tonsillar herniation Meningioma Ependymoma/subependymoma Aneurysm (VA, PICA) Medulloblastoma Uncommon Schwannoma Epidermoid tumor Paraganglioma Metastases Arachnoid cyst
  • 225. Extradural Masses • Most extradural masses at the foramen magnum are osseous lesions. – Trauma – Arthropathies – Congenital malformations – Tumors • High resolution MR delineates relationship between the osseous abnormalities, neural canal, and spinal cord in CVJ malformations. • Plain film tomography and CT with multiplanar 3D reconstruction are helpful for detailing the complicated osseous abnormalities seen in these disorders.
  • 226. Trauma • Odontoid fractures – Relatively common – 20% of all cervical fractures – 25 to 40% cause death at the site of accident. – Survivors do not experience immediate neurologic impairment. – Late-onset myelopathy secondary to non united dens fracture may occur. – Chronic instability can lead to spinal stenosis and irreversible cord damage. The Anderson and D’Alonzo classification of odontoid fracture. Type I fractures involve avulsion near the tip of the dens. Type II fractures occur at the base of the odontoid process. Type III fracture lines extend into the body of the axis.
  • 227. Trauma • Odontoid fractures – CT – delineates the osseous abnormalities. – MR – best delineates the relation to the spinal subarachnoid space and cord itself.
  • 228. Trauma • Odontoid fractures – CT – delineates the osseous abnormalities. – MR – best delineates the relation to the spinal subarachnoid space and cord itself.
  • 229. Arthropathies • True synovial joints – Full spectrum of degenerative and inflammatory arthropathies occur. • Rheumatoid arthritis of spine is second in incidence only to that of hands and feet. • Cervical spine is affected in 80% of patients. • Prominent pannus and atlantoaxial subluxation may cause severe CVJ narrowing with spinal cord compression. • Occasionally, rheumatoid nodules may be present within the dura and perineurium. • Less common CVJ lesions include: – Osteoarthritis, Paget disease, CPPD disorders, osteomyelitis with or without epidural abscess.
  • 230. MRI of rheumatoid arthritis of the cervical spine. A sagittal spin-echo T1-weighted MR image shows inflammatory pannus eroding odontoid (arrow), and cranial settling with cephalad migration of C-2 impinging on the medulla oblongata (open arrow).
  • 231. Congenital anomalies • Congenital CVJ anomalies are relatively uncommon, and include: – Vertrabralisation of occipital condyles – Arch hypoplasias and aplasias – Os odontoideum – Odontoid hypoplasia – Assimilations and – Ligament laxity • Occur in isolation or with basilar invagination. • May be associated with other congenital abnormalities like Down syndrome, Chiari I malformations, or syringohydromyelia.
  • 232. Neoplasms • Primary and metastatic tumors • Most extradural tumors affect clivus and are therfore anterior to medulla. • Primary neoplasms include: – Chordoma – Osteocartilaginous tumors (chondroma, chondrosarcoma) • Metastases – Haematogenous – Local extensions (nasopharyngeal or skull base tumors) • All lesions replace normal fatty marrow – Hypointense on T1; hyperintense on T2 (regardless of etiology) • Exception is Chordoma: – Very high, but heterogenous signal intensity on T2
  • 233. Metastasis from a renal cell carcinoma at the jugular foramen and FM region Contrast-enhanced computed tomographyshows an enhancing mass at the base of the left posterior fossa destroying the lower clivus, occipital squama, and lateral mass of C1. MRI shows large enhancing soft tissue mass in the region of the left jugular foramen and lateral to the foramen magnum.
  • 235. • Lesions that can occur in any or all BOS locations Diffuse Skull Base Lesions Non Neoplastic Masses Uncommon Fibrous dysplasia Paget’s disease Langerhans’ cell histiocytosis Neoplastic Masses Common Metastasis Uncommon Myeloma Anaemias Meningioma Meningioma Lymphoma Rhabdomyosarcoma
  • 236. Fibrous dysplasia • Among the most common skeletal disorders. • Adolescents and young adults • Monoostotic (70%) or polyostotic • Skull and facial bone involvement: – 25% of patients with monoostotic FD – 40 to 60% of patients with polyostotic FD
  • 237. • Expands and replaces the normal bone medullary spaces with vascular fibrocellular tissue. • Varying degrees of ossification may be seen. • CT: – Thickened sclerotic bone with a “ground-glass” appearance. • Cystic components may be present in the early active stage. • MR: – Low to intermediate signal on T1 and T2; scattered hyperintense regions may be present. • Variable contrast enhancement.
  • 238. • Expands and replaces the normal bone medullary spaces with vascular fibrocellular tissue. • Varying degrees of ossification may be sen. • CT: – Thickened sclerotic bone with a “ground-glass” appearance. • Cystic components may be present in the early active stage. • MR: – Low to intermediate signal on T1 and T2; scattered hyperintense regions may be present. • Variable contrast enhancement.
  • 239. Paget disease • Osseous lesion of unknown etiology • Monoostotic or polyostotic • Focal or diffuse • 3 phases are identified: – Early destructive phase – Intermediate phase with combined destruction and healing – Late sclerotic phase.
  • 240. • Imaging findings vary with stage. • Both CT and MRI scans show expanded bone of the skull base associated with calvarial involvement. • MRI better demonstrates the basilar invagination often seen because of bone softening. CT scan of the skull included an axial view at midcranial level (bone window), which confirmed the asymmetric broadening of the skull, increased density of the calvarium, and disturbance of the trabecular architecture due to diffuse mineralisation of the diploe with corticomedullary dedifferentiation.
  • 241. • Imaging findings vary with stage. • Both CT and MRI scans show expanded bone of the skull base associated with calvarial involvement. • MRI better demonstrates the basilar invagination often seen because of bone softening. MRI of the skullshows on the axial T2- weighted MR- image of the posterior fossa showing thickening of the skull with corticomedullary dedifferentiation and non- homogeneous, low to intermediate signal intensity of the diploe.
  • 242. Langerhan Cell Histiocytosis • Solitary or monoostotic Eosinophilic Granuloma is the most common presentation. • Children between 5 and 15 years; occassionally in young to middle- aged adults. • Typically affects skull vault • However, striking diffuse osteolytic skull base and calvarial lesions can occur. • Single or multiple areas of pure osteolysis are seen in the skull base and calvarium of children (i.e., eosinophilic granuloma). • A soft tissue mass may be associated (i.e., Hand-Schuller-Christian or Letterer-Siwe disease)
  • 243. Langerhan Cell Histiocytosis • Solitary or monoostotic Eosinophilic Granuloma is the most common presentation. • Children between 5 and 15 years; occassionally in young to middle- aged adults. • Typically affects skull vault • However, striking diffuse osteolytic skull base and calvarial lesions can occur. • Single or multiple areas of pure osteolysis are seen in the skull base and calvarium of children (i.e., eosinophilic granuloma). • A soft tissue mass may be associated (i.e., Hand-Schuller-Christian or Letterer-Siwe disease)
  • 244. Metastases • Most common malignancy of skull base • Direct or haematogenous spread • MC primary – lung, breast and prostate • CT – destructive mass infiltrating the skull base • MRI – T1WI show a “muscle” intensity mass within the skull base with loss of normal, low intensity cortical bone signal Metastasis to the sphenoid triangle (greater wing of sphenoid). The tumor (T) expands in all directions, pushing the temporalis muscle laterally, extending into the middle cranial fossa, and impinging on the orbit causing proptosis.
  • 245. Myeloma • Multiple myeloma or solitary plasmacytoma is possible • Indistinguishable from osteolytic metastases on CT or MRI • In the diffuse form, all bones of the skull base are involved, with permeative changes. Bone window images demonstrates destruction of clivus, petrous apex, sphenoid bone, lateral mass of C1, and the pedicle of C2 on left side
  • 246. Anemias CT of the 6 years old with thalassemia showing extensive hypertrophy of the diploic spaces mostly in the maxillary walls, skull base and frontal bones. Note obliteration of the maxillary, sphenoid and frontal sinuses. Also note increased trabeculation in the diploë. This results from bone marrow hypertrophy due to ineffective erythropoiesis.
  • 248. Interventional Neuroradiology in Skull Base • Image guided biopsy • Radio-frequency Ablation and Cryoablation for Tumors • Percutaneous Sclerotherapy – venous malformations • Preoperative Tumor Embolization • Management of Bleeding from the Head and Neck – Transarterial Embolization for Epistaxis – Bleeding from Carcinoma of the Head and Neck – Carotid Blowout Syndrome • Other lesions of vascular etiology – AVF – Dural AVF – Transverse, Sigmoid – CCF – Aneurysms • Intra-Arterial Chemotherapy for Head and Neck Carcinoma
  • 249. Image-Guided Biopsies • A, Paramaxillary approach to the left parapharyngeal space mass, proven to be an oncocytoma. Slight turning of the head to the opposite side simplifies the approach to this parapharyngeal space lesion. • B, Subzygomatic approach to the masticator space mass via the intercondylar notch. The core specimens in this patient with previously treated squamous cell carcinoma revealed scar tissue with no evidence of malignant cells. • C, CT image in a patient with a mass at the C2 level reveals a subtle left-sided epidural soft-tissue (arrow) and cortical irregularity of the vertebral body (arrowhead). This image was acquired with contrast to map the location of the adjacent vertebral A. • D, A posterolateral approach to the epidural mass was planned. A 22-gauge Franseen needle is advanced through a guiding needle, and aspiration biopsy is performed. Aspiration biopsy was consistent with a diagnosis of chordoma
  • 250. Radio-frequency Ablation and Cryoablation for Tumors • A 59-year-old man with severe dyspnea and dysphagia secondary to a large squamous cell carcinoma treated with radio- frequency ablation. • A, Axial contrast-enhanced CT scan demonstrates a large necrotic tumor (arrows) in the floor of the mouth and hypopharynx. • B, 3D volume-rendered reconstruction demonstrates the radio-frequency probe and electrode deployment within the tumor by means of a submental approach. • Note that the tumor anterior and posterior to the hyoid bone could be ablated simultaneously.
  • 251. Left cheek venous vascular malformation (A)Clinical picture before treatment showing left cheek mass. (B)T2-weighted, fat-saturated axial MR image showing a mass with heterogeneous signal intensity in the left masseter muscle extending to the masticator space. (C)Injection of 75% ethanol mixed with Ethiodol under live subtraction mode showing accumulation of the sclerosing agent in the lesion. (D)Further injection of the sclerosing agent with compression of the venous outflow of the lesion. (E)Non-subtracted image of the head after sclerotherapy showing stasis of the sclerosing agent within the lesion. (F)Clinical picture 5 months after treatment showing decreased size of the left cheek mass.
  • 252. Preoperative Tumor Embolization • The tumors that require embolization in the head and neck most commonly include – glomus tumors, – angiofibromas, and – meningiomas. • Many other types of tumors that may also require preoperative embolization include the following: – hypervascular metastases, – esthesioneuroblastomas, – schwannomas, – rhabdomyosarcomas, – plasmacytomas, – chordomas, and – hemangiopericytomas.
  • 253. Preoperative Tumor Embolization • The embolic agents in common use are: – polyvinyl alcohol (PVA), – Embospheres (Bio- Sphere Medical, Rockland, Mass), – liquid embolic agents (glue, ethylvinyl alcohol copolymer, or Onyx), – gelatin sponge (Gelfoam), and – coils.
  • 254. Glomus jugulare tumor. • (A) Contrast-enhanced head CT shows an enhancing mass extending into right temporal bone at cerebellar pontine angle level (arrow). • (B) Bony expansion and destruction at jugular fossa level (arrow) is seen on thin section temporal bone CT. • (C) Axial and (D) coronal contrast-enhanced MRI shows a corresponding intensely enhancing mass (arrows), consistent with glomus jugulare paraganglioma tumor. • Diagnostic angiography confirms dense tumor blush, consistent with glomus tumor. • Multiple feeding arteries were found, indicating a multicompartmental tumor, and these feeding pedicles were embolized to stasis with polyvinyl alcohol particles. • (E) Lateral view during injection of a common trunk of the right occipital artery and ascending pharyngeal shows dense stain from ascending pharyngeal artery. AP, ascending pharyngeal artery; Occ, occipital artery. • (F) Tumor blush seen on selective catheterization of a feeding pedicle from posterior division of the right ascending pharyngeal artery.
  • 255. Juvenile nasal angiofibroma • (A) Axial and (B) coronal T1-weighted MRI with contrast confirms the intensely enhancing mucosal mass in left nasal cavity, with rightward displacement of the nasal septum (arrows). • (C) Unsubtracted and (D) subtracted cerebral angiogram demonstrates intense tumor blush in nasal cavity during internal maxillary artery. • (E) Postembolization angiogram of the sphenopalatine artery shows no residual tumor blush. • The tumor subsequently was resected endoscopically, with an estimated total blood loss of 75 cm3.
  • 256. Bleeding from Carcinoma of the Head and Neck • An elderly man with a recurrent head and neck cancer presenting with pulsatile bleeding through the oral cavity. • A, CT angiogram of the neck shows an ulcerated left oropharyngeal mass (arrowheads) that encases the left ECA (arrow). • B, Common carotid angiogram reveals a long-segment tumor encasement of the left ECA. C, The ECA is embolized with fibered and detachable platinum coils. The patient did not have additional episodes of bleeding after the embolization.
  • 257. Maxillary arteriovenous malformation • (A) Clinical picture before treatment showing a soft tissue pulsatile mass in the left gingiva and palate. • (B, C) Early (B) and late (C) phases of the left external carotid artery angiogram in the lateral projection showing a left maxillary arteriovenous malformation with large draining venous channel inside the maxilla. • (D) Lateral view of the superselective angiogram of the left descending palatine artery showing arteriovenous shunts to the intraosseous vein. • (E) N-butyl cyanoacrylate (NBCA) cast injected from the same microcatheter position as in (D), showing penetration of NBCA into the vein. • (F) Lateral view of the external carotid artery angiogram after multiple embolization showing disappearance of the arteriovenous malformation. • (G) Clinical picture after embolization showing ulceration of the left palate. No further hemorrhagic episodes were experienced.
  • 258. Lower-grade dural arteriovenous fistula of the left sigmoid sinus • Study confirms low-grade dural arteriovenous fistula of the left sigmoid sinus, with multiple feeding arteries, including (A) occipital artery, (B) ascending pharyngeal artery, (C) middle meningeal artery, and (D), and left vertebral artery. • Each of these feeding arteries was embolized to stasis using polyvinyl alcohol particles. Coils were placed in the distal occipital artery to protect the cutaneous branches from the effects of the proximal embolization (∗, seen in B). • Following transarterial embolization of the feeding arteries, transvenous embolization was performed for a combined transarterial- transvenous approach, resulting in complete obliteration of the fistula. • This combined transarterial and transvenous treatment results in durable cure of this fistula without open surgery.
  • 259. Higher-grade dural arteriovenous fistula of the torcular region • Diagnostic angiogram confirms DAVF of the torcular region, with supply from multiple arteries including the middle meningeal artery and opacification of multiple cerebellar veins. • Transvenous embolization of this fistula is not practical. • After transarterial embolization with NBCA tissue adhesive, resulting in a glue cast of the distal feeding arteries and proximal recipient veins, the fistula is obliterated. • CV, cerebellar veins; MC, microcatheter in middle meningeal artery; MMA, middle meningeal artery.
  • 260. Direct (high-flow) carotid cavernous fistula – post traumatic • (A) Coronal T1-weighted MRI shows dilated superior ophthalmic vein (SOV). • (B) Axial image from MR angiogram also shows a dilated superior ophthalmic vein (SOV). • (C) Angiogram of left internal carotid artery (IAC) (lateral projection) confirms a fistula (CCF) with opacification of cavernous sinus and retrograde flow in superior ophthalmic vein (SOV), draining to facial veins (FV). • (D) After embolization with detachable balloons, the fistula is closed.
  • 261. Symptomatic mid-basilar aneurysm • (A) 3-D reconstructions from magnetic resonance angiography. • (B) Diagnostic cerebral angiogram, anteroposterior projection from • (C) 3-D rotational angiography. (D) Lateral projection from cerebral angiogram obtained after endovascular treatment with a combination of endovascular stents for reconstruction of the arterial lumen, followed by coiling. • Patient's symptoms resolved following this treatment.
  • 262. Intra-Arterial Chemotherapy for Head and Neck Carcinoma
  • 263.
  • 265. Advances in Skull Base Imaging • Advances in the areas of diagnostic imaging, interventional radiology, surgical approaches and techniques, as well as electrophysiological monitoring, have all advanced the treatment of skull base tumors and disorders.
  • 266. Advances in CT & MR technologies • Better and precise diagnosis • Facilitated aggressive skull base surgery by allowing precise preoperative delineation of the extent of lesions • Post operative follow-up
  • 267. Advanced image-guided skull base surgery.
  • 268. Advanced image-guided skull base surgery. The early localization of the major vessels or neural structures during transtumoral decompression is beneficial. A: Instrument points to the petrous portion of the internal carotid artery (ICA) during decompression of a cavernous sinus meningioma. B: Instrument points to the basilar artery (BA) during removal of a craniopharyngioma
  • 269. CT/MR Fusion For Skull Base Imaging
  • 270. CT/MR Fusion For Skull Base Imaging • A: Axial CT visualized at bone window settings demonstrates lytic lesion with well- defined margins in left petrous apex (M). Note extent of bone erosion involving cortex of the posterior petrous portion of the temporal bone (curved arrow) and bony covering (straight arrows) of the petrous segment of the internal carotid artery (C). • B: Axial T1-weighted noncontrast- enhanced MR imaging performed in same patient shows a high signal intensity mass located within the left petrous apex (curved arrow) which is characteristic of a cholesterol granuloma. Note relationship of the mass to the basilar artery (straight arrow). • There is excellent visualization of the soft tissues of the brain and masticator spaces (M); however, the relationship of the mass to the carotid artery (c) and the extent of bone erosion is better seen on CT than on MR imaging.
  • 271. CT/MR Fusion For Skull Base Imaging
  • 272. Conclusion • The central skull base is a highly complex region. • Knowledge of the normal development and anatomic relationships will lead to more accurate diagnoses. • This in turn helps in decision making, especially regarding challenging surgical procedures.