SlideShare a Scribd company logo
1 of 11
Download to read offline
Combining precursorincidentsinvestigationsandQRAinoilandgasindustry 
Jon EspenSkogdalen n, JanErikVinnem 1 
Faculty ofScienceandTechnology,UniversityofStavanger,Stavanger,Norway 
a r t i c l e info 
Article history: 
Received 8April2011 
Received inrevisedform 
22 November2011 
Accepted 8December2011 
Available online18January2012 
Keywords: 
Quantitative riskanalyses 
Investigation 
Precursor incident 
Oil andgasindustry 
a b s t r a c t 
Accidentinvestigationisthecollectionandexaminationoffactsrelatedtoanoccurredspecificincident. 
QuantitativeRiskAnalysis(QRA)isthesystematicuseofavailableinformationtoidentifyhazardsand 
probabilities,andtopredictthepossibleconsequencestoindividualsorpopulations,propertyorthe 
environment.Traditionallybothmethodshavebeenusedseparately;howeverbothaccidentinvestiga- 
tion andQRAdescribehazardsinasystematicway.Theextensiveresearchthatisdonerelatedtothat 
includinghumanandorganisationalfactorsinQRAbringsaccidentinvestigationandQRAcloser 
together.Everyyeartherearealargenumberofprecursorincidentsrecordedwiththepotentialto 
cause majoraccidentsrisksintheNorthSeaoilandgasindustry.Thisarticledescribeshowaccident 
investigationandQRAcanbecombinedusingavailableinformationfromaprecursorincidentasinput 
to QRA-methodologytoidentifyhazards,probabilities,safetybarriersandpossibleconsequences. 
The combinedmethodisshortenedasQRAPII(QuantitativeRiskAnalysisPrecursorIncident 
Investigation)andmakesuseofwellknownhazardanalysistechniquestoproduceamorecomplete 
cause andriskpictureincomplexsystems.Thisincludesanextendedunderstandingofhumanand 
organisationalfactorsinaccidentsandpreventionofthese. 
& 2011 ElsevierLtd.Allrightsreserved. 
1. Introduction 
Experiences frommajoroffshoreaccidentsinthepastareimpor- 
tant sourcesofinformationtopreventtheoccurrenceofsimilar 
accidents inthefuture.Therewere anumberofmajoraccidentsin 
the NorthSeathatoccurredinthesecondhalfofthetwentieth 
century, includingtheAlexanderKielland [1], EkofiskBravoBlowout 
[2] and PiperAlfa [3]. Alloftheaccidentsmentionedleadto 
significant changesintechnology,operations,supervisionandregula- 
tion. Therehasbeenapositivesafetytrendduringthelast15–20 
years, resultinginfewermajoraccidents.Thisisastepintheright 
direction,butithasonechallenge,inthesensethattheexperiences 
from themajoraccidentinvestigationshavetobecomplementedby 
new toolsforfurtherimprovementwithinriskmanagement. 
Human errorhasbeenjudgedtobetherootcauseofmany 
major accidents,forexampletheaccidentatEssoAustralia’sgas 
plant atLongfordinVictoriainSeptember1998 [4]. Essoargued 
that operatorsandtheirsupervisorsondutyatthetimeshould 
have knownthattheattempttoreintroduceawarmliquidintoa 
cold pipecouldresultinbrittlefracture.Essoclaimedthat 
operators hadbeentrainedtobeawareoftheproblem.However, 
the accidentinvestigationcommissiontooktheviewthatnoneof 
those ondutyunderstoodjusthowdangerousthesituationwas, 
which indicatedasystematictrainingfailure.Thecommission 
concluded thatinadequatetrainingofoperatorsandsupervisors 
was the‘‘realcause’’oftheaccident [5]. 
It wasforalongtimeassumedthatoccupationalaccidents, 
often summarisedastrips,slipsandfalls,werearelevant 
indicator onwhichtojudgethemajorhazardrisk.TheBPTexas 
City refinerydisasterin2005createdahighawarenessthat 
management ofmajorhazardsisnotthesameasmanagement 
of occupationalhazards [6]. Thelackofthecoherencebetween 
personnel injuriesandmajoraccidentswasalsoillustratedbythe 
Deepwater Horizonaccident [7]. TheverysamedaythatBP 
officials werevisitingtherigtopraisesevenyearswithout 
personnel injuries,gasexplodedupthewellboreontothedeck 
of therigandcaughtfire.Elevenworkerswerekilledinthe 
explosion [8]. Theblowoutcausedoiltogushoutofthedamaged 
well fortwomonths,theworstenvironmentaldisasterinUS 
history, impactinglocaleconomies,sensitivecoastlinesandwild- 
life throughouttheGulfregion [9]. 
Hydrocarbon leakshaveamajoraccidentpotential,well 
illustrated bythetotallossof‘PiperAlpha’in1988ontheBritish 
continental shelf,leaving167dead [3]. Agasleakcausedagas 
Contents listsavailableat SciVerse ScienceDirect 
journalhomepage: www.elsevier.com/locate/ress 
ReliabilityEngineeringandSystemSafety 
0951-8320/$ -seefrontmatter & 2011 ElsevierLtd.Allrightsreserved. 
doi:10.1016/j.ress.2011.12.009 
Abbreviations: CFD, ComputationalFluidDynamics;DOE,USDepartmentof 
Energy; EER,Evacuate,EscapeandRescue;HSE,Health,SafetyandEnvironment 
and HealthandSafetyExecutive,UK;HOF,humanandorganisationalfactors; 
HRO, HighReliabilityOrganisation;MTO,Man,TechnologyandOrganisation;NRC, 
US NuclearRegulatoryCommission;O&G,oilandgas;OTS,OperationalSafety 
Condition; PSA,PetroleumSafetyAuthorityNorway;QRA,QuantitativeRisk 
Analysis; QRAPII,QuantitativeRiskAnalysisPrecursorIncidentInvestigation;RIF, 
risk influencingfactor;RNNP,RiskLevelProject;TTS,TechnicalSafetyCondition 
n Corresponding author.Tel.: þ47 99024171. 
E-mail addresses: jon.espen.skogdalen@gmail.com (J.E.Skogdalen), 
jan.erik.vinnem@uis.no (J.E.Vinnem). 
1 Tel.: þ47 91152125. 
Reliability EngineeringandSystemSafety101(2012)48–58
cloud, whichignited.Theexplosioncausedbreakageofapipe 
transporting oilandafire,whichrageduncheckedduetowater 
not beingavailableforthefirewatersystem.Thiscausedtheother 
large pipesconnectedtogas-andoil-pipelines(risers)toburst, 
which inturnescalatedtoatotalloss.Thelargenumberof 
fatalities waspartlyduetothefailureofevacuationandrescue 
measures [3]. 
The PetroleumSafetyAuthorityNorway(PSA)hasinseveral 
accident investigationreportsconcludedthatunderslightly 
different circumstances,theincidentscouldhavedevelopedinto 
major accidents,withextensivepollutionandpotentiallossof 
multiple lives [10]. Centralquestionsarethen 
– Whatcircumstances? 
– Howprobablewerethesecircumstances? 
– Whatwerethepossibleharm/consequences? 
These questionsareonlysuperficiallyanswered,iftheyare 
answered atall,intheaccidentinvestigationreports.IfthePiper 
Alpha, orthemorerecentDeepwaterHorizonaccident,was 
prevented bythegascloudnotbeingignitedduetoafortunate 
wind direction,shouldtheynothavebeentakenjustasseriously? 
The numberofoccupationalaccidentsisnotanindicatorfor 
major hazardrisk.Humanerrorisnotarootcause.PSAgives 
examples ofrelatedassumptionsthatcanbemisleading [11]: 
– assumptionthatanoverviewofhistoricalperformancepro- 
vides reliableinformationaboutrisk,andthatadeclineinthe 
number ofincidentsbyitselfisareliableindicatorofthe 
robustness ofbarriersthataresignificantinpreventinga 
major accident; 
– assumptionsthatinformationusedasabasisforevaluating 
major accidentriskisrelevant,reliable,adequateandtimely, 
with subsequentcementingofincorrectassumptionsand 
under-estimation ofuncertainty. 
The BritishHealthandSafetyExecutive(HSE)statesthatits 
objective istoreducethelikelihoodofcatastrophicaccidentsin 
major hazardindustries.Thefrequencyandthenatureofcata- 
strophic accidentsmakethemunsuitableasmeasuresofhealth 
and safetyperformance.Instead,incidentsthathavethepotential 
to leadtoordevelopintoacatastrophicaccident,so-called 
precursor incidents,areusedasindicators.Aprecursorincident 
is aneventorgroupofeventsthatindicatesfailureinsystems 
controlling therisksfromamajorhazard.Theyarethelinksina 
chain ofcausation,andtherebykeyelementsinpreventing 
certain catastrophicoutcomes [12]. Thereareoveralargenumber 
of precursorincidents(e.g.gasleaks,kicksandshipcollisions) 
every yearontheNorwegianContinentalShelf [13]. Thepre- 
cursor incidents,orunwantedincidentsastheyareoftencalled, 
are usuallysuperficiallyjudgedininvestigationreportsrelatedto 
the potentialharmusingriskmatrixes.Theconsequencesof 
major accidentsareunacceptableinoursociety,andtherefore 
precursor incidentswiththepotentialtocausemajoraccidents 
should bethoroughlyinvestigatedinordertopreventthemfrom 
reoccurring. Theimportanceofinvestigatingprecursorincidents 
has beendescribedinalargenumberofarticles,e.g. [14–18]. 
There isthoughalackofarticlesabouthowthesecanbedonein 
practice intheoilandgas(O&G)industry. 
1.1. Objectives 
This articledescribeshowaccidentinvestigationmethodology 
and QuantitativeRiskAnalysis(QRA)canbecombinedto 
investigate precursorincidentsbytheuseofwellknownhazard 
analysis techniques.ThecombinedmethodisshortenedasQRA 
PII (QuantitativeRiskAnalysisPrecursorIncidentInvestigation). 
QRA PIIincludesthefollowingelements:precursorincident 
reporting, indicators,safetybarriers,fault/event-trees,bow-ties 
and QRA.Theelementsarebrieflydescribedfollowedbya 
discussion onhowQRAPIIcanbeatoolforfurtherimprovement 
within riskmanagement.Thediscussionincludesexperiences 
from HighReliabilityOrganisations(HROs)andthenuclear 
industry, wheretheuseofprecursorincidentinvestigationhasa 
longer traditionrelatedtotheanalysisofdecisiongatesfor 
control roomoperators. 
The QRAmodellingincludesseveralhazardanalysistechni- 
ques likefault-treeandeventtree.TheresultsfromtheQRAare 
often describedusingbow-tiediagrams.Thesehazardanalysis 
techniques canbedescribedas‘investigatinganaccidentbeforeit 
occurs’. Thesetraditionalapproachestohazardanalysisare 
according toanumberofexperts,e.g.Leveson [19] and Hollnagel 
et al. [20], overwhelmedbytheincreasingcomplexityofthe 
systems, bytheintroductionofdigitaltechnologyandsoftware 
and bytheincreasedrelianceondistributedhuman–machine 
decision-making andcontrol [19]. 
According toLeveson [21,22] amodelofaccidentcausation 
and theengineeringtechniquesbuiltonitthatconsideronly 
component failures,willmisssystemaccidents.Inaddition,the 
role ofhumanoperatorsischangingfromdirectcontrolto 
supervisory positionsinvolvingsophisticateddecision-making. 
The typesofmistakeshumansaremakingaredifferentand 
are notreadilyexplainedorhandledbythetraditionalchain- 
of-failure-events modelsandbymostofthehazardanalysis 
techniques. Also,thereismorewidespreadrecognitionofthe 
importance ofmanagement,organisationalandculturalfactorsin 
accidents andsafety:thetraditionaltechniques,whichwere 
never derivedtohandlethesefactors,dosopoorlyifatall [22]. 
To completelyunderstandthecauseofaccidentsandtoprevent 
future ones,thesystem’shierarchicalsafetycontrolstructure 
must beexaminedtodeterminewhythecontrolsateach 
level wereinadequatetomaintaintheconstraintsonsafebeha- 
viour atthelevelbelowandwhytheeventsoccurred [22]. 
Understanding thephysicalfactorsleadingtothelossisonly 
the firststep,however,inunderstandingwhytheaccident 
occurred. Thenextstepisunderstandinghowtheengineering 
design practicescontributedtotheaccidentandhowtheycould 
be changedtopreventsuchanaccidentinthefuture [22]. This 
includes understandingwhypeoplebehavethewaytheydoby 
examining theirmentalmodelsandtheenvironmentalfactors 
affecting theirdecision-making.Allhumandecision-makingis 
based ontheperson’smentalmodelofthestateandoperationof 
the systembeingcontrolled [22]. Levesonarguesforthedevel- 
opment ofanewhazardanalysistechniquecalledSystem- 
Theoretic ProcessAnalysis(STPA) [19,22]. Theauthorsagree 
about theshortcomingsofseveraltraditionalhazardanalysis 
techniques, butbelievethatbycombiningdifferentdatainput 
and hazardanalysistechniquesamorecompletecauseandrisk 
picture canbeproducedforprecursorincidentstherebyavoiding 
major accidents.Theobjectiveofthisarticleistodemonstrate 
how thiscanbedoneinpracticeusingdatasetsandhazard 
analysis techniquesthatarewellknownwithintheNorwegian 
O&G industry. 
1.2. Limitations 
This articledoesnotincludeanexplanationastohowQRAs 
are performed.Forreadingsaboutthissee [23–26]. Thescopeis 
limited tomajorhazardsintheO&GindustryintheUKand 
Norway. Majorhazardshavethepotentialtocausemajoracci- 
dents, whichareoftenunderstood,e.g.byHSE [12], asaccidents 
out ofcontrolwiththepotentialtocausefivefatalitiesormore, 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 49
caused byfailureofoneormoreofthesystem’ssafetyand 
preparedness barriers. 
There arealargenumberofdifferentaccidentinvestigation 
methods andcausalanalyses.Inthesameway,thereisagreat 
variation inthewayriskanalysesarepreformed.Thereare 
several perspectivesrelatedtobothaccidentsandtheircauses. 
A primarydifferenceishowaccidentsaremodelledandhowan 
organisation isinterpreted,seee.g. [27–31]. Areviewofthe 
methods andthedifferentperspectivesisnotascopeofthis 
article. Ourviewissomewhatpragmatic.Thebasecaseisthe 
methods andelementsthatareusedintheUKandNorwaytoday. 
2. Incidentreportingandlearning 
The theoryofincidentlearningreliesontheobservationmade 
by Turner [32] thatdisastershavelongincubationperiodsduring 
whichwarningsignals(orincidents)arenotdetectedorare 
ignored.Thus,whiletheoccurrenceofincidentsmaybenormal, 
onlyanorganisationwithaneffectiveincidentlearningsystem 
canrespondtotheseincidentstopreventseriousaccidentsfrom 
occurringinthefuture.Phimisteretal. [15] discusstheimpor- 
tanceofidentification,withoutwhichincidentlearningisimpos- 
sible.Unlesstheorganisationissensitisedtolearnfromincidents, 
deviationsfromnormalbehaviourwillgounnoticed.Accordingto 
CookeandRohleder [33], anorganisationthateffectivelyimple- 
mentsaformalincidentlearningsystemcanevolveintoanHRO. 
For severalindustriestherehasbeenachallengetoachievea 
good reportingrate,andanincidentcannotbeinvestigatedunless 
it isreported.Furthermore,therateofincidentsreporteddepends 
on thepersonalcommitmenttosafetybytheworkerswho 
observe orareinvolvedintheincidents.Managementcanshow 
their commitmenttosafetybycreatingaclimateinwhich 
incident reportingisrewardedinsteadofpunished.TheO&G 
companies operatingintheNorthSeahaveforalongtime 
emphasised thatallunwantedincidentsshouldbereported.The 
O&G companieshaveachievedahighrateofincidentreporting, 
which initselfisgood.However,thehighreportingratecanmake 
it difficulttoidentifythemostimportantproblemshighlightedin 
the reporteddata.AsreportedbyBerntsenandHolmboe [34] too 
much resourceswerespentonacomprehensivehandlingand 
analysis ofavastamountofincidentswithlessimportanceforthe 
safety level,takingthefocusawayfromthemoresevereand 
important incidents.Thehighresponserateisalsoaresultofa 
process wheretherehasbeenlimitedpunishmentandhuntfor 
scapegoats. Theinvestigationsareusuallydoneinaquickmanner 
and withoutquestioningskills,competenceanddecisionsmade 
by theinvolved(seee.g. [35]). Theincidentreportshavemainly 
been usedforworkingoutsafetyindicators. 
3. Indicatorsandriskinfluencefactors 
The term‘‘indicator’’canbeusedinvariouscontexts,for 
exampleperformanceindicators,safetyindicators,safetyperfor- 
manceindicators,directperformanceindicators,indirectpro- 
grammaticperformanceindicatorsandriskindicators [36]. Also, 
indicatorsmaybedefinedindifferentways.Safetyindicatorshave 
beenaddressedinaspecialissueof SafetyScience (volume47, 
2009)andseveralrecentresearcharticles [36–46]. Mainlythe 
articlesdiscusstwodimensionsofsafetyindicators:personal 
safetyversusprocesssafety,andleadingversuslaggingindicators. 
HSE [41] statesthatbothleadingandlaggingindicatorsare 
neededtoensurethehighqualityoftheselectedindicators,but 
Hopkins [40] claimsthattodistinguishbetweenleadingand 
laggingindicatorsisnotusefulforprocessindustries. 
In theRiskLevelProject(RNNP)inNorway,theso-called 
leading andlaggingindicatorsareusedtoassesstherisklevelof 
the NorwegianO&Gindustryonanannualbasis,inadditionto 
questionnairesandinterviews.Thefirstreportwaspublished 
early in2001,basedondatafortheperiod1996–2000.RNNPuses 
various statistical,engineeringandsocialsciencemethodsto 
provide abroadillustrationofrisklevels,includingrisksdueto 
major hazards,risksduetoincidentsthatmayrepresentchal- 
lenges foremergencypreparedness,riskperceptionandcultural 
factors [45,47]. Relatedtomajoraccidents,thefollowingcate- 
gories ofdataarecollected [13]: 
– uncontrolledreleaseofhydrocarbons,fires(i.e.processleaks, 
well events/shallowgas,riserleaks,otherfires); 
– structuralevents(i.e.structuraldamage,collisions,threatof 
collision); 
– accidentsandeventsinhelicoptertransportactivities; 
– experiencedatarelatingtotheperformanceofbarriersagainst 
major accidents. 
The numberofprecursorincidentsisusedasindicatorsin 
RNNP. Inadditiontheperformanceofsafetybarriersisincluded. 
4. Safetybarriers 
Safetybarriers(barriers)arephysical ornon-physicalmeans 
plannedtoprevent,controlormitigateundesiredeventsoraccidents. 
Barriersmaybepassiveoractive,physical,technicalorhuman/ 
operationalsystems [48,49]. ThePSAregulationsrequirethefollow- 
ingaspectsofbarrierperformanceto beaddressed:reliability/avail- 
ability,effectiveness/capacityandrobustness(antonymvulnerability). 
In 2000StatoildevelopedasystemtoassesstheTechnical 
SafetyCondition(TTS)ofitssafetybarriersonO&Gfacilities 
[50,51].TTSincludesareviewofthemaintenance,inspectionand 
designroutinesthatareverifiedagainstpredefinedperformance 
standards.Thereare22differentperformancestandards,for 
exampleregardingthegasdetectionsystem,alarmmanagement 
andwellbarriers.Eachperformancestandardconsistsofperfor- 
mancerequirements.Theassessmentiscarriedoutatadetailed 
levelusingchecklists.Thereisalreadyalargeamountofdata 
collected,andseveraloilcompanieshaveadoptedasimilarsystem. 
The safetybarrierdiagrams‘bow-tie’graphicallydisplaythe 
relationship betweenhazards,threats,controlsandconse- 
quences. Bow-tiesincludetwoparts.Theleftpartdescribesthe 
latent hazard,initiatingevents,preventativecontrolsandinitial 
hazard release.Thehazardreleaserepresentsapotentialmajor 
incident. Therightpartdisplaysthepotentialmajorincidentasa 
starting point,barriersinsequenceandtheconsequencesthat 
result fromthefailureofthebarriers.Thebow-tiediagramis 
based onthecouplingofafaulttreeandaneventtreediagram 
linked toacriticaleventthatrepresentsahazard.Bow-tie 
diagrams allowtheidentificationofsafetybarriersimplemented 
to preventthecriticaleventfromtakingplaceand/ortomitigate 
its effects.Severallevelsofcausesandeffectscanbedescribed. 
Bow-tie diagramsarethereforegoodillustrationsofdefence-in- 
depth [52]. QRAsintheO&Gindustryhavetraditionallyhada 
rather narrowanalysisofbarrierperformance [23]. 
Revealingthehumanandorganisationalfactors(HOFs)isimpor- 
tantwhenanalysingsafetybarriersandprecursorincidents.Human 
factorsareunderstoodasthebranchofscienceandtechnologythat 
includes whatisknownandtheorizedabouthumanbehavioural 
and biologicalcharacteristicsthatcanbeappliedvalidlytothe 
specification, design,evaluation, operationandmaintenanceof 
productsandsystemstoenhancesafe,effectiveandsatisfyinguse 
by individuals,groups andorganisations [53]. Humanfactorsare 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 50
seen asarangeofissues,includingtheperceptual,physicaland 
mentalcapabilitiesofpeople,aswellastheinteractionsofindivi- 
dualswiththeirjobandtheworkingenvironments,theinfluenceof 
equipmentandsystemdesignonhumanperformanceand,aboveall, 
the organisationalcharacteristics thatinfluencesafety-related 
behaviouratwork. 
The terms‘humanfactors’and‘humanerror’areoftenused 
interchangeably, but,aspointedoutbyGordon [54], itisimpor- 
tant todistinguishbetweentheunderlyingcausesofaccidents 
(human factors)andtheirimmediatecauses(humanerrors). 
Traditionally, humanfactorsaredefinedastheinteraction 
between manandmachine,althoughmanyvariationsexist [55]. 
Human errorcanbedefinedas‘thefailureofplannedactionsto 
achieve theirdesiredends—without theinterventionofsome 
unforeseeable event’ [56]. AccordingtoJacobsandHaber [57], 
human errorsmaybeofvariousoriginsandpartoflarger, 
organisational processesthatencourageunsafeacts,whichulti- 
mately producesystemfailures. 
Organisational factorsarecharacterisedbythedivisionof 
tasks, designofjobpositions,includingselection,trainingand 
cultural indoctrination,andtheircoordinationtoaccomplishthe 
activities. Themainissuesoforganisationandsafetyinclude 
factors suchascomplexity(chemical/process,physical,control 
and task),sizeandageofplant,andorganisationalsafetyperfor- 
mance shapingfactorssuchasleadership,culture,rewards,manning, 
communicationsandcoordination,andsocialnormsandpres- 
sures [58]. 
HOFs playanimportantroleinNorwegianandUKlegislation. 
HOFs mustbemodelled,andtheirroleassafetybarriersmustbe 
revealed tofulfilthelegislationrequirements.Duringthelast 
decade, severalresearchprojectshavebeenworkingtoinclude 
HOFs inQRA.OrganisationalRiskInfluenceModel(ORIM) [59], 
Barrier andOperationalRiskAnalysis(BORA) [60,61] andOpera- 
tional SafetyCondition(OTS) [25,62] arethemostrelevant 
methods. Table 1 shows thatHOFsarecentralbothinaccident/ 
precursor incidentinvestigationsandQRA. 
5. QRA 
Risk analysismethodologyisaboutestablishinggoodprinci- 
ples, methodsandmodelsforanalysinganddescribingrisk.QRA 
is usedastheabbreviationfor‘QuantifiedRiskAssessment’ 
or ‘QuantitativeRiskAnalysis’.Thecontextusuallyhastobe 
considered inordertodeterminewhichofthesetwotermsis 
applicable. Riskassessmentinvolvesriskanalysisaswellasan 
evaluation oftheresults.Thetechniqueisalsoreferredtoas 
Probabilistic RiskAssessment,ProbabilisticSafetyAssessment, 
Concept SafetyEvaluationandTotalRiskAnalysis.Inspiteof 
more thantwodecadesofuseanddevelopment,noconvergence 
towards auniversallyacceptedtermhasbeenseen [23]. Inthis 
article thetermQRAreferstoallthedifferenttechniques. 
Authorities arebasingtheirregulations,andoperatorsarebasing 
their design,ontheuseofQRA. 
According toguidelinesforQRA [64], thefollowingrisk 
elements relatedtomajorhazardriskshall,asaminimum,be 
considered foroffshoreO&Ginstallations: 
– blowouts,includingshallowgasandreservoirzones,unignited 
and ignited(Wellincidents); 
– processleaks,unignitedandignited(IgnHCleak/UnignHC 
leak); 
– utilityareasandsystems’firesandexplosions(Otherfire/expl); 
– fireinaccommodationareas(Otherfire/expl); 
– falling/swingingobjects; 
– transportationaccidents; 
– transportofpersonnelfromshoretotheinstallation; 
– helicoptercrash; 
– collisions,includingfieldrelatedtraffic,andexternaltraffic, 
drifting andunderpower(Shiponcollcourse); 
– riserandpipelineaccidents(Dam.subsinst/Subsequipmleak); 
– accidentsfromsubseaproductionsystems(Dam.subsinst/ 
Subs equipmleak); 
– escape,evacuationandrescueaccidents,i.e.untilaso-called 
‘safe place’hasbeenreached(Evac/muster); 
– structuralcollapse,includingcollapseofbridgesbetweenfixed 
and/or floatinginstallations(Struct.Damage); 
– foundationfailure(Struct.Damage); 
– lossofstability/position(Struct.Damage). 
The shorteningsinthelistrefertothecategorisationbyPSA 
related toprecursorincidents.Everyyeartheprecursorincidents 
are recordedbythePSA,see Fig. 1. 
Most oftheincidentsareinvestigatedbythecompanies 
themselves, whileafewareinvestigatedbythePSA. 
Fig. 2 illustrateshowthedifferentelementscanbecombinedin 
a bow-tieillustration.QRAincludesmodellingofengineering, 
operationalandmaintenanceactivities.QRAcoverstheinitiating 
eventsaswellastheirconsequences.SomeQRAsalsoincorporate 
the initiatinghuman,organisationalandtechnicalfactors [26]. A 
typicalprecursorinvestigationdoesnotcovermodellingofthe 
potentialconsequencesandrelatedprobabilities.Therebythestatus 
of allthesafetybarriersthatwerenotused,isnotinvestigated. 
6. Accident/precursorincidentinvestigations 
An accidentinvestigationisthedeterminationofthefactsof 
an accidentbyenquiry,observationandexamination,andan 
analysis ofthesefactstoestablishthecausesoftheaccidentand 
the measuresthatmustbeadoptedtopreventitsrecurrence [66]. 
The CenterforChemicalProcessSafety(CCPS)describesthree 
main purposesforaccidentinvestigation.Thefirstpurposeisto 
organise informationabouttheaccidentonceevidencehasbeen 
collected. Thesecondistohelpindescribingtheaccident 
causation anddevelopingahypothesisforfurtherexamination 
by expertsandthelastistohelpwiththeassessmentofproposed 
corrective actions [67,68]. Inaddition,theanalyticaltechniques 
should alsoensurethattheresultsaretransparentandverifiable. 
Table 1 
Human andorganisationalfactors [63]. 
HOF Description 
Work practiceThecomplexityofthegiventask,howeasyitis 
to makemistakes,bestpractice/normalpractice, 
checklists andprocedures,silentdeviations, 
control activities 
Competence Training,education—both generalandspecific, 
courses, systemknowledge,etc. 
Communication Communicationbetweenstakeholdersinthe 
process ofplan,act,check,do 
Management Workmanagement,supervision,dedicationto 
safety, clearandprecisedelegationof 
responsibilities androles,changemanagement 
Procedures and 
documentation 
Data basedsupportsystems,accessibilityand 
quality oftechnicalinformation,workpermit 
system, safetyjobanalysis,procedures(quality 
and accessibility) 
Workload andphysical 
working environment 
Time pressure,workload,stress,working 
environment, exhaustion(shiftwork),toolsand 
spare parts,complexityofprocesses,man– 
machine-interface, ergonomics 
Change managementManagementoftechnicalororganisational 
changes, andavoidingaccidents 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 51
Accident andincidentinvestigationsareoftenaimedatfinding 
the rootcausesofanaccident.AccordingtotheHSE,arootcause 
is themostfundamentalanddirectcauseofanaccidentor 
incident thatcanbereasonablyidentified,andthatmanagement 
has acontroltofix.Arootcausecontainsthreekeyelements [69]: 
 Basic Cause. Specific reasonsastowhyanincidentoccurred 
that enablerecommendationstobemadethatwillprevent 
recurrence oftheeventsleadinguptotheincident. 
 Reasonably Identified. Incident investigationmustbecom- 
pleted inareasonabletimeframe.Rootcausesanalysis,tobe 
effective, musthelpinvestigatorstogetthemostoutofthe 
time allottedforinvestigation. 
 Control toFix. General causeclassificationssuchas‘operator 
error’ shouldbeavoided.Suchcausesarenotspecificenough 
to allowthoseinchargetorectifythesituation. 
During thelastdecades,anumberofmethodsforaccident 
investigation havebeendeveloped.Eachofthesemethodshas 
different areasofapplicationanddifferentqualitiesanddeficien- 
cies. AuthorslikeHendrickandBenner [70], Groeneweg [71] and 
Svenson [72] have developedanddescribedtheirowninvestiga- 
tion method,inthesamewaydifferentgovernmentalofficesand 
authorities havetheirownmethods. 
Accidentmodelscansuperficiallybedividedintothreemajor 
groups.Thefirstgroupis‘‘sequentialaccidentmodels’’,atermalso 
Undesirable event with 
potential for harm or 
damage, e.g 
Gas leak 
(Precursor incident) 
Conse-quences 
Barriers 
Engineering activities 
Maintenance activities 
Operations activities 
Initiating 
human, 
organi-zational 
and 
techn-ical 
factors 
QRAPII (Quantitative Risk Analysis precursor incident investigation) 
Typical accident investigation 
Initiating 
events 
QRA modelling 
Giving probabilities for different scenarios, 
Describing decision gates (probabilities and consequences) 
QRAincl. 
HOF 
Fig. 2. Bow-tie, QRAandQRAPII. 
Fig. 1. Precursor incidents [65]. 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 52
used byHollnageletal. [73], whichdescribetheaccidentasa 
sequenceofeventsinaspecificorder,e.g.thedominotheory.The 
second groupis‘‘humaninformation processingaccidentmodels’’,a 
term usedbyLehtoandSalvendy [74], whichdescribetheaccidentin 
terms ofhumanbehaviourandactions.Thethirdgroupis‘‘systemic 
accidentmodels’’,atermalsousedbyHollnageletal. [20] such as 
Reason’smodel,whichincludeorganisationalandmanagement 
factors anddescribetheperformanceofthewholesystem [18]. 
CCPS [68], USDepartmentofEnergy(DOE) [75,76], PSA [77,78] 
and HSE [69] have reviewedanddescribedseveralmethods.Several 
articleshavealsoevaluatedthemethods [18,27,29]. DOE [76] 
dividestheprocessintothree(partiallyoverlapping)mainphases: 
(a) collectionofevidenceandfacts; 
(b) analysisofevidenceandfacts—development ofconclusions; 
(c) developmentofjudgmentsofneed—writing thereport. 
Kjelle´n [79] also includestheimplementationandfollow-upof 
recommendations aspartoftheinvestigation.Withinthefieldof 
accident investigation,thereisnocommonagreementabout 
definitions andconcepts.Thenotionofcausehasespeciallybeen 
discussed intheliterature.Whilesomeinvestigatorsfocuson 
causal factors [75], othersfocusondeterminingfactors [80], 
contributing factors [81], activefailuresandlatentconditions 
[82] or safetyproblems [29,70]. 
6.1. Faulttreeandeventtreeanalysis 
FaulttreeanalysisiscentralinboththeQRAandseveralaccident 
investigationmethods.Faulttreeanalysisisamethodfordetermining 
the causesofanaccident(ortopevent) [83]. Thefaulttreeisagraphic 
model thatdisplaysthevariouscombinationsofnormaleventsbythe 
use oflogicgatesthatillustrateequipmentfailures,humanerrorsand 
environmentalfactorsthatcanresultinanaccident.Afaulttree 
analysismaybequalitative,quantitativeorboth.Possibleresultsfrom 
theanalysismaybealistingofthepossiblecombinationsof 
environmentalfactors,humanerrors,normaleventsandcomponent 
failuresthatmayresultinacriticaleventinthesystemandthe 
probabilitythatthecriticaleventwilloccurduringaspecifiedtime 
interval.Thestrengthofthefaulttreeasaqualitativetoolisitsability 
tobreakdownanaccidentintorootcauses [29]. 
An eventtreeisusedtoanalyseeventsequencesfollowingan 
initiatingevent [84]. Theeventsequenceisinfluencedbyeither 
successorfailureofnumerousbarriersorsafetyfunctions/sys- 
tems.Theeventsequenceleadstoasetofpossibleconsequences. 
The consequencesmaybeconsideredasacceptableorunaccep- 
table.Theeventsequenceisillustratedgraphicallywhereeach 
safetysystemismodelledfortwostates:operationandfailure.An 
accidentinvestigationmaygraphicallydescribetheaccidentpath 
as oneofthepossibleeventsequencesinaneventtree. 
The useofgraphicaldescriptionisessentialinseveralaccident 
investigation methodsandQRA.Itgivesaneasilyunderstandable 
overview oftheeventsleadinguptotheaccidentandtherelation 
between differentevents.Further,itfacilitatescommunication 
among theinvestigatorsandtheinformantsandmakesiteasyto 
identify eventually‘‘missinglinks’’orlackofinformation [29]. 
Safety barrieranalysisisusedtoidentifyhazardsassociatedwith 
an accidentandthebarriersthatshouldhavebeeninplaceto 
prevent it.Thebasicstepsinasafetybarrieranalysisareto [76] 
– identifythehazardandthetarget; 
– identifyeachbarrier; 
– identifyhowthebarrierperformed; 
– identifyandconsiderprobablecausesforthebarrierfailure; 
– evaluatetheconsequencesofthefailureinthisaccident. 
7. CombiningaccidentinvestigationandQRA 
Identifying hazardsandbarriersisessentialinaccidentinves- 
tigation andQRA.Byexpandingthecollectionofevidenceand 
facts whenperforminganaccidentinvestigation,moredetailed 
information canbegatheredaboutthebarriers,includingthose 
that werenotused. Fig. 3 shows howaneventtreeanalysiscanbe 
supported byasafetybarrieranalysisanddatasources(e.g.RNNP 
and TTS).Theeventtreeisquitesimilartoacauseconsequence 
diagram usedinseveralaccidentinvestigationmethods,although 
the latteroftenusesmoretextandmoregraphicalsymbols.The 
different scenariosandtheirprobabilitiescanbecalculatedbased 
Fig. 3. Event treemodeling–safetybarrieranalysis–sourcesforassessments. 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 53
on informationfromtheaccidentinvestigationandmodelsinthe 
QRA. Necessaryinformationwilldifferdependingonthetypeof 
precursor incidentoraccident.Oneexampleisdroppedobjects, 
which canresultinseveraldifferentconsequences:noinjury/no 
damage, personalinjury/damagedequipmentaswellasbeingan 
initiating eventforleakageofhydrocarbonsduetodamaged/ 
ruptured processequipment. 
7.1. PSAinvestigationsuseMTO 
The PSAaswellasseveraloilandgascompaniesinNorway 
uses theMan,TechnologyandOrganisation(MTO)-methodology 
[77]. Acomparisonofdifferentaccidentinvestigationmethods 
done bySklet [29] showed thattheMTO-analysisisoneofthe 
most completeanalysismethods.Themethoddemandsthatthe 
user isaspecialist/expert [29]. ThebasisfortheMTO-analysisis 
that human,organisationalandtechnicalfactorsshouldbe 
analysed inanaccidentinvestigation.Themethodisbasedon 
the methodHumanPerformanceEnhancementSystemfromthe 
nuclear industry [77,78]. 
Fig. 4 illustrates theMTO-analysisworksheetandhowitcan 
be combinedwithQRA.Thefirststepistodeveloptheevent 
sequence longitudinallyandillustratetheeventsequenceina 
block diagram.Thereafter,thepossibletechnicalandhuman 
causes ofeacheventareaddedanddrawnverticallytotheevents 
in thesamediagram.Thenextstepistomakechangeanalyses, 
i.e. toassesshoweventsintheaccidentprogresshavedeviated 
from thenormalsituation,orcommonpractice.Normalsituations 
and deviationsarealsoillustrated.Technical,humanororganisa- 
tional barriersthatfailedorweremissingduringtheaccident 
progress arethenanalysed.Theresultillustratesallmissingor 
failed barriersbelowtheeventsinthediagram.Thelaststepin 
the MTO-analysisistoidentifyandpresentrecommendations. 
The recommendationsshouldberealisticandspecific,andmight 
be technical,humanand/ororganisational. 
Table 2 describes additionalquestionsthatcanbeanswered 
when combiningMTOandQRA. 
7.2. Anexample 
In January2006,agasleaktookplaceonaninstallationinthe 
North Sea.Ametalplateintheflaredrumcollapsed,causinga 
large holeintheflarepipe.Theincidentwasthelargestgasleak 
to occurinaprocessareaontheNorwegianshelfinyears. 
According tothePSAinvestigation,designflawsandthelackof 
pressure retentionintheflaredrumwerethedirectcausesthat 
triggered theincident.Theleakoccurredrightafterflaringhad 
Fig. 4. MTO andQRAinput. 
Table 2 
Additional informationwhencombiningMTOandQRA. 
Basic MTOanalysisquestions [77] Additional questionswhen 
combining MTOwithQRA 
– Whatmayhavepreventedthe 
continuation oftheaccident 
sequence? 
– Whatmaytheorganisationhave 
done inthepastinordertoprevent 
the accident? 
– Whatweretheprobabilitiesrelated 
to thebarriertoperformas 
intended? 
– Howcouldtheincident/accident 
escalate? 
– Whatwerethepotentialaccident 
scenarios? 
– Whatwasthepotentialfor 
escalation? 
– Whatbarrierswereessentialto 
prevent escalation? 
– Whatwasthestatusofthese 
barriers? 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 54
started asintended,followinganinterruptioninoperations.The 
crew observedalargeflameontheflarewhenthemetalplatein 
the KOdrum(‘theflaredrum’)collapsed,causingaholemeasur- 
ing approximately0.5mintheflarepipe.Theincidentdeveloped 
over ashortperiodof2min.Therewere91personsonboard. 
No onesufferedphysicalinjury [85]. 
The incidentdidnotentailpersonalinjuriesorharmtothe 
external environment.Theactualconsequenceswererelatedto 
damage totheprocessequipment,withthelargestlosslinkedto 
delayed production.ThePSAinvestigationconcludedthatallthe 
automatic safetyfunctionsinvolvedaftertheincidentoccurred 
functioned asintended.Thisincludedprocessandemergency 
shutdown systems,aswellasthesprinklersystemsinaffected 
areas [85]. Thepotentialconsequenceswerebrieflydescribedin 
the investigationreportbymentioningthatifthecourseofevents 
had beenonlyslightlyaltered,theleakcouldhaveledto 
consequences includingpossiblelossoflivesandlossofthe 
facility. Anignitedgascloudcouldhavecaused [85] 
– extensiveandexplosivefire; 
– lossoflivesaswellasdifficultandhazardousevacuationof 
personnel; 
– impairmentofstructureandpotentiallossofstructure; 
– damagetosubseawellbaseframecausedbysinkingstructure. 
The investigationdidnotanswerthequestions: 
– Whatchainofeventswouldhaveledtoamajoraccident? 
– Howprobableweretheseevents? 
– Howwouldtheaccidentscenariosevolve? 
Table 3 describes howQRA-modellingcanaddinformationto 
the incidentinvestigation. 
The likelihoodofasuccessfulevacuation,escapeandrescue 
(EER) canalsobeevaluatedusingQRAmodelling(seee.g. [86]). 
Risk influencingfactors(RIFs)influencingEERwere [85] 
– shorttimefromdetectiontopossibleignition; 
– nostand-byvessel; 
– thenumberofavailablelife-boatsasreduceddueto 
maintenance; 
– largewaves. 
An extendedinvestigation(accordingto Fig. 3) andQRA- 
modelling mighthaverevealedthatthegasleakwasamajor 
accident preventedonlybyafortunatewindspeedanddirection. 
A largeleakintheflaresystemisextremelycriticalasoneofthe 
flare system’sfunctionsistoreleasethepressureofhydrocarbon 
segments. Ifanexplosionhadoccurred,theEERoperationswould 
have beenchallengingduetotheRIFs. 
8. Discussion 
Safety isoftendefinedastheabsenceofaccidents [87], wherean 
accident isdefinedasaneventinvolvinganunplannedand 
unacceptableloss.Basedonthisdefinition,anincidentthatdoes 
notcauseanylosses,likemostofthe precursorincidents,doesnot 
affect thesafety.Anotherdefinitionforsafetyistheconditionof 
being protectedfrom,orunlikelyto cause,danger,riskorinjury. 
Accordingtothisdefinitiontheunlikelihoodhastobejudged.A 
precursor incidentisaneventthatsignalsthatthesafetyhasbeen 
affected. Thelikelihoodandpossibleconsequencescanbeanalysed 
usingQRAPII.Riskanalysisisaboutanalysingthefuture.Inarisk 
analysis,itisusuallyself-evident toapplyarecognisedmethod, 
whichhoweverisrarerinprecursor/accidentinvestigation [88]. 
Leaksfromhydrocarbonsystemsareoneofthemaincontribu- 
torstomajorhazardrisksoffshore.Evenso,onlyveryfewofthe 
leaksareinvestigatedbythePSA.Theoperatorsdotheirown 
investigations,butthelearningfromtheseincidentsislimitedas 
theinvestigationsarenotpubliclyavailable.Areviewofaccident 
investigationscarriedoutbytheInstituteforEnergyTechnology 
concludedthatthereisamainfocusontechnicalfactors,evenin 
incidentswherehumanandorganisationalfactorshaveinfluenced 
Table 3 
QRA elementsandcommentsongasleak. 
Event treebranchInformationfromthePSAinvestigation [78] Additional informationbyQRA-modelling 
Leak sizeTheleaksizewascalculatedbytheoperatorto900kg/s 
(Hydrocarbon leakswitharategreaterthan10kg/sare 
classified inthemostseriouscategoryusedontheNorwegian 
shelf.) 
– GascloudmodellingusingComputationalFluidDynamics 
(CFD) programsfortheactualwinddirection 
– Analysehowprobablewasgaspresentinthedifferentareas 
on theinstallations 
– Analysewhatwindspeedsanddirectionswouldhave 
caused gasontheinstallation,andinwhichareas 
The windspeedwas37m/sinthegustontheactualday 
Ignition Thetotalvolumeofgasthatblewthroughtheholewas 
calculated atapproximately26t 
The ignitionprobabilitydependedon 
– theprobabilitythatreleasedgaswasexposingtheignition 
sources (revealedbyCFDcalculations) 
– thenumberandstatusofpotentialignitionsourcespresent 
– theprobabilitythatanexposedsourceofignitionwould 
ignite thegas 
The leakoccurredintheimmediatevicinityoftheflarestack, 
where theflarewasburningthroughoutmostoftheincident 
Escalation duetoexplosionIntheareawiththeknockoutdrumthereareothersegments 
with hydrocarbonsduetoconnectionstoflarefromdifferent 
process segments 
Analyse andcalculatethepotentialfireandexplosionloads 
based oncomputersimulations.Input(equipment,placing, 
hydrocarbons, volumes,etc.)couldbegatheredaspartof 
the investigation 
Isolation andpressurerelief 
of segment 
The isolationandpressurereliefisdonethroughtheflare 
system. Theleakisintheflaresystem 
Model theprocessflowbetweenthedifferentsegments 
containing hydrocarbons 
Escalation tootherequipment 
due tofireandstructural 
collapse 
Gas leakfornearly50min,pressurereliefentailedthatthegas 
leak continuedthroughtheholeintheflarepipe 
Modelling ofescalationbasedonfireandexplosion 
calculations andtheinstallationsdesignaccidentload. 
Added informationare 
– potentialdurationoffire 
– sizeandlocationoffire 
– fire-fightingcapacity 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 55
largely [35]. ThereisalackofunderstandingofhowMTO-analysis 
shouldbepreformed.TheMTO-diagramsareusedtoillustrate,and 
nottoanalysetheincidentinasystempropertyview.Kletz 
summariseschallengesrelatedtoaccidentinvestigations [89]: 
– findonlyasinglecause,oftenthefinaltriggeringevent; 
– findonlyimmediatecausesanddonotlookforwaysof 
avoiding thehazardsorforweaknessesinthemanagement 
system; 
– listhumanerrorasacausewithoutsayingwhatsortoferror; 
– listcausesonecandolittleabout; 
– changeproceduresratherthandesigns. 
Although thefirsteventinthechainisoftenlabelledthe 
‘initiatingevent’,theselectionofaninitiatingeventisarbitrary, 
and previouseventsandconditionscouldalwaysbeadded.When 
learninghowtoengineersafersystemsisthegoalratherthan 
identifying whotopunish,theemphasisinaccidentanalysisneeds 
to shiftfrom‘‘cause’’(whichhasalimiting,blameorientation)to 
understanding accidentsintermsofreasons,i.e.whytheeventsand 
errors occurred [21]. Thisshouldconsistofanunderstandingofthe 
total system,includingthebarriersthatwereplannedbutnotused. 
Therebywhenasystemfailsitshouldbeinvestigatedaccordingtoa 
systempropertyview,notacomponentproperty,eventhoughat 
firstviewitisonlyacomponentthathasfailed.Animportantpartof 
the systempropertyviewistounderstandthepotentialconse- 
quencesofthesystem’sfailure.QRAPIIisatooltodothis. 
An importantpartofriskmanagementefficiencydependson 
the wayorganisationslearnandalsoonhowlearningisorga- 
nised. Learningfromexperienceimplies,forinstance,thateach 
person involvedinanincidentoranaccidenttakespartin 
reviewing theinformationassociatedwiththesystemfailures 
[90]. Itisthereforeimportantthatthepotentialscenariosare 
described. Precursorincidentsrarelyleadtomajoraccidents,and 
this reducesthefearofanoccurrencewithinthecompany,and 
also reducesthevisiblebenefitsofsafetyinvestments.Bydescrib- 
ing thescenariowithrelatedprobabilitiesandconsequences,the 
good sideoffear,proactivemanagement,canbemobilised. 
Information fromprecursorincidentinvestigationscanalsobe 
important toolsforimprovedriskcommunication.Probability 
information canbeprocessedeithersystematicallyorheuristi- 
cally. Riskcommunicatorsusuallypreferpeopletoprocess 
information systematicallybecausethisismorelikelytoleadto 
informed decision-making.Inareviewoftheresearchliterature 
related toprobabilityinformationinriskcommunication, 
Visschers etal. [91] concluded thatinformationthatwasconcrete 
and easytosimulateinmemorywaspreferredtomoreabstract 
information, whichtheheuristicsimulationpredicts.Anexample 
is scenarioinformationversusfrequencyinformation.UsingQRA- 
modelling, thedifferentscenarios,includingworstcasescenarios, 
are simulatedfortheprecursorincidentsandcantherebysupport 
learning throughscenariodescription. 
Precursoranalysis,theevaluationof‘nearmisses’,hasbeenan 
activityoftheUSNuclearRegulatoryCommission(NRC)foralmost 
20 years.Oneitemthathasremainedconstantoverthistimeis 
thatthefocusoftheanalysishasbeenonmodellingthescenario 
usingariskmodelandthenutilisingtheresultsoftheanalysisto 
determinetheseverityoftheprecursorincident.Theinvestigation 
of precursoreventscanbeusedasasourceofinformationforthe 
constructionofastructuredmethodologicalapproachforopera- 
tionaldecisions [92]. TheNRCstartedtheAccidentPrecursor 
SequenceProgrammein1979 [93]. Over1000licenseeevent 
reportsareyearlysubmittedtotheNRC [17]. Eachyearthe‘most 
risksignificant’eventsaretabulatedandrankedaccordingtothe 
conditionalcoredamageprobability(CCDP)intheNRCpublication 
NUREG/CR-4674(Table2).CCDPistheriskmetricusedbytheNRC 
to determinetheseriousnessofaprecursorevent.CCDPisdefined 
astheprobabilityofcoredamagewhengiventheplantconfigura- 
tionduringtheinitiatingeventsituationorduringtheunplanned 
equipmentoutage [94]. ThecalculationofthenumericalCCDP 
valueisbasedontheprobabilisticriskassessmentmodels,and 
carefullyconsiderstheimpacttothebase-casemodelofaspects 
suchasoperatoractions/recoveries,adjustmentstodependent 
eventslikecommon-causefailureprobabilities,andplantinitiating 
events [17]. 
An HROsucceedsinavoidingmajoraccidentsinanenviron- 
ment wherenormalaccidentscanbeexpectedduetoriskfactors 
and complexity.ThereareseveralcharacteristicsrelatedtoHRO. 
One isthattheyaggressivelyseektoknowwhattheydonotknow 
[95]. HROsalsousefailuresimulationstotraineveryonetobe 
heedful ofthepossibilityofaccidents [95]. QRAsuseevent-trees 
and fail-treestomodeldifferentscenarios.Thesametechnique 
can beusedtosimulatedecisiongatesanddifferentscenarios 
related toprecursorincidents.TheQRAisascientificmethodthat 
uses availableinformationtoidentifyhazardsandtopredictthe 
risk. TheQRAcancontributetobuildanorganisationalmemoryof 
what happenedandwhy.Accidentinvestigationofprecursor 
incidents withQRAmodellingcanbeusedtocommunicate 
organisational concernwithaccidentstoreinforcethecultural 
values ofsafety,andidentifypartsofthesystemthatshouldhave 
additional barriers.Alltheseelementsarecharacteristicsofan 
HRO. Firmsthathavefeweraccidentshavedevelopedsystems 
and processesforcommunicatingthebigpicturetoeveryonein 
the organisation.Thisisamajorchallengethatbeginswithtop 
management encouragingtheculturetobesupportiveofopen 
communications. Therewardandincentivesystemhastorein- 
force anopenflowofcommunicationaswellassupporttheopen 
discussion oforganisationalpurpose [95]. Communicationand 
the discussionofprecursorincidentsisaconcretemethodthat 
may simplifyfindingaunitedplatformforthestatusofthesafety 
as wellaspossibleimprovements. 
There areseveralchallengeswhenusingQRAinriskmanage- 
ment, andthesamechallengeswillapplywhenusingQRAaspart 
of precursorincidentandaccidentinvestigations.Event-based 
models likeQRAencouragelimitednotionsofcausality;usually 
linear causalityrelationshipsareemphasised,anditisdifficultto 
incorporate non-linearrelationships,includingfeedback.Inaddi- 
tion, someimportantcausalfactorsaredifficulttofitintosimple 
event models.Forexample,studieshavefoundthatthemost 
important factorintheoccurrenceofaccidentsismanagement’s 
commitment tosafetyandthebasicsafetycultureintheorgani- 
sation orindustry [21], oftenreferredtoasHOFs. 
It iscommontodefineanddescriberiskusingprobabilities 
(combinedwithhazards and consequences).Aven [96] arguesthat 
theseperspectivesanddefinitionsaretoonarrow.Theydonot 
reflect thatprobabilitiesareimperfect toolsforexpressinguncer- 
tainties.Theassignedprobabilitiesareconditionedonanumberof 
assumptionsandsuppositions.Theydependonthebackground 
knowledge ofthesysteminmind.Uncertaintiesareoftenhiddenin 
thebackgroundknowledge,andrestrictingattentiontotheassigned 
probabilitiescouldcamouflagefactorsthatcouldproducesurprising 
outcomes. Byjumpingdirectlyinto probabilities,importantuncer- 
taintyaspectsareeasilytruncated, meaningthatpotentialsurprises 
could beleftunconsidered [96]. QRAPIIcanaddqualitative 
information relatedtotheprobabilities.Thedifferentaccident 
scenarios canbefurtherdescribed byinformationcollectedaspart 
of theinvestigation.Inthisway the uncertaintiesinaQRAcanbe 
discussed,andformthebasisforlearning. 
ThefindingsfromQRAPIIcanalsobesourcesforsafety 
indicators andabetterunderstandingofthecorrelationbetween 
differentindicators.Traditionally, thefocusofsafetyindicatorsfor 
majorhazardshasbeenonincidentindicators orlaggingindicators, 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 56
which meansrecordingthenumberofaccidentsornear-misses.It 
has beenclaimedthattheseindicatorsmaynotbeusefulasearly 
warnings [6], andthefocusondevelopingindicatorsthatprovide 
feedback beforeanaccidentoccurs(so-calledleadingindicators) 
has beenincreased [38]. TheRNNPdoincludealargenumberof 
indicators,butthedependencybetweentheseislargelyunknown 
(see e.g. [97]), soistheunderstandingoftheirvalidityasearly 
warningsignals.Theunderstanding ofearlywarningssignalcanbe 
supportedbylearningfromQRAPII. 
9. Conclusion 
Every yearalargenumberofprecursorincidentsarereported 
in theNorthSeaOGindustry.Accidentinvestigationisthe 
collection andexaminationoffactsrelatedtoanoccurredspecific 
event. Riskanalysisisthesystematicuseofavailableinformation 
to identifyhazardsandtoestimatetherisk.Boththemethodsare 
about describinghazardsinamethodicalstructure.Theyshare 
very muchthesameelements.Theextensiveresearchthatisdone 
related tothatincludingHOFsinQRAbringsaccidentinvestiga- 
tion andQRAclosertogether.Theoilandgasindustryconsistsof 
complex systemsthatarehardtospecify.Evensoitisimportant 
that weusethescientificmethodsthatareavailable,andcombine 
these toensureasmuchunderstandingandspecificationas 
possible. Precursorincidentsrarelyleadtomajoraccidents,and 
in turnthisreducesthefearofanoccurrencewithinthe 
organisation aswellasreducesthevisiblebenefitsofsafety 
investments. Bydescribingtheprecursorincidentswithrelated 
probabilities andconsequences,proactivemanagementcanbe 
mobilised. Adeeperunderstandingoftheprecursorincidentswill 
give thepotentialtocontrolvariabilityratherthanbyconstrain- 
ing it.Tobeabletocontrolvariabilitywilldemandthatprecursor 
incidents aretakenseriously.UsingpartsofQRAmodellingin 
accident investigationshasbeendoneearlier.Especiallymodel- 
ling ofgascloudsandexplosionforceshasbeendone,toboth 
verify softwaretoolsaswellasunderstandthesequenceinthe 
accident. Itisthoughnotdoneforprecursorincidents.Regardless 
of thepurposeofanaccidentinvestigation,anyconclusionshould 
be basedonanunderstandingoftheeventsleadingtothe 
accident, aswellasitspotentialconsequences.Combiningpre- 
cursor incident/accidentinvestigationandQRAcancontributeto 
this understanding.Alternativeandcombineduseofwellknown 
data setsandtraditionalhazardanalysistechniquescanbealess 
struggling approachthanintroducingnewtechniques,andstill 
ensure amorecompletecauseandriskpictureincomplex 
systems. Thisincludesanextendedunderstandingofhuman 
and organisationalfactorsinaccidentsandpreventionofthese. 
Acknowledgements 
Especially wethankresearcherJahonKhorsandiatUCBerkeley 
for reviewsandcomments.Wealsoappreciatethecommentsand 
suggestions madebythereferees,andthefinancialsupportfrom 
the NorwegianResearchCouncilandStatoil. 
References 
[1] NæsheimT.NOU,the‘‘AlexanderL.Kielland’’-accident.Oslo;1981[in 
Norwegian]. 
[2] PSA[Internet].Fromprescriptiontoperformanceinpetroleumsupervision; 
2010. Availableat: /http://www.ptil.no/news/from-prescription-to-perfor 
mance-in-petroleum-supervision-article6696-79.html?lang=en_USS [cited: 
16 February2010–2011]. 
[3] CullenWD.ThepublicinquiryintothePiperAlphadisaster.London: 
Department ofEnergy;1990. 
[4] DawsonD,BrooksB.EssoLongfordgasplantaccident:reportoftheLongford 
Royal Commission.LongfordRoyalCommission;1999. 
[5] HopkinsA.LessonsfromLongford:theEssogasplantexplosion.Sydney: 
CCH AustraliaLtd.;2000. 
[6] BakerJ,BowmanF,ErwinG,GortonS,HendershotD,LevesonN.Thereportof 
the BPU.S.Refineriesindependentsafetyreviewpanel.Washington,DC; 
2007. 
[7] GrahamB,ReillyWK,BeineckeF,BoeschDF,GarciaTD,MurrayCA,etal. 
Deep Water.TheGulfoildisasterandthefutureofoffshoredrilling.Reportto 
the President.Washington(DC,USA):TheNationalCommissionontheBP 
Deepwater HorizonOilSpillandOffshoreDrilling;2011. 
[8] DHJIT.USCG/BOEMMarineBoardofinvestigationintothemarinecasualty, 
explosion, fire,pollution,andsinkingofmobileoffshoredrillingunitDeep- 
water Horizon,withthelossoflifeintheGulfofMexicoApril21–27,2010. 
Deepwater HorizonIncidentJointInvestigationTeam,TheUSCoastGuard 
(USCG)/Bureau ofOceanEnergyManagement,RegulationandEnforcement 
(BOEMRE) JointInvestigationTeam(JIT);2010. 
[9] USDI.Increasedsafetymeasuresforenergydevelopmentontheouter 
continental shelf.USDepartmentoftheInterior;2010. 
[10] PSA[Internet].Investigations.Stavanger;2010.Availableat: /http://www. 
ptil.no/investigations/category157.htmlS [cited: 09April2010]. 
[11] PSA.Managingtheriskofmajoraccidentsinagovernanceperspective;2010. 
[12] HSE[Internet].MajorHazards;2010.Availableat: /http://www.hse.gov.uk/ 
aboutus/strategiesandplans/hscplans/businessplans/0405/07.htmlS [cited: 
08 April2010]. 
[13] PSA.Trendsinrisklevelinthepetroleumsector,NorwegianShelf,2008. 
Norway: PetroleumSafetyAuthority;2009. 
[14] LindbergA-K,HanssonSO,RollenhagenC.Learningfromaccidents—What 
more doweneedtoknow?SafetyScience2010;48:714–21. 
[15]PhimisterJ,OktemU,KleindorferP,KunreutherH.Near-missincident 
managementinthechemicalprocessindustry.RiskAnalysis2003;23:445–59. 
[16] WuW,GibbAGF,LiQ.Accidentprecursorsandnearmissesonconstruction 
sites: aninvestigativetooltoderiveinformationfromaccidentdatabases. 
Safety Science2010;48:845–58. 
[17] SmithCL,BorgonovoE.Decisionmakingduringnuclearpowerplant 
incidents—a newapproachtotheevaluationofprecursorevents.Risk 
Analysis 2007;27:1027–42. 
[18] KatsakioriP,SakellaropoulosG,ManatakisE.Towardsanevaluationof 
accident investigationmethodsintermsoftheiralignmentwithaccident 
causation models.SafetyScience2009;47:1007–15. 
[19] LevesonN.Engineeringasaferworld—systems thinkingappliedtosafety 
(draft). TheMITPress;2009. 
[20] HollnagelE,WoodsD,LevesonN.Resilienceengineering:conceptsand 
precepts. AshgatePublishingLtd.;2006. 
[21] LevesonN.Anewaccidentmodelforengineeringsafersystems.Safety 
Science 2004;42:237–70. 
[22] LevesonNG.Theneedfornewparadigmsinsafetyengineering.In:DaleC, 
Anderson T,editors.Safety-criticalsystems:problems,processandpractice. 
London: Springer;2009.p.3–20. 
[23] VinnemJE.Offshoreriskassessment.2nded.London(UK):Springer;2007. 
[24] AvenT.Foundationsofriskanalysis:aknowledgeanddecision-oriented 
perspective. Chichester:Wiley;2003. 
[25] VinnemJE,SeljelidJ,HaugenS,AvenT.Generalizedmethodologyfor 
operational riskanalysisofoffshoreinstallations.JournalofRiskand 
Reliability 2008;223:87–98. 
[26] SkogdalenJE,VinnemJE.Quantitativeriskanalysisoffshore—human and 
organizational factors.ReliabilityEngineeringSystemSafety2011;96: 
468–79. 
[27] LundbergJ,RollenhagenC,HollnagelE.What-you-look-for-is-what-you- 
find—the consequencesofunderlyingaccidentmodelsineightaccident 
investigation manuals.SafetyScience2009;47:1297–311. 
[28] HollnagelE.Investigationasanimpedimenttolearning.In:HollnagelE, 
Nemeth CP,DekkerS,editors.Remainingsensitivetothepossibilityof 
failure. Aldershot(UK):Ashgate;2008. 
[29] SkletS.Comparisonofsomeselectedmethodsforaccidentinvestigation. 
Journal ofHazardousMaterials2004;111:29–37. 
[30] WeickKE,SutcliffeKM.Managingtheunexpected:assuringhighperfor- 
mance inanageofcomplexity.SanFrancisco(CA):Jossey-Bass;2001. 
[31] WeickKE.Organizingandtheprocessofsensemaking.OrganizationScience 
2005;16:409. 
[32] TurnerBA.Man-madedisasters.London(UK):Wykeham;1978. 
[33] CookeDL,RohlederTR.Learningfromincidents:fromnormalaccidentsto 
high reliability.SystemDynamicsReview2006;22:213–39. 
[34] BerntsenR,HolmboeRH.Incidents/accidentsclassificationandreportingin 
Statoil. JournalofHazardousMaterials2004;111:155–9. 
[35] ThunemA,KaarstadM,ThunemH.Vurderingavorganisatoriskefaktorerog 
tiltak iulykkesgranskning(Evaluationoforganisationalfactorsandmeasures 
in accidentinvestigations).Kjeller:InstituteforEnergyTechnology;2010 
(in Norwegian). 
[36] ØienK,UtneIB,HerreraIA.Buildingsafetyindicators:part1—theoretical 
foundation. SafetyScience2011;49:148–61. 
[37] DuijmNJ,Fie´vez C,GerbecM,HauptmannsU,KonstandinidouM.Manage- 
ment ofhealth,safetyandenvironmentinprocessindustry.SafetyScience 
2008;46:908–20. 
[38] HaleA.Editorial:specialissueonprocesssafetyindicators.SafetyScience 
2009;47:459. 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 57
[39] HaleA.Whysafetyperformanceindicators?SafetyScience2009;47:479–80. 
[40] HopkinsA.Thinkingaboutprocesssafetyindicators.SafetyScience 
2009;47:460–5. 
[41] HSE.Developingprocesssafetyindicators.HSEBooks;2006. 
[42] OsmundsenP,AvenT,ErikVinnemJ.Safetyeconomicincentivesand 
insurance intheNorwegianpetroleumindustry.ReliabilityEngineering 
System Safety2008;93:137–43. 
[43] SaqibN,TahirSiddiqiM.Aggregationofsafetyperformanceindicatorsto 
higher-level indicators.ReliabilityEngineeringSystemSafety2008;93: 
307–15. 
[44] SonnemansPJM,K¨ orvers PMW.Accidentsinthechemicalindustry:arethey 
foreseeable? JournalofLossPreventionintheProcessIndustries2006;19: 
1–12. 
[45] VinnemJ.Riskindicatorsformajorhazardsonoffshoreinstallations.Safety 
Science 2010;48:770–87. 
[46] ØienK,UtneIB,TinmannsvikRK,MassaiuS.Buildingsafetyindicators:part 
2—application, practisesandresults.SafetyScience2010;49:162–71. 
[47] PSA[Internet].Theobjectiveofthe‘‘trendsinrisklevel’’.Stavanger;2010. 
Available at: /http://www.ptil.no/trends-in-risk-level/the-objective-of-the- 
trends-in-risk-level-article4251-155.htmlS [cited: 17December2010]. 
[48] SkletS.Safetybarriersonoilandgasplatforms.Meanstopreventhydro- 
carbon releases.Trondheim:NTNU;2005. 
[49] SkletS.Safetybarriers:definition,classification,andperformance.Journalof 
Loss PreventionintheProcessIndustries2006;19:494–506. 
[50] ThomassenO,SørumM.Mappingandmonitoringthesafetylevel.In: 
Proceedings oftheSPEInternationalconferenceonhealth,safetyand 
environment inoilandgasexplorationandproduction.KualaLumpur 
(Malaysia): SocietyofPetroleumEngineers;2002. 
[51] IngvarsonJ,StromO.TechnicalsafetybarriermanagementinStatoilHydro. 
In: ProceedingsoftheSPEoffshoreEuropeoilandgasconferenceand 
exhibition. Aberdeen(UK):SocietyofPetroleumEngineers;2009. 
[52] VisserJ.DevelopmentsinHSEmanagementinoilandgasexplorationand 
production. SafetyManagement1998:43–66. 
[53] GoodwinS.HumanfactorsinQRA.ReportforInternationalAssociationofOil 
 GasProducers.DetNorskeVeritasLtd.;2007. 
[54] GordonRPE.Thecontributionofhumanfactorstoaccidentsinthe 
offshore oilindustry.ReliabilityEngineeringSystemSafety1998;61: 
95–108. 
[55] DempseyP,WogalterM,HancockP.Definingergonomics/humanfactors.In: 
International encyclopediaofergonomicsandhumanfactors;2006.p.32. 
[56] Sch¨onbeck M,RausandM,RouvroyeJ.Humanandorganisationalfactorsin 
the operationalphaseofsafetyinstrumentedsystems:anewapproach. 
Safety Science2010;48:310–8. 
[57] JacobsR,HaberS.Organizationalprocessesandnuclearpowerplantsafety. 
Reliability EngineeringSystemSafety1994;45:75–83. 
[58] BellamyLJ,GeyerTAW,WilkinsonJ.Developmentofafunctionalmodel 
which integrateshumanfactors,safetymanagementsystemsandwider 
organisational issues.SafetyScience2006;46:461–92. 
[59] ØienK.Aframeworkfortheestablishmentoforganizationalriskindicators. 
Reliability EngineeringSystemSafety2001;74:147–67. 
[60] AvenT,SkletS,VinnemJE.Barrierandoperationalriskanalysisofhydro- 
carbon releases(BORA-release):partI.Methoddescription.Journalof 
Hazardous Materials2006;137:681–91. 
[61] SkletS,VinnemJE,AvenT.Barrierandoperationalriskanalysisofhydro- 
carbon releases(BORA-release):partII.Resultsfromacasestudy.Journalof 
Hazardous Materials2006;137:692–708. 
[62] VinnemJE,HaugenS,KongsvikT,SeljelidJ,SteenS,SkletS,etal.Operational 
safety condition—concept development.London:ESREL,TaylorandFrancis 
Group; 2007. 
[63] SkletS,RingstadAJ,SteenAS,TronstadL,HaugenS,SeljelidJ,etal. 
Monitoring ofhumanandorganizationalfactorsinfluencingtheriskofmajor 
accidents. In:EngineersSoP,editor.SPEinternationalconferenceonhealth, 
safety andenvironmentinoilandgasexplorationandproduction.Riode 
Janeiro (Brazil):SocietyofPetroleumEngineers;2010. 
[64] Norsok.Norsokstandard:riskandemergencypreparednessanalysis.Z-013 
3rd ed.Oslo:StandardsNorway;2010. 
[65] PSA.Trendsinrisklevelinthepetroleumactivity2010.Norway:Petroleum 
Safety Authority;2011. 
[66] TreasuryBoardofCanadaSecretariat(TBCS).Aguidetoaccidentinvestiga- 
tion; 1992. 
[67] AICE.Guidelinesforinvestigatingchemicalprocessincidents.2nded. 
American InstituteofChemicalEngineers;2003. 
[68] CCPS.Guidelinesforinvestigatingchemicalprocessincidents.NewYork: 
Center forChemicalProcessSafetyoftheAmericanInstituteofChemical 
Engineers; 1992. 
[69] HSE.Rootcausesanalysis:literaturereview.ContractResearchReport325/ 
2001. WSAtkinsConsultantsLtd.;2001. 
[70] HendrickK,BennerL.InvestigatingaccidentswithSTEP.NewYork:Marcel 
Dekker Inc.;1987. 
[71] GroenewegJ.Controllingthecontrollable.In:PressD,editor.Themanage- 
ment ofsafety.4thed.TheNetherlands.LeidenUniversity;1998. 
[72]SvensonO.Accidentandincidentanalysisbasedontheaccidentevolutionand 
barrierfunction(AEB)model.Cognition,TechnologyWork2001;3:42–52. 
[73] HollnagelE.Understandingaccidents:fromrootcausestoperformance 
variability. In:ProceedingsoftheseventhIEEEhumanfactorsmeeting. 
Arizona (USA):IEEE;2002. 
[74] LehtoM,SalvendyG.Modelsofaccidentcausationandtheirapplication: 
review andreappraisal.JournalofEngineeringandTechnologyManagement 
1991;8:173–205. 
[75] DOE.ImplementationguideforusewithDOEOrder225.1A,Accident 
investigations,DOEG225.1A-1,Revision1.In:WorkbookD,editor.Washington 
(DC):USDepartmentofEnergy;1997. 
[76] DOE.In:WorkbookD,editor.Conductingaccidentinvestigations.Washington 
(DC):USDepartmentofEnergy;1999. 
[77] RanveigKvisethTinmannsvikSSoEJ.Granskingsmetodikk:Menneske– 
teknologi –organisasjon(Investigationmethodology:man–technology– 
organization). SINTEFTeknologiogsamfunn,Sikkerhetogpa˚ litelighet; 
2004 (inNorwegian). 
[78] BentoJ.Human–technology-organisation.Menneske–Teknologi–Organisas- 
jon VeiledningforgjennomføringavMTO-analyser(Guidelineinconducting 
HTO-analysis). KurskompendiumforOljedirektoratet,OversattavStatoil, 
Oljedirektoratet, Stavanger,Norway.Stavanger:NorwegianPetroleumDirec- 
torate; 2001(inNorwegian). 
[79] Kjelle´n U.Preventionofaccidentsthroughexperiencefeedback.London: 
Taylor Francis;2000. 
[80] KjellenU,LarssonT.Investigatingaccidentsandreducingrisks—a dynamic 
approach. JournalofOccupationalAccidents1981;3:129–40. 
[81] HopkinsA.LessonsfromLongford:theEssogasplantexplosion.Sydney:CCH 
Australia Ltd.;2000. 
[82] ReasonJ.Managingtherisksoforganizationalaccidents.Aldershot(UK): 
Ashgate PublishingCompany;1997. 
[83] HøylandA,RausandM.Systemreliabilitytheory:modelsandstatistical 
methods. NewYork:Wiley;1994. 
[84] VillemeurA.Reliability,availability,maintainability,andsafetyassessment. 
Chichester: Wiley;1992. 
[85] PSA.Investigationreportgasleak19January2006VisundStavanger: 
Petroleum SafetyAuthority:Norway;2006. 
[86] SkogdalenJE,VinnemJE.Riskinfluencefactorsrelatedtoevacuationfrom 
offshore installations.In:AssociationESaR,editor.ESREL09.Prague:Taylor 
Francis Group;2010.p.8. 
[87] FullerC,VassieL.Healthandsafetymanagement:principlesandbest 
practice. PrenticeHall;2004. 
[88] DechyN,DienY,FunnemarkE,Roed-LarsenS,StoopJ,ValvistoT,etal. 
Results andlessonslearnedfromtheESReDA’sAccidentInvestigationWork- 
ing Group.IntroducingarticletoSafetyScience;2009. 
[89] KletzTA.Accidentinvestigation—missed opportunities.ProcessSafetyand 
Environmental Protection2002;80:3–8. 
[90] HaleA,WilpertB,FreitagM.Aftertheevent.PergamonPress;1997. 
[91] VisschersV,MeertensR,PasschierW,DeVriesN.Probabilityinformationin 
risk communication:areviewoftheresearchliterature.RiskAnalysis 
2008;29:267–87. 
[92] BorgonovoE,SmithC,ApostolakisG,DeriotS,DewaillyJ.Insightsfromusing 
influence diagramstoanalyzeprecursorevents.FrontiersScienceSeries 
2000;3:1801–8. 
[93] SattisonM.Nuclearaccidentprecursorassessment.Accidentprecursoranalysis 
andmanagement:reducingtechnologicalriskthroughdiligence;2004.p.89. 
[94] SmithC.Calculatingconditionalcoredamageprobabilitiesfornuclearpower 
plant operations.ReliabilityEngineeringSystemSafety1998;59:299–308. 
[95] RobertsKH,BeaR.Mustaccidentshappen?Lessonsfromhigh-reliability 
organizations AcademyofManagementExecutive2001;15:70–8. 
[96] AvenT.Onhowtodefine,understandanddescriberisk.ReliabilityEngineer- 
ing SystemSafety2010;95:623–31. 
[97]VinnemJE,HestadJA,KvaløyJT,SkogdalenJE.Analysisofrootcausesofmajor 
hazardprecursors(hydrocarbonleaks)intheNorwegianoffshorepetroleum 
industry.ReliabilityEngineeringSystemSafety2010;95:1142–53. 
J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 58

More Related Content

Similar to Combining QRA and investigations

Lanteigne on Darlington Nuclear Plant
Lanteigne on Darlington Nuclear PlantLanteigne on Darlington Nuclear Plant
Lanteigne on Darlington Nuclear Plantlouisette lanteigne
 
Nanotechnology for the Environment
Nanotechnology for the EnvironmentNanotechnology for the Environment
Nanotechnology for the EnvironmentAJAL A J
 
13.50 dhr de Jong
13.50 dhr de Jong13.50 dhr de Jong
13.50 dhr de JongThemadagen
 
Raoul Chiesa Hacking A Impianti Industriali
Raoul Chiesa   Hacking A Impianti IndustrialiRaoul Chiesa   Hacking A Impianti Industriali
Raoul Chiesa Hacking A Impianti IndustrialiGoWireless
 
Back 2 Basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
Back 2 Basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...Back 2 Basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
Back 2 Basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...Manuel Rodríguez Herrán
 
Back 2 basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
Back 2 basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...Back 2 basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
Back 2 basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...Manuel Rodríguez Herrán
 
Lanteigneredarlingtonnuclearplant 121015183235-phpapp01
Lanteigneredarlingtonnuclearplant 121015183235-phpapp01Lanteigneredarlingtonnuclearplant 121015183235-phpapp01
Lanteigneredarlingtonnuclearplant 121015183235-phpapp01Louisette Lanteigne
 
Natech risk reduction: Status in OECD Member Countries
Natech risk reduction: Status in OECD Member CountriesNatech risk reduction: Status in OECD Member Countries
Natech risk reduction: Status in OECD Member CountriesGlobal Risk Forum GRFDavos
 
2006 asse teleweb presentation
2006 asse teleweb presentation2006 asse teleweb presentation
2006 asse teleweb presentationAhmad Rashwan
 
Lanteigne re: nuclear waste dump planned by Lake Huron
Lanteigne re: nuclear waste dump planned by Lake Huron Lanteigne re: nuclear waste dump planned by Lake Huron
Lanteigne re: nuclear waste dump planned by Lake Huron louisette lanteigne
 
International Nuclear and Radiological Event Scale (INES) - 12 April 2011
International Nuclear and Radiological Event Scale (INES) - 12 April 2011International Nuclear and Radiological Event Scale (INES) - 12 April 2011
International Nuclear and Radiological Event Scale (INES) - 12 April 2011International Atomic Energy Agency
 
A Review Paper On Nuclear S Power Plants Safety
A Review Paper On Nuclear S Power Plants SafetyA Review Paper On Nuclear S Power Plants Safety
A Review Paper On Nuclear S Power Plants SafetyDaphne Smith
 
Lanteignerenuclearwastelakehuron 120711130433-phpapp01
Lanteignerenuclearwastelakehuron 120711130433-phpapp01Lanteignerenuclearwastelakehuron 120711130433-phpapp01
Lanteignerenuclearwastelakehuron 120711130433-phpapp01Louisette Lanteigne
 
Peach bottom relicensing sept 12 2019
Peach bottom relicensing sept 12 2019Peach bottom relicensing sept 12 2019
Peach bottom relicensing sept 12 2019Scott Portzline
 
Srivastava KDD 2010 Presentation
Srivastava KDD 2010 PresentationSrivastava KDD 2010 Presentation
Srivastava KDD 2010 Presentationashok822
 

Similar to Combining QRA and investigations (20)

EPC Winter 2014 p42+
EPC Winter 2014 p42+EPC Winter 2014 p42+
EPC Winter 2014 p42+
 
Lanteigne on Darlington Nuclear Plant
Lanteigne on Darlington Nuclear PlantLanteigne on Darlington Nuclear Plant
Lanteigne on Darlington Nuclear Plant
 
Nanotechnology for the Environment
Nanotechnology for the EnvironmentNanotechnology for the Environment
Nanotechnology for the Environment
 
13.50 dhr de Jong
13.50 dhr de Jong13.50 dhr de Jong
13.50 dhr de Jong
 
Raoul Chiesa Hacking A Impianti Industriali
Raoul Chiesa   Hacking A Impianti IndustrialiRaoul Chiesa   Hacking A Impianti Industriali
Raoul Chiesa Hacking A Impianti Industriali
 
Back 2 Basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
Back 2 Basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...Back 2 Basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
Back 2 Basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
 
Back 2 basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
Back 2 basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...Back 2 basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
Back 2 basics - LEARNING FROM ACCIDENTS - No more missed opportunities - A Tr...
 
Sandia Report
Sandia ReportSandia Report
Sandia Report
 
Lanteigneredarlingtonnuclearplant 121015183235-phpapp01
Lanteigneredarlingtonnuclearplant 121015183235-phpapp01Lanteigneredarlingtonnuclearplant 121015183235-phpapp01
Lanteigneredarlingtonnuclearplant 121015183235-phpapp01
 
Introduction.pptx
Introduction.pptxIntroduction.pptx
Introduction.pptx
 
Natech risk reduction: Status in OECD Member Countries
Natech risk reduction: Status in OECD Member CountriesNatech risk reduction: Status in OECD Member Countries
Natech risk reduction: Status in OECD Member Countries
 
VTT-R-08589
VTT-R-08589VTT-R-08589
VTT-R-08589
 
2006 asse teleweb presentation
2006 asse teleweb presentation2006 asse teleweb presentation
2006 asse teleweb presentation
 
Lanteigne re: nuclear waste dump planned by Lake Huron
Lanteigne re: nuclear waste dump planned by Lake Huron Lanteigne re: nuclear waste dump planned by Lake Huron
Lanteigne re: nuclear waste dump planned by Lake Huron
 
International Nuclear and Radiological Event Scale (INES) - 12 April 2011
International Nuclear and Radiological Event Scale (INES) - 12 April 2011International Nuclear and Radiological Event Scale (INES) - 12 April 2011
International Nuclear and Radiological Event Scale (INES) - 12 April 2011
 
A Review Paper On Nuclear S Power Plants Safety
A Review Paper On Nuclear S Power Plants SafetyA Review Paper On Nuclear S Power Plants Safety
A Review Paper On Nuclear S Power Plants Safety
 
Lanteignerenuclearwastelakehuron 120711130433-phpapp01
Lanteignerenuclearwastelakehuron 120711130433-phpapp01Lanteignerenuclearwastelakehuron 120711130433-phpapp01
Lanteignerenuclearwastelakehuron 120711130433-phpapp01
 
Peach bottom relicensing sept 12 2019
Peach bottom relicensing sept 12 2019Peach bottom relicensing sept 12 2019
Peach bottom relicensing sept 12 2019
 
50120140504004
5012014050400450120140504004
50120140504004
 
Srivastava KDD 2010 Presentation
Srivastava KDD 2010 PresentationSrivastava KDD 2010 Presentation
Srivastava KDD 2010 Presentation
 

Recently uploaded

VIP 7001035870 Find & Meet Hyderabad Call Girls Jubilee Hills high-profile Ca...
VIP 7001035870 Find & Meet Hyderabad Call Girls Jubilee Hills high-profile Ca...VIP 7001035870 Find & Meet Hyderabad Call Girls Jubilee Hills high-profile Ca...
VIP 7001035870 Find & Meet Hyderabad Call Girls Jubilee Hills high-profile Ca...aditipandeya
 
(8264348440) 🔝 Call Girls In Green Park 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Green Park 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Green Park 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Green Park 🔝 Delhi NCRsoniya singh
 
VIP Chandigarh Call Girls 7001035870 Enjoy Call Girls With Our Escorts
VIP Chandigarh Call Girls 7001035870 Enjoy Call Girls With Our EscortsVIP Chandigarh Call Girls 7001035870 Enjoy Call Girls With Our Escorts
VIP Chandigarh Call Girls 7001035870 Enjoy Call Girls With Our Escortssonatiwari757
 
VIP 7001035870 Find & Meet Hyderabad Call Girls Gachibowli high-profile Call ...
VIP 7001035870 Find & Meet Hyderabad Call Girls Gachibowli high-profile Call ...VIP 7001035870 Find & Meet Hyderabad Call Girls Gachibowli high-profile Call ...
VIP 7001035870 Find & Meet Hyderabad Call Girls Gachibowli high-profile Call ...aditipandeya
 
Cheap Rate ➥8448380779 ▻Call Girls In Sector 55 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 55 GurgaonCheap Rate ➥8448380779 ▻Call Girls In Sector 55 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 55 GurgaonDelhi Call girls
 
(8264348440) 🔝 Call Girls In Khanpur 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Khanpur 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Khanpur 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Khanpur 🔝 Delhi NCRsoniya singh
 
Cheap Rate ➥8448380779 ▻Call Girls In Sector 56 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 56 GurgaonCheap Rate ➥8448380779 ▻Call Girls In Sector 56 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 56 GurgaonDelhi Call girls
 
Top Call Girls In Indira Nagar Lucknow ( Lucknow ) 🔝 8923113531 🔝 Cash Payment
Top Call Girls In Indira Nagar Lucknow ( Lucknow  ) 🔝 8923113531 🔝  Cash PaymentTop Call Girls In Indira Nagar Lucknow ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment
Top Call Girls In Indira Nagar Lucknow ( Lucknow ) 🔝 8923113531 🔝 Cash Paymentanilsa9823
 
Top Call Girls In Arjunganj ( Lucknow ) ✨ 8923113531 ✨ Cash Payment
Top Call Girls In Arjunganj ( Lucknow  ) ✨ 8923113531 ✨  Cash PaymentTop Call Girls In Arjunganj ( Lucknow  ) ✨ 8923113531 ✨  Cash Payment
Top Call Girls In Arjunganj ( Lucknow ) ✨ 8923113531 ✨ Cash Paymentanilsa9823
 
Model Call Girl in Bawana Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Bawana Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Bawana Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Bawana Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Call Girls in majnu ka tilla Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in majnu ka tilla Delhi 💯 Call Us 🔝8264348440🔝Call Girls in majnu ka tilla Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in majnu ka tilla Delhi 💯 Call Us 🔝8264348440🔝puti54677
 
CALL ON ➥8923113531 🔝Call Girls Sushant Golf City Lucknow best sexual service...
CALL ON ➥8923113531 🔝Call Girls Sushant Golf City Lucknow best sexual service...CALL ON ➥8923113531 🔝Call Girls Sushant Golf City Lucknow best sexual service...
CALL ON ➥8923113531 🔝Call Girls Sushant Golf City Lucknow best sexual service...anilsa9823
 
Lucknow 💋 Escort Service in Lucknow ₹7.5k Pick Up & Drop With Cash Payment 89...
Lucknow 💋 Escort Service in Lucknow ₹7.5k Pick Up & Drop With Cash Payment 89...Lucknow 💋 Escort Service in Lucknow ₹7.5k Pick Up & Drop With Cash Payment 89...
Lucknow 💋 Escort Service in Lucknow ₹7.5k Pick Up & Drop With Cash Payment 89...anilsa9823
 
(8264348440) 🔝 Call Girls In Safdarjung Enclave 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Safdarjung Enclave 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Safdarjung Enclave 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Safdarjung Enclave 🔝 Delhi NCRsoniya singh
 
(8264348440) 🔝 Call Girls In Siri Fort 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Siri Fort 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Siri Fort 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Siri Fort 🔝 Delhi NCRsoniya singh
 
Cheap Rate ➥8448380779 ▻Call Girls In Sector 54 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 54 GurgaonCheap Rate ➥8448380779 ▻Call Girls In Sector 54 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 54 GurgaonDelhi Call girls
 
High Profile Call Girls in Lucknow | Whatsapp No 🧑🏼‍❤️‍💋‍🧑🏽 8923113531 𓀇 VIP ...
High Profile Call Girls in Lucknow | Whatsapp No 🧑🏼‍❤️‍💋‍🧑🏽 8923113531 𓀇 VIP ...High Profile Call Girls in Lucknow | Whatsapp No 🧑🏼‍❤️‍💋‍🧑🏽 8923113531 𓀇 VIP ...
High Profile Call Girls in Lucknow | Whatsapp No 🧑🏼‍❤️‍💋‍🧑🏽 8923113531 𓀇 VIP ...gurkirankumar98700
 
Mumbai Call Girls Colaba Pooja WhatsApp 7738631006 💞 Full Night Enjoy
Mumbai Call Girls Colaba Pooja WhatsApp  7738631006  💞 Full Night EnjoyMumbai Call Girls Colaba Pooja WhatsApp  7738631006  💞 Full Night Enjoy
Mumbai Call Girls Colaba Pooja WhatsApp 7738631006 💞 Full Night EnjoyPooja Nehwal
 
Product Catalog Bandung Home Decor Design Furniture
Product Catalog Bandung Home Decor Design FurnitureProduct Catalog Bandung Home Decor Design Furniture
Product Catalog Bandung Home Decor Design Furniturem3resolve
 

Recently uploaded (20)

VIP 7001035870 Find & Meet Hyderabad Call Girls Jubilee Hills high-profile Ca...
VIP 7001035870 Find & Meet Hyderabad Call Girls Jubilee Hills high-profile Ca...VIP 7001035870 Find & Meet Hyderabad Call Girls Jubilee Hills high-profile Ca...
VIP 7001035870 Find & Meet Hyderabad Call Girls Jubilee Hills high-profile Ca...
 
(8264348440) 🔝 Call Girls In Green Park 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Green Park 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Green Park 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Green Park 🔝 Delhi NCR
 
VIP Chandigarh Call Girls 7001035870 Enjoy Call Girls With Our Escorts
VIP Chandigarh Call Girls 7001035870 Enjoy Call Girls With Our EscortsVIP Chandigarh Call Girls 7001035870 Enjoy Call Girls With Our Escorts
VIP Chandigarh Call Girls 7001035870 Enjoy Call Girls With Our Escorts
 
VIP 7001035870 Find & Meet Hyderabad Call Girls Gachibowli high-profile Call ...
VIP 7001035870 Find & Meet Hyderabad Call Girls Gachibowli high-profile Call ...VIP 7001035870 Find & Meet Hyderabad Call Girls Gachibowli high-profile Call ...
VIP 7001035870 Find & Meet Hyderabad Call Girls Gachibowli high-profile Call ...
 
Cheap Rate ➥8448380779 ▻Call Girls In Sector 55 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 55 GurgaonCheap Rate ➥8448380779 ▻Call Girls In Sector 55 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 55 Gurgaon
 
(8264348440) 🔝 Call Girls In Khanpur 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Khanpur 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Khanpur 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Khanpur 🔝 Delhi NCR
 
Cheap Rate ➥8448380779 ▻Call Girls In Sector 56 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 56 GurgaonCheap Rate ➥8448380779 ▻Call Girls In Sector 56 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 56 Gurgaon
 
Top Call Girls In Indira Nagar Lucknow ( Lucknow ) 🔝 8923113531 🔝 Cash Payment
Top Call Girls In Indira Nagar Lucknow ( Lucknow  ) 🔝 8923113531 🔝  Cash PaymentTop Call Girls In Indira Nagar Lucknow ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment
Top Call Girls In Indira Nagar Lucknow ( Lucknow ) 🔝 8923113531 🔝 Cash Payment
 
Top Call Girls In Arjunganj ( Lucknow ) ✨ 8923113531 ✨ Cash Payment
Top Call Girls In Arjunganj ( Lucknow  ) ✨ 8923113531 ✨  Cash PaymentTop Call Girls In Arjunganj ( Lucknow  ) ✨ 8923113531 ✨  Cash Payment
Top Call Girls In Arjunganj ( Lucknow ) ✨ 8923113531 ✨ Cash Payment
 
Model Call Girl in Bawana Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Bawana Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Bawana Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Bawana Delhi reach out to us at 🔝8264348440🔝
 
Call Girls in majnu ka tilla Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in majnu ka tilla Delhi 💯 Call Us 🔝8264348440🔝Call Girls in majnu ka tilla Delhi 💯 Call Us 🔝8264348440🔝
Call Girls in majnu ka tilla Delhi 💯 Call Us 🔝8264348440🔝
 
CALL ON ➥8923113531 🔝Call Girls Sushant Golf City Lucknow best sexual service...
CALL ON ➥8923113531 🔝Call Girls Sushant Golf City Lucknow best sexual service...CALL ON ➥8923113531 🔝Call Girls Sushant Golf City Lucknow best sexual service...
CALL ON ➥8923113531 🔝Call Girls Sushant Golf City Lucknow best sexual service...
 
Lucknow 💋 Escort Service in Lucknow ₹7.5k Pick Up & Drop With Cash Payment 89...
Lucknow 💋 Escort Service in Lucknow ₹7.5k Pick Up & Drop With Cash Payment 89...Lucknow 💋 Escort Service in Lucknow ₹7.5k Pick Up & Drop With Cash Payment 89...
Lucknow 💋 Escort Service in Lucknow ₹7.5k Pick Up & Drop With Cash Payment 89...
 
(8264348440) 🔝 Call Girls In Safdarjung Enclave 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Safdarjung Enclave 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Safdarjung Enclave 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Safdarjung Enclave 🔝 Delhi NCR
 
Pakistani Jumeirah Call Girls # +971559085003 # Pakistani Call Girls In Jumei...
Pakistani Jumeirah Call Girls # +971559085003 # Pakistani Call Girls In Jumei...Pakistani Jumeirah Call Girls # +971559085003 # Pakistani Call Girls In Jumei...
Pakistani Jumeirah Call Girls # +971559085003 # Pakistani Call Girls In Jumei...
 
(8264348440) 🔝 Call Girls In Siri Fort 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Siri Fort 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Siri Fort 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Siri Fort 🔝 Delhi NCR
 
Cheap Rate ➥8448380779 ▻Call Girls In Sector 54 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 54 GurgaonCheap Rate ➥8448380779 ▻Call Girls In Sector 54 Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Sector 54 Gurgaon
 
High Profile Call Girls in Lucknow | Whatsapp No 🧑🏼‍❤️‍💋‍🧑🏽 8923113531 𓀇 VIP ...
High Profile Call Girls in Lucknow | Whatsapp No 🧑🏼‍❤️‍💋‍🧑🏽 8923113531 𓀇 VIP ...High Profile Call Girls in Lucknow | Whatsapp No 🧑🏼‍❤️‍💋‍🧑🏽 8923113531 𓀇 VIP ...
High Profile Call Girls in Lucknow | Whatsapp No 🧑🏼‍❤️‍💋‍🧑🏽 8923113531 𓀇 VIP ...
 
Mumbai Call Girls Colaba Pooja WhatsApp 7738631006 💞 Full Night Enjoy
Mumbai Call Girls Colaba Pooja WhatsApp  7738631006  💞 Full Night EnjoyMumbai Call Girls Colaba Pooja WhatsApp  7738631006  💞 Full Night Enjoy
Mumbai Call Girls Colaba Pooja WhatsApp 7738631006 💞 Full Night Enjoy
 
Product Catalog Bandung Home Decor Design Furniture
Product Catalog Bandung Home Decor Design FurnitureProduct Catalog Bandung Home Decor Design Furniture
Product Catalog Bandung Home Decor Design Furniture
 

Combining QRA and investigations

  • 1. Combining precursorincidentsinvestigationsandQRAinoilandgasindustry Jon EspenSkogdalen n, JanErikVinnem 1 Faculty ofScienceandTechnology,UniversityofStavanger,Stavanger,Norway a r t i c l e info Article history: Received 8April2011 Received inrevisedform 22 November2011 Accepted 8December2011 Available online18January2012 Keywords: Quantitative riskanalyses Investigation Precursor incident Oil andgasindustry a b s t r a c t Accidentinvestigationisthecollectionandexaminationoffactsrelatedtoanoccurredspecificincident. QuantitativeRiskAnalysis(QRA)isthesystematicuseofavailableinformationtoidentifyhazardsand probabilities,andtopredictthepossibleconsequencestoindividualsorpopulations,propertyorthe environment.Traditionallybothmethodshavebeenusedseparately;howeverbothaccidentinvestiga- tion andQRAdescribehazardsinasystematicway.Theextensiveresearchthatisdonerelatedtothat includinghumanandorganisationalfactorsinQRAbringsaccidentinvestigationandQRAcloser together.Everyyeartherearealargenumberofprecursorincidentsrecordedwiththepotentialto cause majoraccidentsrisksintheNorthSeaoilandgasindustry.Thisarticledescribeshowaccident investigationandQRAcanbecombinedusingavailableinformationfromaprecursorincidentasinput to QRA-methodologytoidentifyhazards,probabilities,safetybarriersandpossibleconsequences. The combinedmethodisshortenedasQRAPII(QuantitativeRiskAnalysisPrecursorIncident Investigation)andmakesuseofwellknownhazardanalysistechniquestoproduceamorecomplete cause andriskpictureincomplexsystems.Thisincludesanextendedunderstandingofhumanand organisationalfactorsinaccidentsandpreventionofthese. & 2011 ElsevierLtd.Allrightsreserved. 1. Introduction Experiences frommajoroffshoreaccidentsinthepastareimpor- tant sourcesofinformationtopreventtheoccurrenceofsimilar accidents inthefuture.Therewere anumberofmajoraccidentsin the NorthSeathatoccurredinthesecondhalfofthetwentieth century, includingtheAlexanderKielland [1], EkofiskBravoBlowout [2] and PiperAlfa [3]. Alloftheaccidentsmentionedleadto significant changesintechnology,operations,supervisionandregula- tion. Therehasbeenapositivesafetytrendduringthelast15–20 years, resultinginfewermajoraccidents.Thisisastepintheright direction,butithasonechallenge,inthesensethattheexperiences from themajoraccidentinvestigationshavetobecomplementedby new toolsforfurtherimprovementwithinriskmanagement. Human errorhasbeenjudgedtobetherootcauseofmany major accidents,forexampletheaccidentatEssoAustralia’sgas plant atLongfordinVictoriainSeptember1998 [4]. Essoargued that operatorsandtheirsupervisorsondutyatthetimeshould have knownthattheattempttoreintroduceawarmliquidintoa cold pipecouldresultinbrittlefracture.Essoclaimedthat operators hadbeentrainedtobeawareoftheproblem.However, the accidentinvestigationcommissiontooktheviewthatnoneof those ondutyunderstoodjusthowdangerousthesituationwas, which indicatedasystematictrainingfailure.Thecommission concluded thatinadequatetrainingofoperatorsandsupervisors was the‘‘realcause’’oftheaccident [5]. It wasforalongtimeassumedthatoccupationalaccidents, often summarisedastrips,slipsandfalls,werearelevant indicator onwhichtojudgethemajorhazardrisk.TheBPTexas City refinerydisasterin2005createdahighawarenessthat management ofmajorhazardsisnotthesameasmanagement of occupationalhazards [6]. Thelackofthecoherencebetween personnel injuriesandmajoraccidentswasalsoillustratedbythe Deepwater Horizonaccident [7]. TheverysamedaythatBP officials werevisitingtherigtopraisesevenyearswithout personnel injuries,gasexplodedupthewellboreontothedeck of therigandcaughtfire.Elevenworkerswerekilledinthe explosion [8]. Theblowoutcausedoiltogushoutofthedamaged well fortwomonths,theworstenvironmentaldisasterinUS history, impactinglocaleconomies,sensitivecoastlinesandwild- life throughouttheGulfregion [9]. Hydrocarbon leakshaveamajoraccidentpotential,well illustrated bythetotallossof‘PiperAlpha’in1988ontheBritish continental shelf,leaving167dead [3]. Agasleakcausedagas Contents listsavailableat SciVerse ScienceDirect journalhomepage: www.elsevier.com/locate/ress ReliabilityEngineeringandSystemSafety 0951-8320/$ -seefrontmatter & 2011 ElsevierLtd.Allrightsreserved. doi:10.1016/j.ress.2011.12.009 Abbreviations: CFD, ComputationalFluidDynamics;DOE,USDepartmentof Energy; EER,Evacuate,EscapeandRescue;HSE,Health,SafetyandEnvironment and HealthandSafetyExecutive,UK;HOF,humanandorganisationalfactors; HRO, HighReliabilityOrganisation;MTO,Man,TechnologyandOrganisation;NRC, US NuclearRegulatoryCommission;O&G,oilandgas;OTS,OperationalSafety Condition; PSA,PetroleumSafetyAuthorityNorway;QRA,QuantitativeRisk Analysis; QRAPII,QuantitativeRiskAnalysisPrecursorIncidentInvestigation;RIF, risk influencingfactor;RNNP,RiskLevelProject;TTS,TechnicalSafetyCondition n Corresponding author.Tel.: þ47 99024171. E-mail addresses: jon.espen.skogdalen@gmail.com (J.E.Skogdalen), jan.erik.vinnem@uis.no (J.E.Vinnem). 1 Tel.: þ47 91152125. Reliability EngineeringandSystemSafety101(2012)48–58
  • 2. cloud, whichignited.Theexplosioncausedbreakageofapipe transporting oilandafire,whichrageduncheckedduetowater not beingavailableforthefirewatersystem.Thiscausedtheother large pipesconnectedtogas-andoil-pipelines(risers)toburst, which inturnescalatedtoatotalloss.Thelargenumberof fatalities waspartlyduetothefailureofevacuationandrescue measures [3]. The PetroleumSafetyAuthorityNorway(PSA)hasinseveral accident investigationreportsconcludedthatunderslightly different circumstances,theincidentscouldhavedevelopedinto major accidents,withextensivepollutionandpotentiallossof multiple lives [10]. Centralquestionsarethen – Whatcircumstances? – Howprobablewerethesecircumstances? – Whatwerethepossibleharm/consequences? These questionsareonlysuperficiallyanswered,iftheyare answered atall,intheaccidentinvestigationreports.IfthePiper Alpha, orthemorerecentDeepwaterHorizonaccident,was prevented bythegascloudnotbeingignitedduetoafortunate wind direction,shouldtheynothavebeentakenjustasseriously? The numberofoccupationalaccidentsisnotanindicatorfor major hazardrisk.Humanerrorisnotarootcause.PSAgives examples ofrelatedassumptionsthatcanbemisleading [11]: – assumptionthatanoverviewofhistoricalperformancepro- vides reliableinformationaboutrisk,andthatadeclineinthe number ofincidentsbyitselfisareliableindicatorofthe robustness ofbarriersthataresignificantinpreventinga major accident; – assumptionsthatinformationusedasabasisforevaluating major accidentriskisrelevant,reliable,adequateandtimely, with subsequentcementingofincorrectassumptionsand under-estimation ofuncertainty. The BritishHealthandSafetyExecutive(HSE)statesthatits objective istoreducethelikelihoodofcatastrophicaccidentsin major hazardindustries.Thefrequencyandthenatureofcata- strophic accidentsmakethemunsuitableasmeasuresofhealth and safetyperformance.Instead,incidentsthathavethepotential to leadtoordevelopintoacatastrophicaccident,so-called precursor incidents,areusedasindicators.Aprecursorincident is aneventorgroupofeventsthatindicatesfailureinsystems controlling therisksfromamajorhazard.Theyarethelinksina chain ofcausation,andtherebykeyelementsinpreventing certain catastrophicoutcomes [12]. Thereareoveralargenumber of precursorincidents(e.g.gasleaks,kicksandshipcollisions) every yearontheNorwegianContinentalShelf [13]. Thepre- cursor incidents,orunwantedincidentsastheyareoftencalled, are usuallysuperficiallyjudgedininvestigationreportsrelatedto the potentialharmusingriskmatrixes.Theconsequencesof major accidentsareunacceptableinoursociety,andtherefore precursor incidentswiththepotentialtocausemajoraccidents should bethoroughlyinvestigatedinordertopreventthemfrom reoccurring. Theimportanceofinvestigatingprecursorincidents has beendescribedinalargenumberofarticles,e.g. [14–18]. There isthoughalackofarticlesabouthowthesecanbedonein practice intheoilandgas(O&G)industry. 1.1. Objectives This articledescribeshowaccidentinvestigationmethodology and QuantitativeRiskAnalysis(QRA)canbecombinedto investigate precursorincidentsbytheuseofwellknownhazard analysis techniques.ThecombinedmethodisshortenedasQRA PII (QuantitativeRiskAnalysisPrecursorIncidentInvestigation). QRA PIIincludesthefollowingelements:precursorincident reporting, indicators,safetybarriers,fault/event-trees,bow-ties and QRA.Theelementsarebrieflydescribedfollowedbya discussion onhowQRAPIIcanbeatoolforfurtherimprovement within riskmanagement.Thediscussionincludesexperiences from HighReliabilityOrganisations(HROs)andthenuclear industry, wheretheuseofprecursorincidentinvestigationhasa longer traditionrelatedtotheanalysisofdecisiongatesfor control roomoperators. The QRAmodellingincludesseveralhazardanalysistechni- ques likefault-treeandeventtree.TheresultsfromtheQRAare often describedusingbow-tiediagrams.Thesehazardanalysis techniques canbedescribedas‘investigatinganaccidentbeforeit occurs’. Thesetraditionalapproachestohazardanalysisare according toanumberofexperts,e.g.Leveson [19] and Hollnagel et al. [20], overwhelmedbytheincreasingcomplexityofthe systems, bytheintroductionofdigitaltechnologyandsoftware and bytheincreasedrelianceondistributedhuman–machine decision-making andcontrol [19]. According toLeveson [21,22] amodelofaccidentcausation and theengineeringtechniquesbuiltonitthatconsideronly component failures,willmisssystemaccidents.Inaddition,the role ofhumanoperatorsischangingfromdirectcontrolto supervisory positionsinvolvingsophisticateddecision-making. The typesofmistakeshumansaremakingaredifferentand are notreadilyexplainedorhandledbythetraditionalchain- of-failure-events modelsandbymostofthehazardanalysis techniques. Also,thereismorewidespreadrecognitionofthe importance ofmanagement,organisationalandculturalfactorsin accidents andsafety:thetraditionaltechniques,whichwere never derivedtohandlethesefactors,dosopoorlyifatall [22]. To completelyunderstandthecauseofaccidentsandtoprevent future ones,thesystem’shierarchicalsafetycontrolstructure must beexaminedtodeterminewhythecontrolsateach level wereinadequatetomaintaintheconstraintsonsafebeha- viour atthelevelbelowandwhytheeventsoccurred [22]. Understanding thephysicalfactorsleadingtothelossisonly the firststep,however,inunderstandingwhytheaccident occurred. Thenextstepisunderstandinghowtheengineering design practicescontributedtotheaccidentandhowtheycould be changedtopreventsuchanaccidentinthefuture [22]. This includes understandingwhypeoplebehavethewaytheydoby examining theirmentalmodelsandtheenvironmentalfactors affecting theirdecision-making.Allhumandecision-makingis based ontheperson’smentalmodelofthestateandoperationof the systembeingcontrolled [22]. Levesonarguesforthedevel- opment ofanewhazardanalysistechniquecalledSystem- Theoretic ProcessAnalysis(STPA) [19,22]. Theauthorsagree about theshortcomingsofseveraltraditionalhazardanalysis techniques, butbelievethatbycombiningdifferentdatainput and hazardanalysistechniquesamorecompletecauseandrisk picture canbeproducedforprecursorincidentstherebyavoiding major accidents.Theobjectiveofthisarticleistodemonstrate how thiscanbedoneinpracticeusingdatasetsandhazard analysis techniquesthatarewellknownwithintheNorwegian O&G industry. 1.2. Limitations This articledoesnotincludeanexplanationastohowQRAs are performed.Forreadingsaboutthissee [23–26]. Thescopeis limited tomajorhazardsintheO&GindustryintheUKand Norway. Majorhazardshavethepotentialtocausemajoracci- dents, whichareoftenunderstood,e.g.byHSE [12], asaccidents out ofcontrolwiththepotentialtocausefivefatalitiesormore, J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 49
  • 3. caused byfailureofoneormoreofthesystem’ssafetyand preparedness barriers. There arealargenumberofdifferentaccidentinvestigation methods andcausalanalyses.Inthesameway,thereisagreat variation inthewayriskanalysesarepreformed.Thereare several perspectivesrelatedtobothaccidentsandtheircauses. A primarydifferenceishowaccidentsaremodelledandhowan organisation isinterpreted,seee.g. [27–31]. Areviewofthe methods andthedifferentperspectivesisnotascopeofthis article. Ourviewissomewhatpragmatic.Thebasecaseisthe methods andelementsthatareusedintheUKandNorwaytoday. 2. Incidentreportingandlearning The theoryofincidentlearningreliesontheobservationmade by Turner [32] thatdisastershavelongincubationperiodsduring whichwarningsignals(orincidents)arenotdetectedorare ignored.Thus,whiletheoccurrenceofincidentsmaybenormal, onlyanorganisationwithaneffectiveincidentlearningsystem canrespondtotheseincidentstopreventseriousaccidentsfrom occurringinthefuture.Phimisteretal. [15] discusstheimpor- tanceofidentification,withoutwhichincidentlearningisimpos- sible.Unlesstheorganisationissensitisedtolearnfromincidents, deviationsfromnormalbehaviourwillgounnoticed.Accordingto CookeandRohleder [33], anorganisationthateffectivelyimple- mentsaformalincidentlearningsystemcanevolveintoanHRO. For severalindustriestherehasbeenachallengetoachievea good reportingrate,andanincidentcannotbeinvestigatedunless it isreported.Furthermore,therateofincidentsreporteddepends on thepersonalcommitmenttosafetybytheworkerswho observe orareinvolvedintheincidents.Managementcanshow their commitmenttosafetybycreatingaclimateinwhich incident reportingisrewardedinsteadofpunished.TheO&G companies operatingintheNorthSeahaveforalongtime emphasised thatallunwantedincidentsshouldbereported.The O&G companieshaveachievedahighrateofincidentreporting, which initselfisgood.However,thehighreportingratecanmake it difficulttoidentifythemostimportantproblemshighlightedin the reporteddata.AsreportedbyBerntsenandHolmboe [34] too much resourceswerespentonacomprehensivehandlingand analysis ofavastamountofincidentswithlessimportanceforthe safety level,takingthefocusawayfromthemoresevereand important incidents.Thehighresponserateisalsoaresultofa process wheretherehasbeenlimitedpunishmentandhuntfor scapegoats. Theinvestigationsareusuallydoneinaquickmanner and withoutquestioningskills,competenceanddecisionsmade by theinvolved(seee.g. [35]). Theincidentreportshavemainly been usedforworkingoutsafetyindicators. 3. Indicatorsandriskinfluencefactors The term‘‘indicator’’canbeusedinvariouscontexts,for exampleperformanceindicators,safetyindicators,safetyperfor- manceindicators,directperformanceindicators,indirectpro- grammaticperformanceindicatorsandriskindicators [36]. Also, indicatorsmaybedefinedindifferentways.Safetyindicatorshave beenaddressedinaspecialissueof SafetyScience (volume47, 2009)andseveralrecentresearcharticles [36–46]. Mainlythe articlesdiscusstwodimensionsofsafetyindicators:personal safetyversusprocesssafety,andleadingversuslaggingindicators. HSE [41] statesthatbothleadingandlaggingindicatorsare neededtoensurethehighqualityoftheselectedindicators,but Hopkins [40] claimsthattodistinguishbetweenleadingand laggingindicatorsisnotusefulforprocessindustries. In theRiskLevelProject(RNNP)inNorway,theso-called leading andlaggingindicatorsareusedtoassesstherisklevelof the NorwegianO&Gindustryonanannualbasis,inadditionto questionnairesandinterviews.Thefirstreportwaspublished early in2001,basedondatafortheperiod1996–2000.RNNPuses various statistical,engineeringandsocialsciencemethodsto provide abroadillustrationofrisklevels,includingrisksdueto major hazards,risksduetoincidentsthatmayrepresentchal- lenges foremergencypreparedness,riskperceptionandcultural factors [45,47]. Relatedtomajoraccidents,thefollowingcate- gories ofdataarecollected [13]: – uncontrolledreleaseofhydrocarbons,fires(i.e.processleaks, well events/shallowgas,riserleaks,otherfires); – structuralevents(i.e.structuraldamage,collisions,threatof collision); – accidentsandeventsinhelicoptertransportactivities; – experiencedatarelatingtotheperformanceofbarriersagainst major accidents. The numberofprecursorincidentsisusedasindicatorsin RNNP. Inadditiontheperformanceofsafetybarriersisincluded. 4. Safetybarriers Safetybarriers(barriers)arephysical ornon-physicalmeans plannedtoprevent,controlormitigateundesiredeventsoraccidents. Barriersmaybepassiveoractive,physical,technicalorhuman/ operationalsystems [48,49]. ThePSAregulationsrequirethefollow- ingaspectsofbarrierperformanceto beaddressed:reliability/avail- ability,effectiveness/capacityandrobustness(antonymvulnerability). In 2000StatoildevelopedasystemtoassesstheTechnical SafetyCondition(TTS)ofitssafetybarriersonO&Gfacilities [50,51].TTSincludesareviewofthemaintenance,inspectionand designroutinesthatareverifiedagainstpredefinedperformance standards.Thereare22differentperformancestandards,for exampleregardingthegasdetectionsystem,alarmmanagement andwellbarriers.Eachperformancestandardconsistsofperfor- mancerequirements.Theassessmentiscarriedoutatadetailed levelusingchecklists.Thereisalreadyalargeamountofdata collected,andseveraloilcompanieshaveadoptedasimilarsystem. The safetybarrierdiagrams‘bow-tie’graphicallydisplaythe relationship betweenhazards,threats,controlsandconse- quences. Bow-tiesincludetwoparts.Theleftpartdescribesthe latent hazard,initiatingevents,preventativecontrolsandinitial hazard release.Thehazardreleaserepresentsapotentialmajor incident. Therightpartdisplaysthepotentialmajorincidentasa starting point,barriersinsequenceandtheconsequencesthat result fromthefailureofthebarriers.Thebow-tiediagramis based onthecouplingofafaulttreeandaneventtreediagram linked toacriticaleventthatrepresentsahazard.Bow-tie diagrams allowtheidentificationofsafetybarriersimplemented to preventthecriticaleventfromtakingplaceand/ortomitigate its effects.Severallevelsofcausesandeffectscanbedescribed. Bow-tie diagramsarethereforegoodillustrationsofdefence-in- depth [52]. QRAsintheO&Gindustryhavetraditionallyhada rather narrowanalysisofbarrierperformance [23]. Revealingthehumanandorganisationalfactors(HOFs)isimpor- tantwhenanalysingsafetybarriersandprecursorincidents.Human factorsareunderstoodasthebranchofscienceandtechnologythat includes whatisknownandtheorizedabouthumanbehavioural and biologicalcharacteristicsthatcanbeappliedvalidlytothe specification, design,evaluation, operationandmaintenanceof productsandsystemstoenhancesafe,effectiveandsatisfyinguse by individuals,groups andorganisations [53]. Humanfactorsare J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 50
  • 4. seen asarangeofissues,includingtheperceptual,physicaland mentalcapabilitiesofpeople,aswellastheinteractionsofindivi- dualswiththeirjobandtheworkingenvironments,theinfluenceof equipmentandsystemdesignonhumanperformanceand,aboveall, the organisationalcharacteristics thatinfluencesafety-related behaviouratwork. The terms‘humanfactors’and‘humanerror’areoftenused interchangeably, but,aspointedoutbyGordon [54], itisimpor- tant todistinguishbetweentheunderlyingcausesofaccidents (human factors)andtheirimmediatecauses(humanerrors). Traditionally, humanfactorsaredefinedastheinteraction between manandmachine,althoughmanyvariationsexist [55]. Human errorcanbedefinedas‘thefailureofplannedactionsto achieve theirdesiredends—without theinterventionofsome unforeseeable event’ [56]. AccordingtoJacobsandHaber [57], human errorsmaybeofvariousoriginsandpartoflarger, organisational processesthatencourageunsafeacts,whichulti- mately producesystemfailures. Organisational factorsarecharacterisedbythedivisionof tasks, designofjobpositions,includingselection,trainingand cultural indoctrination,andtheircoordinationtoaccomplishthe activities. Themainissuesoforganisationandsafetyinclude factors suchascomplexity(chemical/process,physical,control and task),sizeandageofplant,andorganisationalsafetyperfor- mance shapingfactorssuchasleadership,culture,rewards,manning, communicationsandcoordination,andsocialnormsandpres- sures [58]. HOFs playanimportantroleinNorwegianandUKlegislation. HOFs mustbemodelled,andtheirroleassafetybarriersmustbe revealed tofulfilthelegislationrequirements.Duringthelast decade, severalresearchprojectshavebeenworkingtoinclude HOFs inQRA.OrganisationalRiskInfluenceModel(ORIM) [59], Barrier andOperationalRiskAnalysis(BORA) [60,61] andOpera- tional SafetyCondition(OTS) [25,62] arethemostrelevant methods. Table 1 shows thatHOFsarecentralbothinaccident/ precursor incidentinvestigationsandQRA. 5. QRA Risk analysismethodologyisaboutestablishinggoodprinci- ples, methodsandmodelsforanalysinganddescribingrisk.QRA is usedastheabbreviationfor‘QuantifiedRiskAssessment’ or ‘QuantitativeRiskAnalysis’.Thecontextusuallyhastobe considered inordertodeterminewhichofthesetwotermsis applicable. Riskassessmentinvolvesriskanalysisaswellasan evaluation oftheresults.Thetechniqueisalsoreferredtoas Probabilistic RiskAssessment,ProbabilisticSafetyAssessment, Concept SafetyEvaluationandTotalRiskAnalysis.Inspiteof more thantwodecadesofuseanddevelopment,noconvergence towards auniversallyacceptedtermhasbeenseen [23]. Inthis article thetermQRAreferstoallthedifferenttechniques. Authorities arebasingtheirregulations,andoperatorsarebasing their design,ontheuseofQRA. According toguidelinesforQRA [64], thefollowingrisk elements relatedtomajorhazardriskshall,asaminimum,be considered foroffshoreO&Ginstallations: – blowouts,includingshallowgasandreservoirzones,unignited and ignited(Wellincidents); – processleaks,unignitedandignited(IgnHCleak/UnignHC leak); – utilityareasandsystems’firesandexplosions(Otherfire/expl); – fireinaccommodationareas(Otherfire/expl); – falling/swingingobjects; – transportationaccidents; – transportofpersonnelfromshoretotheinstallation; – helicoptercrash; – collisions,includingfieldrelatedtraffic,andexternaltraffic, drifting andunderpower(Shiponcollcourse); – riserandpipelineaccidents(Dam.subsinst/Subsequipmleak); – accidentsfromsubseaproductionsystems(Dam.subsinst/ Subs equipmleak); – escape,evacuationandrescueaccidents,i.e.untilaso-called ‘safe place’hasbeenreached(Evac/muster); – structuralcollapse,includingcollapseofbridgesbetweenfixed and/or floatinginstallations(Struct.Damage); – foundationfailure(Struct.Damage); – lossofstability/position(Struct.Damage). The shorteningsinthelistrefertothecategorisationbyPSA related toprecursorincidents.Everyyeartheprecursorincidents are recordedbythePSA,see Fig. 1. Most oftheincidentsareinvestigatedbythecompanies themselves, whileafewareinvestigatedbythePSA. Fig. 2 illustrateshowthedifferentelementscanbecombinedin a bow-tieillustration.QRAincludesmodellingofengineering, operationalandmaintenanceactivities.QRAcoverstheinitiating eventsaswellastheirconsequences.SomeQRAsalsoincorporate the initiatinghuman,organisationalandtechnicalfactors [26]. A typicalprecursorinvestigationdoesnotcovermodellingofthe potentialconsequencesandrelatedprobabilities.Therebythestatus of allthesafetybarriersthatwerenotused,isnotinvestigated. 6. Accident/precursorincidentinvestigations An accidentinvestigationisthedeterminationofthefactsof an accidentbyenquiry,observationandexamination,andan analysis ofthesefactstoestablishthecausesoftheaccidentand the measuresthatmustbeadoptedtopreventitsrecurrence [66]. The CenterforChemicalProcessSafety(CCPS)describesthree main purposesforaccidentinvestigation.Thefirstpurposeisto organise informationabouttheaccidentonceevidencehasbeen collected. Thesecondistohelpindescribingtheaccident causation anddevelopingahypothesisforfurtherexamination by expertsandthelastistohelpwiththeassessmentofproposed corrective actions [67,68]. Inaddition,theanalyticaltechniques should alsoensurethattheresultsaretransparentandverifiable. Table 1 Human andorganisationalfactors [63]. HOF Description Work practiceThecomplexityofthegiventask,howeasyitis to makemistakes,bestpractice/normalpractice, checklists andprocedures,silentdeviations, control activities Competence Training,education—both generalandspecific, courses, systemknowledge,etc. Communication Communicationbetweenstakeholdersinthe process ofplan,act,check,do Management Workmanagement,supervision,dedicationto safety, clearandprecisedelegationof responsibilities androles,changemanagement Procedures and documentation Data basedsupportsystems,accessibilityand quality oftechnicalinformation,workpermit system, safetyjobanalysis,procedures(quality and accessibility) Workload andphysical working environment Time pressure,workload,stress,working environment, exhaustion(shiftwork),toolsand spare parts,complexityofprocesses,man– machine-interface, ergonomics Change managementManagementoftechnicalororganisational changes, andavoidingaccidents J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 51
  • 5. Accident andincidentinvestigationsareoftenaimedatfinding the rootcausesofanaccident.AccordingtotheHSE,arootcause is themostfundamentalanddirectcauseofanaccidentor incident thatcanbereasonablyidentified,andthatmanagement has acontroltofix.Arootcausecontainsthreekeyelements [69]: Basic Cause. Specific reasonsastowhyanincidentoccurred that enablerecommendationstobemadethatwillprevent recurrence oftheeventsleadinguptotheincident. Reasonably Identified. Incident investigationmustbecom- pleted inareasonabletimeframe.Rootcausesanalysis,tobe effective, musthelpinvestigatorstogetthemostoutofthe time allottedforinvestigation. Control toFix. General causeclassificationssuchas‘operator error’ shouldbeavoided.Suchcausesarenotspecificenough to allowthoseinchargetorectifythesituation. During thelastdecades,anumberofmethodsforaccident investigation havebeendeveloped.Eachofthesemethodshas different areasofapplicationanddifferentqualitiesanddeficien- cies. AuthorslikeHendrickandBenner [70], Groeneweg [71] and Svenson [72] have developedanddescribedtheirowninvestiga- tion method,inthesamewaydifferentgovernmentalofficesand authorities havetheirownmethods. Accidentmodelscansuperficiallybedividedintothreemajor groups.Thefirstgroupis‘‘sequentialaccidentmodels’’,atermalso Undesirable event with potential for harm or damage, e.g Gas leak (Precursor incident) Conse-quences Barriers Engineering activities Maintenance activities Operations activities Initiating human, organi-zational and techn-ical factors QRAPII (Quantitative Risk Analysis precursor incident investigation) Typical accident investigation Initiating events QRA modelling Giving probabilities for different scenarios, Describing decision gates (probabilities and consequences) QRAincl. HOF Fig. 2. Bow-tie, QRAandQRAPII. Fig. 1. Precursor incidents [65]. J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 52
  • 6. used byHollnageletal. [73], whichdescribetheaccidentasa sequenceofeventsinaspecificorder,e.g.thedominotheory.The second groupis‘‘humaninformation processingaccidentmodels’’,a term usedbyLehtoandSalvendy [74], whichdescribetheaccidentin terms ofhumanbehaviourandactions.Thethirdgroupis‘‘systemic accidentmodels’’,atermalsousedbyHollnageletal. [20] such as Reason’smodel,whichincludeorganisationalandmanagement factors anddescribetheperformanceofthewholesystem [18]. CCPS [68], USDepartmentofEnergy(DOE) [75,76], PSA [77,78] and HSE [69] have reviewedanddescribedseveralmethods.Several articleshavealsoevaluatedthemethods [18,27,29]. DOE [76] dividestheprocessintothree(partiallyoverlapping)mainphases: (a) collectionofevidenceandfacts; (b) analysisofevidenceandfacts—development ofconclusions; (c) developmentofjudgmentsofneed—writing thereport. Kjelle´n [79] also includestheimplementationandfollow-upof recommendations aspartoftheinvestigation.Withinthefieldof accident investigation,thereisnocommonagreementabout definitions andconcepts.Thenotionofcausehasespeciallybeen discussed intheliterature.Whilesomeinvestigatorsfocuson causal factors [75], othersfocusondeterminingfactors [80], contributing factors [81], activefailuresandlatentconditions [82] or safetyproblems [29,70]. 6.1. Faulttreeandeventtreeanalysis FaulttreeanalysisiscentralinboththeQRAandseveralaccident investigationmethods.Faulttreeanalysisisamethodfordetermining the causesofanaccident(ortopevent) [83]. Thefaulttreeisagraphic model thatdisplaysthevariouscombinationsofnormaleventsbythe use oflogicgatesthatillustrateequipmentfailures,humanerrorsand environmentalfactorsthatcanresultinanaccident.Afaulttree analysismaybequalitative,quantitativeorboth.Possibleresultsfrom theanalysismaybealistingofthepossiblecombinationsof environmentalfactors,humanerrors,normaleventsandcomponent failuresthatmayresultinacriticaleventinthesystemandthe probabilitythatthecriticaleventwilloccurduringaspecifiedtime interval.Thestrengthofthefaulttreeasaqualitativetoolisitsability tobreakdownanaccidentintorootcauses [29]. An eventtreeisusedtoanalyseeventsequencesfollowingan initiatingevent [84]. Theeventsequenceisinfluencedbyeither successorfailureofnumerousbarriersorsafetyfunctions/sys- tems.Theeventsequenceleadstoasetofpossibleconsequences. The consequencesmaybeconsideredasacceptableorunaccep- table.Theeventsequenceisillustratedgraphicallywhereeach safetysystemismodelledfortwostates:operationandfailure.An accidentinvestigationmaygraphicallydescribetheaccidentpath as oneofthepossibleeventsequencesinaneventtree. The useofgraphicaldescriptionisessentialinseveralaccident investigation methodsandQRA.Itgivesaneasilyunderstandable overview oftheeventsleadinguptotheaccidentandtherelation between differentevents.Further,itfacilitatescommunication among theinvestigatorsandtheinformantsandmakesiteasyto identify eventually‘‘missinglinks’’orlackofinformation [29]. Safety barrieranalysisisusedtoidentifyhazardsassociatedwith an accidentandthebarriersthatshouldhavebeeninplaceto prevent it.Thebasicstepsinasafetybarrieranalysisareto [76] – identifythehazardandthetarget; – identifyeachbarrier; – identifyhowthebarrierperformed; – identifyandconsiderprobablecausesforthebarrierfailure; – evaluatetheconsequencesofthefailureinthisaccident. 7. CombiningaccidentinvestigationandQRA Identifying hazardsandbarriersisessentialinaccidentinves- tigation andQRA.Byexpandingthecollectionofevidenceand facts whenperforminganaccidentinvestigation,moredetailed information canbegatheredaboutthebarriers,includingthose that werenotused. Fig. 3 shows howaneventtreeanalysiscanbe supported byasafetybarrieranalysisanddatasources(e.g.RNNP and TTS).Theeventtreeisquitesimilartoacauseconsequence diagram usedinseveralaccidentinvestigationmethods,although the latteroftenusesmoretextandmoregraphicalsymbols.The different scenariosandtheirprobabilitiescanbecalculatedbased Fig. 3. Event treemodeling–safetybarrieranalysis–sourcesforassessments. J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 53
  • 7. on informationfromtheaccidentinvestigationandmodelsinthe QRA. Necessaryinformationwilldifferdependingonthetypeof precursor incidentoraccident.Oneexampleisdroppedobjects, which canresultinseveraldifferentconsequences:noinjury/no damage, personalinjury/damagedequipmentaswellasbeingan initiating eventforleakageofhydrocarbonsduetodamaged/ ruptured processequipment. 7.1. PSAinvestigationsuseMTO The PSAaswellasseveraloilandgascompaniesinNorway uses theMan,TechnologyandOrganisation(MTO)-methodology [77]. Acomparisonofdifferentaccidentinvestigationmethods done bySklet [29] showed thattheMTO-analysisisoneofthe most completeanalysismethods.Themethoddemandsthatthe user isaspecialist/expert [29]. ThebasisfortheMTO-analysisis that human,organisationalandtechnicalfactorsshouldbe analysed inanaccidentinvestigation.Themethodisbasedon the methodHumanPerformanceEnhancementSystemfromthe nuclear industry [77,78]. Fig. 4 illustrates theMTO-analysisworksheetandhowitcan be combinedwithQRA.Thefirststepistodeveloptheevent sequence longitudinallyandillustratetheeventsequenceina block diagram.Thereafter,thepossibletechnicalandhuman causes ofeacheventareaddedanddrawnverticallytotheevents in thesamediagram.Thenextstepistomakechangeanalyses, i.e. toassesshoweventsintheaccidentprogresshavedeviated from thenormalsituation,orcommonpractice.Normalsituations and deviationsarealsoillustrated.Technical,humanororganisa- tional barriersthatfailedorweremissingduringtheaccident progress arethenanalysed.Theresultillustratesallmissingor failed barriersbelowtheeventsinthediagram.Thelaststepin the MTO-analysisistoidentifyandpresentrecommendations. The recommendationsshouldberealisticandspecific,andmight be technical,humanand/ororganisational. Table 2 describes additionalquestionsthatcanbeanswered when combiningMTOandQRA. 7.2. Anexample In January2006,agasleaktookplaceonaninstallationinthe North Sea.Ametalplateintheflaredrumcollapsed,causinga large holeintheflarepipe.Theincidentwasthelargestgasleak to occurinaprocessareaontheNorwegianshelfinyears. According tothePSAinvestigation,designflawsandthelackof pressure retentionintheflaredrumwerethedirectcausesthat triggered theincident.Theleakoccurredrightafterflaringhad Fig. 4. MTO andQRAinput. Table 2 Additional informationwhencombiningMTOandQRA. Basic MTOanalysisquestions [77] Additional questionswhen combining MTOwithQRA – Whatmayhavepreventedthe continuation oftheaccident sequence? – Whatmaytheorganisationhave done inthepastinordertoprevent the accident? – Whatweretheprobabilitiesrelated to thebarriertoperformas intended? – Howcouldtheincident/accident escalate? – Whatwerethepotentialaccident scenarios? – Whatwasthepotentialfor escalation? – Whatbarrierswereessentialto prevent escalation? – Whatwasthestatusofthese barriers? J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 54
  • 8. started asintended,followinganinterruptioninoperations.The crew observedalargeflameontheflarewhenthemetalplatein the KOdrum(‘theflaredrum’)collapsed,causingaholemeasur- ing approximately0.5mintheflarepipe.Theincidentdeveloped over ashortperiodof2min.Therewere91personsonboard. No onesufferedphysicalinjury [85]. The incidentdidnotentailpersonalinjuriesorharmtothe external environment.Theactualconsequenceswererelatedto damage totheprocessequipment,withthelargestlosslinkedto delayed production.ThePSAinvestigationconcludedthatallthe automatic safetyfunctionsinvolvedaftertheincidentoccurred functioned asintended.Thisincludedprocessandemergency shutdown systems,aswellasthesprinklersystemsinaffected areas [85]. Thepotentialconsequenceswerebrieflydescribedin the investigationreportbymentioningthatifthecourseofevents had beenonlyslightlyaltered,theleakcouldhaveledto consequences includingpossiblelossoflivesandlossofthe facility. Anignitedgascloudcouldhavecaused [85] – extensiveandexplosivefire; – lossoflivesaswellasdifficultandhazardousevacuationof personnel; – impairmentofstructureandpotentiallossofstructure; – damagetosubseawellbaseframecausedbysinkingstructure. The investigationdidnotanswerthequestions: – Whatchainofeventswouldhaveledtoamajoraccident? – Howprobableweretheseevents? – Howwouldtheaccidentscenariosevolve? Table 3 describes howQRA-modellingcanaddinformationto the incidentinvestigation. The likelihoodofasuccessfulevacuation,escapeandrescue (EER) canalsobeevaluatedusingQRAmodelling(seee.g. [86]). Risk influencingfactors(RIFs)influencingEERwere [85] – shorttimefromdetectiontopossibleignition; – nostand-byvessel; – thenumberofavailablelife-boatsasreduceddueto maintenance; – largewaves. An extendedinvestigation(accordingto Fig. 3) andQRA- modelling mighthaverevealedthatthegasleakwasamajor accident preventedonlybyafortunatewindspeedanddirection. A largeleakintheflaresystemisextremelycriticalasoneofthe flare system’sfunctionsistoreleasethepressureofhydrocarbon segments. Ifanexplosionhadoccurred,theEERoperationswould have beenchallengingduetotheRIFs. 8. Discussion Safety isoftendefinedastheabsenceofaccidents [87], wherean accident isdefinedasaneventinvolvinganunplannedand unacceptableloss.Basedonthisdefinition,anincidentthatdoes notcauseanylosses,likemostofthe precursorincidents,doesnot affect thesafety.Anotherdefinitionforsafetyistheconditionof being protectedfrom,orunlikelyto cause,danger,riskorinjury. Accordingtothisdefinitiontheunlikelihoodhastobejudged.A precursor incidentisaneventthatsignalsthatthesafetyhasbeen affected. Thelikelihoodandpossibleconsequencescanbeanalysed usingQRAPII.Riskanalysisisaboutanalysingthefuture.Inarisk analysis,itisusuallyself-evident toapplyarecognisedmethod, whichhoweverisrarerinprecursor/accidentinvestigation [88]. Leaksfromhydrocarbonsystemsareoneofthemaincontribu- torstomajorhazardrisksoffshore.Evenso,onlyveryfewofthe leaksareinvestigatedbythePSA.Theoperatorsdotheirown investigations,butthelearningfromtheseincidentsislimitedas theinvestigationsarenotpubliclyavailable.Areviewofaccident investigationscarriedoutbytheInstituteforEnergyTechnology concludedthatthereisamainfocusontechnicalfactors,evenin incidentswherehumanandorganisationalfactorshaveinfluenced Table 3 QRA elementsandcommentsongasleak. Event treebranchInformationfromthePSAinvestigation [78] Additional informationbyQRA-modelling Leak sizeTheleaksizewascalculatedbytheoperatorto900kg/s (Hydrocarbon leakswitharategreaterthan10kg/sare classified inthemostseriouscategoryusedontheNorwegian shelf.) – GascloudmodellingusingComputationalFluidDynamics (CFD) programsfortheactualwinddirection – Analysehowprobablewasgaspresentinthedifferentareas on theinstallations – Analysewhatwindspeedsanddirectionswouldhave caused gasontheinstallation,andinwhichareas The windspeedwas37m/sinthegustontheactualday Ignition Thetotalvolumeofgasthatblewthroughtheholewas calculated atapproximately26t The ignitionprobabilitydependedon – theprobabilitythatreleasedgaswasexposingtheignition sources (revealedbyCFDcalculations) – thenumberandstatusofpotentialignitionsourcespresent – theprobabilitythatanexposedsourceofignitionwould ignite thegas The leakoccurredintheimmediatevicinityoftheflarestack, where theflarewasburningthroughoutmostoftheincident Escalation duetoexplosionIntheareawiththeknockoutdrumthereareothersegments with hydrocarbonsduetoconnectionstoflarefromdifferent process segments Analyse andcalculatethepotentialfireandexplosionloads based oncomputersimulations.Input(equipment,placing, hydrocarbons, volumes,etc.)couldbegatheredaspartof the investigation Isolation andpressurerelief of segment The isolationandpressurereliefisdonethroughtheflare system. Theleakisintheflaresystem Model theprocessflowbetweenthedifferentsegments containing hydrocarbons Escalation tootherequipment due tofireandstructural collapse Gas leakfornearly50min,pressurereliefentailedthatthegas leak continuedthroughtheholeintheflarepipe Modelling ofescalationbasedonfireandexplosion calculations andtheinstallationsdesignaccidentload. Added informationare – potentialdurationoffire – sizeandlocationoffire – fire-fightingcapacity J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 55
  • 9. largely [35]. ThereisalackofunderstandingofhowMTO-analysis shouldbepreformed.TheMTO-diagramsareusedtoillustrate,and nottoanalysetheincidentinasystempropertyview.Kletz summariseschallengesrelatedtoaccidentinvestigations [89]: – findonlyasinglecause,oftenthefinaltriggeringevent; – findonlyimmediatecausesanddonotlookforwaysof avoiding thehazardsorforweaknessesinthemanagement system; – listhumanerrorasacausewithoutsayingwhatsortoferror; – listcausesonecandolittleabout; – changeproceduresratherthandesigns. Although thefirsteventinthechainisoftenlabelledthe ‘initiatingevent’,theselectionofaninitiatingeventisarbitrary, and previouseventsandconditionscouldalwaysbeadded.When learninghowtoengineersafersystemsisthegoalratherthan identifying whotopunish,theemphasisinaccidentanalysisneeds to shiftfrom‘‘cause’’(whichhasalimiting,blameorientation)to understanding accidentsintermsofreasons,i.e.whytheeventsand errors occurred [21]. Thisshouldconsistofanunderstandingofthe total system,includingthebarriersthatwereplannedbutnotused. Therebywhenasystemfailsitshouldbeinvestigatedaccordingtoa systempropertyview,notacomponentproperty,eventhoughat firstviewitisonlyacomponentthathasfailed.Animportantpartof the systempropertyviewistounderstandthepotentialconse- quencesofthesystem’sfailure.QRAPIIisatooltodothis. An importantpartofriskmanagementefficiencydependson the wayorganisationslearnandalsoonhowlearningisorga- nised. Learningfromexperienceimplies,forinstance,thateach person involvedinanincidentoranaccidenttakespartin reviewing theinformationassociatedwiththesystemfailures [90]. Itisthereforeimportantthatthepotentialscenariosare described. Precursorincidentsrarelyleadtomajoraccidents,and this reducesthefearofanoccurrencewithinthecompany,and also reducesthevisiblebenefitsofsafetyinvestments.Bydescrib- ing thescenariowithrelatedprobabilitiesandconsequences,the good sideoffear,proactivemanagement,canbemobilised. Information fromprecursorincidentinvestigationscanalsobe important toolsforimprovedriskcommunication.Probability information canbeprocessedeithersystematicallyorheuristi- cally. Riskcommunicatorsusuallypreferpeopletoprocess information systematicallybecausethisismorelikelytoleadto informed decision-making.Inareviewoftheresearchliterature related toprobabilityinformationinriskcommunication, Visschers etal. [91] concluded thatinformationthatwasconcrete and easytosimulateinmemorywaspreferredtomoreabstract information, whichtheheuristicsimulationpredicts.Anexample is scenarioinformationversusfrequencyinformation.UsingQRA- modelling, thedifferentscenarios,includingworstcasescenarios, are simulatedfortheprecursorincidentsandcantherebysupport learning throughscenariodescription. Precursoranalysis,theevaluationof‘nearmisses’,hasbeenan activityoftheUSNuclearRegulatoryCommission(NRC)foralmost 20 years.Oneitemthathasremainedconstantoverthistimeis thatthefocusoftheanalysishasbeenonmodellingthescenario usingariskmodelandthenutilisingtheresultsoftheanalysisto determinetheseverityoftheprecursorincident.Theinvestigation of precursoreventscanbeusedasasourceofinformationforthe constructionofastructuredmethodologicalapproachforopera- tionaldecisions [92]. TheNRCstartedtheAccidentPrecursor SequenceProgrammein1979 [93]. Over1000licenseeevent reportsareyearlysubmittedtotheNRC [17]. Eachyearthe‘most risksignificant’eventsaretabulatedandrankedaccordingtothe conditionalcoredamageprobability(CCDP)intheNRCpublication NUREG/CR-4674(Table2).CCDPistheriskmetricusedbytheNRC to determinetheseriousnessofaprecursorevent.CCDPisdefined astheprobabilityofcoredamagewhengiventheplantconfigura- tionduringtheinitiatingeventsituationorduringtheunplanned equipmentoutage [94]. ThecalculationofthenumericalCCDP valueisbasedontheprobabilisticriskassessmentmodels,and carefullyconsiderstheimpacttothebase-casemodelofaspects suchasoperatoractions/recoveries,adjustmentstodependent eventslikecommon-causefailureprobabilities,andplantinitiating events [17]. An HROsucceedsinavoidingmajoraccidentsinanenviron- ment wherenormalaccidentscanbeexpectedduetoriskfactors and complexity.ThereareseveralcharacteristicsrelatedtoHRO. One isthattheyaggressivelyseektoknowwhattheydonotknow [95]. HROsalsousefailuresimulationstotraineveryonetobe heedful ofthepossibilityofaccidents [95]. QRAsuseevent-trees and fail-treestomodeldifferentscenarios.Thesametechnique can beusedtosimulatedecisiongatesanddifferentscenarios related toprecursorincidents.TheQRAisascientificmethodthat uses availableinformationtoidentifyhazardsandtopredictthe risk. TheQRAcancontributetobuildanorganisationalmemoryof what happenedandwhy.Accidentinvestigationofprecursor incidents withQRAmodellingcanbeusedtocommunicate organisational concernwithaccidentstoreinforcethecultural values ofsafety,andidentifypartsofthesystemthatshouldhave additional barriers.Alltheseelementsarecharacteristicsofan HRO. Firmsthathavefeweraccidentshavedevelopedsystems and processesforcommunicatingthebigpicturetoeveryonein the organisation.Thisisamajorchallengethatbeginswithtop management encouragingtheculturetobesupportiveofopen communications. Therewardandincentivesystemhastorein- force anopenflowofcommunicationaswellassupporttheopen discussion oforganisationalpurpose [95]. Communicationand the discussionofprecursorincidentsisaconcretemethodthat may simplifyfindingaunitedplatformforthestatusofthesafety as wellaspossibleimprovements. There areseveralchallengeswhenusingQRAinriskmanage- ment, andthesamechallengeswillapplywhenusingQRAaspart of precursorincidentandaccidentinvestigations.Event-based models likeQRAencouragelimitednotionsofcausality;usually linear causalityrelationshipsareemphasised,anditisdifficultto incorporate non-linearrelationships,includingfeedback.Inaddi- tion, someimportantcausalfactorsaredifficulttofitintosimple event models.Forexample,studieshavefoundthatthemost important factorintheoccurrenceofaccidentsismanagement’s commitment tosafetyandthebasicsafetycultureintheorgani- sation orindustry [21], oftenreferredtoasHOFs. It iscommontodefineanddescriberiskusingprobabilities (combinedwithhazards and consequences).Aven [96] arguesthat theseperspectivesanddefinitionsaretoonarrow.Theydonot reflect thatprobabilitiesareimperfect toolsforexpressinguncer- tainties.Theassignedprobabilitiesareconditionedonanumberof assumptionsandsuppositions.Theydependonthebackground knowledge ofthesysteminmind.Uncertaintiesareoftenhiddenin thebackgroundknowledge,andrestrictingattentiontotheassigned probabilitiescouldcamouflagefactorsthatcouldproducesurprising outcomes. Byjumpingdirectlyinto probabilities,importantuncer- taintyaspectsareeasilytruncated, meaningthatpotentialsurprises could beleftunconsidered [96]. QRAPIIcanaddqualitative information relatedtotheprobabilities.Thedifferentaccident scenarios canbefurtherdescribed byinformationcollectedaspart of theinvestigation.Inthisway the uncertaintiesinaQRAcanbe discussed,andformthebasisforlearning. ThefindingsfromQRAPIIcanalsobesourcesforsafety indicators andabetterunderstandingofthecorrelationbetween differentindicators.Traditionally, thefocusofsafetyindicatorsfor majorhazardshasbeenonincidentindicators orlaggingindicators, J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 56
  • 10. which meansrecordingthenumberofaccidentsornear-misses.It has beenclaimedthattheseindicatorsmaynotbeusefulasearly warnings [6], andthefocusondevelopingindicatorsthatprovide feedback beforeanaccidentoccurs(so-calledleadingindicators) has beenincreased [38]. TheRNNPdoincludealargenumberof indicators,butthedependencybetweentheseislargelyunknown (see e.g. [97]), soistheunderstandingoftheirvalidityasearly warningsignals.Theunderstanding ofearlywarningssignalcanbe supportedbylearningfromQRAPII. 9. Conclusion Every yearalargenumberofprecursorincidentsarereported in theNorthSeaOGindustry.Accidentinvestigationisthe collection andexaminationoffactsrelatedtoanoccurredspecific event. Riskanalysisisthesystematicuseofavailableinformation to identifyhazardsandtoestimatetherisk.Boththemethodsare about describinghazardsinamethodicalstructure.Theyshare very muchthesameelements.Theextensiveresearchthatisdone related tothatincludingHOFsinQRAbringsaccidentinvestiga- tion andQRAclosertogether.Theoilandgasindustryconsistsof complex systemsthatarehardtospecify.Evensoitisimportant that weusethescientificmethodsthatareavailable,andcombine these toensureasmuchunderstandingandspecificationas possible. Precursorincidentsrarelyleadtomajoraccidents,and in turnthisreducesthefearofanoccurrencewithinthe organisation aswellasreducesthevisiblebenefitsofsafety investments. Bydescribingtheprecursorincidentswithrelated probabilities andconsequences,proactivemanagementcanbe mobilised. Adeeperunderstandingoftheprecursorincidentswill give thepotentialtocontrolvariabilityratherthanbyconstrain- ing it.Tobeabletocontrolvariabilitywilldemandthatprecursor incidents aretakenseriously.UsingpartsofQRAmodellingin accident investigationshasbeendoneearlier.Especiallymodel- ling ofgascloudsandexplosionforceshasbeendone,toboth verify softwaretoolsaswellasunderstandthesequenceinthe accident. Itisthoughnotdoneforprecursorincidents.Regardless of thepurposeofanaccidentinvestigation,anyconclusionshould be basedonanunderstandingoftheeventsleadingtothe accident, aswellasitspotentialconsequences.Combiningpre- cursor incident/accidentinvestigationandQRAcancontributeto this understanding.Alternativeandcombineduseofwellknown data setsandtraditionalhazardanalysistechniquescanbealess struggling approachthanintroducingnewtechniques,andstill ensure amorecompletecauseandriskpictureincomplex systems. Thisincludesanextendedunderstandingofhuman and organisationalfactorsinaccidentsandpreventionofthese. Acknowledgements Especially wethankresearcherJahonKhorsandiatUCBerkeley for reviewsandcomments.Wealsoappreciatethecommentsand suggestions madebythereferees,andthefinancialsupportfrom the NorwegianResearchCouncilandStatoil. References [1] NæsheimT.NOU,the‘‘AlexanderL.Kielland’’-accident.Oslo;1981[in Norwegian]. [2] PSA[Internet].Fromprescriptiontoperformanceinpetroleumsupervision; 2010. Availableat: /http://www.ptil.no/news/from-prescription-to-perfor mance-in-petroleum-supervision-article6696-79.html?lang=en_USS [cited: 16 February2010–2011]. [3] CullenWD.ThepublicinquiryintothePiperAlphadisaster.London: Department ofEnergy;1990. [4] DawsonD,BrooksB.EssoLongfordgasplantaccident:reportoftheLongford Royal Commission.LongfordRoyalCommission;1999. [5] HopkinsA.LessonsfromLongford:theEssogasplantexplosion.Sydney: CCH AustraliaLtd.;2000. [6] BakerJ,BowmanF,ErwinG,GortonS,HendershotD,LevesonN.Thereportof the BPU.S.Refineriesindependentsafetyreviewpanel.Washington,DC; 2007. [7] GrahamB,ReillyWK,BeineckeF,BoeschDF,GarciaTD,MurrayCA,etal. Deep Water.TheGulfoildisasterandthefutureofoffshoredrilling.Reportto the President.Washington(DC,USA):TheNationalCommissionontheBP Deepwater HorizonOilSpillandOffshoreDrilling;2011. [8] DHJIT.USCG/BOEMMarineBoardofinvestigationintothemarinecasualty, explosion, fire,pollution,andsinkingofmobileoffshoredrillingunitDeep- water Horizon,withthelossoflifeintheGulfofMexicoApril21–27,2010. Deepwater HorizonIncidentJointInvestigationTeam,TheUSCoastGuard (USCG)/Bureau ofOceanEnergyManagement,RegulationandEnforcement (BOEMRE) JointInvestigationTeam(JIT);2010. [9] USDI.Increasedsafetymeasuresforenergydevelopmentontheouter continental shelf.USDepartmentoftheInterior;2010. [10] PSA[Internet].Investigations.Stavanger;2010.Availableat: /http://www. ptil.no/investigations/category157.htmlS [cited: 09April2010]. [11] PSA.Managingtheriskofmajoraccidentsinagovernanceperspective;2010. [12] HSE[Internet].MajorHazards;2010.Availableat: /http://www.hse.gov.uk/ aboutus/strategiesandplans/hscplans/businessplans/0405/07.htmlS [cited: 08 April2010]. [13] PSA.Trendsinrisklevelinthepetroleumsector,NorwegianShelf,2008. Norway: PetroleumSafetyAuthority;2009. [14] LindbergA-K,HanssonSO,RollenhagenC.Learningfromaccidents—What more doweneedtoknow?SafetyScience2010;48:714–21. [15]PhimisterJ,OktemU,KleindorferP,KunreutherH.Near-missincident managementinthechemicalprocessindustry.RiskAnalysis2003;23:445–59. [16] WuW,GibbAGF,LiQ.Accidentprecursorsandnearmissesonconstruction sites: aninvestigativetooltoderiveinformationfromaccidentdatabases. Safety Science2010;48:845–58. [17] SmithCL,BorgonovoE.Decisionmakingduringnuclearpowerplant incidents—a newapproachtotheevaluationofprecursorevents.Risk Analysis 2007;27:1027–42. [18] KatsakioriP,SakellaropoulosG,ManatakisE.Towardsanevaluationof accident investigationmethodsintermsoftheiralignmentwithaccident causation models.SafetyScience2009;47:1007–15. [19] LevesonN.Engineeringasaferworld—systems thinkingappliedtosafety (draft). TheMITPress;2009. [20] HollnagelE,WoodsD,LevesonN.Resilienceengineering:conceptsand precepts. AshgatePublishingLtd.;2006. [21] LevesonN.Anewaccidentmodelforengineeringsafersystems.Safety Science 2004;42:237–70. [22] LevesonNG.Theneedfornewparadigmsinsafetyengineering.In:DaleC, Anderson T,editors.Safety-criticalsystems:problems,processandpractice. London: Springer;2009.p.3–20. [23] VinnemJE.Offshoreriskassessment.2nded.London(UK):Springer;2007. [24] AvenT.Foundationsofriskanalysis:aknowledgeanddecision-oriented perspective. Chichester:Wiley;2003. [25] VinnemJE,SeljelidJ,HaugenS,AvenT.Generalizedmethodologyfor operational riskanalysisofoffshoreinstallations.JournalofRiskand Reliability 2008;223:87–98. [26] SkogdalenJE,VinnemJE.Quantitativeriskanalysisoffshore—human and organizational factors.ReliabilityEngineeringSystemSafety2011;96: 468–79. [27] LundbergJ,RollenhagenC,HollnagelE.What-you-look-for-is-what-you- find—the consequencesofunderlyingaccidentmodelsineightaccident investigation manuals.SafetyScience2009;47:1297–311. [28] HollnagelE.Investigationasanimpedimenttolearning.In:HollnagelE, Nemeth CP,DekkerS,editors.Remainingsensitivetothepossibilityof failure. Aldershot(UK):Ashgate;2008. [29] SkletS.Comparisonofsomeselectedmethodsforaccidentinvestigation. Journal ofHazardousMaterials2004;111:29–37. [30] WeickKE,SutcliffeKM.Managingtheunexpected:assuringhighperfor- mance inanageofcomplexity.SanFrancisco(CA):Jossey-Bass;2001. [31] WeickKE.Organizingandtheprocessofsensemaking.OrganizationScience 2005;16:409. [32] TurnerBA.Man-madedisasters.London(UK):Wykeham;1978. [33] CookeDL,RohlederTR.Learningfromincidents:fromnormalaccidentsto high reliability.SystemDynamicsReview2006;22:213–39. [34] BerntsenR,HolmboeRH.Incidents/accidentsclassificationandreportingin Statoil. JournalofHazardousMaterials2004;111:155–9. [35] ThunemA,KaarstadM,ThunemH.Vurderingavorganisatoriskefaktorerog tiltak iulykkesgranskning(Evaluationoforganisationalfactorsandmeasures in accidentinvestigations).Kjeller:InstituteforEnergyTechnology;2010 (in Norwegian). [36] ØienK,UtneIB,HerreraIA.Buildingsafetyindicators:part1—theoretical foundation. SafetyScience2011;49:148–61. [37] DuijmNJ,Fie´vez C,GerbecM,HauptmannsU,KonstandinidouM.Manage- ment ofhealth,safetyandenvironmentinprocessindustry.SafetyScience 2008;46:908–20. [38] HaleA.Editorial:specialissueonprocesssafetyindicators.SafetyScience 2009;47:459. J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 57
  • 11. [39] HaleA.Whysafetyperformanceindicators?SafetyScience2009;47:479–80. [40] HopkinsA.Thinkingaboutprocesssafetyindicators.SafetyScience 2009;47:460–5. [41] HSE.Developingprocesssafetyindicators.HSEBooks;2006. [42] OsmundsenP,AvenT,ErikVinnemJ.Safetyeconomicincentivesand insurance intheNorwegianpetroleumindustry.ReliabilityEngineering System Safety2008;93:137–43. [43] SaqibN,TahirSiddiqiM.Aggregationofsafetyperformanceindicatorsto higher-level indicators.ReliabilityEngineeringSystemSafety2008;93: 307–15. [44] SonnemansPJM,K¨ orvers PMW.Accidentsinthechemicalindustry:arethey foreseeable? JournalofLossPreventionintheProcessIndustries2006;19: 1–12. [45] VinnemJ.Riskindicatorsformajorhazardsonoffshoreinstallations.Safety Science 2010;48:770–87. [46] ØienK,UtneIB,TinmannsvikRK,MassaiuS.Buildingsafetyindicators:part 2—application, practisesandresults.SafetyScience2010;49:162–71. [47] PSA[Internet].Theobjectiveofthe‘‘trendsinrisklevel’’.Stavanger;2010. Available at: /http://www.ptil.no/trends-in-risk-level/the-objective-of-the- trends-in-risk-level-article4251-155.htmlS [cited: 17December2010]. [48] SkletS.Safetybarriersonoilandgasplatforms.Meanstopreventhydro- carbon releases.Trondheim:NTNU;2005. [49] SkletS.Safetybarriers:definition,classification,andperformance.Journalof Loss PreventionintheProcessIndustries2006;19:494–506. [50] ThomassenO,SørumM.Mappingandmonitoringthesafetylevel.In: Proceedings oftheSPEInternationalconferenceonhealth,safetyand environment inoilandgasexplorationandproduction.KualaLumpur (Malaysia): SocietyofPetroleumEngineers;2002. [51] IngvarsonJ,StromO.TechnicalsafetybarriermanagementinStatoilHydro. In: ProceedingsoftheSPEoffshoreEuropeoilandgasconferenceand exhibition. Aberdeen(UK):SocietyofPetroleumEngineers;2009. [52] VisserJ.DevelopmentsinHSEmanagementinoilandgasexplorationand production. SafetyManagement1998:43–66. [53] GoodwinS.HumanfactorsinQRA.ReportforInternationalAssociationofOil GasProducers.DetNorskeVeritasLtd.;2007. [54] GordonRPE.Thecontributionofhumanfactorstoaccidentsinthe offshore oilindustry.ReliabilityEngineeringSystemSafety1998;61: 95–108. [55] DempseyP,WogalterM,HancockP.Definingergonomics/humanfactors.In: International encyclopediaofergonomicsandhumanfactors;2006.p.32. [56] Sch¨onbeck M,RausandM,RouvroyeJ.Humanandorganisationalfactorsin the operationalphaseofsafetyinstrumentedsystems:anewapproach. Safety Science2010;48:310–8. [57] JacobsR,HaberS.Organizationalprocessesandnuclearpowerplantsafety. Reliability EngineeringSystemSafety1994;45:75–83. [58] BellamyLJ,GeyerTAW,WilkinsonJ.Developmentofafunctionalmodel which integrateshumanfactors,safetymanagementsystemsandwider organisational issues.SafetyScience2006;46:461–92. [59] ØienK.Aframeworkfortheestablishmentoforganizationalriskindicators. Reliability EngineeringSystemSafety2001;74:147–67. [60] AvenT,SkletS,VinnemJE.Barrierandoperationalriskanalysisofhydro- carbon releases(BORA-release):partI.Methoddescription.Journalof Hazardous Materials2006;137:681–91. [61] SkletS,VinnemJE,AvenT.Barrierandoperationalriskanalysisofhydro- carbon releases(BORA-release):partII.Resultsfromacasestudy.Journalof Hazardous Materials2006;137:692–708. [62] VinnemJE,HaugenS,KongsvikT,SeljelidJ,SteenS,SkletS,etal.Operational safety condition—concept development.London:ESREL,TaylorandFrancis Group; 2007. [63] SkletS,RingstadAJ,SteenAS,TronstadL,HaugenS,SeljelidJ,etal. Monitoring ofhumanandorganizationalfactorsinfluencingtheriskofmajor accidents. In:EngineersSoP,editor.SPEinternationalconferenceonhealth, safety andenvironmentinoilandgasexplorationandproduction.Riode Janeiro (Brazil):SocietyofPetroleumEngineers;2010. [64] Norsok.Norsokstandard:riskandemergencypreparednessanalysis.Z-013 3rd ed.Oslo:StandardsNorway;2010. [65] PSA.Trendsinrisklevelinthepetroleumactivity2010.Norway:Petroleum Safety Authority;2011. [66] TreasuryBoardofCanadaSecretariat(TBCS).Aguidetoaccidentinvestiga- tion; 1992. [67] AICE.Guidelinesforinvestigatingchemicalprocessincidents.2nded. American InstituteofChemicalEngineers;2003. [68] CCPS.Guidelinesforinvestigatingchemicalprocessincidents.NewYork: Center forChemicalProcessSafetyoftheAmericanInstituteofChemical Engineers; 1992. [69] HSE.Rootcausesanalysis:literaturereview.ContractResearchReport325/ 2001. WSAtkinsConsultantsLtd.;2001. [70] HendrickK,BennerL.InvestigatingaccidentswithSTEP.NewYork:Marcel Dekker Inc.;1987. [71] GroenewegJ.Controllingthecontrollable.In:PressD,editor.Themanage- ment ofsafety.4thed.TheNetherlands.LeidenUniversity;1998. [72]SvensonO.Accidentandincidentanalysisbasedontheaccidentevolutionand barrierfunction(AEB)model.Cognition,TechnologyWork2001;3:42–52. [73] HollnagelE.Understandingaccidents:fromrootcausestoperformance variability. In:ProceedingsoftheseventhIEEEhumanfactorsmeeting. Arizona (USA):IEEE;2002. [74] LehtoM,SalvendyG.Modelsofaccidentcausationandtheirapplication: review andreappraisal.JournalofEngineeringandTechnologyManagement 1991;8:173–205. [75] DOE.ImplementationguideforusewithDOEOrder225.1A,Accident investigations,DOEG225.1A-1,Revision1.In:WorkbookD,editor.Washington (DC):USDepartmentofEnergy;1997. [76] DOE.In:WorkbookD,editor.Conductingaccidentinvestigations.Washington (DC):USDepartmentofEnergy;1999. [77] RanveigKvisethTinmannsvikSSoEJ.Granskingsmetodikk:Menneske– teknologi –organisasjon(Investigationmethodology:man–technology– organization). SINTEFTeknologiogsamfunn,Sikkerhetogpa˚ litelighet; 2004 (inNorwegian). [78] BentoJ.Human–technology-organisation.Menneske–Teknologi–Organisas- jon VeiledningforgjennomføringavMTO-analyser(Guidelineinconducting HTO-analysis). KurskompendiumforOljedirektoratet,OversattavStatoil, Oljedirektoratet, Stavanger,Norway.Stavanger:NorwegianPetroleumDirec- torate; 2001(inNorwegian). [79] Kjelle´n U.Preventionofaccidentsthroughexperiencefeedback.London: Taylor Francis;2000. [80] KjellenU,LarssonT.Investigatingaccidentsandreducingrisks—a dynamic approach. JournalofOccupationalAccidents1981;3:129–40. [81] HopkinsA.LessonsfromLongford:theEssogasplantexplosion.Sydney:CCH Australia Ltd.;2000. [82] ReasonJ.Managingtherisksoforganizationalaccidents.Aldershot(UK): Ashgate PublishingCompany;1997. [83] HøylandA,RausandM.Systemreliabilitytheory:modelsandstatistical methods. NewYork:Wiley;1994. [84] VillemeurA.Reliability,availability,maintainability,andsafetyassessment. Chichester: Wiley;1992. [85] PSA.Investigationreportgasleak19January2006VisundStavanger: Petroleum SafetyAuthority:Norway;2006. [86] SkogdalenJE,VinnemJE.Riskinfluencefactorsrelatedtoevacuationfrom offshore installations.In:AssociationESaR,editor.ESREL09.Prague:Taylor Francis Group;2010.p.8. [87] FullerC,VassieL.Healthandsafetymanagement:principlesandbest practice. PrenticeHall;2004. [88] DechyN,DienY,FunnemarkE,Roed-LarsenS,StoopJ,ValvistoT,etal. Results andlessonslearnedfromtheESReDA’sAccidentInvestigationWork- ing Group.IntroducingarticletoSafetyScience;2009. [89] KletzTA.Accidentinvestigation—missed opportunities.ProcessSafetyand Environmental Protection2002;80:3–8. [90] HaleA,WilpertB,FreitagM.Aftertheevent.PergamonPress;1997. [91] VisschersV,MeertensR,PasschierW,DeVriesN.Probabilityinformationin risk communication:areviewoftheresearchliterature.RiskAnalysis 2008;29:267–87. [92] BorgonovoE,SmithC,ApostolakisG,DeriotS,DewaillyJ.Insightsfromusing influence diagramstoanalyzeprecursorevents.FrontiersScienceSeries 2000;3:1801–8. [93] SattisonM.Nuclearaccidentprecursorassessment.Accidentprecursoranalysis andmanagement:reducingtechnologicalriskthroughdiligence;2004.p.89. [94] SmithC.Calculatingconditionalcoredamageprobabilitiesfornuclearpower plant operations.ReliabilityEngineeringSystemSafety1998;59:299–308. [95] RobertsKH,BeaR.Mustaccidentshappen?Lessonsfromhigh-reliability organizations AcademyofManagementExecutive2001;15:70–8. [96] AvenT.Onhowtodefine,understandanddescriberisk.ReliabilityEngineer- ing SystemSafety2010;95:623–31. [97]VinnemJE,HestadJA,KvaløyJT,SkogdalenJE.Analysisofrootcausesofmajor hazardprecursors(hydrocarbonleaks)intheNorwegianoffshorepetroleum industry.ReliabilityEngineeringSystemSafety2010;95:1142–53. J.E. Skogdalen,J.E.Vinnem/ReliabilityEngineeringandSystemSafety101(2012)48–58 58