SlideShare a Scribd company logo
1 of 76
Download to read offline
 	
  
	
  
	
  	
  
	
  
	
  
The	
  Impacts	
  of	
  Electric	
  Vehicle	
  Charging	
  
on	
  Residential	
  Distribution	
  Systems	
  
	
  
	
  
	
  
Matthew	
  Wardhaugh	
  
Bachelor	
  of	
  Engineering	
  (Electrical)	
  
	
  
	
  
	
  
	
  
	
  
October,	
  2012	
  
	
  
	
  
	
  
	
  
	
  
	
  
Supervisor:	
  Dr	
  Phil	
  Ciufo	
  
	
  
	
  
	
  
	
  
	
   	
  
	
  
i	
  
	
  
i	
  
	
  
	
  
	
  
Abstract	
  
	
  
A	
  significant	
  increase	
  in	
  the	
  number	
  of	
  electric	
  vehicles	
  is	
  expected	
  over	
  the	
  coming	
  
years,	
  and	
  this	
  is	
  expected	
  to	
  create	
  issues	
  for	
  distribution	
  networks	
  when	
  charging	
  
coincides	
  with	
  peak	
  demand	
  periods.	
  This	
  thesis	
  investigates	
  the	
  effects	
  of	
  
uncoordinated	
  charging	
  on	
  the	
  residential	
  distribution	
  network,	
  and	
  looks	
  at	
  the	
  
viability	
  of	
  coordinated	
  charging	
  to	
  mitigate	
  these	
  effects.	
  A	
  graphical	
  user	
  interface	
  was	
  
created	
  to	
  aid	
  this	
  study	
  and	
  provide	
  a	
  tool	
  for	
  network	
  planners	
  to	
  easily	
  run	
  electric	
  
vehicle	
  loading	
  scenarios.	
  This	
  thesis	
  finds	
  that	
  uncoordinated	
  charging	
  would	
  have	
  an	
  
impact	
  on	
  low	
  voltage	
  networks,	
  particularly	
  for	
  overhead	
  networks	
  where	
  voltage	
  
unbalance	
  is	
  a	
  greater	
  issue.	
  Simple	
  staggered	
  off-­‐peak	
  charging	
  was	
  investigated	
  and	
  
found	
  to	
  mitigate	
  loading	
  effects	
  completely,	
  allowing	
  up	
  to	
  100%	
  electric	
  vehicle	
  
penetration	
  for	
  the	
  highest	
  charger	
  rating	
  scenario.	
  The	
  impact	
  of	
  charging	
  was	
  found	
  to	
  
be	
  significant	
  at	
  the	
  zone	
  substation	
  level	
  during	
  uncoordinated	
  charging	
  scenarios,	
  
possibly	
  requiring	
  upgrades	
  within	
  the	
  next	
  decade	
  if	
  coordinated	
  charging	
  strategies	
  
are	
  not	
  adopted.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
ii	
  
	
  
ii	
  
	
  
	
  
Acknowledgements	
  
	
  
	
  
	
  
I	
  would	
  like	
  to	
  thank	
  my	
  supervisors	
  Dr.	
  Phil	
  Ciufo	
  and	
  Prof.	
  Danny	
  Soetanto	
  for	
  their	
  
guidance,	
  and	
  Endeavour	
  Energy	
  for	
  providing	
  network	
  models	
  and	
  data.	
   	
  
iii	
  
	
  
iii	
  
	
  
	
  
	
  
Statement	
  of	
  Originality	
  
	
  
	
  
	
  
I,	
  Matthew	
  Wardhaugh,	
  declare	
  that	
  this	
  thesis,	
  submitted	
  as	
  part	
  of	
  the	
  requirements	
  
for	
  the	
  award	
  of	
  Bachelor	
  of	
  Engineering,	
  in	
  the	
  School	
  of	
  Electrical,	
  Computer	
  and	
  
Telecommunications	
  Engineering,	
  University	
  of	
  Wollongong,	
  is	
  wholly	
  my	
  own	
  work	
  
unless	
  otherwise	
  referenced	
  or	
  acknowledged.	
  The	
  document	
  has	
  not	
  been	
  submitted	
  
for	
  qualifications	
  or	
  assessment	
  at	
  any	
  other	
  academic	
  institution.	
  
	
  
	
  
	
  
Signature:	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
  
Print	
  Name:	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
  
Student	
  ID	
  Number:	
   3667315	
  
	
  
Date:	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
   	
  
iv	
  
	
  
iv	
  
	
  
Contents	
  
	
  
	
  
	
  
	
  	
  
Abstract	
  ....................................................................................................................................................................	
  i	
  
Acknowledgements	
  ...........................................................................................................................................	
  ii	
  
Statement	
  of	
  Originality	
  .................................................................................................................................	
  iii	
  
Contents	
  ................................................................................................................................................................	
  iv	
  
List	
  of	
  Figures	
  ......................................................................................................................................................	
  vi	
  
List	
  of	
  Tables	
  ......................................................................................................................................................	
  vii	
  
List	
  of	
  Equations	
  .............................................................................................................................................	
  viii	
  
Abbreviations	
  and	
  Symbols	
  ..........................................................................................................................	
  ix	
  
List	
  of	
  Changes	
  ......................................................................................................................................................	
  x	
  
1	
   Introduction	
  ................................................................................................................................................	
  1	
  
2	
   Literature	
  Review	
  .....................................................................................................................................	
  3	
  
2.1	
   Power	
  system	
  and	
  network	
  configuration	
  ............................................................................	
  3	
  
2.1.1	
   Layout	
  of	
  grid	
  ............................................................................................................................	
  3	
  
2.1.2	
   Feeder	
  Voltages	
  ........................................................................................................................	
  3	
  
2.1.3	
   Voltage	
  Correction	
  ..................................................................................................................	
  4	
  
2.2	
   Electric	
  Vehicles	
  ................................................................................................................................	
  5	
  
2.2.1	
   EV,	
  PHEV,	
  Extended	
  Range	
  EV	
  ...........................................................................................	
  5	
  
2.2.2	
   	
  Configuration	
  ...........................................................................................................................	
  6	
  
2.2.3	
   	
  Battery	
  system	
  .........................................................................................................................	
  6	
  
2.2.4	
   Charging	
  ......................................................................................................................................	
  7	
  
2.2.5	
   Growth	
  ..........................................................................................................................................	
  8	
  
2.3	
   Impacts	
  of	
  Charging	
  .........................................................................................................................	
  9	
  
2.3.1	
  	
   Uncoordinated	
  Charging	
  ......................................................................................................	
  9	
  
2.3.2	
   	
  Coordinated	
  Charging	
  .........................................................................................................	
  10	
  
2.4	
   Summary	
  ............................................................................................................................................	
  12	
  
3	
   Methodology	
  .............................................................................................................................................	
  13	
  
3.1	
   Load	
  Flow	
  ..........................................................................................................................................	
  13	
  
3.1.1	
   Load-­‐Flow	
  Solutions	
  .............................................................................................................	
  13	
  
3.1.2	
   Load	
  Types	
  ...............................................................................................................................	
  13	
  
3.2	
   Modelling	
  ...........................................................................................................................................	
  15	
  
3.2.1	
   DIgSILENT	
  PowerFactory	
  Models	
  ..................................................................................	
  15	
  
3.2.2	
   DIgSILENT	
  Programming	
  Language	
  (DPL)	
  Script	
  ...................................................	
  18	
  
v	
  
	
  	
  
v	
  
	
  	
  
3.2.3	
   Load	
  Profiles	
  ............................................................................................................................	
  18	
  
3.2.4	
   Loading	
  Assumptions	
  ..........................................................................................................	
  20	
  
3.2.5	
   Load	
  Scaling	
  .............................................................................................................................	
  21	
  
3.3	
   Simulation	
  ..........................................................................................................................................	
  26	
  
3.3.1	
   Graphical	
  User	
  Interface	
  .....................................................................................................	
  26	
  
3.3.2	
   GUI	
  Structure	
  ...........................................................................................................................	
  27	
  
3.4	
   Scenarios	
  ............................................................................................................................................	
  29	
  
3.4.1	
   Uncoordinated	
  Charging	
  ....................................................................................................	
  29	
  
3.4.2	
   Coordinated	
  Charging	
  ..........................................................................................................	
  30	
  
3.4.3	
   11	
  kV	
  ...........................................................................................................................................	
  31	
  
4	
   Results	
  .........................................................................................................................................................	
  33	
  
4.1	
   Base	
  Load	
  Profile	
  ............................................................................................................................	
  33	
  
4.1.1	
   Effects	
  of	
  Temperature	
  on	
  Substation	
  Loading	
  ........................................................	
  33	
  
4.1.2	
   Load	
  Scaling	
  .............................................................................................................................	
  33	
  
4.1.3	
   Network	
  Type	
  .........................................................................................................................	
  34	
  
4.2	
   Uncoordinated	
  Charging	
  .............................................................................................................	
  35	
  
4.2.1	
   11	
  kV	
  Voltage	
  Regulation	
  ...................................................................................................	
  35	
  
4.2.2	
   400	
  V	
  	
  Transformer	
  and	
  Feeder	
  Loading	
  ....................................................................	
  36	
  
4.2.3	
   11	
  kV	
  Transformer	
  Loading	
  ..............................................................................................	
  42	
  
4.3	
   Coordinated	
  Charging	
  ...................................................................................................................	
  43	
  
4.3.1	
   3-­‐Group	
  Charging	
  ..................................................................................................................	
  43	
  
4.3.2	
   Six-­‐Group	
  Charging	
  ...............................................................................................................	
  45	
  
4.3.3	
   11	
  kV	
  ...........................................................................................................................................	
  45	
  
5	
   Conclusion	
  .................................................................................................................................................	
  46	
  
References	
  ...........................................................................................................................................................	
  48	
  
Appendix	
  A	
  ..........................................................................................................................................................	
  51	
  
Appendix	
  B	
  ..........................................................................................................................................................	
  54	
  
Appendix	
  C	
  ..........................................................................................................................................................	
  55	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
vi	
  
	
  
vi	
  
	
  
	
  
List	
  of	
  Figures	
  
	
  
	
  
	
  
Figure	
  2.1:	
  Radial	
  Feeder	
  Distribution	
  ......................................................................................................	
  3	
  
Figure	
  2.2:	
  Feeder	
  Voltage	
  Profiles	
  ............................................................................................................	
  4	
  
Figure	
  2.3:	
  Electric	
  Vehicle	
  Configuration	
  ...............................................................................................	
  6	
  
Figure	
  2.4:	
  Lithium-­‐Ion	
  Charge	
  Curve	
  [26]	
  .............................................................................................	
  8	
  
Figure	
  3.1:	
  Load	
  Flow	
  Analysis	
  [4]	
  ...........................................................................................................	
  13	
  
Figure	
  3.2:	
  400	
  V	
  Overhead/Underground	
  DIgSILENT	
  Model	
  .....................................................	
  16	
  
Figure	
  3.3:	
  11	
  kV	
  Overhead	
  DIgSILENT	
  Model	
  ....................................................................................	
  17	
  
Figure	
  3.4:	
  Average	
  number	
  of	
  travellers	
  in	
  NSW	
  on	
  weekdays	
  in	
  2010/11	
  ........................	
  19	
  
Figure	
  3.5:	
  Scaled	
  driver	
  arrival	
  times	
  ....................................................................................................	
  20	
  
Figure	
  3.6:	
  Feeder	
  voltage	
  profile,	
  moving	
  from	
  last	
  premise	
  to	
  transformer	
  from	
  right	
  to	
  
left	
  ...........................................................................................................................................................................	
  23	
  
Figure	
  3.7:	
  MATLAB	
  GUI	
  ...............................................................................................................................	
  26	
  
Figure	
  3.8:	
  Flowchart	
  displaying	
  the	
  interaction	
  of	
  programs	
  required	
  for	
  GUI	
  
simulations	
  ..........................................................................................................................................................	
  27	
  
Figure	
  4.1:	
  Woodlands	
  Drive	
  substation	
  loading	
  for	
  38.7	
  and	
  19.9	
  degrees	
  celsius	
  days33	
  
Figure	
  4.2:	
  Woodlands	
  Drive	
  substation	
  total	
  load	
  compared	
  to	
  scaled	
  sample	
  loads	
  .....	
  34	
  
Figure	
  4.3:	
  Woodlands	
  Drive	
  substation	
  load	
  for	
  overhead	
  and	
  underground	
  networks34	
  
Figure	
  4.4:	
  Impact	
  of	
  increasing	
  charger	
  rating	
  on	
  undergroudn	
  network	
  at	
  100%	
  EV	
  
penetration	
  .........................................................................................................................................................	
  40	
  
Figure	
  4.5:	
  4	
  kW	
  three-­‐group	
  coordinated	
  charging	
  for	
  different	
  transformer	
  base	
  levels
	
  ..................................................................................................................................................................................	
  43	
  
Figure	
  4.6:	
  Six-­‐group	
  coordinated	
  charging	
  for	
  a	
  95%	
  loaded	
  transformer	
  ..........................	
  45	
  
	
   	
  
vii	
  
	
  
vii	
  
	
  
	
  
List	
  of	
  Tables	
  
	
  
	
  
Table	
  2.1:	
  Current	
  EV	
  Battery	
  Capacities	
  [11][13-­‐16]	
  .......................................................................	
  7	
  
Table	
  2.2:	
  International	
  EV	
  Charging	
  Standards	
  ..................................................................................	
  7	
  
Table	
  3.1:	
  Network	
  Equipment	
  Parameters	
  .........................................................................................	
  17	
  
Table	
  3.2:	
  Variable	
  Options	
  Structure	
  .....................................................................................................	
  27	
  
Table	
  4.1:	
  Woodlands	
  Drive	
  substation	
  transformer	
  loading	
  and	
  voltage	
  regulation	
  for	
  
varying	
  EV	
  penetrations	
  ................................................................................................................................	
  36	
  
Table	
  4.2:	
  Maximum	
  EV	
  penetration	
  for	
  4	
  kW	
  LV	
  uncoordinated	
  charging	
  ...........................	
  38	
  
Table	
  4.3:	
  Maximum	
  EV	
  penetration	
  for	
  7	
  kW	
  LV	
  uncoordinated	
  charging	
  ...........................	
  39	
  
Table	
  4.4:	
  Maximum	
  EV	
  penetration	
  for	
  10	
  kW	
  LV	
  uncoordinated	
  charging	
  ........................	
  40	
  
Table	
  4.5:	
  Maximum	
  EV	
  penetration	
  at	
  zone	
  substation	
  assuming	
  worst	
  loading	
  day	
  in	
  
2010/11	
  ...............................................................................................................................................................	
  42	
  
Table	
  4.6:	
  Maximum	
  EV	
  penetration	
  for	
  7kW	
  LV	
  coordinated	
  charging	
  .................................	
  44	
  
Table	
  4.7:	
  Maximum	
  EV	
  penetration	
  for	
  10	
  kW	
  LV	
  coordinated	
  charging	
  .............................	
  44	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
viii	
  
	
  
viii	
  
	
  
	
  
List	
  of	
  Equations	
  
	
  
	
  
Equation	
  3.1	
  ........................................................................................................................................................	
  14	
  
Equation	
  3.2	
  ........................................................................................................................................................	
  14	
  
Equation	
  3.3	
  ........................................................................................................................................................	
  21	
  
Equation	
  3.4	
  ........................................................................................................................................................	
  22	
  
Equation	
  3.5	
  ........................................................................................................................................................	
  23	
  
Equation	
  3.6	
  ........................................................................................................................................................	
  23	
  
Equation	
  3.7	
  ........................................................................................................................................................	
  24	
  
Equation	
  3.8	
  ........................................................................................................................................................	
  24	
  
Equation	
  3.9	
  ........................................................................................................................................................	
  24	
  
Equation	
  3.10	
  .....................................................................................................................................................	
  24	
  
Equation	
  3.11	
  .....................................................................................................................................................	
  25	
  
Equation	
  3.12	
  .....................................................................................................................................................	
  25	
  
Equation	
  3.13	
  .....................................................................................................................................................	
  25	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
ix	
  
	
  
ix	
  
	
  
	
  
	
  
Abbreviations	
  and	
  Symbols	
  
	
  
	
  
EV	
   	
   Electric	
  Vehicle	
  
BEV	
   	
   Battery	
  Electric	
  Vehicle	
  
PHEV	
   	
   Plug-­‐In	
  Hybrid	
  Electric	
  Vehicle	
  
IC	
   	
   Internal	
  Combustion	
  
V2G	
   	
   Vehicle	
  to	
  Grid	
  
OLTC	
   	
   On-­‐load	
  tap	
  changer	
  
SC	
   	
   Switched	
  capacitor	
  
SoC	
   	
   State	
  of	
  Charge	
  
Li-­‐ion	
   	
   Lithium	
  ion	
  
NiMH	
   	
   Nickel-­‐metal	
  hydride	
  
PV	
   	
   Photovoltaic	
  
DC	
   	
   Direct	
  current	
  
AC	
   	
   Alternating	
  current	
  
pu	
   	
   per	
  unit	
  
𝑗𝑋	
   	
   Reactance,	
  Ohms	
  
𝑅	
   	
   Resistance,	
  Ohms	
  
𝑍	
   	
   Impedance,	
  Ohms	
  
𝑃	
   	
   Power,	
  Watts	
  
𝑉	
   	
   Voltage,	
  Volts	
  
	
  
	
   	
  
x	
  
	
  	
  
x	
  
	
  	
  
	
  
List	
  of	
  Changes	
  
	
  
	
  
	
  
Section	
   Statement	
  of	
  Changes	
   Page	
  Number	
  
1	
   Removed	
  references	
  to	
  solar	
  and	
  V2G,	
  added	
  description	
  
of	
  new	
  work	
  
1,2	
  
2.2	
   Removed	
  sentence	
  relating	
  to	
  V2G	
   5	
  
2	
   Removed	
  Solar	
  section	
   -­‐	
  
2.3.2	
   Removed	
  Solar	
  sub-­‐subsection	
   11	
  
2	
   Removed	
  ‘V2G	
  Benefits’	
  section	
   -­‐	
  
2.3.1	
   Added	
  analysis	
  of	
  loading	
  assumptions	
  in	
  literature	
   10	
  
3	
   Replaced	
  Methodology	
  section	
   32	
  
4	
   Replaced	
  Results	
  section	
   13	
  
1	
  
	
  
1	
  
	
  
1 Introduction	
  
	
  
	
  
The	
  world	
  is	
  currently	
  experiencing	
  a	
  major	
  shift	
  in	
  the	
  way	
  energy	
  is	
  generated	
  and	
  
consumed.	
  Pressing	
  issues	
  such	
  as	
  climate	
  change	
  and	
  declining	
  fossil	
  fuel	
  reserves	
  are	
  
changing	
  the	
  way	
  people	
  think	
  about	
  the	
  environment.	
  Also,	
  technological	
  advances	
  are	
  
allowing	
  renewable	
  generation	
  and	
  energy	
  storage	
  to	
  become	
  technically	
  and	
  
economically	
  viable,	
  paving	
  the	
  way	
  for	
  an	
  emissions	
  free	
  future.	
  
Electric	
  vehicles	
  (EV)	
  and	
  plug	
  in	
  hybrid	
  electric	
  vehicles	
  (PHEV)	
  (used	
  
interchangeably	
  in	
  this	
  text)	
  are	
  becoming	
  increasingly	
  popular	
  due	
  to	
  the	
  impetus	
  of	
  
these	
  factors.	
  Significant	
  advances	
  in	
  battery	
  storage	
  capabilities	
  are	
  allowing	
  EVs	
  to	
  
become	
  a	
  viable	
  alternative	
  to	
  internal	
  combustion	
  (IC)	
  vehicles.	
  Their	
  storage	
  of	
  
electricity	
  allows	
  energy	
  to	
  be	
  sourced	
  from	
  renewable	
  sources	
  such	
  as	
  wind	
  and	
  solar,	
  
allowing	
  for	
  zero	
  emission	
  driving.	
  This	
  is	
  significant,	
  as	
  it	
  would	
  play	
  a	
  large	
  role	
  in	
  
reducing	
  CO₂	
  emissions	
  and	
  localised	
  air	
  pollution	
  levels	
  [1].	
  
	
  Without	
  proper	
  planning,	
  however,	
  EVs	
  are	
  expected	
  to	
  produce	
  undesired	
  
impacts	
  on	
  the	
  low	
  voltage	
  distribution	
  network	
  when	
  charged	
  in	
  an	
  uncoordinated	
  
manner.	
  Charging	
  will	
  occur	
  whenever	
  convenient	
  for	
  the	
  driver,	
  such	
  as	
  on	
  arrival	
  
home	
  from	
  work,	
  increasing	
  the	
  evening	
  peak	
  load	
  and	
  causing	
  stress	
  to	
  network	
  
equipment,	
  particularly	
  at	
  distribution	
  levels.	
  Due	
  to	
  the	
  large	
  amount	
  of	
  energy	
  drawn	
  
during	
  charging	
  periods,	
  it	
  is	
  expected	
  that	
  at	
  high	
  penetration	
  levels	
  this	
  will	
  present	
  
serious	
  power	
  quality	
  issues	
  for	
  the	
  grid,	
  including	
  potential	
  transformer	
  overloading	
  
and	
  voltage	
  sags,	
  resulting	
  in	
  outages,	
  equipment	
  damage	
  and	
  energy	
  loss	
  [2][3].	
  
This	
  outcome	
  may	
  be	
  avoided	
  if	
  electric	
  vehicle	
  charging	
  can	
  be	
  coordinated	
  in	
  
such	
  a	
  way	
  to	
  avoid	
  the	
  evening	
  load,	
  and	
  instead	
  be	
  automated	
  for	
  charging	
  during	
  low-­‐
demand	
  periods,	
  such	
  as	
  late	
  at	
  night.	
  Smart	
  infrastructure	
  currently	
  being	
  
contemplated	
  will	
  allow	
  charging	
  times	
  to	
  be	
  staggered	
  between	
  different	
  households	
  to	
  
allow	
  a	
  more	
  evenly	
  distributed	
  feeder	
  load.	
  
The	
   proposed	
   focus	
   of	
   this	
   thesis	
   is	
   to	
   investigate	
   the	
   impact	
   of	
   introducing	
   a	
  
significant	
   number	
   of	
   EVs	
   on	
   the	
   residential	
   distribution	
   system,	
   particularly	
   during	
  
uncoordinated	
  charging	
  periods	
  that	
  coincide	
  with	
  peak	
  load.	
  The	
  load	
  flow	
  simulation	
  
package	
  DIgSILENT	
  PowerFactory	
  will	
  be	
  used	
  to	
  carry	
  out	
  the	
  investigations.	
  Means	
  of	
  
avoiding	
   the	
   undesirable	
   impacts	
   of	
   EV	
   charging	
   will	
   be	
   investigated,	
   using	
   several	
  
2	
  
	
  
2	
  
	
  
scenarios	
   to	
   determine	
   the	
   viability	
   of	
   load	
   levelling.	
   This	
   study	
   will	
   determine	
   the	
  
effects	
   of	
   charging	
   on	
   residential	
   feeder	
   voltage	
   levels,	
   consequently	
   discerning	
   the	
  
associated	
  impacts	
  on	
  transformer	
  loading	
  and	
  energy	
  loss.	
  
In	
  order	
  to	
  study	
  the	
  impacts	
  of	
  charging	
  on	
  the	
  residential	
  distribution	
  network,	
  
typical	
  400V	
  and	
  11	
  kV	
  radial	
  residential	
  feeders	
  have	
  been	
  modelled	
  in	
  PowerFactory,	
  
using	
  smart	
  metering	
  data	
  from	
  premises	
  in	
  the	
  Endeavour	
  Energy	
  network	
  area	
  of	
  
Glenmore	
  Park.	
  Associated	
  variables	
  have	
  been	
  accounted	
  for,	
  including	
  battery	
  
capacities,	
  charging	
  power,	
  base	
  load	
  demand,	
  load	
  power	
  factor	
  and	
  phase	
  unbalance.	
  
To	
  aid	
  network	
  planners	
  in	
  making	
  decisions	
  based	
  on	
  future	
  electric	
  vehicle	
  loading,	
  a	
  
graphical	
  user	
  interface	
  has	
  been	
  developed	
  using	
  MATLAB	
  GUIDE.	
  This	
  allows	
  
DIgSILENT	
  PowerFactory	
  to	
  be	
  controlled	
  remotely	
  to	
  run	
  various	
  EV	
  loading	
  scenarios,	
  
displaying	
  transformer	
  loading	
  and	
  voltage	
  regulation	
  results	
  both	
  numerically	
  and	
  
graphically	
  for	
  analysis.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
3	
  
	
  
3	
  
	
  
2 Literature	
  Review	
  
	
  
2.1 Power	
  system	
  and	
  network	
  configuration	
  
	
  
2.1.1	
   Layout	
  of	
  grid	
  
	
  
The	
  electricity	
  grid	
  is	
  a	
  complex	
  network	
  that	
  acts	
  as	
  a	
  path	
  for	
  electricity	
  from	
  generators	
  
to	
  consumers.	
  The	
  layout	
  of	
  the	
  grid	
  is	
  an	
  important	
  concept	
  that	
  must	
  be	
  understand	
  to	
  
grasp	
  an	
  idea	
  of	
  how	
  electric	
  vehicles	
  will	
  be	
  connected	
  and	
  the	
  effects	
  that	
  they	
  will	
  have	
  on	
  
the	
  network.	
  
	
  The	
  traditional	
  grid	
  can	
  be	
  divided	
  into	
  generation,	
  transmission	
  and	
  distribution	
  
levels.	
  The	
  transmission	
  network	
  steps	
  generator	
  voltages	
  up	
  in	
  order	
  to	
  reduce	
  the	
  losses	
  
associated	
  with	
  high	
  currents	
  over	
  long	
  distances,	
  usually	
  at	
  230	
  kV	
  to	
  765	
  kV	
  [4].	
  As	
  these	
  
high	
  voltage	
  feeders	
  branch	
  towards	
  large	
  populations,	
  they	
  are	
  stepped	
  down	
  in	
  to	
  the	
  
distribution	
  network.	
  Zone	
  substations	
  convert	
  voltages	
  to	
  11	
  kV	
  for	
  residential	
  feeders,	
  
which	
  then	
  connect	
  to	
  pole	
  top	
  or	
  pad	
  mount	
  transformers	
  that	
  finally	
  supply	
  400	
  V,	
  or	
  	
  	
  
230	
  V	
  line-­‐to-­‐neutral,	
  for	
  use	
  in	
  homes	
  and	
  businesses	
  [5].	
  
The	
  distribution	
  network	
  is	
  the	
  most	
  important	
  section	
  of	
  the	
  grid	
  to	
  understand	
  when	
  
conducting	
  load	
  flow	
  analysis	
  on	
  residential	
  loads,	
  as	
  EVs	
  and	
  distributed	
  generation,	
  such	
  
as	
  solar	
  PV,	
  are	
  both	
  connected	
  at	
  the	
  low	
  voltage	
  level.	
  From	
  zone	
  substations,	
  feeders	
  are	
  
typically	
  connected	
  radially	
  [6][4]	
  as	
  they	
  branch	
  out	
  through	
  streets,	
  shown	
  in	
  Fig	
  2.1.	
  This	
  
radial	
  layout	
  will	
  be	
  used	
  for	
  modelling	
  residential	
  feeders.	
  
	
  
Figure	
  2.1:	
  Radial	
  Feeder	
  Distribution	
  
2.1.2	
   Feeder	
  Voltages	
  
	
  
Basic	
  circuit	
  theory	
  states	
  that	
  a	
  voltage	
  drop	
  will	
  result	
  as	
  current	
  flows	
  through	
  an	
  
impedance.	
  Therefore,	
  as	
  transformer	
  loading	
  is	
  increased,	
  the	
  voltage	
  drop	
  along	
  a	
  
feeder	
  becomes	
  greater.	
  Conversely,	
  during	
  periods	
  of	
  high	
  generation,	
  net	
  feeder	
  
4	
  
	
  
4	
  
	
  
current	
  is	
  reduced,	
  raising	
  voltage	
  levels	
  closer	
  to	
  that	
  of	
  the	
  transformer.	
  	
  During	
  heavy	
  
loading	
  or	
  generation	
  periods,	
  voltage	
  levels	
  may	
  surpass	
  utility	
  limits.	
  The	
  AS/NZS	
  
3000:2007	
  states	
  that	
  in	
  Australia,	
  voltage	
  limits	
  must	
  not	
  move	
  beyond	
  +10%	
  or	
  -­‐6%	
  of	
  
nominal	
  value	
  to	
  avoid	
  damage	
  to	
  connected	
  equipment,	
  corresponding	
  to	
  253	
  V	
  and	
  
216	
  V	
  line-­‐to-­‐neutral	
  [5].	
  	
  Fig.	
  2.2	
  shows	
  the	
  effects	
  of	
  different	
  load	
  scenarios	
  on	
  feeder	
  
voltage	
  levels.	
  Realistically,	
  these	
  voltages	
  would	
  not	
  have	
  a	
  linear	
  profile,	
  even	
  for	
  
uniform	
  loading	
  across	
  the	
  feeder,	
  as	
  currents,	
  and	
  hence	
  the	
  rate	
  of	
  voltage	
  drop,	
  is	
  
greater	
  closer	
  to	
  the	
  transformer.	
  	
  
	
  
Figure	
  2.2:	
  Feeder	
  Voltage	
  Profiles	
  
Another	
  consequence	
  of	
  voltage	
  deviations	
  along	
  feeders	
  is	
  power	
  loss.	
  
Feeder	
  power	
  loss	
  is	
  proportional	
  to	
  the	
  square	
  of	
  a	
  voltage	
  change,	
  therefore	
  it	
  is	
  
important	
  to	
  reduce	
  this	
  change	
  in	
  voltage	
  along	
  a	
  feeder	
  as	
  much	
  as	
  possible.	
  
	
  
2.1.3	
   Voltage	
  Correction	
  
	
  
Voltage	
  control	
  is	
  important	
  for	
  addressing	
  changes	
  in	
  line	
  voltages.	
  Network	
  
equipment,	
  such	
  as	
  transformers	
  and	
  lines	
  are	
  designed	
  to	
  operate	
  within	
  certain	
  
voltage	
  limits.	
  Most	
  importantly,	
  however,	
  are	
  the	
  loads	
  connected	
  to	
  LV	
  feeders,	
  which	
  
may	
  become	
  damaged	
  while	
  drawing	
  power	
  at	
  excessive	
  or	
  limited	
  voltage	
  levels.	
  	
  
In	
  order	
  to	
  maintain	
  voltage	
  levels	
  within	
  a	
  specified	
  range	
  such	
  as	
  this,	
  a	
  range	
  
of	
  network	
  equipment	
  is	
  utilised.	
  In	
  distribution	
  networks,	
  voltage	
  control	
  is	
  typically	
  
achieved	
  using	
  on-­‐load	
  tap	
  changers	
  (OLTC),	
  step	
  voltage	
  regulators	
  (SVR)	
  and	
  switched	
  
capacitors	
  (SC)	
  [7].	
  OLTCs	
  and	
  SVRs	
  are	
  both	
  autotransformers	
  with	
  automatic	
  tap	
  
changing.	
  Normally	
  the	
  voltage	
  regulator	
  in	
  a	
  substation	
  is	
  an	
  OLTC,	
  while	
  an	
  SVR	
  would	
  
be	
  located	
  along	
  a	
  feeder,	
  down	
  to	
  LV	
  levels	
  [7].	
  	
  SCs	
  are	
  used	
  for	
  reactive	
  power	
  
compensation	
  in	
  distribution	
  networks.	
  An	
  SC	
  reduces	
  the	
  displacement	
  between	
  real	
  
and	
  reactive	
  power	
  components	
  to	
  reduce	
  voltage	
  drop	
  across	
  lines	
  that	
  are	
  primarily	
  
5	
  
	
  
5	
  
	
  
inductive.	
  In	
  low	
  voltage	
  networks,	
  the	
  most	
  common	
  voltage	
  regulators	
  are	
  off-­‐load	
  
tap-­‐changers,	
  located	
  within	
  distribution	
  transformers	
  [8].	
  The	
  transformer	
  ratio	
  must	
  
be	
  changed	
  manually,	
  generally	
  over	
  a	
  multiple	
  year	
  span	
  as	
  network	
  loading	
  increases.	
  
Although	
  SVRs	
  and	
  switched	
  capacitors	
  can	
  exist	
  in	
  LV	
  areas,	
  this	
  is	
  uncommon	
  due	
  to	
  
the	
  large	
  number	
  of	
  feeders,	
  and	
  the	
  associated	
  costs.	
  
Therefore,	
  on	
  residential	
  feeders,	
  voltage	
  control	
  is	
  limited	
  to	
  off-­‐load	
  tap	
  
changers	
  on	
  pole-­‐top	
  and	
  pad	
  mount	
  transformers.	
  The	
  manual	
  nature	
  of	
  this	
  tap	
  
changing	
  is	
  uncoordinated,	
  therefore	
  this	
  is	
  far	
  from	
  being	
  an	
  optimal	
  solution	
  to	
  
addressing	
  the	
  large	
  scale	
  integration	
  of	
  EVs.	
  
Taking	
  the	
  characteristics	
  of	
  common	
  network	
  equipment	
  into	
  account,	
  the	
  coordinated	
  
charging	
  of	
  EVs	
  can	
  be	
  seen	
  as	
  a	
  worthwhile	
  solution	
  to	
  this	
  problem	
  as	
  the	
  load	
  factor	
  
of	
  a	
  feeder	
  may	
  be	
  reduced.	
  
	
  
2.2	
   Electric	
  Vehicles	
  
	
  
Electric	
  vehicles	
  are	
  vehicles	
  that	
  contain	
  a	
  rechargeable	
  battery	
  pack,	
  requiring	
  
charging	
  by	
  a	
  grid	
  connected	
  battery	
  charger.	
  EVs	
  are	
  becoming	
  popular	
  as	
  
environmental	
  awareness	
  is	
  increasing	
  across	
  the	
  world,	
  as	
  they	
  produce	
  little	
  to	
  no	
  
emissions.	
  Improvements	
  in	
  battery	
  technology	
  are	
  seeing	
  prices	
  fall	
  rapidly,	
  allowing	
  
EVs	
  to	
  become	
  a	
  viable	
  alternative	
  to	
  internal	
  combustion	
  (IC)	
  vehicles.	
  Penetration	
  of	
  
EVs	
  is	
  beginning	
  to	
  increase,	
  with	
  over	
  20	
  models	
  due	
  to	
  reach	
  the	
  markets	
  in	
  2012	
  [9].	
  
	
  
2.2.1	
   EV,	
  PHEV,	
  Extended	
  Range	
  EV	
  
	
  
There	
  are	
  four	
  main	
  types	
  of	
  electric	
  vehicles	
  that	
  currently	
  exist:	
  Hybrid,	
  Plug-­‐in	
  Hybrid	
  
(PHEV),	
  Extended-­‐Range	
  and	
  Battery	
  EVs	
  (BEV)	
  [10].	
  Hybrid	
  and	
  PHEVs	
  contain	
  both	
  
combustion	
  engines	
  and	
  electric	
  motors	
  with	
  battery	
  storage.	
  Unlike	
  hybrids,	
  however,	
  
PHEVs	
  can	
  also	
  be	
  charged	
  through	
  an	
  external	
  battery	
  charger,	
  further	
  reducing	
  
reliance	
  on	
  the	
  combustion	
  engine	
  [10]	
  Extended-­‐Range	
  EVs	
  are	
  similar	
  to	
  PHEVs	
  and	
  
include	
  vehicles	
  such	
  as	
  the	
  Holden	
  Volt	
  [11].	
  The	
  electric	
  engine	
  is	
  used	
  for	
  all	
  driving	
  
speeds	
  until	
  the	
  battery	
  is	
  discharged,	
  and	
  is	
  then	
  replaced	
  by	
  the	
  combustion	
  engine.	
  
Lastly,	
  BEVs	
  are	
  all	
  electric	
  with	
  no	
  combustion	
  engine.	
  They	
  contain	
  large	
  battery	
  packs	
  
that	
  must	
  be	
  charged	
  by	
  the	
  grid.	
  	
  
6	
  
	
  
6	
  
	
  
In	
  relation	
  to	
  the	
  topic	
  of	
  this	
  thesis,	
  hybrid	
  vehicles	
  are	
  considered	
  irrelevant,	
  as	
  
they	
  are	
  not	
  charged	
  by	
  the	
  grid.	
  Therefore,	
  the	
  vehicles	
  of	
  focus	
  will	
  be	
  PHEVs,	
  
Extended-­‐Range	
  EVs	
  and	
  BEVs,	
  referred	
  to	
  collectively	
  throughout	
  this	
  text	
  as	
  ‘EVs’.	
  
	
  
2.2.2	
   	
  Configuration	
  
	
  
The	
  basic	
  configuration	
  of	
  an	
  EV,	
  including	
  an	
  IC	
  engine,	
  which	
  is	
  only	
  applicable	
  to	
  
PHEVs	
  and	
  EREVs,	
  is	
  shown	
  by	
  the	
  simplified	
  block	
  diagram	
  in	
  Fig.	
  2.3.	
  
	
  
Figure	
  2.3:	
  Electric	
  Vehicle	
  Configuration	
  
	
  
Charging	
  requires	
  communication	
  with	
  the	
  battery-­‐monitoring	
  unit	
  that	
  measures	
  the	
  
batteries	
  state	
  of	
  charge	
  (SoC).	
  The	
  inverter	
  is	
  used	
  after	
  a	
  DC-­‐DC	
  converter	
  to	
  convert	
  
direct	
  current	
  (DC)	
  into	
  alternating	
  current	
  (AC)	
  to	
  power	
  the	
  electric	
  motor.	
  
	
  
2.2.3	
   	
  Battery	
  system	
  
	
  
For	
  electric	
  vehicles	
  to	
  be	
  a	
  viable	
  alternative	
  to	
  IC	
  vehicles,	
  their	
  battery	
  storage	
  must	
  
contain	
  enough	
  energy	
  to	
  ensure	
  suitable	
  range	
  for	
  drivers.	
  The	
  most	
  important	
  factor	
  
affecting	
  this	
  is	
  the	
  energy	
  to	
  weight	
  ratio	
  of	
  a	
  battery	
  pack,	
  or	
  its	
  energy	
  density.	
  This	
  
allows	
  vehicles	
  to	
  be	
  as	
  light	
  as	
  possible	
  for	
  a	
  given	
  amount	
  of	
  energy	
  storage,	
  ensuring	
  
the	
  greatest	
  range	
  possible.	
  
There	
  exist	
  three	
  main	
  battery	
  types	
  for	
  electric	
  vehicles:	
  lead-­‐acid,	
  nickel-­‐metal	
  
hydride	
  (NiMH)	
  and	
  lithium-­‐ion	
  (li-­‐ion)	
  [12].	
  In	
  the	
  past,	
  EVs	
  such	
  as	
  the	
  General	
  Motors	
  
EV1	
  used	
  lead-­‐acid	
  and	
  nickel-­‐metal	
  hydride	
  batteries.	
  In	
  recent	
  years,	
  however,	
  the	
  
demand	
  for	
  batteries	
  in	
  laptops	
  and	
  other	
  portable	
  devices	
  has	
  driven	
  R&D	
  in	
  the	
  area	
  of	
  
lithium-­‐ion	
  batteries,	
  improving	
  energy	
  density	
  and	
  charge	
  time	
  beyond	
  other	
  battery	
  
types.	
  Due	
  to	
  these	
  improvements,	
  major	
  EV	
  manufacturers	
  now	
  use	
  lithium	
  ion	
  battery	
  
packs	
  [11][13-­‐16].	
  
7	
  
	
  
7	
  
	
  
Table	
  2.1	
  provides	
  a	
  list	
  of	
  current	
  vehicles	
  and	
  their	
  battery	
  capacities,	
  showing	
  a	
  
significant	
  range	
  of	
  battery	
  capacities	
  that	
  will	
  form	
  the	
  basis	
  for	
  modelling.	
  
	
  
Electric	
  Vehicle	
   Battery	
  Capacity	
  
Tesla	
  Model	
  S	
   40,	
  60,	
  85	
  kWh	
  
Nissan	
  Leaf	
   24	
  kWh	
  
Ford	
  Focus	
  Electric	
   23	
  kWh	
  
Holden	
  Volt	
   8	
  kWh	
  
Toyota	
  Prius	
  Plug-­‐In	
   4.4	
  kWh	
  
Table	
  2.1:	
  Current	
  EV	
  Battery	
  Capacities	
  [11][13-­‐16]	
  
2.2.4	
   Charging	
  
	
  
Based	
  on	
  standards	
  by	
  the	
  International	
  Electrotechnical	
  Commission	
  (IEC)	
  [17]	
  and	
  the	
  
Society	
  of	
  Automotive	
  Engineers	
  J1772	
  [18],	
  there	
  exists	
  three	
  charging	
  levels:	
  
	
  
Level	
   Voltage	
  	
   Current	
   Power	
  
1	
   120	
  V	
  AC	
   16	
  A	
   1.92	
  kW	
  
2	
   208-­‐240	
  V	
  AC	
   12	
  –	
  80	
  A	
   2.5	
  –	
  19.2	
  kW	
  
3	
   500	
  V	
  DC	
   125	
  A	
   50	
  kW	
  
Table	
  2.2:	
  International	
  EV	
  Charging	
  Standards	
  
	
  
The	
  residential	
  charger	
  rating	
  of	
  EV	
  manufacturers	
  vary	
  substantially	
  within	
  the	
  Level	
  2	
  
range.	
  Nissan	
  and	
  Holden’s	
  chargers	
  are	
  rated	
  3.3	
  kW	
  [16][11],	
  Ford’s	
  at	
  7.7	
  kW	
  [14],	
  
while	
  Tesla	
  manufactures	
  10	
  kW	
  or	
  20	
  kW	
  chargers	
  [13].	
  These	
  ratings	
  are	
  significant	
  in	
  
comparison	
  to	
  other	
  appliances	
  found	
  in	
  the	
  home.	
  
Fig.	
  2.4	
  shows	
  the	
  power	
  demand	
  and	
  battery	
  SoC	
  profiles	
  of	
  a	
  lithium	
  ion	
  
battery.	
  
8	
  
	
  
8	
  
	
  
	
  
Figure	
  2.4:	
  Lithium-­‐Ion	
  Charge	
  Curve	
  [26]	
  
	
  
Figure	
  2.4	
  shows	
  a	
  predominantly	
  constant	
  charging	
  power	
  for	
  the	
  duration	
  of	
  the	
  
charging	
  period.	
  Therefore,	
  for	
  modelling	
  purposes,	
  a	
  constant	
  charge	
  rate	
  can	
  be	
  
considered	
  accurate	
  to	
  assume.	
  
	
  
2.2.5	
   Growth	
  
	
  
Due	
  to	
  economic	
  and	
  technological	
  factors	
  surrounding	
  the	
  viability	
  of	
  electric	
  vehicles,	
  
their	
  penetration	
  levels	
  are	
  expected	
  to	
  soar	
  this	
  decade	
  [19-­‐21].	
  Current	
  estimates	
  
expect	
  the	
  price	
  of	
  oil	
  to	
  rise	
  by	
  85%	
  into	
  2020	
  [19],	
  and	
  this	
  rise	
  is	
  forecast	
  to	
  continue.	
  
By	
  the	
  same	
  time,	
  lithium	
  ion	
  battery	
  technology	
  is	
  expected	
  to	
  dramatically	
  fall	
  as	
  
economies	
  of	
  scale	
  reduces	
  manufacturing	
  costs,	
  and	
  technological	
  improvements	
  allow	
  
energy	
  density	
  to	
  continually	
  increase.	
  Lithium	
  ion	
  battery	
  prices	
  have	
  fallen	
  
considerably	
  from	
  US$650/kWh	
  in	
  2009	
  to	
  the	
  current	
  price	
  of	
  around	
  US$450/kWh.	
  	
  
Analysts	
  have	
  forecasted	
  prices	
  to	
  fall	
  at	
  a	
  7.5%	
  annual	
  compound	
  rate	
  from	
  2012	
  
through	
  2020	
  to	
  approximately	
  US$250/kWh	
  [19].	
  EV	
  manufacturer	
  Tesla	
  Motors	
  is	
  
already	
  producing	
  battery	
  packs	
  with	
  480	
  km	
  of	
  range	
  [13].	
  
Taking	
  these	
  factors	
  into	
  consideration,	
  analysts	
  from	
  Deutsche	
  Bank	
  [19]	
  have	
  
predicted	
  that	
  in	
  the	
  US,	
  around	
  10%	
  of	
  all	
  vehicles	
  will	
  be	
  hybrid/electric	
  by	
  2021,	
  
increasing	
  to	
  20%	
  by	
  2026,	
  and	
  35%	
  by	
  2030.	
  In	
  terms	
  of	
  purchased	
  vehicles,	
  EVs	
  are	
  
expected	
  to	
  make	
  up	
  3-­‐10%	
  of	
  new	
  car	
  sales	
  as	
  early	
  as	
  2015	
  [20]	
  and	
  35%	
  in	
  2025,	
  
comprised	
  of	
  25%	
  PHEVs	
  and	
  10%	
  EVs,	
  according	
  to	
  IDtechX	
  analysts	
  [21].	
  These	
  
projections	
  show	
  that	
  a	
  major	
  shift	
  is	
  about	
  to	
  occur,	
  resulting	
  in	
  a	
  significant	
  
percentage	
  of	
  vehicles	
  becoming	
  at	
  least	
  partially	
  electric.	
  This	
  analysis	
  raises	
  questions	
  
about	
  the	
  effects	
  of	
  a	
  large	
  percentage	
  of	
  EVs	
  on	
  the	
  distribution	
  network,	
  as	
  well	
  as	
  the	
  
9	
  
	
  
9	
  
	
  
potential	
  problems	
  this	
  extra	
  energy	
  storage	
  may	
  solve.	
  
	
  
2.3	
   Impacts	
  of	
  Charging	
  
	
  
2.3.1	
  	
   Uncoordinated	
  Charging	
  
	
  
The	
  introduction	
  of	
  EVs	
  is	
  expected	
  to	
  have	
  a	
  significant	
  effect	
  on	
  customer	
  load	
  profiles	
  
during	
  charging	
  periods.	
  Studies	
  in	
  [2],	
  [3]	
  and	
  [22]	
  have	
  concluded	
  that,	
  for	
  high	
  
penetration	
  levels,	
  uncoordinated	
  domestic	
  charging	
  will	
  increase	
  peak	
  load	
  demand	
  
significantly,	
  resulting	
  in	
  transformer	
  overloading,	
  poor	
  feeder	
  voltage	
  profiles	
  and	
  
power	
  loss.	
  	
  
	
   The	
  authors	
  of	
  [2]	
  and	
  [22]	
  have	
  conducted	
  studies	
  on	
  uncoordinated	
  charging	
  
on	
  residential	
  radial	
  feeders,	
  focusing	
  on	
  evening	
  peaks.	
  The	
  modelled	
  charger	
  rating	
  
was	
  4	
  kW	
  [2],	
  and	
  1.8	
  kW	
  in	
  [22],	
  both	
  showing	
  dramatic	
  rises	
  in	
  peak	
  load,	
  clearly	
  
overloading	
  the	
  transformer	
  limitations	
  for	
  penetrations	
  above	
  20%	
  in	
  [22]	
  and	
  
exceeding	
  voltage	
  limits	
  in	
  [2]	
  at	
  17%.	
  The	
  effects	
  of	
  peak-­‐time	
  charging	
  on	
  summer	
  and	
  
winter	
  load	
  profiles	
  are	
  explored	
  in	
  [23]	
  and	
  [3].	
  The	
  UK	
  winter	
  load	
  profile	
  in	
  [23]	
  
showed	
  a	
  distinct	
  evening	
  peak	
  compared	
  to	
  summer	
  due	
  to	
  electric	
  heating.	
  This	
  
caused	
  the	
  peak	
  demand	
  to	
  be	
  increased	
  by	
  13.6%	
  compared	
  to	
  10.06%	
  for	
  summer	
  at	
  
10%	
  EV	
  penetration.	
  Although	
  this	
  paper	
  conducts	
  a	
  load	
  study	
  for	
  the	
  entire	
  UK,	
  it	
  is	
  
probable	
  that	
  this	
  would	
  reflect	
  the	
  demand	
  of	
  residential	
  feeders,	
  as	
  most	
  vehicles	
  
would	
  be	
  at	
  home	
  during	
  this	
  period.	
  A	
  study	
  is	
  conducted	
  in	
  [3]	
  to	
  determine	
  the	
  effects	
  
of	
  peak	
  charging	
  on	
  power	
  loss	
  and	
  voltage	
  deviation.	
  The	
  voltage	
  limit	
  of	
  0.9	
  pu	
  was	
  
found	
  to	
  be	
  exceeded	
  at	
  30%	
  EV	
  penetration	
  with	
  a	
  4	
  kW	
  charger,	
  with	
  total	
  power	
  loss	
  
at	
  6%	
  in	
  winter	
  compared	
  to	
  5%	
  in	
  summer.	
  
These	
  papers	
  clearly	
  show	
  that	
  uncoordinated	
  charging	
  would	
  have	
  a	
  large	
  
impact,	
  even	
  at	
  low	
  penetration	
  levels.	
  However,	
  an	
  analysis	
  of	
  these	
  papers	
  show	
  the	
  
large	
  number	
  of	
  variables	
  associated	
  with	
  such	
  studies.	
  For	
  example,	
  the	
  voltage	
  limit	
  of	
  
0.9pu	
  in	
  [3]	
  differs	
  to	
  0.94	
  used	
  in	
  Australia,	
  as	
  well	
  as	
  the	
  UK	
  load	
  profiles	
  in	
  [23].	
  
Another	
  assumption	
  made	
  in	
  these	
  studies	
  is	
  a	
  relatively	
  low	
  powered	
  charger,	
  
particularly	
  in	
  [22].	
  A	
  higher-­‐powered	
  charger	
  more	
  commonly	
  used	
  today	
  would	
  have	
  a	
  
significantly	
  increase	
  the	
  peak	
  demand	
  determined	
  by	
  these	
  papers.	
  Of	
  all	
  the	
  
assumptions	
  made,	
  however,	
  the	
  most	
  important	
  variable	
  used	
  to	
  determine	
  the	
  impacts	
  
10	
  
	
  
10	
  
	
  
of	
  uncoordinated	
  charging	
  is	
  the	
  time	
  the	
  vehicles	
  arrive	
  home	
  to	
  begin	
  charging.	
  In	
  the	
  
related	
  papers	
  [2-­‐3]	
  [24-­‐26],	
  and	
  number	
  of	
  assumptions	
  in	
  relation	
  to	
  charging	
  times	
  
have	
  been	
  made,	
  while	
  there	
  exists	
  a	
  significant	
  degree	
  of	
  ambiguity	
  when	
  these	
  
assumptions,	
  such	
  as	
  the	
  data	
  used,	
  is	
  explained.	
  Papers	
  [2]	
  and	
  [22]	
  fail	
  to	
  explain	
  how	
  
their	
  vehicle	
  arrival	
  times	
  are	
  modelled,	
  while	
  [23]	
  simply	
  divides	
  charging	
  into	
  three	
  
groups	
  during	
  the	
  evening	
  peak,	
  assuming	
  that	
  all	
  vehicles	
  commence	
  charging	
  within	
  
90	
  minutes	
  of	
  one	
  another.	
  Papers	
  [24]	
  and	
  [27]	
  assume	
  a	
  more	
  accurate	
  normal	
  
distribution,	
  however	
  still	
  disregard	
  actual	
  driving	
  statistics,	
  such	
  as	
  those	
  provided	
  by	
  
the	
  UK	
  Time	
  of	
  Use	
  survey	
  noted	
  in	
  [23]	
  and	
  [3].	
  Paper	
  [3]	
  takes	
  into	
  account	
  the	
  
statistics	
  from	
  this	
  survey	
  by	
  dividing	
  charging	
  times	
  according	
  to	
  the	
  morning,	
  midday	
  
and	
  late	
  afternoon	
  periods,	
  and	
  making	
  assumptions	
  about	
  the	
  percentage	
  of	
  cars	
  that	
  
charge	
  during	
  these	
  times.	
  Paper	
  [3]	
  applies	
  the	
  most	
  accurate	
  data	
  regarding	
  charging	
  
times	
  as	
  it	
  incorporates	
  the	
  irregular	
  and	
  skewed	
  peak	
  provided	
  by	
  a	
  traffic	
  authority.	
  
Considering	
  this,	
  the	
  majority	
  of	
  research	
  has	
  been	
  conducted	
  with	
  inaccurate	
  
assumptions,	
  possibly	
  causing	
  significant	
  variations	
  in	
  results	
  as	
  the	
  charging	
  times,	
  
along	
  with	
  the	
  assumed	
  charger	
  rating,	
  are	
  the	
  factors	
  that	
  most	
  influence	
  the	
  results	
  of	
  
loading	
  simulations.	
  Charging	
  times	
  for	
  the	
  uncoordinated	
  charging	
  simulations	
  in	
  this	
  
thesis	
  will	
  be	
  based	
  on	
  local	
  driving	
  data	
  to	
  ensure	
  the	
  most	
  accurate	
  modelling	
  possible.	
  	
  
	
   Therefore,	
  to	
  more	
  accurately	
  determine	
  the	
  effects	
  of	
  uncoordinated	
  charging,	
  it	
  
is	
  important	
  to	
  use	
  local	
  load	
  profiles,	
  standards	
  and	
  driving	
  statistics,	
  with	
  assumptions	
  
that	
  are	
  up	
  to	
  date,	
  or	
  reflect	
  expected	
  future	
  trends.	
  These	
  variables	
  will	
  be	
  taken	
  in	
  to	
  
account	
  in	
  this	
  thesis,	
  to	
  more	
  accurately	
  determine	
  possible	
  effects	
  on	
  typical	
  
Australian	
  residential	
  feeders.	
  
	
  
2.3.2	
   	
  Coordinated	
  Charging	
  
	
  
The	
  effects	
  of	
  uncoordinated	
  charging	
  show	
  the	
  importance	
  of	
  coordinated	
  or	
  
‘smart’	
  charging	
  in	
  the	
  future.	
  This	
  would	
  be	
  achieved	
  through	
  communication	
  
infrastructure	
  in	
  a	
  smart	
  grid,	
  by	
  sending	
  signals	
  to	
  begin	
  charging	
  at	
  times	
  
corresponding	
  to	
  uniform	
  loading	
  [24].	
  Coordinated	
  charging	
  employs	
  heuristic	
  
algorithms	
  and	
  optimization	
  techniques	
  with	
  the	
  aim	
  to	
  improve	
  load	
  factor	
  and	
  reduce	
  
network	
  costs	
  and	
  power	
  losses	
  by	
  charging	
  during	
  off	
  peak	
  periods	
  [2][24].	
  As	
  cars	
  are	
  
available	
  for	
  94.8%	
  of	
  the	
  day	
  on	
  average	
  [23],	
  coordinated	
  charging	
  can	
  be	
  considered	
  
viable,	
  as	
  a	
  large	
  amount	
  of	
  flexibility	
  exists	
  in	
  charging	
  times.	
  	
  
11	
  
	
  
11	
  
	
  
A	
  large	
  number	
  of	
  studies	
  have	
  been	
  conducted	
  on	
  novel	
  approaches	
  to	
  
coordinating	
  vehicles,	
  with	
  the	
  aim	
  to	
  reduce	
  evening	
  peak	
  demand.	
  These	
  range	
  from	
  
complicated	
  algorithms	
  based	
  on	
  real-­‐time	
  market	
  prices	
  in	
  [27]	
  to	
  prioritizing	
  charging	
  
periods	
  in	
  [2],	
  to	
  simple	
  delayed	
  off-­‐peak	
  charging	
  in	
  [23].	
  
Throughout	
  the	
  majority	
  of	
  coordinated	
  charging	
  studies,	
  the	
  uncertainties	
  of	
  variables,	
  
such	
  as	
  load	
  profiles	
  and	
  charging	
  time,	
  are	
  expressed	
  in	
  terms	
  of	
  probability	
  density	
  
functions,	
  allowing	
  predictions	
  to	
  be	
  made	
  without	
  relying	
  on	
  fixed-­‐input	
  variables,	
  such	
  
as	
  an	
  average	
  past	
  load	
  profile	
  [27].	
  The	
  authors	
  in	
  [27]	
  determined	
  that	
  coordinated	
  
charging	
  reduced	
  load	
  factor	
  and	
  power	
  losses	
  by	
  6-­‐28%	
  for	
  penetration	
  levels	
  from	
  
10%	
  to	
  100%.	
  	
  In	
  [27],	
  a	
  control	
  algorithm	
  was	
  implemented	
  for	
  coordinated	
  charging	
  
on	
  an	
  LV	
  feeder	
  in	
  Belgium,	
  based	
  on	
  a	
  typical	
  local	
  load	
  profile.	
  The	
  results	
  showed	
  a	
  
peak	
  demand	
  reduction	
  of	
  29%	
  for	
  a	
  combination	
  of	
  3.6	
  kW	
  and	
  7.4	
  kW	
  chargers	
  at	
  15%	
  
penetration.	
  
	
  Papers	
  [2]	
  and	
  [27]	
  take	
  different	
  real-­‐time	
  approaches,	
  dividing	
  charging	
  times	
  
into	
  red,	
  blue	
  and	
  green	
  zones,	
  based	
  on	
  the	
  priority	
  of	
  charging.	
  In	
  [27],	
  charging	
  
priority	
  is	
  determined	
  based	
  on	
  the	
  time	
  vehicles	
  arrive	
  home,	
  as	
  a	
  vehicle	
  that	
  arrives	
  
late	
  would	
  have	
  a	
  low	
  chance	
  of	
  being	
  used	
  for	
  the	
  remainder	
  of	
  the	
  night.	
  This	
  paper	
  
found	
  that	
  load	
  demand	
  could	
  remain	
  below	
  the	
  evening	
  peak	
  for	
  penetration	
  levels	
  of	
  
at	
  least	
  63%,	
  as	
  low	
  priority	
  vehicles	
  could	
  be	
  spread	
  further	
  into	
  the	
  morning	
  hours.	
  
Above	
  this	
  penetration,	
  however,	
  this	
  paper	
  found	
  that	
  high	
  and	
  medium	
  priority	
  
vehicles	
  raised	
  the	
  peak	
  demand	
  above	
  the	
  evening	
  peak,	
  therefore	
  stating	
  there	
  will	
  
inevitably	
  be	
  a	
  rise	
  in	
  peak	
  demand	
  as	
  EV	
  penetration	
  reaches	
  high	
  levels.	
  
The	
  study	
  in	
  [27]	
  assumes	
  a	
  2	
  kW	
  peak,	
  which	
  is	
  relatively	
  low,	
  especially	
  as	
  this	
  
aims	
  to	
  determine	
  loading	
  decades	
  in	
  to	
  the	
  future,	
  which	
  is	
  expected	
  to	
  rise	
  irrespective	
  
of	
  EVs.	
  Another	
  assumption	
  is	
  that	
  low	
  priority	
  charging	
  is	
  timed	
  to	
  finish	
  at	
  4	
  am,	
  
however	
  this	
  could	
  realistically	
  be	
  increased	
  to	
  6	
  am,	
  for	
  example,	
  for	
  the	
  majority	
  of	
  
people	
  who	
  leave	
  for	
  work	
  after	
  this	
  time.	
  This	
  would	
  allow	
  a	
  higher	
  penetration	
  before	
  
peak	
  demand	
  is	
  raised.	
  
The	
  authors	
  in	
  [23]	
  have	
  included	
  a	
  study	
  on	
  fixed	
  off-­‐peak	
  charging,	
  which	
  is	
  
implemented	
  by	
  simply	
  charging	
  in	
  three	
  groups,	
  at	
  9	
  pm,	
  9:30	
  pm	
  and	
  10	
  pm.	
  This	
  
avoids	
  the	
  evening	
  peak,	
  while	
  allowing	
  sufficient	
  time	
  to	
  charge	
  through	
  to	
  early	
  
morning.	
  This	
  paper	
  finds	
  that	
  the	
  charging	
  peak	
  is	
  less	
  than	
  the	
  evening	
  peak	
  for	
  low	
  
penetration,	
  but	
  states	
  that	
  this	
  may	
  not	
  be	
  the	
  case	
  for	
  penetration	
  greater	
  than	
  10%.	
  
This	
  is	
  compared	
  to	
  a	
  study	
  on	
  ‘smart’	
  market	
  based	
  charging,	
  which	
  shows	
  a	
  noticeable	
  
12	
  
	
  
12	
  
	
  
reduction	
  in	
  charging	
  peak	
  load.	
  From	
  analysis	
  of	
  the	
  fixed	
  off-­‐peak	
  charging	
  graph,	
  it	
  
shows	
  charging	
  is	
  finished	
  by	
  2	
  am.	
  This	
  shows	
  a	
  large	
  percentage	
  of	
  early	
  morning	
  
hours	
  with	
  lower	
  base	
  demand	
  that	
  are	
  not	
  utilized,	
  therefore	
  it	
  could	
  be	
  argued	
  that	
  
this	
  method	
  could	
  support	
  penetration	
  much	
  higher	
  than	
  the	
  10%	
  stated.	
  The	
  simplicity	
  
of	
  the	
  fixed	
  off-­‐peak	
  method,	
  and	
  the	
  lack	
  of	
  research	
  associated	
  with	
  it,	
  presents	
  an	
  
opportunity	
  for	
  study	
  in	
  this	
  thesis.	
  This	
  would	
  eliminate	
  the	
  need	
  for	
  complicated	
  
algorithms	
  at	
  residential	
  feeders,	
  and	
  may	
  not	
  require	
  smart	
  infrastructure,	
  as	
  signalling	
  
could	
  be	
  sent	
  via	
  high	
  frequency	
  pulses,	
  as	
  they	
  are	
  today	
  to	
  control	
  off-­‐peak	
  hot	
  water	
  
systems.	
  Lower	
  electricity	
  rates	
  would	
  provide	
  the	
  incentive	
  for	
  the	
  majority	
  of	
  owners	
  
to	
  use	
  this	
  method,	
  while	
  allowing	
  a	
  simple	
  manual	
  over-­‐ride	
  when	
  required.	
  However,	
  
in	
  terms	
  of	
  load	
  levelling,	
  coordinated	
  charging	
  would	
  be	
  a	
  valuable	
  approach	
  to	
  further	
  
reduce	
  energy	
  losses.	
  Initially,	
  this	
  method	
  will	
  be	
  tested	
  by	
  simulating	
  a	
  simple	
  fixed-­‐
start	
  delay,	
  with	
  preliminary	
  work	
  on	
  staggered	
  charging	
  to	
  focus	
  on	
  further	
  reducing	
  
power	
  loss.	
  
	
  
2.4	
   Summary	
  
	
  
The	
  results	
  of	
  various	
  studies	
  related	
  to	
  charging	
  produce	
  a	
  wide	
  range	
  of	
  results	
  due	
  to	
  
the	
  number	
  of	
  variables	
  associated	
  with	
  distribution	
  networks	
  and	
  electric	
  vehicles.	
  
From	
  this	
  analysis,	
  a	
  noticeable	
  gap	
  exists	
  in	
  research	
  of	
  the	
  impact	
  of	
  EVs	
  applicable	
  to	
  
Australian	
  residential	
  feeders.	
  Particularly,	
  there	
  is	
  a	
  lack	
  of	
  study	
  that	
  incorporates	
  
realistic	
  driving	
  pattern	
  data,	
  through	
  either	
  the	
  use	
  of	
  information	
  from	
  traffic	
  
authorities	
  or	
  by	
  conducting	
  surveys.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
13	
  
	
  
13	
  
	
  
3 Methodology	
  
	
  
The	
  study	
  of	
  literature	
  in	
  Chapter	
  2	
  presents	
  a	
  number	
  of	
  areas	
  that	
  can	
  be	
  further	
  
studied	
  to	
  determine	
  the	
  impacts	
  of	
  EV	
  charging.	
  Further	
  study	
  would	
  gain	
  valuable	
  
information	
  for	
  electricity	
  distribution	
  network	
  service	
  providers	
  in	
  planning	
  for	
  future	
  
development,	
  as	
  well	
  determine	
  the	
  benefits	
  for	
  residents.	
  
3.1 Load	
  Flow	
  
	
  
3.1.1 Load-­‐Flow	
  Solutions	
  
	
  
To	
  determine	
  loading	
  effects	
  in	
  the	
  context	
  of	
  an	
  Australian	
  residential	
  feeder,	
  load	
  flow	
  
analysis	
  must	
  be	
  conducted.	
  A	
  simple	
  single-­‐line	
  diagram	
  can	
  be	
  realized	
  in	
  Fig.	
  3.1.	
  
	
  
	
  
Figure	
  3.1:	
  Load	
  Flow	
  Analysis	
  [4]	
  
	
  
Figure	
  3.1	
  represents	
  a	
  simple	
  power-­‐flow	
  scenario.	
  Power-­‐flow	
  problems	
  such	
  as	
  this	
  
are	
  separated	
  in	
  to	
  the	
  following	
  components:	
  
1. Slack	
  bus	
  –	
  a	
  reference	
  bus	
  for	
  which	
  V∠δ°	
  =	
  1.0∠0°	
  
2. Load	
  (PQ)	
  bus	
  –	
   𝑃!	
  and	
   𝑄!	
  are	
  input	
  loads,	
  used	
  to	
  compute	
   𝑉!	
  and	
  δ!	
  
3. Voltage	
  controlled	
  (PV)	
  bus	
  –	
   𝑃!	
  and	
   𝑉!	
  are	
  inputs,	
  includes	
  voltage	
  control	
  
devices	
  such	
  as	
  OLTC,	
  switched	
  capacitors	
  
The	
  power	
  flow	
  data	
  listed	
  is	
  used	
  to	
  calculate	
  power-­‐flow	
  solutions	
  using	
  methods	
  such	
  
as	
  Guass-­‐Seidell	
  and	
  Newton-­‐Raphson,	
  which	
  solve	
  nodal	
  equations	
  iteratively	
  [7].	
  	
  
3.1.2 Load	
  Types	
  
Another	
  important	
  consideration	
  that	
  must	
  be	
  made	
  during	
  load	
  flow	
  analysis	
  is	
  the	
  
type	
  of	
  load	
  connected	
  to	
  each	
  load	
  bus.	
  Load	
  behaviour	
  is	
  determined	
  by	
  the	
  
14	
  
	
  
14	
  
	
  
combination	
  of	
  R,	
  L	
  and	
  C	
  elements	
  and	
  power	
  electronic	
  circuitry	
  of	
  a	
  load,	
  and	
  can	
  be	
  
divided	
  into	
  three	
  types:	
  
1. Constant	
  Power	
  (eg.	
  LED	
  TV,	
  computer)	
  
2. Constant	
  Current	
  (eg.	
  CFL	
  globe)	
  
3. Constant	
  Impedance	
  (eg.	
  Toaster,	
  oven)	
  
Therefore,	
  for	
  any	
  given	
  voltage	
  a	
  load	
  will	
  conform	
  to	
  one	
  of	
  these	
  load	
  behaviours.	
  An	
  
appliance	
  with	
  a	
  power	
  electronics	
  interface,	
  for	
  example,	
  with	
  exhibit	
  constant	
  power	
  
characteristics	
  as	
  the	
  voltage	
  is	
  stepped	
  down	
  and	
  held	
  at	
  a	
  constant	
  DC	
  value,	
  as	
  this	
  
voltage	
  will	
  be	
  constant	
  for	
  all	
  AC	
  source	
  voltage	
  levels.	
  A	
  resistive	
  load,	
  on	
  the	
  other	
  
hand,	
  is	
  regarded	
  as	
  constant	
  impedance	
  and	
  will	
  draw	
  less	
  power	
  as	
  voltage	
  levels	
  
drop,	
  according	
  to	
  Ohm’s	
  law.	
  
The	
  voltage	
  dependency	
  of	
  loads	
  can	
  be	
  modelled	
  by	
  Eqs.	
  	
  (3.1)	
  and	
  (3.2):	
  
	
  
𝑃 = 𝑃!(𝑎𝑃 ∙
𝑣
𝑣!
!_!"
+ 𝑏𝑃 ∙
𝑣
𝑣!
!_!"
+ (1 − 𝑎𝑃 − 𝑏𝑃) ∙
𝑣
𝑣!
!_!"
)	
   (3.1)	
  
	
  
Where	
  1 − 𝑎𝑃 − 𝑏𝑃 = 𝑐𝑃	
  
	
  
𝑄 = 𝑄!(𝑎𝑄 ∙
𝑣
𝑣!
!_!"
+ 𝑏𝑄 ∙
𝑣
𝑣!
!_!"
+ (1 − 𝑎𝑄 − 𝑏𝑄) ∙
𝑣
𝑣!
!_!"
)	
   (3.2)	
  
	
  
Where	
  1 − 𝑎𝑄 − 𝑏𝑄 = 𝑐𝑄	
  
	
  
When	
  modelling	
  a	
  house	
  load,	
  a	
  number	
  of	
  assumptions	
  have	
  to	
  be	
  made.	
  	
  For	
  the	
  
purpose	
  of	
  this	
  simulation,	
  a	
  house	
  will	
  be	
  considered	
  as	
  a	
  constant	
  power	
  load,	
  as	
  each	
  
house	
  will	
  be	
  associated	
  with	
  load	
  profiles	
  recorded	
  on	
  a	
  hot	
  day	
  where	
  the	
  
predominant	
  load	
  type	
  is	
  a	
  constant	
  power	
  air	
  conditioner.	
  EVs	
  will	
  also	
  be	
  regarded	
  as	
  
constant	
  power	
  loads,	
  as	
  the	
  charging	
  profile	
  of	
  a	
  lithium	
  ion	
  battery	
  charger	
  is	
  a	
  
constant	
  power	
  curve.	
  From	
  Eq.	
  (3.1),	
  we	
  simply	
  require  𝑃 = 𝑃!,	
  therefore	
  all	
  
coefficients	
  and	
  exponents	
  have	
  been	
  set	
  to	
  zero	
  in	
  the	
  voltage	
  dependence	
  settings	
  of	
  
each	
  load.	
  
	
  
	
  
15	
  
	
  
15	
  
	
  
3.2 Modelling	
  
	
  
A	
  realistic	
  network	
  model	
  is	
  imperative	
  for	
  determining	
  the	
  effects	
  of	
  EV	
  charging.	
  
DIgSILENT	
  PowerFactory	
  was	
  chosen	
  for	
  this	
  purpose	
  due	
  to	
  its	
  flexibility	
  in	
  analysis,	
  
incorporating	
  functions	
  such	
  as	
  unbalanced	
  power	
  flow,	
  and	
  remote	
  control	
  ability	
  
through	
  DIgSILENT	
  Engine.	
  To	
  ensure	
  that	
  loading	
  results	
  were	
  as	
  accurate	
  as	
  possible,	
  
emphasis	
  was	
  placed	
  on	
  applying	
  accurate	
  network	
  modelling	
  parameters,	
  load	
  profiles	
  
and	
  vehicle	
  driving	
  statistics.	
  
3.2.1 DIgSILENT	
  PowerFactory	
  Models	
  
	
  
	
  
In	
  order	
  to	
  accurately	
  model	
  a	
  typical	
  low	
  voltage	
  network,	
  data	
  from	
  smart	
  meter-­‐
connected	
  premises	
  has	
  been	
  accumulated.	
  The	
  premises	
  of	
  interest	
  are	
  connected	
  to	
  a	
  
500	
  kVA	
  pad-­‐mount	
  distribution	
  substation	
  in	
  Woodlands	
  Drive,	
  Glenmore	
  Park	
  
(located	
  in	
  Western	
  Sydney),	
  which	
  supplies	
  92	
  premises	
  on	
  four	
  low	
  voltage	
  
underground	
  feeders.	
  The	
  network	
  models	
  used	
  for	
  simulation	
  are	
  based	
  off	
  sample	
  
DIgSILENT	
  feeder	
  models	
  provided	
  by	
  Endeavour	
  Energy.	
  Three	
  models	
  –	
  400	
  V	
  
overhead,	
  400	
  V	
  underground	
  and	
  11	
  kV	
  overhead	
  –	
  were	
  modified	
  to	
  supply	
  the	
  same	
  
number	
  of	
  loads	
  as	
  the	
  substations	
  in	
  Glenmore	
  Park.	
  
When	
  implementing	
  the	
  LV	
  models,	
  each	
  premise	
  is	
  represented	
  by	
  a	
  single-­‐
phase	
  house	
  and	
  EV	
  load,	
  with	
  a	
  CSV	
  file	
  associated	
  with	
  each	
  load	
  containing	
  the	
  load	
  
profile	
  information	
  for	
  a	
  single	
  day.	
  Due	
  to	
  limitations	
  with	
  the	
  number	
  of	
  possible	
  
nodes	
  in	
  a	
  PowerFactory	
  student	
  license,	
  the	
  number	
  of	
  premises	
  has	
  been	
  halved	
  to	
  46	
  
premises	
  split	
  across	
  two	
  feeders,	
  supplied	
  by	
  a	
  250	
  kVA	
  transformer.	
  Halving	
  
transformer	
  ratings	
  and	
  feeder	
  numbers	
  ensures	
  an	
  accurately	
  scaled	
  model	
  for	
  
determining	
  feeder	
  voltage	
  levels	
  and	
  transformer	
  loading.	
  Modelling	
  loads	
  as	
  single	
  
phase	
  loads	
  allows	
  for	
  voltage	
  unbalance	
  to	
  be	
  accounted	
  for,	
  which	
  is	
  a	
  primary	
  cause	
  
of	
  poor	
  voltage	
  regulation.	
  The	
  low	
  voltage	
  overhead	
  model	
  is	
  shown	
  in	
  Fig.	
  3.2.	
  	
  
	
  
16	
  
	
  
16	
  
	
  
	
  
Figure	
  3.2:	
  400	
  V	
  Overhead/Underground	
  DIgSILENT	
  Model	
  
To	
  model	
  the	
  impacts	
  of	
  electric	
  vehicle	
  charging	
  on	
  a	
  zone	
  substation	
  at	
  the	
  11	
  kV	
  level,	
  
the	
  resulting	
  distribution	
  transformer	
  load	
  profiles	
  have	
  been	
  lumped	
  and	
  applied	
  to	
  
each	
  of	
  the	
  transformer	
  loads	
  on	
  a	
  single	
  11	
  kV	
  feeder.	
  The	
  loading	
  magnitude	
  is	
  
doubled	
  to	
  account	
  for	
  the	
  halved	
  number	
  of	
  premises	
  on	
  the	
  low	
  voltage	
  side,	
  so	
  that	
  
each	
  transformer	
  is	
  represented	
  accurately	
  at	
  500	
  kVA.	
  There	
  are	
  10	
  11	
  kV	
  feeders	
  
supplied	
  by	
  Glenmore	
  Park	
  Zone	
  Substation,	
  which	
  supplies	
  a	
  total	
  of	
  7596	
  premises.
	
   Glenmore	
  Park	
  Zone	
  Substation	
  has	
  2	
  x	
  45	
  MVA	
  transformers	
  installed,	
  and	
  
hence	
  has	
  an	
  N-­‐1	
  capacity	
  of	
  45	
  MVA.	
  With	
  an	
  average	
  of	
  760	
  premises	
  per	
  11	
  kV	
  feeder,	
  
assuming	
  92	
  premises	
  per	
  500	
  kVA	
  of	
  installed	
  capacity,	
  there	
  would	
  be	
  an	
  average	
  of	
  8	
  
LV	
  substations	
  connected	
  to	
  each	
  11	
  kV	
  feeder.	
  Therefore,	
  8	
  LV	
  substation	
  loads	
  have	
  
been	
  modelled	
  on	
  the	
  11	
  kV	
  feeder,	
  and	
  the	
  total	
  zone	
  substation	
  load	
  is	
  determined	
  by	
  
multiplying	
  the	
  total	
  feeder	
  loading	
  by	
  10	
  feeders.	
  Figure	
  3.3	
  shows	
  the	
  11	
  kV	
  feeder	
  
model.	
  
17	
  
	
  
17	
  
	
  
	
  
Figure	
  3.3:	
  11	
  kV	
  Overhead	
  DIgSILENT	
  Model	
  
	
   	
  
Parameters	
  such	
  as	
  line	
  and	
  transformer	
  impedances,	
  shown	
  in	
  Table	
  3.1,	
  were	
  left	
  
constant	
  as	
  they	
  represent	
  the	
  most	
  common	
  ratings	
  used	
  within	
  the	
  Endeavour	
  Energy	
  
network.	
  
	
   400	
  V	
  Overhead	
   400	
  V	
  Underground	
   11	
  kV	
  Overhead	
  
Feeder	
  Impedance	
  	
   0.707	
  +	
  j0.284	
  
Ω/km	
  
0.162	
  +	
  j0.065	
  Ω/km	
   0.224	
  +	
  j0.224	
  
Ω/km	
  
Feeder	
  Section	
  
Length	
  	
  
35	
  m	
   35	
  m	
   570	
  m	
  
Service	
  Line	
  
Impedance	
  	
  
1.49	
  +	
  j0.097	
  Ω/km	
   0.927	
  +	
  j0.081	
  Ω/km	
   N/A	
  
Service	
  Line	
  Length	
   20	
  m	
   20	
  m	
   N/A	
  
Transformer	
  Rating	
   250	
  kVA	
   250	
  kVA	
   N/A	
  
Transformer	
  
Impedance	
  	
  
4%	
   4%	
   N/A	
  
Voltage	
  Source	
  
Series	
  Impedance	
  
0.5	
  +	
  j5	
  Ω	
  	
   0.5	
  +	
  j5	
  Ω	
   0.021	
  +	
  j0.635	
  Ω	
  
Table	
  3.1:	
  Network	
  Equipment	
  Parameters	
  
The	
  11	
  kV	
  model	
  assumed	
  a	
  voltage	
  source	
  at	
  1	
  pu	
  voltage,	
  as	
  opposed	
  to	
  a	
  transformer,	
  
as	
  the	
  transformer’s	
  OLTC	
  would	
  act	
  to	
  maintain	
  this	
  voltage	
  in	
  reality.	
  The	
  low	
  voltage	
  
transformers	
  modelled	
  are	
  equipped	
  with	
  offline-­‐tap	
  changers	
  with	
  6	
  asymmetrical	
  tap	
  
settings,	
  ranging	
  from	
  -­‐4	
  to	
  +1.	
  At	
  typical	
  tap	
  setting	
  for	
  LV	
  transformers	
  is	
  -­‐3,	
  or	
  -­‐7.5%,	
  
corresponding	
  with	
  a	
  LV	
  bus	
  voltage	
  of	
  430	
  V.	
  An	
  increase	
  in	
  each	
  tap	
  setting	
  will	
  raise	
  
the	
  voltage	
  by	
  2.5%,	
  allowing	
  for	
  a	
  12.5%	
  voltage	
  range	
  (-­‐10%	
  to	
  +2.5%).	
  As	
  LV	
  
18	
  
	
  
18	
  
	
  
transformer	
  taps	
  are	
  offline,	
  they	
  must	
  be	
  changed	
  manually	
  and	
  hence	
  would	
  only	
  be	
  
changed	
  over	
  the	
  long	
  term	
  as	
  total	
  loading	
  increases,	
  not	
  in	
  response	
  to	
  a	
  permanent	
  
increase	
  in	
  the	
  afternoon	
  peak	
  caused	
  by	
  EV	
  charging,	
  for	
  example,	
  as	
  this	
  would	
  cause	
  
voltages	
  to	
  exceed	
  their	
  upper	
  limits	
  during	
  lower	
  loading	
  periods.	
  Instead,	
  this	
  
regulation	
  must	
  be	
  controlled	
  using	
  zone	
  substation	
  OLTC’s	
  which	
  allow	
  for	
  real-­‐time	
  
tap	
  changing.	
  As	
  EV	
  loading	
  is	
  expected	
  to	
  only	
  increase	
  the	
  afternoon/evening	
  peak,	
  the	
  
tap	
  setting	
  is	
  expected	
  to	
  remain	
  constant	
  in	
  the	
  future.	
  Although	
  there	
  may	
  be	
  future	
  
base	
  load	
  growth	
  as	
  the	
  penetration	
  of	
  air	
  conditioners	
  and	
  other	
  electrical	
  appliances	
  
increases,	
  the	
  relative	
  difference	
  between	
  low	
  loading	
  periods	
  and	
  afternoon	
  EV	
  loading	
  
will	
  likely	
  remain	
  constant,	
  therefore	
  the	
  actual	
  future	
  LV	
  substation	
  tap	
  setting	
  can	
  be	
  
disregarded.	
  
3.2.2 DIgSILENT	
  Programming	
  Language	
  (DPL)	
  Script	
  
	
  
A	
  DIgSILENT	
  Programming	
  Language	
  (DPL)	
  script	
  allows	
  the	
  automation	
  of	
  load	
  flows	
  
to	
  extract	
  specific	
  data	
  from	
  a	
  network	
  model.	
  A	
  DPL	
  script	
  was	
  provided	
  by	
  Endeavour	
  
Energy	
  which	
  conducts	
  time-­‐step	
  simulation	
  load	
  flows	
  for	
  house	
  loads,	
  saving	
  power,	
  
losses	
  and	
  voltage	
  data	
  into	
  result	
  objects	
  at	
  half	
  hour	
  intervals.	
  This	
  script	
  was	
  
modified	
  to	
  read	
  EV	
  loads,	
  as	
  well	
  as	
  execute	
  ‘export	
  result	
  objects’	
  so	
  that	
  result	
  data	
  
would	
  be	
  exported	
  to	
  text	
  files	
  each	
  time	
  the	
  script	
  was	
  run.	
  The	
  DPL	
  script	
  was	
  
associated	
  with	
  each	
  network	
  model,	
  and	
  allowed	
  load	
  flow	
  simulations	
  to	
  be	
  conducted	
  
via	
  engine	
  control	
  of	
  PowerFactory.	
  
	
  
3.2.3 Load	
  Profiles	
  
	
  
3.2.3.1 House	
  Load	
  Profiles	
  
	
  
Loads	
  in	
  PowerFactory	
  can	
  be	
  associated	
  with	
  CSV	
  files	
  containing	
  multiple	
  time	
  points	
  
for	
  conducting	
  time-­‐step	
  simulations.	
  Each	
  of	
  the	
  42	
  house	
  loads	
  has	
  an	
  associated	
  CSV	
  
file	
  containing	
  the	
  smart	
  metering	
  data	
  of	
  a	
  premise	
  in	
  the	
  Glenmore	
  Park	
  trial	
  area,	
  
chosen	
  at	
  random	
  from	
  the	
  92	
  metered	
  premises.	
  The	
  smart	
  metering	
  data	
  contains	
  the	
  
power	
  usage	
  of	
  the	
  premises	
  over	
  a	
  24	
  hour	
  period	
  at	
  half	
  hour	
  intervals.	
  Each	
  premise	
  
has	
  been	
  assigned	
  the	
  same	
  power	
  factor,	
  determined	
  as	
  the	
  average	
  of	
  the	
  premises	
  
power	
  factor	
  during	
  the	
  evening	
  hours,	
  found	
  to	
  be	
  0.9	
  inductive.	
  The	
  selected	
  load	
  
profiles	
  correspond	
  with	
  the	
  hottest	
  day	
  of	
  2011,	
  occurring	
  on	
  November	
  14	
  at	
  a	
  
19	
  
	
  
19	
  
	
  
maximum	
  temperature	
  of	
  38.7°C.	
  The	
  hottest	
  day	
  of	
  2011	
  was	
  chosen	
  as	
  network	
  
planning	
  must	
  take	
  into	
  account	
  the	
  worst-­‐case	
  loading	
  scenarios	
  that	
  occur	
  on	
  hot	
  days,	
  
caused	
  primarily	
  by	
  air	
  conditioners.	
  
	
  
3.2.3.2 EV	
  Charging	
  Profiles	
  
	
  
The	
  spread	
  of	
  EV	
  charging	
  start	
  times	
  were	
  determined	
  by	
  analysing	
  driving	
  statistics	
  
from	
  the	
  NSW	
  Bureau	
  of	
  Transport	
  Statistics	
  [28],	
  shown	
  in	
  Fig	
  3.4.	
  
	
  
Figure	
  3.4:	
  Average	
  number	
  of	
  travellers	
  in	
  NSW	
  on	
  weekdays	
  in	
  2010/11	
  
This	
  graph	
  shows	
  the	
  average	
  number	
  of	
  travellers	
  in	
  NSW	
  on	
  weekdays	
  by	
  transport	
  
type	
  in	
  2010/11.	
  For	
  determining	
  vehicle	
  arrival	
  times,	
  only	
  the	
  ‘Vehicle	
  Driver’	
  curve	
  
was	
  considered.	
  The	
  time	
  of	
  arrival	
  was	
  determined	
  by	
  shifting	
  the	
  afternoon/night	
  
peak,	
  between	
  2	
  pm	
  and	
  12	
  am,	
  by	
  20	
  minutes	
  -­‐	
  the	
  average	
  vehicle	
  one-­‐way	
  trip	
  time.	
  
This	
  curve	
  was	
  then	
  normalised	
  between	
  2	
  pm	
  and	
  12	
  am,	
  and	
  multiplied	
  by	
  46	
  to	
  
determine	
  the	
  number	
  of	
  premises	
  that	
  would	
  begin	
  charging	
  at	
  each	
  half	
  hour	
  interval	
  
within	
  this	
  period.	
  The	
  resulting	
  scaled	
  driving	
  arrival	
  curve	
  is	
  shown	
  in	
  Fig	
  3.5,	
  shown	
  
to	
  follow	
  the	
  afternoon	
  driving	
  trend	
  displayed	
  in	
  Fig	
  3.4.	
  
20	
  
	
  
20	
  
	
  
	
  
Figure	
  3.5:	
  Scaled	
  driver	
  arrival	
  times	
  
The	
  number	
  of	
  vehicles	
  arriving	
  at	
  each	
  half	
  hour	
  interval	
  was	
  recorded,	
  and	
  the	
  
vehicles,	
  having	
  been	
  assigned	
  their	
  specific	
  starting	
  time,	
  were	
  allocated	
  to	
  premises	
  
using	
  a	
  random	
  function,	
  so	
  that	
  the	
  feeder	
  models	
  were	
  assigned	
  a	
  realistic	
  variation	
  in	
  
vehicle	
  arrival	
  times.	
  	
  
3.2.4 Loading	
  Assumptions	
  
	
  	
  
To	
  model	
  the	
  effects	
  of	
  charging,	
  the	
  level	
  two	
  residential	
  chargers	
  from	
  Chapter	
  2	
  were	
  
considered.	
  Considering	
  the	
  expected	
  combination	
  of	
  chargers	
  based	
  on	
  EV	
  costs,	
  an	
  
average	
  charge	
  rating	
  of	
  4	
  kW	
  was	
  determined	
  to	
  provide	
  a	
  realistic	
  charging	
  power	
  that	
  
could	
  be	
  used	
  to	
  model	
  a	
  load	
  of	
  EV	
  charging	
  homes.	
  The	
  average	
  battery	
  capacity	
  was	
  
chosen	
  to	
  be	
  25	
  kWh,	
  a	
  mid-­‐range	
  capacity	
  in	
  Table	
  2.1.	
  
Assuming	
  a	
  return	
  trip	
  driving	
  distance	
  of	
  18.8	
  km	
  [28]	
  and	
  a	
  battery	
  consumption	
  of	
  
0.168	
  kWh/km	
  [16],	
  the	
  average	
  charging	
  time	
  was	
  found	
  to	
  be	
  approximately	
  47	
  
minutes.	
  Due	
  to	
  the	
  time-­‐step	
  resolution	
  of	
  half	
  an	
  hour,	
  however,	
  this	
  charging	
  duration	
  
had	
  to	
  be	
  modelled	
  as	
  1	
  hour.	
  This	
  analysis	
  assumes	
  that	
  each	
  EV	
  is	
  charged	
  only	
  once	
  
per	
  day	
  in	
  the	
  afternoon/evening,	
  and	
  that	
  driving	
  is	
  split	
  into	
  a	
  morning	
  and	
  afternoon	
  
peak.	
  Vehicles	
  arriving	
  home	
  during	
  the	
  late	
  night	
  hours	
  are	
  probably	
  drivers	
  that	
  have	
  
travelled	
  previously	
  during	
  the	
  day,	
  so	
  charging	
  has	
  been	
  assumed	
  to	
  occur	
  after	
  the	
  
second	
  trip.	
  Vehicle	
  driving	
  patterns	
  have	
  been	
  based	
  on	
  weekday	
  statistics,	
  and	
  the	
  
vehicles	
  are	
  assumed	
  to	
  charge	
  on	
  a	
  daily	
  basis.	
  
In	
  terms	
  of	
  vehicle	
  penetration,	
  a	
  substation	
  EV	
  penetration	
  of	
  100%	
  
corresponds	
  to	
  all	
  vehicles	
  being	
  EVs,	
  not	
  100%	
  of	
  premises	
  containing	
  an	
  EV.	
  As	
  there	
  
is	
  an	
  average	
  of	
  1.7	
  motor	
  vehicles	
  per	
  household	
  in	
  Australia	
  [29],	
  a	
  penetration	
  of	
  59%	
  
would	
  represent	
  an	
  average	
  of	
  1	
  vehicle	
  per	
  household.	
  
Another	
  consideration	
  made	
  was	
  the	
  percentage	
  of	
  travellers	
  that	
  drive	
  vehicles,	
  
as	
  opposed	
  to	
  using	
  public	
  transport	
  or	
  travelling	
  as	
  a	
  passenger.	
  Although	
  we	
  know	
  
21	
  
	
  
21	
  
	
  
that	
  there	
  is	
  an	
  average	
  of	
  1.7	
  vehicles	
  per	
  household,	
  and	
  that	
  47%	
  of	
  travellers	
  drive	
  a	
  
vehicle	
  [28],	
  it	
  is	
  impossible	
  to	
  discern	
  the	
  percentage	
  of	
  vehicle	
  owners	
  that	
  drive	
  a	
  
vehicle	
  for	
  the	
  majority	
  of	
  their	
  travel	
  during	
  weekdays.	
  This	
  is	
  because	
  the	
  number	
  of	
  
travellers	
  includes	
  school	
  students,	
  for	
  example,	
  who	
  may	
  travel	
  as	
  a	
  passenger	
  or	
  on	
  
public	
  transport,	
  as	
  well	
  as	
  those	
  who	
  own	
  a	
  vehicle	
  but	
  may	
  cycle	
  or	
  also	
  use	
  public	
  
transport	
  to	
  travel	
  to	
  work.	
  To	
  further	
  complicate	
  any	
  assumptions	
  made,	
  there	
  is	
  no	
  
information	
  relating	
  to	
  the	
  percentage	
  of	
  people	
  that	
  actually	
  travel	
  significant	
  distances	
  
during	
  the	
  week,	
  including	
  the	
  considerable	
  proportion	
  of	
  vehicle	
  owners	
  that	
  fall	
  into	
  
this	
  category	
  such	
  as	
  pensioners	
  and	
  those	
  who	
  work	
  or	
  care	
  for	
  children	
  at	
  home.	
  
Therefore,	
  with	
  the	
  data	
  available,	
  the	
  most	
  realistic	
  assumptions	
  decided	
  were	
  
that	
  every	
  vehicle	
  owner	
  travels	
  the	
  average	
  distance	
  of	
  20	
  km	
  return-­‐trip	
  on	
  weekdays	
  
and	
  does	
  the	
  majority	
  of	
  this	
  travel	
  in	
  their	
  vehicle.	
  Although	
  analysis	
  	
  may	
  seem	
  more	
  
accurate	
  to	
  apply	
  a	
  statistical	
  spread	
  of	
  charger	
  ratings	
  across	
  each	
  household,	
  this	
  
would	
  be	
  equivalent	
  to	
  assuming	
  an	
  average	
  charger	
  rating	
  for	
  each	
  household,	
  as	
  the	
  
total	
  transformer	
  loading	
  would	
  be	
  the	
  same.	
  A	
  statistical	
  variation	
  in	
  charger	
  ratings	
  
would	
  provide	
  a	
  more	
  accurate	
  model	
  of	
  voltage	
  regulation,	
  however	
  the	
  limited	
  
number	
  of	
  premises	
  in	
  the	
  DIgSILENT	
  models	
  prevents	
  any	
  statistical	
  analysis	
  from	
  
yielding	
  meaningful	
  results.	
  Therefore,	
  Eqn.	
  (3.3)	
  has	
  been	
  used	
  to	
  determine	
  the	
  
charging	
  power	
  per	
  premise.	
  
	
  
P =   Charger  Rating  (kW)  ∗  (Penetration/100%)  ∗   1.7  vehicles  per  premise	
   (3.3)	
  
	
  
The	
  assumptions	
  made	
  in	
  this	
  analysis	
  present	
  an	
  ambiguity	
  issue	
  with	
  the	
  number	
  of	
  
drivers	
  arriving	
  home	
  during	
  the	
  middle	
  of	
  the	
  day,	
  and	
  those	
  that	
  may	
  travel	
  after	
  
arriving	
  home	
  from	
  work.	
  The	
  actual	
  number	
  of	
  drivers,	
  however,	
  is	
  impossible	
  to	
  
predict	
  without	
  conducting	
  a	
  large-­‐scale	
  survey	
  focusing	
  on	
  the	
  actual	
  arrival	
  times	
  and	
  
driving	
  patterns	
  of	
  vehicle	
  drivers,	
  therefore	
  the	
  assumptions	
  made	
  can	
  be	
  considered	
  
as	
  accurate	
  as	
  possible.	
  	
  	
  
3.2.5 Load	
  Scaling	
  
The	
  load	
  profiles	
  of	
  premises	
  supplied	
  by	
  the	
  Woodlands	
  Drive	
  substation	
  represent	
  the	
  
energy	
  use	
  of	
  premises	
  in	
  a	
  sample	
  area	
  of	
  Glenmore	
  Park.	
  These	
  profiles	
  provide	
  an	
  
accurate	
  load	
  shape,	
  however	
  their	
  combined	
  substation	
  profile	
  may	
  not	
  match	
  the	
  
magnitude	
  of	
  those	
  substations	
  located	
  in	
  areas	
  of	
  lower	
  or	
  higher	
  socio-­‐economic	
  
22	
  
	
  
22	
  
	
  
status,	
  such	
  as	
  a	
  wealthier	
  area	
  which	
  is	
  more	
  likely	
  to	
  contain	
  a	
  greater	
  number	
  of	
  air	
  
conditioners	
  and	
  pool	
  pumps,	
  for	
  example.	
  To	
  account	
  for	
  the	
  diversity	
  between	
  areas	
  
within	
  suburbs,	
  it	
  is	
  important	
  that	
  the	
  Woodlands	
  Drive	
  substation	
  load	
  profile	
  can	
  be	
  
scaled	
  before	
  EV	
  loading	
  is	
  added,	
  however	
  non-­‐linear	
  line	
  losses	
  must	
  also	
  be	
  
accounted,	
  therefore	
  this	
  scaling	
  is	
  not	
  a	
  straight	
  forward	
  calculation.	
  
As	
  base	
  loading	
  power	
  increases	
  linearly,	
  represented	
  by	
  ∆ 𝑃!!"#	
  in	
  per	
  unit,	
  line	
  losses	
  
increase	
  by	
  the	
  square	
  of	
  this	
  rate,	
  or	
  (∆𝑃!"#$)!
.	
  Therefore,	
  if	
  Woodlands	
  Drive	
  
substation	
  is	
  80%	
  loaded	
  under	
  maximum	
  load,	
  this	
  load	
  profile	
  cannot	
  be	
  scaled	
  to	
  
represent	
  substation	
  that	
  is	
  90%	
  loaded,	
  for	
  example,	
  without	
  first	
  separating	
  the	
  
combined	
  house	
  power	
  and	
  the	
  line	
  losses.	
  
This	
  would	
  require	
  a	
  scaling	
  model	
  in	
  the	
  following	
  form:	
  
	
  
𝑃!" = 𝑃! 𝑥 + 𝑃! 𝑥!
	
   (3.4)	
  
	
  
Where	
   𝑃!"	
  is	
  the	
  new	
  total	
  power	
  drawn	
  by	
  the	
  transformer	
  after	
  scaling,	
   𝑃!is	
  the	
  
combined	
  house	
  power	
  before	
  scaling,	
   𝑃!	
  is	
  the	
  line	
  losses	
  before	
  scaling.	
  For	
  example,	
  if	
  
the	
  total	
  transformer	
  loading	
  was	
  required	
  to	
  be	
  increased	
  from	
  110	
  kW,	
  where	
   𝑃!	
  =	
  
100	
  kW	
  and	
   𝑃!=	
  10	
  kW,	
  to	
  240	
  kW,	
  the	
  combined	
  house	
  power	
  would	
  only	
  have	
  to	
  be	
  
increased	
  by	
  a	
  factor	
  of	
  x	
  =	
  2,	
  to	
  produce	
  a	
  transformer	
  power	
  increase	
  of	
  	
  
!"#
!!"
	
  =	
  2.18	
  pu.	
  
This	
  formula,	
  however,	
  does	
  not	
  take	
  into	
  account	
  the	
  line-­‐loss	
  increase	
  as	
  a	
  
result	
  of	
  the	
  voltage	
  drop	
  that	
  occurs	
  when	
  constant	
  power	
  loads	
  are	
  scaled.	
  That	
  is,	
  
when	
  the	
  power	
  consumption	
  of	
  a	
  feeder	
  with	
  constant	
  power	
  loading	
  increases,	
  so	
  too	
  
does	
  the	
  voltage	
  drop	
  along	
  the	
  feeder,	
  causing	
  the	
  line	
  current,	
  and	
  hence	
  line	
  losses,	
  to	
  
rise	
  further.	
  This	
  is	
  a	
  cyclical	
  response	
  that	
  converges	
  rapidly	
  due	
  to	
  the	
  large	
  difference	
  
between	
  the	
  percentage	
  change	
  in	
  voltage	
  and	
  the	
  initial	
  load	
  power	
  change,	
  therefore	
  
any	
  further	
  voltage	
  correction	
  can	
  be	
  considered	
  negligible.	
  
Figure	
  3.5	
  shows	
  the	
  voltage	
  profile	
  of	
  a	
  typical	
  feeder	
  with	
  6	
  premises	
  per	
  phase	
  
per	
  feeder	
  in	
  the	
  upper	
  graph,	
  approximately	
  the	
  same	
  as	
  the	
  Woodlands	
  Drive	
  feeders,	
  
and	
  the	
  profile	
  of	
  the	
  last	
  4	
  premises	
  on	
  a	
  feeder	
  in	
  the	
  lower	
  graph,	
  with	
  the	
  voltage	
  
levels	
  scaled	
  for	
  an	
  easier	
  interpretation	
  of	
  the	
  voltage	
  drop	
  in	
  each	
  feeder	
  section.	
  	
  
23	
  
	
  
23	
  
	
  
	
  
Figure	
  3.6:	
  Feeder	
  voltage	
  profile,	
  moving	
  from	
  last	
  premise	
  to	
  transformer	
  from	
  right	
  to	
  left	
  
This	
  feeder	
  shows,	
  when	
  moving	
  towards	
  the	
  transformer	
  from	
  right	
  to	
  left,	
  the	
  voltage	
  
drop	
  increases	
  according	
  to	
  the	
  series	
   𝑉!"(1,	
  3,	
  6,	
  10)	
  etc.,	
  where	
   𝑉!"    is	
  the	
  voltage	
  drop	
  
along	
  the	
  last	
  section	
  of	
  feeder,	
  between	
  the	
  second	
  last	
  and	
  last	
  premises.	
  This	
  series	
  
can	
  be	
  represented	
  by	
  Eq.	
  (3.5).	
  
	
  
𝑖
!
!!!
=
𝑛(𝑛 + 1)
2
	
   (3.5)	
  
	
  
Voltage	
  drop	
  in	
  the	
  last	
  section	
  of	
  feeder	
  can	
  be	
  found	
  using	
  Eq.	
  (3.6).	
  
	
  
𝑉!" =
2𝑉!"
𝑛(𝑛 + 1)
	
   (3.6)	
  
	
  
Where	
   𝑉!"  is	
  the	
  voltage	
  drop	
  along	
  the	
  entire	
  feeder.	
  
For	
  the	
  feeder	
  in	
  the	
  top	
  subplot	
  with	
  6	
  premises,	
  the	
  total	
  voltage	
  drop	
  is	
  equal	
  to	
  
!(!!!)
!
𝑉!" = 21 0.004 = 0.084  pu,	
  which	
  is	
  reflected	
  on	
  this	
  plot.	
  This	
  modelling	
  
assumes	
  that	
  each	
  load	
  draws	
  the	
  same	
  current.	
  
When	
  a	
  load	
  is	
  increased	
  by	
  a	
  factor	
   𝑥,	
  the	
  line	
  current	
  supplying	
  a	
  constant	
  
power	
  load	
  increases	
  by	
  the	
  same	
  factor.	
  As	
  voltage	
  drop	
  is	
  proportional	
  to	
  current,	
  the	
  
voltage	
  drop	
  also	
  increases	
  by	
  this	
  factor.	
  When	
  considering	
  the	
  last	
  section	
  of	
  feeder,	
  
𝑉!"#$	
  is	
  equal	
  to	
   𝑉!"# − 𝑉!"#,	
  where	
   𝑉!"#	
  is	
  the	
  voltage	
  at	
  the	
  second	
  last	
  premise	
  and	
  
24	
  
	
  
24	
  
	
  
𝑉!"#	
  is	
  the	
  voltage	
  at	
  the	
  last	
  premise.	
   𝑉!"#$	
  can	
  be	
  represented	
  as	
  a	
  percentage	
  by	
  Eq.	
  
(3.7).	
  
	
  
𝑥𝑉!"#$ − 𝑉!"#$
𝑉!"#
=
𝑉!"#$(𝑥 − 1)
𝑉!"#
	
   (3.7)	
  
	
  
As	
  the	
  load	
  current	
  increase	
  is	
  directly	
  proportional	
  to	
  the	
  voltage	
  drop,	
  the	
  line	
  current	
  
is	
  increased	
  by	
  the	
  factor	
  that	
  is	
  Eq.	
  (3.8).	
  
	
  
∆𝐼!! = 1 +
𝑉!"#$(𝑥 − 1)
𝑉!"#
	
   (3.8)	
  
	
  
We	
  now	
  know	
  the	
  factor	
  that	
  can	
  be	
  squared	
  to	
  scale	
  the	
  power	
  losses	
  in	
  the	
  last	
  section	
  
of	
  feeder.	
  As	
  power	
  losses	
  increase	
  with	
  the	
  square	
  of	
  the	
  line	
  current,	
  the	
   𝑛!
  series	
  can	
  
be	
  used	
  to	
  represent	
  the	
  increase	
  in	
  power	
  moving	
  from	
  the	
  last	
  section	
  of	
  feeder	
  to	
  the	
  
first,	
  i.e.	
   𝑃! = 𝑃!(1 + 2 + 4 + 9 + 16 + 25)	
  for	
  a	
  feeder	
  with	
  6	
  premises	
  per	
  phase.	
  The	
  
sum	
  of	
  the	
  	
   𝑛!
	
  series	
  is	
  given	
  by	
  Eq.	
  (3.9):	
  
	
  
𝑖!
!
!!!
=
𝑛(𝑛 + 1)(2𝑛 + 1)
6
	
   (3.9)	
  
	
  
Therefore,	
  if	
  the	
  total	
  line	
  losses	
  of	
  a	
  feeder	
  are	
  known,	
  the	
  line	
  losses	
  can	
  be	
  given	
  by	
  
dividing	
  the	
  total	
  power	
  by	
  the	
  sum	
  of	
  the	
   𝑛!
	
  series,	
  equal	
  to	
  91	
  for	
  6	
  premises.	
  Once	
  we	
  
know	
  the	
  losses	
  and	
  voltage	
  drop	
  in	
  the	
  last	
  section	
  of	
  feeder,	
  and	
  the	
  scaling	
  factor	
   𝑥	
  by	
  
which	
  the	
  house	
  loads	
  increase	
  by,	
  the	
  increase	
  in	
  line	
  losses	
  due	
  to	
  the	
  load	
  scaling	
  and	
  
increased	
  voltage	
  drop	
  can	
  be	
  determined.	
  The	
  power	
  increase	
  ∆ 𝑃!!in	
  the	
  last	
  section	
  of	
  
feeder	
  therefore	
  becomes	
  ∆ 𝑃!!∆𝐼!!
!
,	
  where	
  ∆ 𝐼!!
!
	
  is	
  the	
  increase	
  in	
  current	
  due	
  to	
  the	
  
voltage	
  drop.	
  The	
  total	
  increase	
  in	
  power	
  due	
  to	
  voltage	
  drop	
  is	
  shown	
  in	
  Eq.	
  (3.10).	
  
∆𝑃! = ∆𝑃!!∆𝐼!!
!
+ 4∆𝑃!!2∆𝐼!!
!
9∆𝑃!!3∆𝐼!!
!
+ 16∆𝑃!!4∆𝐼!!
!
+ 25∆𝑃!!5∆𝐼!!
!
+ 36∆𝑃!!6∆𝐼!!
!
	
  
	
  
                = ∆𝑃!!∆𝐼!!
!
(1 + 8 + 27 + 64 + 125 + 216)	
  
	
  
	
  
(3.10)	
  
	
  
	
  
25	
  
	
  
25	
  
	
  
	
  
This	
  series	
  represents	
  the	
  sum	
  of	
  cubes,	
  which	
  can	
  be	
  expressed	
  in	
  the	
  following	
  general	
  
equation	
  form	
  of	
  Eq.	
  (3.11).	
  
	
  
𝑖!
!
!!!
=
𝑛!
(𝑛 + 1)!
4
	
   (3.11)	
  
	
  
Combining	
  Eqs.	
  (3.8),	
  (3.9)	
  and	
  (3.11),	
  a	
  general	
  solution	
  of	
  Eq.	
  (3.12)	
  can	
  be	
  formed	
  for	
  
line	
  losses.	
  
	
  
𝑃!.!"# =
6𝑃! 𝑥!
𝑛 𝑛 + 1 2𝑛 + 1
∙ 1 +
𝑉!" 𝑥 − 1
𝑉!"#
!
∙
𝑛!
𝑛 + 1 !
4
	
  
                          =
6𝑃! 𝑥!
𝑛 𝑛 + 1 2𝑛 + 1
∙ 1 +
2𝑉!" 𝑥 − 1
𝑛(𝑛 + 1)𝑉!"#
!
∙
𝑛!
𝑛 + 1 !
4
	
  
	
  
	
  
	
  
	
  
	
  
	
  
(3.12)	
  
	
  
Replacing	
  the	
  	
   𝑃! 𝑥!
	
  term	
  in	
  Eq.	
  (3.4)	
  with	
  Eq.	
  (3.12),	
  the	
  complete	
  transformer	
  power	
  
formula	
  Eq.	
  (3.13)	
  is	
  formed.	
  
𝑆!" = 𝑃! 𝑥 +
6𝑃! 𝑥!
𝑛 𝑛 + 1 2𝑛 + 1
∙ 1 +
2𝑉!" 𝑥 − 1
𝑛(𝑛 + 1)𝑉!"#
!
∙
𝑛!
𝑛 + 1 !
4
+ 𝑗𝑄! 𝑥	
  
	
  	
  
(3.13)	
  
	
  
	
  
Equation	
  (3.13)	
  allows	
  the	
  apparent	
  transformer	
  power	
  to	
  be	
  determined	
  when	
  
constant	
  power	
  house	
  loads	
  are	
  scaled	
  by	
  a	
  value  𝑥,	
  taking	
  into	
  account	
  the	
  non-­‐linear	
  
nature	
  of	
  line	
  losses	
  caused	
  by	
  load	
  scaling	
  and	
  the	
  subsequent	
  voltage	
  drop.	
  Equation	
  
(3.13)	
  assumes	
  that	
  all	
  houses	
  are	
  loaded	
  equally,	
  and	
  reactive	
  power	
  is	
  constant.	
  In	
  
reality,	
  reactive	
  power	
  will	
  increase	
  slightly	
  in	
  response	
  to	
  voltage	
  drop,	
  depending	
  on	
  
the	
  characteristics	
  of	
  the	
  load.	
  This	
  equation,	
  however,	
  represents	
  a	
  relatively	
  accurate	
  
model	
  and	
  provides	
  an	
  insight	
  into	
  the	
  complexity	
  of	
  load	
  behaviour,	
  and	
  hence	
  line	
  
losses,	
  in	
  response	
  to	
  a	
  change	
  in	
  load	
  magnitude.	
  
Due	
  to	
  the	
  complexity	
  of	
  this	
  4th	
  degree	
  polynomial,	
  solving	
  for	
   𝑥	
  is	
  difficult,	
  
therefore	
  loads	
  will	
  be	
  scaled	
  through	
  trial	
  and	
  error	
  for	
  scenarios	
  where	
  the	
  
transformer	
  is	
  at	
  a	
  higher	
  capacity	
  than	
  the	
  Woodlands	
  Drive	
  substation.	
  	
  
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458
Thesis458

More Related Content

Viewers also liked

ELB044 Lecture 18. Introduction to Induction Machines
ELB044 Lecture 18. Introduction to Induction MachinesELB044 Lecture 18. Introduction to Induction Machines
ELB044 Lecture 18. Introduction to Induction MachinesFrancisco Gonzalez-Longatt
 
Example: Modal analysis using DIgSILENT PowerFactory.
Example: Modal analysis using DIgSILENT PowerFactory. Example: Modal analysis using DIgSILENT PowerFactory.
Example: Modal analysis using DIgSILENT PowerFactory. Francisco Gonzalez-Longatt
 
Tutorial: Modelling and Simulations: Renewable Resources and Storage
Tutorial: Modelling and Simulations: Renewable Resources and StorageTutorial: Modelling and Simulations: Renewable Resources and Storage
Tutorial: Modelling and Simulations: Renewable Resources and StorageFrancisco Gonzalez-Longatt
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...Francisco Gonzalez-Longatt
 
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...Francisco Gonzalez-Longatt
 
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.Francisco Gonzalez-Longatt
 
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...Francisco Gonzalez-Longatt
 

Viewers also liked (8)

ELB044 Lecture 18. Introduction to Induction Machines
ELB044 Lecture 18. Introduction to Induction MachinesELB044 Lecture 18. Introduction to Induction Machines
ELB044 Lecture 18. Introduction to Induction Machines
 
Example: Modal analysis using DIgSILENT PowerFactory.
Example: Modal analysis using DIgSILENT PowerFactory. Example: Modal analysis using DIgSILENT PowerFactory.
Example: Modal analysis using DIgSILENT PowerFactory.
 
Tutorial: Modelling and Simulations: Renewable Resources and Storage
Tutorial: Modelling and Simulations: Renewable Resources and StorageTutorial: Modelling and Simulations: Renewable Resources and Storage
Tutorial: Modelling and Simulations: Renewable Resources and Storage
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
 
Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges
 
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
PowerFactory Applications for Power System Analysis, 26th October 2015, Por...
 
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
Tutorial: Introduction to Transient Analysis using DIgSILENT PowerFactory.
 
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
 

Similar to Thesis458

Eucides Dgedge - Competitive Procurement of Power Projects for Bankability of...
Eucides Dgedge - Competitive Procurement of Power Projects for Bankability of...Eucides Dgedge - Competitive Procurement of Power Projects for Bankability of...
Eucides Dgedge - Competitive Procurement of Power Projects for Bankability of...Eucides Ezequiel Dgedge
 
EG460 Final Year Project - Edward Comer
EG460 Final Year Project - Edward ComerEG460 Final Year Project - Edward Comer
EG460 Final Year Project - Edward ComerEdd Comer
 
2x2 Wi-Fi Circularly Polarized Microstrip Patch Array
2x2 Wi-Fi Circularly Polarized Microstrip Patch Array2x2 Wi-Fi Circularly Polarized Microstrip Patch Array
2x2 Wi-Fi Circularly Polarized Microstrip Patch ArraySteafán Sherlock
 
Dual-Band Mobile Phone Jammer
Dual-Band Mobile Phone JammerDual-Band Mobile Phone Jammer
Dual-Band Mobile Phone JammerMohamed Atef
 
Final Report.pdf
Final Report.pdfFinal Report.pdf
Final Report.pdfSkullFac
 
Integration of force feedback into a nuclear decommissioning robot
Integration of force feedback into a nuclear decommissioning robotIntegration of force feedback into a nuclear decommissioning robot
Integration of force feedback into a nuclear decommissioning robotSaravanan Yogeswaran
 
Dual axis tracker_final_report
Dual axis tracker_final_reportDual axis tracker_final_report
Dual axis tracker_final_reportSai Ram
 
2022 recent advances on quasi-solid-state electrolytes for supercapacitors
2022   recent advances on quasi-solid-state electrolytes for supercapacitors2022   recent advances on quasi-solid-state electrolytes for supercapacitors
2022 recent advances on quasi-solid-state electrolytes for supercapacitorsAry Assuncao
 
151 south africa cap bank-protection-baker-duly-2008
151 south africa cap bank-protection-baker-duly-2008151 south africa cap bank-protection-baker-duly-2008
151 south africa cap bank-protection-baker-duly-2008wmelis
 
Building integrated photovoltaic designs for commercial and industrial struc
Building integrated photovoltaic designs for commercial and industrial strucBuilding integrated photovoltaic designs for commercial and industrial struc
Building integrated photovoltaic designs for commercial and industrial strucarchitect Eman
 
NEETRAC (Chapter 2: MV Cable System Issues)
NEETRAC (Chapter 2: MV Cable System Issues)NEETRAC (Chapter 2: MV Cable System Issues)
NEETRAC (Chapter 2: MV Cable System Issues)AHMED MOHAMED HEGAB
 
Spring 2015 JP Dolphin Final Capstone Project Submission
Spring 2015 JP Dolphin Final Capstone Project SubmissionSpring 2015 JP Dolphin Final Capstone Project Submission
Spring 2015 JP Dolphin Final Capstone Project SubmissionJohn-Peter (JP) Dolphin
 

Similar to Thesis458 (20)

fac_alahari001_planczhaov1
fac_alahari001_planczhaov1fac_alahari001_planczhaov1
fac_alahari001_planczhaov1
 
Eucides Dgedge - Competitive Procurement of Power Projects for Bankability of...
Eucides Dgedge - Competitive Procurement of Power Projects for Bankability of...Eucides Dgedge - Competitive Procurement of Power Projects for Bankability of...
Eucides Dgedge - Competitive Procurement of Power Projects for Bankability of...
 
EG460 Final Year Project - Edward Comer
EG460 Final Year Project - Edward ComerEG460 Final Year Project - Edward Comer
EG460 Final Year Project - Edward Comer
 
2x2 Wi-Fi Circularly Polarized Microstrip Patch Array
2x2 Wi-Fi Circularly Polarized Microstrip Patch Array2x2 Wi-Fi Circularly Polarized Microstrip Patch Array
2x2 Wi-Fi Circularly Polarized Microstrip Patch Array
 
Masters_Raghu
Masters_RaghuMasters_Raghu
Masters_Raghu
 
Master Thesis
Master ThesisMaster Thesis
Master Thesis
 
Dual-Band Mobile Phone Jammer
Dual-Band Mobile Phone JammerDual-Band Mobile Phone Jammer
Dual-Band Mobile Phone Jammer
 
Final Report.pdf
Final Report.pdfFinal Report.pdf
Final Report.pdf
 
Integration of force feedback into a nuclear decommissioning robot
Integration of force feedback into a nuclear decommissioning robotIntegration of force feedback into a nuclear decommissioning robot
Integration of force feedback into a nuclear decommissioning robot
 
Dual axis tracker_final_report
Dual axis tracker_final_reportDual axis tracker_final_report
Dual axis tracker_final_report
 
POLAPRAGADA-THESIS
POLAPRAGADA-THESISPOLAPRAGADA-THESIS
POLAPRAGADA-THESIS
 
2022 recent advances on quasi-solid-state electrolytes for supercapacitors
2022   recent advances on quasi-solid-state electrolytes for supercapacitors2022   recent advances on quasi-solid-state electrolytes for supercapacitors
2022 recent advances on quasi-solid-state electrolytes for supercapacitors
 
ZAMBIAN DISTRIBUTION GRID CODE
ZAMBIAN DISTRIBUTION GRID CODEZAMBIAN DISTRIBUTION GRID CODE
ZAMBIAN DISTRIBUTION GRID CODE
 
Future Inspection of Overhead Transmission Lines
 Future Inspection of Overhead Transmission Lines Future Inspection of Overhead Transmission Lines
Future Inspection of Overhead Transmission Lines
 
magnetic leviation
magnetic leviationmagnetic leviation
magnetic leviation
 
151 south africa cap bank-protection-baker-duly-2008
151 south africa cap bank-protection-baker-duly-2008151 south africa cap bank-protection-baker-duly-2008
151 south africa cap bank-protection-baker-duly-2008
 
RyanMcCulloch-Thesis
RyanMcCulloch-ThesisRyanMcCulloch-Thesis
RyanMcCulloch-Thesis
 
Building integrated photovoltaic designs for commercial and industrial struc
Building integrated photovoltaic designs for commercial and industrial strucBuilding integrated photovoltaic designs for commercial and industrial struc
Building integrated photovoltaic designs for commercial and industrial struc
 
NEETRAC (Chapter 2: MV Cable System Issues)
NEETRAC (Chapter 2: MV Cable System Issues)NEETRAC (Chapter 2: MV Cable System Issues)
NEETRAC (Chapter 2: MV Cable System Issues)
 
Spring 2015 JP Dolphin Final Capstone Project Submission
Spring 2015 JP Dolphin Final Capstone Project SubmissionSpring 2015 JP Dolphin Final Capstone Project Submission
Spring 2015 JP Dolphin Final Capstone Project Submission
 

Thesis458

  • 1.               The  Impacts  of  Electric  Vehicle  Charging   on  Residential  Distribution  Systems         Matthew  Wardhaugh   Bachelor  of  Engineering  (Electrical)             October,  2012               Supervisor:  Dr  Phil  Ciufo                
  • 2. i     i         Abstract     A  significant  increase  in  the  number  of  electric  vehicles  is  expected  over  the  coming   years,  and  this  is  expected  to  create  issues  for  distribution  networks  when  charging   coincides  with  peak  demand  periods.  This  thesis  investigates  the  effects  of   uncoordinated  charging  on  the  residential  distribution  network,  and  looks  at  the   viability  of  coordinated  charging  to  mitigate  these  effects.  A  graphical  user  interface  was   created  to  aid  this  study  and  provide  a  tool  for  network  planners  to  easily  run  electric   vehicle  loading  scenarios.  This  thesis  finds  that  uncoordinated  charging  would  have  an   impact  on  low  voltage  networks,  particularly  for  overhead  networks  where  voltage   unbalance  is  a  greater  issue.  Simple  staggered  off-­‐peak  charging  was  investigated  and   found  to  mitigate  loading  effects  completely,  allowing  up  to  100%  electric  vehicle   penetration  for  the  highest  charger  rating  scenario.  The  impact  of  charging  was  found  to   be  significant  at  the  zone  substation  level  during  uncoordinated  charging  scenarios,   possibly  requiring  upgrades  within  the  next  decade  if  coordinated  charging  strategies   are  not  adopted.                                    
  • 3. ii     ii       Acknowledgements         I  would  like  to  thank  my  supervisors  Dr.  Phil  Ciufo  and  Prof.  Danny  Soetanto  for  their   guidance,  and  Endeavour  Energy  for  providing  network  models  and  data.    
  • 4. iii     iii         Statement  of  Originality         I,  Matthew  Wardhaugh,  declare  that  this  thesis,  submitted  as  part  of  the  requirements   for  the  award  of  Bachelor  of  Engineering,  in  the  School  of  Electrical,  Computer  and   Telecommunications  Engineering,  University  of  Wollongong,  is  wholly  my  own  work   unless  otherwise  referenced  or  acknowledged.  The  document  has  not  been  submitted   for  qualifications  or  assessment  at  any  other  academic  institution.         Signature:                     Print  Name:                     Student  ID  Number:   3667315     Date:                        
  • 5. iv     iv     Contents             Abstract  ....................................................................................................................................................................  i   Acknowledgements  ...........................................................................................................................................  ii   Statement  of  Originality  .................................................................................................................................  iii   Contents  ................................................................................................................................................................  iv   List  of  Figures  ......................................................................................................................................................  vi   List  of  Tables  ......................................................................................................................................................  vii   List  of  Equations  .............................................................................................................................................  viii   Abbreviations  and  Symbols  ..........................................................................................................................  ix   List  of  Changes  ......................................................................................................................................................  x   1   Introduction  ................................................................................................................................................  1   2   Literature  Review  .....................................................................................................................................  3   2.1   Power  system  and  network  configuration  ............................................................................  3   2.1.1   Layout  of  grid  ............................................................................................................................  3   2.1.2   Feeder  Voltages  ........................................................................................................................  3   2.1.3   Voltage  Correction  ..................................................................................................................  4   2.2   Electric  Vehicles  ................................................................................................................................  5   2.2.1   EV,  PHEV,  Extended  Range  EV  ...........................................................................................  5   2.2.2    Configuration  ...........................................................................................................................  6   2.2.3    Battery  system  .........................................................................................................................  6   2.2.4   Charging  ......................................................................................................................................  7   2.2.5   Growth  ..........................................................................................................................................  8   2.3   Impacts  of  Charging  .........................................................................................................................  9   2.3.1     Uncoordinated  Charging  ......................................................................................................  9   2.3.2    Coordinated  Charging  .........................................................................................................  10   2.4   Summary  ............................................................................................................................................  12   3   Methodology  .............................................................................................................................................  13   3.1   Load  Flow  ..........................................................................................................................................  13   3.1.1   Load-­‐Flow  Solutions  .............................................................................................................  13   3.1.2   Load  Types  ...............................................................................................................................  13   3.2   Modelling  ...........................................................................................................................................  15   3.2.1   DIgSILENT  PowerFactory  Models  ..................................................................................  15   3.2.2   DIgSILENT  Programming  Language  (DPL)  Script  ...................................................  18  
  • 6. v       v       3.2.3   Load  Profiles  ............................................................................................................................  18   3.2.4   Loading  Assumptions  ..........................................................................................................  20   3.2.5   Load  Scaling  .............................................................................................................................  21   3.3   Simulation  ..........................................................................................................................................  26   3.3.1   Graphical  User  Interface  .....................................................................................................  26   3.3.2   GUI  Structure  ...........................................................................................................................  27   3.4   Scenarios  ............................................................................................................................................  29   3.4.1   Uncoordinated  Charging  ....................................................................................................  29   3.4.2   Coordinated  Charging  ..........................................................................................................  30   3.4.3   11  kV  ...........................................................................................................................................  31   4   Results  .........................................................................................................................................................  33   4.1   Base  Load  Profile  ............................................................................................................................  33   4.1.1   Effects  of  Temperature  on  Substation  Loading  ........................................................  33   4.1.2   Load  Scaling  .............................................................................................................................  33   4.1.3   Network  Type  .........................................................................................................................  34   4.2   Uncoordinated  Charging  .............................................................................................................  35   4.2.1   11  kV  Voltage  Regulation  ...................................................................................................  35   4.2.2   400  V    Transformer  and  Feeder  Loading  ....................................................................  36   4.2.3   11  kV  Transformer  Loading  ..............................................................................................  42   4.3   Coordinated  Charging  ...................................................................................................................  43   4.3.1   3-­‐Group  Charging  ..................................................................................................................  43   4.3.2   Six-­‐Group  Charging  ...............................................................................................................  45   4.3.3   11  kV  ...........................................................................................................................................  45   5   Conclusion  .................................................................................................................................................  46   References  ...........................................................................................................................................................  48   Appendix  A  ..........................................................................................................................................................  51   Appendix  B  ..........................................................................................................................................................  54   Appendix  C  ..........................................................................................................................................................  55                        
  • 7. vi     vi       List  of  Figures         Figure  2.1:  Radial  Feeder  Distribution  ......................................................................................................  3   Figure  2.2:  Feeder  Voltage  Profiles  ............................................................................................................  4   Figure  2.3:  Electric  Vehicle  Configuration  ...............................................................................................  6   Figure  2.4:  Lithium-­‐Ion  Charge  Curve  [26]  .............................................................................................  8   Figure  3.1:  Load  Flow  Analysis  [4]  ...........................................................................................................  13   Figure  3.2:  400  V  Overhead/Underground  DIgSILENT  Model  .....................................................  16   Figure  3.3:  11  kV  Overhead  DIgSILENT  Model  ....................................................................................  17   Figure  3.4:  Average  number  of  travellers  in  NSW  on  weekdays  in  2010/11  ........................  19   Figure  3.5:  Scaled  driver  arrival  times  ....................................................................................................  20   Figure  3.6:  Feeder  voltage  profile,  moving  from  last  premise  to  transformer  from  right  to   left  ...........................................................................................................................................................................  23   Figure  3.7:  MATLAB  GUI  ...............................................................................................................................  26   Figure  3.8:  Flowchart  displaying  the  interaction  of  programs  required  for  GUI   simulations  ..........................................................................................................................................................  27   Figure  4.1:  Woodlands  Drive  substation  loading  for  38.7  and  19.9  degrees  celsius  days33   Figure  4.2:  Woodlands  Drive  substation  total  load  compared  to  scaled  sample  loads  .....  34   Figure  4.3:  Woodlands  Drive  substation  load  for  overhead  and  underground  networks34   Figure  4.4:  Impact  of  increasing  charger  rating  on  undergroudn  network  at  100%  EV   penetration  .........................................................................................................................................................  40   Figure  4.5:  4  kW  three-­‐group  coordinated  charging  for  different  transformer  base  levels  ..................................................................................................................................................................................  43   Figure  4.6:  Six-­‐group  coordinated  charging  for  a  95%  loaded  transformer  ..........................  45      
  • 8. vii     vii       List  of  Tables       Table  2.1:  Current  EV  Battery  Capacities  [11][13-­‐16]  .......................................................................  7   Table  2.2:  International  EV  Charging  Standards  ..................................................................................  7   Table  3.1:  Network  Equipment  Parameters  .........................................................................................  17   Table  3.2:  Variable  Options  Structure  .....................................................................................................  27   Table  4.1:  Woodlands  Drive  substation  transformer  loading  and  voltage  regulation  for   varying  EV  penetrations  ................................................................................................................................  36   Table  4.2:  Maximum  EV  penetration  for  4  kW  LV  uncoordinated  charging  ...........................  38   Table  4.3:  Maximum  EV  penetration  for  7  kW  LV  uncoordinated  charging  ...........................  39   Table  4.4:  Maximum  EV  penetration  for  10  kW  LV  uncoordinated  charging  ........................  40   Table  4.5:  Maximum  EV  penetration  at  zone  substation  assuming  worst  loading  day  in   2010/11  ...............................................................................................................................................................  42   Table  4.6:  Maximum  EV  penetration  for  7kW  LV  coordinated  charging  .................................  44   Table  4.7:  Maximum  EV  penetration  for  10  kW  LV  coordinated  charging  .............................  44                        
  • 9. viii     viii       List  of  Equations       Equation  3.1  ........................................................................................................................................................  14   Equation  3.2  ........................................................................................................................................................  14   Equation  3.3  ........................................................................................................................................................  21   Equation  3.4  ........................................................................................................................................................  22   Equation  3.5  ........................................................................................................................................................  23   Equation  3.6  ........................................................................................................................................................  23   Equation  3.7  ........................................................................................................................................................  24   Equation  3.8  ........................................................................................................................................................  24   Equation  3.9  ........................................................................................................................................................  24   Equation  3.10  .....................................................................................................................................................  24   Equation  3.11  .....................................................................................................................................................  25   Equation  3.12  .....................................................................................................................................................  25   Equation  3.13  .....................................................................................................................................................  25                          
  • 10. ix     ix         Abbreviations  and  Symbols       EV     Electric  Vehicle   BEV     Battery  Electric  Vehicle   PHEV     Plug-­‐In  Hybrid  Electric  Vehicle   IC     Internal  Combustion   V2G     Vehicle  to  Grid   OLTC     On-­‐load  tap  changer   SC     Switched  capacitor   SoC     State  of  Charge   Li-­‐ion     Lithium  ion   NiMH     Nickel-­‐metal  hydride   PV     Photovoltaic   DC     Direct  current   AC     Alternating  current   pu     per  unit   𝑗𝑋     Reactance,  Ohms   𝑅     Resistance,  Ohms   𝑍     Impedance,  Ohms   𝑃     Power,  Watts   𝑉     Voltage,  Volts        
  • 11. x       x         List  of  Changes         Section   Statement  of  Changes   Page  Number   1   Removed  references  to  solar  and  V2G,  added  description   of  new  work   1,2   2.2   Removed  sentence  relating  to  V2G   5   2   Removed  Solar  section   -­‐   2.3.2   Removed  Solar  sub-­‐subsection   11   2   Removed  ‘V2G  Benefits’  section   -­‐   2.3.1   Added  analysis  of  loading  assumptions  in  literature   10   3   Replaced  Methodology  section   32   4   Replaced  Results  section   13  
  • 12. 1     1     1 Introduction       The  world  is  currently  experiencing  a  major  shift  in  the  way  energy  is  generated  and   consumed.  Pressing  issues  such  as  climate  change  and  declining  fossil  fuel  reserves  are   changing  the  way  people  think  about  the  environment.  Also,  technological  advances  are   allowing  renewable  generation  and  energy  storage  to  become  technically  and   economically  viable,  paving  the  way  for  an  emissions  free  future.   Electric  vehicles  (EV)  and  plug  in  hybrid  electric  vehicles  (PHEV)  (used   interchangeably  in  this  text)  are  becoming  increasingly  popular  due  to  the  impetus  of   these  factors.  Significant  advances  in  battery  storage  capabilities  are  allowing  EVs  to   become  a  viable  alternative  to  internal  combustion  (IC)  vehicles.  Their  storage  of   electricity  allows  energy  to  be  sourced  from  renewable  sources  such  as  wind  and  solar,   allowing  for  zero  emission  driving.  This  is  significant,  as  it  would  play  a  large  role  in   reducing  CO₂  emissions  and  localised  air  pollution  levels  [1].    Without  proper  planning,  however,  EVs  are  expected  to  produce  undesired   impacts  on  the  low  voltage  distribution  network  when  charged  in  an  uncoordinated   manner.  Charging  will  occur  whenever  convenient  for  the  driver,  such  as  on  arrival   home  from  work,  increasing  the  evening  peak  load  and  causing  stress  to  network   equipment,  particularly  at  distribution  levels.  Due  to  the  large  amount  of  energy  drawn   during  charging  periods,  it  is  expected  that  at  high  penetration  levels  this  will  present   serious  power  quality  issues  for  the  grid,  including  potential  transformer  overloading   and  voltage  sags,  resulting  in  outages,  equipment  damage  and  energy  loss  [2][3].   This  outcome  may  be  avoided  if  electric  vehicle  charging  can  be  coordinated  in   such  a  way  to  avoid  the  evening  load,  and  instead  be  automated  for  charging  during  low-­‐ demand  periods,  such  as  late  at  night.  Smart  infrastructure  currently  being   contemplated  will  allow  charging  times  to  be  staggered  between  different  households  to   allow  a  more  evenly  distributed  feeder  load.   The   proposed   focus   of   this   thesis   is   to   investigate   the   impact   of   introducing   a   significant   number   of   EVs   on   the   residential   distribution   system,   particularly   during   uncoordinated  charging  periods  that  coincide  with  peak  load.  The  load  flow  simulation   package  DIgSILENT  PowerFactory  will  be  used  to  carry  out  the  investigations.  Means  of   avoiding   the   undesirable   impacts   of   EV   charging   will   be   investigated,   using   several  
  • 13. 2     2     scenarios   to   determine   the   viability   of   load   levelling.   This   study   will   determine   the   effects   of   charging   on   residential   feeder   voltage   levels,   consequently   discerning   the   associated  impacts  on  transformer  loading  and  energy  loss.   In  order  to  study  the  impacts  of  charging  on  the  residential  distribution  network,   typical  400V  and  11  kV  radial  residential  feeders  have  been  modelled  in  PowerFactory,   using  smart  metering  data  from  premises  in  the  Endeavour  Energy  network  area  of   Glenmore  Park.  Associated  variables  have  been  accounted  for,  including  battery   capacities,  charging  power,  base  load  demand,  load  power  factor  and  phase  unbalance.   To  aid  network  planners  in  making  decisions  based  on  future  electric  vehicle  loading,  a   graphical  user  interface  has  been  developed  using  MATLAB  GUIDE.  This  allows   DIgSILENT  PowerFactory  to  be  controlled  remotely  to  run  various  EV  loading  scenarios,   displaying  transformer  loading  and  voltage  regulation  results  both  numerically  and   graphically  for  analysis.                                          
  • 14. 3     3     2 Literature  Review     2.1 Power  system  and  network  configuration     2.1.1   Layout  of  grid     The  electricity  grid  is  a  complex  network  that  acts  as  a  path  for  electricity  from  generators   to  consumers.  The  layout  of  the  grid  is  an  important  concept  that  must  be  understand  to   grasp  an  idea  of  how  electric  vehicles  will  be  connected  and  the  effects  that  they  will  have  on   the  network.    The  traditional  grid  can  be  divided  into  generation,  transmission  and  distribution   levels.  The  transmission  network  steps  generator  voltages  up  in  order  to  reduce  the  losses   associated  with  high  currents  over  long  distances,  usually  at  230  kV  to  765  kV  [4].  As  these   high  voltage  feeders  branch  towards  large  populations,  they  are  stepped  down  in  to  the   distribution  network.  Zone  substations  convert  voltages  to  11  kV  for  residential  feeders,   which  then  connect  to  pole  top  or  pad  mount  transformers  that  finally  supply  400  V,  or       230  V  line-­‐to-­‐neutral,  for  use  in  homes  and  businesses  [5].   The  distribution  network  is  the  most  important  section  of  the  grid  to  understand  when   conducting  load  flow  analysis  on  residential  loads,  as  EVs  and  distributed  generation,  such   as  solar  PV,  are  both  connected  at  the  low  voltage  level.  From  zone  substations,  feeders  are   typically  connected  radially  [6][4]  as  they  branch  out  through  streets,  shown  in  Fig  2.1.  This   radial  layout  will  be  used  for  modelling  residential  feeders.     Figure  2.1:  Radial  Feeder  Distribution   2.1.2   Feeder  Voltages     Basic  circuit  theory  states  that  a  voltage  drop  will  result  as  current  flows  through  an   impedance.  Therefore,  as  transformer  loading  is  increased,  the  voltage  drop  along  a   feeder  becomes  greater.  Conversely,  during  periods  of  high  generation,  net  feeder  
  • 15. 4     4     current  is  reduced,  raising  voltage  levels  closer  to  that  of  the  transformer.    During  heavy   loading  or  generation  periods,  voltage  levels  may  surpass  utility  limits.  The  AS/NZS   3000:2007  states  that  in  Australia,  voltage  limits  must  not  move  beyond  +10%  or  -­‐6%  of   nominal  value  to  avoid  damage  to  connected  equipment,  corresponding  to  253  V  and   216  V  line-­‐to-­‐neutral  [5].    Fig.  2.2  shows  the  effects  of  different  load  scenarios  on  feeder   voltage  levels.  Realistically,  these  voltages  would  not  have  a  linear  profile,  even  for   uniform  loading  across  the  feeder,  as  currents,  and  hence  the  rate  of  voltage  drop,  is   greater  closer  to  the  transformer.       Figure  2.2:  Feeder  Voltage  Profiles   Another  consequence  of  voltage  deviations  along  feeders  is  power  loss.   Feeder  power  loss  is  proportional  to  the  square  of  a  voltage  change,  therefore  it  is   important  to  reduce  this  change  in  voltage  along  a  feeder  as  much  as  possible.     2.1.3   Voltage  Correction     Voltage  control  is  important  for  addressing  changes  in  line  voltages.  Network   equipment,  such  as  transformers  and  lines  are  designed  to  operate  within  certain   voltage  limits.  Most  importantly,  however,  are  the  loads  connected  to  LV  feeders,  which   may  become  damaged  while  drawing  power  at  excessive  or  limited  voltage  levels.     In  order  to  maintain  voltage  levels  within  a  specified  range  such  as  this,  a  range   of  network  equipment  is  utilised.  In  distribution  networks,  voltage  control  is  typically   achieved  using  on-­‐load  tap  changers  (OLTC),  step  voltage  regulators  (SVR)  and  switched   capacitors  (SC)  [7].  OLTCs  and  SVRs  are  both  autotransformers  with  automatic  tap   changing.  Normally  the  voltage  regulator  in  a  substation  is  an  OLTC,  while  an  SVR  would   be  located  along  a  feeder,  down  to  LV  levels  [7].    SCs  are  used  for  reactive  power   compensation  in  distribution  networks.  An  SC  reduces  the  displacement  between  real   and  reactive  power  components  to  reduce  voltage  drop  across  lines  that  are  primarily  
  • 16. 5     5     inductive.  In  low  voltage  networks,  the  most  common  voltage  regulators  are  off-­‐load   tap-­‐changers,  located  within  distribution  transformers  [8].  The  transformer  ratio  must   be  changed  manually,  generally  over  a  multiple  year  span  as  network  loading  increases.   Although  SVRs  and  switched  capacitors  can  exist  in  LV  areas,  this  is  uncommon  due  to   the  large  number  of  feeders,  and  the  associated  costs.   Therefore,  on  residential  feeders,  voltage  control  is  limited  to  off-­‐load  tap   changers  on  pole-­‐top  and  pad  mount  transformers.  The  manual  nature  of  this  tap   changing  is  uncoordinated,  therefore  this  is  far  from  being  an  optimal  solution  to   addressing  the  large  scale  integration  of  EVs.   Taking  the  characteristics  of  common  network  equipment  into  account,  the  coordinated   charging  of  EVs  can  be  seen  as  a  worthwhile  solution  to  this  problem  as  the  load  factor   of  a  feeder  may  be  reduced.     2.2   Electric  Vehicles     Electric  vehicles  are  vehicles  that  contain  a  rechargeable  battery  pack,  requiring   charging  by  a  grid  connected  battery  charger.  EVs  are  becoming  popular  as   environmental  awareness  is  increasing  across  the  world,  as  they  produce  little  to  no   emissions.  Improvements  in  battery  technology  are  seeing  prices  fall  rapidly,  allowing   EVs  to  become  a  viable  alternative  to  internal  combustion  (IC)  vehicles.  Penetration  of   EVs  is  beginning  to  increase,  with  over  20  models  due  to  reach  the  markets  in  2012  [9].     2.2.1   EV,  PHEV,  Extended  Range  EV     There  are  four  main  types  of  electric  vehicles  that  currently  exist:  Hybrid,  Plug-­‐in  Hybrid   (PHEV),  Extended-­‐Range  and  Battery  EVs  (BEV)  [10].  Hybrid  and  PHEVs  contain  both   combustion  engines  and  electric  motors  with  battery  storage.  Unlike  hybrids,  however,   PHEVs  can  also  be  charged  through  an  external  battery  charger,  further  reducing   reliance  on  the  combustion  engine  [10]  Extended-­‐Range  EVs  are  similar  to  PHEVs  and   include  vehicles  such  as  the  Holden  Volt  [11].  The  electric  engine  is  used  for  all  driving   speeds  until  the  battery  is  discharged,  and  is  then  replaced  by  the  combustion  engine.   Lastly,  BEVs  are  all  electric  with  no  combustion  engine.  They  contain  large  battery  packs   that  must  be  charged  by  the  grid.    
  • 17. 6     6     In  relation  to  the  topic  of  this  thesis,  hybrid  vehicles  are  considered  irrelevant,  as   they  are  not  charged  by  the  grid.  Therefore,  the  vehicles  of  focus  will  be  PHEVs,   Extended-­‐Range  EVs  and  BEVs,  referred  to  collectively  throughout  this  text  as  ‘EVs’.     2.2.2    Configuration     The  basic  configuration  of  an  EV,  including  an  IC  engine,  which  is  only  applicable  to   PHEVs  and  EREVs,  is  shown  by  the  simplified  block  diagram  in  Fig.  2.3.     Figure  2.3:  Electric  Vehicle  Configuration     Charging  requires  communication  with  the  battery-­‐monitoring  unit  that  measures  the   batteries  state  of  charge  (SoC).  The  inverter  is  used  after  a  DC-­‐DC  converter  to  convert   direct  current  (DC)  into  alternating  current  (AC)  to  power  the  electric  motor.     2.2.3    Battery  system     For  electric  vehicles  to  be  a  viable  alternative  to  IC  vehicles,  their  battery  storage  must   contain  enough  energy  to  ensure  suitable  range  for  drivers.  The  most  important  factor   affecting  this  is  the  energy  to  weight  ratio  of  a  battery  pack,  or  its  energy  density.  This   allows  vehicles  to  be  as  light  as  possible  for  a  given  amount  of  energy  storage,  ensuring   the  greatest  range  possible.   There  exist  three  main  battery  types  for  electric  vehicles:  lead-­‐acid,  nickel-­‐metal   hydride  (NiMH)  and  lithium-­‐ion  (li-­‐ion)  [12].  In  the  past,  EVs  such  as  the  General  Motors   EV1  used  lead-­‐acid  and  nickel-­‐metal  hydride  batteries.  In  recent  years,  however,  the   demand  for  batteries  in  laptops  and  other  portable  devices  has  driven  R&D  in  the  area  of   lithium-­‐ion  batteries,  improving  energy  density  and  charge  time  beyond  other  battery   types.  Due  to  these  improvements,  major  EV  manufacturers  now  use  lithium  ion  battery   packs  [11][13-­‐16].  
  • 18. 7     7     Table  2.1  provides  a  list  of  current  vehicles  and  their  battery  capacities,  showing  a   significant  range  of  battery  capacities  that  will  form  the  basis  for  modelling.     Electric  Vehicle   Battery  Capacity   Tesla  Model  S   40,  60,  85  kWh   Nissan  Leaf   24  kWh   Ford  Focus  Electric   23  kWh   Holden  Volt   8  kWh   Toyota  Prius  Plug-­‐In   4.4  kWh   Table  2.1:  Current  EV  Battery  Capacities  [11][13-­‐16]   2.2.4   Charging     Based  on  standards  by  the  International  Electrotechnical  Commission  (IEC)  [17]  and  the   Society  of  Automotive  Engineers  J1772  [18],  there  exists  three  charging  levels:     Level   Voltage     Current   Power   1   120  V  AC   16  A   1.92  kW   2   208-­‐240  V  AC   12  –  80  A   2.5  –  19.2  kW   3   500  V  DC   125  A   50  kW   Table  2.2:  International  EV  Charging  Standards     The  residential  charger  rating  of  EV  manufacturers  vary  substantially  within  the  Level  2   range.  Nissan  and  Holden’s  chargers  are  rated  3.3  kW  [16][11],  Ford’s  at  7.7  kW  [14],   while  Tesla  manufactures  10  kW  or  20  kW  chargers  [13].  These  ratings  are  significant  in   comparison  to  other  appliances  found  in  the  home.   Fig.  2.4  shows  the  power  demand  and  battery  SoC  profiles  of  a  lithium  ion   battery.  
  • 19. 8     8       Figure  2.4:  Lithium-­‐Ion  Charge  Curve  [26]     Figure  2.4  shows  a  predominantly  constant  charging  power  for  the  duration  of  the   charging  period.  Therefore,  for  modelling  purposes,  a  constant  charge  rate  can  be   considered  accurate  to  assume.     2.2.5   Growth     Due  to  economic  and  technological  factors  surrounding  the  viability  of  electric  vehicles,   their  penetration  levels  are  expected  to  soar  this  decade  [19-­‐21].  Current  estimates   expect  the  price  of  oil  to  rise  by  85%  into  2020  [19],  and  this  rise  is  forecast  to  continue.   By  the  same  time,  lithium  ion  battery  technology  is  expected  to  dramatically  fall  as   economies  of  scale  reduces  manufacturing  costs,  and  technological  improvements  allow   energy  density  to  continually  increase.  Lithium  ion  battery  prices  have  fallen   considerably  from  US$650/kWh  in  2009  to  the  current  price  of  around  US$450/kWh.     Analysts  have  forecasted  prices  to  fall  at  a  7.5%  annual  compound  rate  from  2012   through  2020  to  approximately  US$250/kWh  [19].  EV  manufacturer  Tesla  Motors  is   already  producing  battery  packs  with  480  km  of  range  [13].   Taking  these  factors  into  consideration,  analysts  from  Deutsche  Bank  [19]  have   predicted  that  in  the  US,  around  10%  of  all  vehicles  will  be  hybrid/electric  by  2021,   increasing  to  20%  by  2026,  and  35%  by  2030.  In  terms  of  purchased  vehicles,  EVs  are   expected  to  make  up  3-­‐10%  of  new  car  sales  as  early  as  2015  [20]  and  35%  in  2025,   comprised  of  25%  PHEVs  and  10%  EVs,  according  to  IDtechX  analysts  [21].  These   projections  show  that  a  major  shift  is  about  to  occur,  resulting  in  a  significant   percentage  of  vehicles  becoming  at  least  partially  electric.  This  analysis  raises  questions   about  the  effects  of  a  large  percentage  of  EVs  on  the  distribution  network,  as  well  as  the  
  • 20. 9     9     potential  problems  this  extra  energy  storage  may  solve.     2.3   Impacts  of  Charging     2.3.1     Uncoordinated  Charging     The  introduction  of  EVs  is  expected  to  have  a  significant  effect  on  customer  load  profiles   during  charging  periods.  Studies  in  [2],  [3]  and  [22]  have  concluded  that,  for  high   penetration  levels,  uncoordinated  domestic  charging  will  increase  peak  load  demand   significantly,  resulting  in  transformer  overloading,  poor  feeder  voltage  profiles  and   power  loss.       The  authors  of  [2]  and  [22]  have  conducted  studies  on  uncoordinated  charging   on  residential  radial  feeders,  focusing  on  evening  peaks.  The  modelled  charger  rating   was  4  kW  [2],  and  1.8  kW  in  [22],  both  showing  dramatic  rises  in  peak  load,  clearly   overloading  the  transformer  limitations  for  penetrations  above  20%  in  [22]  and   exceeding  voltage  limits  in  [2]  at  17%.  The  effects  of  peak-­‐time  charging  on  summer  and   winter  load  profiles  are  explored  in  [23]  and  [3].  The  UK  winter  load  profile  in  [23]   showed  a  distinct  evening  peak  compared  to  summer  due  to  electric  heating.  This   caused  the  peak  demand  to  be  increased  by  13.6%  compared  to  10.06%  for  summer  at   10%  EV  penetration.  Although  this  paper  conducts  a  load  study  for  the  entire  UK,  it  is   probable  that  this  would  reflect  the  demand  of  residential  feeders,  as  most  vehicles   would  be  at  home  during  this  period.  A  study  is  conducted  in  [3]  to  determine  the  effects   of  peak  charging  on  power  loss  and  voltage  deviation.  The  voltage  limit  of  0.9  pu  was   found  to  be  exceeded  at  30%  EV  penetration  with  a  4  kW  charger,  with  total  power  loss   at  6%  in  winter  compared  to  5%  in  summer.   These  papers  clearly  show  that  uncoordinated  charging  would  have  a  large   impact,  even  at  low  penetration  levels.  However,  an  analysis  of  these  papers  show  the   large  number  of  variables  associated  with  such  studies.  For  example,  the  voltage  limit  of   0.9pu  in  [3]  differs  to  0.94  used  in  Australia,  as  well  as  the  UK  load  profiles  in  [23].   Another  assumption  made  in  these  studies  is  a  relatively  low  powered  charger,   particularly  in  [22].  A  higher-­‐powered  charger  more  commonly  used  today  would  have  a   significantly  increase  the  peak  demand  determined  by  these  papers.  Of  all  the   assumptions  made,  however,  the  most  important  variable  used  to  determine  the  impacts  
  • 21. 10     10     of  uncoordinated  charging  is  the  time  the  vehicles  arrive  home  to  begin  charging.  In  the   related  papers  [2-­‐3]  [24-­‐26],  and  number  of  assumptions  in  relation  to  charging  times   have  been  made,  while  there  exists  a  significant  degree  of  ambiguity  when  these   assumptions,  such  as  the  data  used,  is  explained.  Papers  [2]  and  [22]  fail  to  explain  how   their  vehicle  arrival  times  are  modelled,  while  [23]  simply  divides  charging  into  three   groups  during  the  evening  peak,  assuming  that  all  vehicles  commence  charging  within   90  minutes  of  one  another.  Papers  [24]  and  [27]  assume  a  more  accurate  normal   distribution,  however  still  disregard  actual  driving  statistics,  such  as  those  provided  by   the  UK  Time  of  Use  survey  noted  in  [23]  and  [3].  Paper  [3]  takes  into  account  the   statistics  from  this  survey  by  dividing  charging  times  according  to  the  morning,  midday   and  late  afternoon  periods,  and  making  assumptions  about  the  percentage  of  cars  that   charge  during  these  times.  Paper  [3]  applies  the  most  accurate  data  regarding  charging   times  as  it  incorporates  the  irregular  and  skewed  peak  provided  by  a  traffic  authority.   Considering  this,  the  majority  of  research  has  been  conducted  with  inaccurate   assumptions,  possibly  causing  significant  variations  in  results  as  the  charging  times,   along  with  the  assumed  charger  rating,  are  the  factors  that  most  influence  the  results  of   loading  simulations.  Charging  times  for  the  uncoordinated  charging  simulations  in  this   thesis  will  be  based  on  local  driving  data  to  ensure  the  most  accurate  modelling  possible.       Therefore,  to  more  accurately  determine  the  effects  of  uncoordinated  charging,  it   is  important  to  use  local  load  profiles,  standards  and  driving  statistics,  with  assumptions   that  are  up  to  date,  or  reflect  expected  future  trends.  These  variables  will  be  taken  in  to   account  in  this  thesis,  to  more  accurately  determine  possible  effects  on  typical   Australian  residential  feeders.     2.3.2    Coordinated  Charging     The  effects  of  uncoordinated  charging  show  the  importance  of  coordinated  or   ‘smart’  charging  in  the  future.  This  would  be  achieved  through  communication   infrastructure  in  a  smart  grid,  by  sending  signals  to  begin  charging  at  times   corresponding  to  uniform  loading  [24].  Coordinated  charging  employs  heuristic   algorithms  and  optimization  techniques  with  the  aim  to  improve  load  factor  and  reduce   network  costs  and  power  losses  by  charging  during  off  peak  periods  [2][24].  As  cars  are   available  for  94.8%  of  the  day  on  average  [23],  coordinated  charging  can  be  considered   viable,  as  a  large  amount  of  flexibility  exists  in  charging  times.    
  • 22. 11     11     A  large  number  of  studies  have  been  conducted  on  novel  approaches  to   coordinating  vehicles,  with  the  aim  to  reduce  evening  peak  demand.  These  range  from   complicated  algorithms  based  on  real-­‐time  market  prices  in  [27]  to  prioritizing  charging   periods  in  [2],  to  simple  delayed  off-­‐peak  charging  in  [23].   Throughout  the  majority  of  coordinated  charging  studies,  the  uncertainties  of  variables,   such  as  load  profiles  and  charging  time,  are  expressed  in  terms  of  probability  density   functions,  allowing  predictions  to  be  made  without  relying  on  fixed-­‐input  variables,  such   as  an  average  past  load  profile  [27].  The  authors  in  [27]  determined  that  coordinated   charging  reduced  load  factor  and  power  losses  by  6-­‐28%  for  penetration  levels  from   10%  to  100%.    In  [27],  a  control  algorithm  was  implemented  for  coordinated  charging   on  an  LV  feeder  in  Belgium,  based  on  a  typical  local  load  profile.  The  results  showed  a   peak  demand  reduction  of  29%  for  a  combination  of  3.6  kW  and  7.4  kW  chargers  at  15%   penetration.    Papers  [2]  and  [27]  take  different  real-­‐time  approaches,  dividing  charging  times   into  red,  blue  and  green  zones,  based  on  the  priority  of  charging.  In  [27],  charging   priority  is  determined  based  on  the  time  vehicles  arrive  home,  as  a  vehicle  that  arrives   late  would  have  a  low  chance  of  being  used  for  the  remainder  of  the  night.  This  paper   found  that  load  demand  could  remain  below  the  evening  peak  for  penetration  levels  of   at  least  63%,  as  low  priority  vehicles  could  be  spread  further  into  the  morning  hours.   Above  this  penetration,  however,  this  paper  found  that  high  and  medium  priority   vehicles  raised  the  peak  demand  above  the  evening  peak,  therefore  stating  there  will   inevitably  be  a  rise  in  peak  demand  as  EV  penetration  reaches  high  levels.   The  study  in  [27]  assumes  a  2  kW  peak,  which  is  relatively  low,  especially  as  this   aims  to  determine  loading  decades  in  to  the  future,  which  is  expected  to  rise  irrespective   of  EVs.  Another  assumption  is  that  low  priority  charging  is  timed  to  finish  at  4  am,   however  this  could  realistically  be  increased  to  6  am,  for  example,  for  the  majority  of   people  who  leave  for  work  after  this  time.  This  would  allow  a  higher  penetration  before   peak  demand  is  raised.   The  authors  in  [23]  have  included  a  study  on  fixed  off-­‐peak  charging,  which  is   implemented  by  simply  charging  in  three  groups,  at  9  pm,  9:30  pm  and  10  pm.  This   avoids  the  evening  peak,  while  allowing  sufficient  time  to  charge  through  to  early   morning.  This  paper  finds  that  the  charging  peak  is  less  than  the  evening  peak  for  low   penetration,  but  states  that  this  may  not  be  the  case  for  penetration  greater  than  10%.   This  is  compared  to  a  study  on  ‘smart’  market  based  charging,  which  shows  a  noticeable  
  • 23. 12     12     reduction  in  charging  peak  load.  From  analysis  of  the  fixed  off-­‐peak  charging  graph,  it   shows  charging  is  finished  by  2  am.  This  shows  a  large  percentage  of  early  morning   hours  with  lower  base  demand  that  are  not  utilized,  therefore  it  could  be  argued  that   this  method  could  support  penetration  much  higher  than  the  10%  stated.  The  simplicity   of  the  fixed  off-­‐peak  method,  and  the  lack  of  research  associated  with  it,  presents  an   opportunity  for  study  in  this  thesis.  This  would  eliminate  the  need  for  complicated   algorithms  at  residential  feeders,  and  may  not  require  smart  infrastructure,  as  signalling   could  be  sent  via  high  frequency  pulses,  as  they  are  today  to  control  off-­‐peak  hot  water   systems.  Lower  electricity  rates  would  provide  the  incentive  for  the  majority  of  owners   to  use  this  method,  while  allowing  a  simple  manual  over-­‐ride  when  required.  However,   in  terms  of  load  levelling,  coordinated  charging  would  be  a  valuable  approach  to  further   reduce  energy  losses.  Initially,  this  method  will  be  tested  by  simulating  a  simple  fixed-­‐ start  delay,  with  preliminary  work  on  staggered  charging  to  focus  on  further  reducing   power  loss.     2.4   Summary     The  results  of  various  studies  related  to  charging  produce  a  wide  range  of  results  due  to   the  number  of  variables  associated  with  distribution  networks  and  electric  vehicles.   From  this  analysis,  a  noticeable  gap  exists  in  research  of  the  impact  of  EVs  applicable  to   Australian  residential  feeders.  Particularly,  there  is  a  lack  of  study  that  incorporates   realistic  driving  pattern  data,  through  either  the  use  of  information  from  traffic   authorities  or  by  conducting  surveys.                  
  • 24. 13     13     3 Methodology     The  study  of  literature  in  Chapter  2  presents  a  number  of  areas  that  can  be  further   studied  to  determine  the  impacts  of  EV  charging.  Further  study  would  gain  valuable   information  for  electricity  distribution  network  service  providers  in  planning  for  future   development,  as  well  determine  the  benefits  for  residents.   3.1 Load  Flow     3.1.1 Load-­‐Flow  Solutions     To  determine  loading  effects  in  the  context  of  an  Australian  residential  feeder,  load  flow   analysis  must  be  conducted.  A  simple  single-­‐line  diagram  can  be  realized  in  Fig.  3.1.       Figure  3.1:  Load  Flow  Analysis  [4]     Figure  3.1  represents  a  simple  power-­‐flow  scenario.  Power-­‐flow  problems  such  as  this   are  separated  in  to  the  following  components:   1. Slack  bus  –  a  reference  bus  for  which  V∠δ°  =  1.0∠0°   2. Load  (PQ)  bus  –   𝑃!  and   𝑄!  are  input  loads,  used  to  compute   𝑉!  and  δ!   3. Voltage  controlled  (PV)  bus  –   𝑃!  and   𝑉!  are  inputs,  includes  voltage  control   devices  such  as  OLTC,  switched  capacitors   The  power  flow  data  listed  is  used  to  calculate  power-­‐flow  solutions  using  methods  such   as  Guass-­‐Seidell  and  Newton-­‐Raphson,  which  solve  nodal  equations  iteratively  [7].     3.1.2 Load  Types   Another  important  consideration  that  must  be  made  during  load  flow  analysis  is  the   type  of  load  connected  to  each  load  bus.  Load  behaviour  is  determined  by  the  
  • 25. 14     14     combination  of  R,  L  and  C  elements  and  power  electronic  circuitry  of  a  load,  and  can  be   divided  into  three  types:   1. Constant  Power  (eg.  LED  TV,  computer)   2. Constant  Current  (eg.  CFL  globe)   3. Constant  Impedance  (eg.  Toaster,  oven)   Therefore,  for  any  given  voltage  a  load  will  conform  to  one  of  these  load  behaviours.  An   appliance  with  a  power  electronics  interface,  for  example,  with  exhibit  constant  power   characteristics  as  the  voltage  is  stepped  down  and  held  at  a  constant  DC  value,  as  this   voltage  will  be  constant  for  all  AC  source  voltage  levels.  A  resistive  load,  on  the  other   hand,  is  regarded  as  constant  impedance  and  will  draw  less  power  as  voltage  levels   drop,  according  to  Ohm’s  law.   The  voltage  dependency  of  loads  can  be  modelled  by  Eqs.    (3.1)  and  (3.2):     𝑃 = 𝑃!(𝑎𝑃 ∙ 𝑣 𝑣! !_!" + 𝑏𝑃 ∙ 𝑣 𝑣! !_!" + (1 − 𝑎𝑃 − 𝑏𝑃) ∙ 𝑣 𝑣! !_!" )   (3.1)     Where  1 − 𝑎𝑃 − 𝑏𝑃 = 𝑐𝑃     𝑄 = 𝑄!(𝑎𝑄 ∙ 𝑣 𝑣! !_!" + 𝑏𝑄 ∙ 𝑣 𝑣! !_!" + (1 − 𝑎𝑄 − 𝑏𝑄) ∙ 𝑣 𝑣! !_!" )   (3.2)     Where  1 − 𝑎𝑄 − 𝑏𝑄 = 𝑐𝑄     When  modelling  a  house  load,  a  number  of  assumptions  have  to  be  made.    For  the   purpose  of  this  simulation,  a  house  will  be  considered  as  a  constant  power  load,  as  each   house  will  be  associated  with  load  profiles  recorded  on  a  hot  day  where  the   predominant  load  type  is  a  constant  power  air  conditioner.  EVs  will  also  be  regarded  as   constant  power  loads,  as  the  charging  profile  of  a  lithium  ion  battery  charger  is  a   constant  power  curve.  From  Eq.  (3.1),  we  simply  require  𝑃 = 𝑃!,  therefore  all   coefficients  and  exponents  have  been  set  to  zero  in  the  voltage  dependence  settings  of   each  load.      
  • 26. 15     15     3.2 Modelling     A  realistic  network  model  is  imperative  for  determining  the  effects  of  EV  charging.   DIgSILENT  PowerFactory  was  chosen  for  this  purpose  due  to  its  flexibility  in  analysis,   incorporating  functions  such  as  unbalanced  power  flow,  and  remote  control  ability   through  DIgSILENT  Engine.  To  ensure  that  loading  results  were  as  accurate  as  possible,   emphasis  was  placed  on  applying  accurate  network  modelling  parameters,  load  profiles   and  vehicle  driving  statistics.   3.2.1 DIgSILENT  PowerFactory  Models       In  order  to  accurately  model  a  typical  low  voltage  network,  data  from  smart  meter-­‐ connected  premises  has  been  accumulated.  The  premises  of  interest  are  connected  to  a   500  kVA  pad-­‐mount  distribution  substation  in  Woodlands  Drive,  Glenmore  Park   (located  in  Western  Sydney),  which  supplies  92  premises  on  four  low  voltage   underground  feeders.  The  network  models  used  for  simulation  are  based  off  sample   DIgSILENT  feeder  models  provided  by  Endeavour  Energy.  Three  models  –  400  V   overhead,  400  V  underground  and  11  kV  overhead  –  were  modified  to  supply  the  same   number  of  loads  as  the  substations  in  Glenmore  Park.   When  implementing  the  LV  models,  each  premise  is  represented  by  a  single-­‐ phase  house  and  EV  load,  with  a  CSV  file  associated  with  each  load  containing  the  load   profile  information  for  a  single  day.  Due  to  limitations  with  the  number  of  possible   nodes  in  a  PowerFactory  student  license,  the  number  of  premises  has  been  halved  to  46   premises  split  across  two  feeders,  supplied  by  a  250  kVA  transformer.  Halving   transformer  ratings  and  feeder  numbers  ensures  an  accurately  scaled  model  for   determining  feeder  voltage  levels  and  transformer  loading.  Modelling  loads  as  single   phase  loads  allows  for  voltage  unbalance  to  be  accounted  for,  which  is  a  primary  cause   of  poor  voltage  regulation.  The  low  voltage  overhead  model  is  shown  in  Fig.  3.2.      
  • 27. 16     16       Figure  3.2:  400  V  Overhead/Underground  DIgSILENT  Model   To  model  the  impacts  of  electric  vehicle  charging  on  a  zone  substation  at  the  11  kV  level,   the  resulting  distribution  transformer  load  profiles  have  been  lumped  and  applied  to   each  of  the  transformer  loads  on  a  single  11  kV  feeder.  The  loading  magnitude  is   doubled  to  account  for  the  halved  number  of  premises  on  the  low  voltage  side,  so  that   each  transformer  is  represented  accurately  at  500  kVA.  There  are  10  11  kV  feeders   supplied  by  Glenmore  Park  Zone  Substation,  which  supplies  a  total  of  7596  premises.   Glenmore  Park  Zone  Substation  has  2  x  45  MVA  transformers  installed,  and   hence  has  an  N-­‐1  capacity  of  45  MVA.  With  an  average  of  760  premises  per  11  kV  feeder,   assuming  92  premises  per  500  kVA  of  installed  capacity,  there  would  be  an  average  of  8   LV  substations  connected  to  each  11  kV  feeder.  Therefore,  8  LV  substation  loads  have   been  modelled  on  the  11  kV  feeder,  and  the  total  zone  substation  load  is  determined  by   multiplying  the  total  feeder  loading  by  10  feeders.  Figure  3.3  shows  the  11  kV  feeder   model.  
  • 28. 17     17       Figure  3.3:  11  kV  Overhead  DIgSILENT  Model       Parameters  such  as  line  and  transformer  impedances,  shown  in  Table  3.1,  were  left   constant  as  they  represent  the  most  common  ratings  used  within  the  Endeavour  Energy   network.     400  V  Overhead   400  V  Underground   11  kV  Overhead   Feeder  Impedance     0.707  +  j0.284   Ω/km   0.162  +  j0.065  Ω/km   0.224  +  j0.224   Ω/km   Feeder  Section   Length     35  m   35  m   570  m   Service  Line   Impedance     1.49  +  j0.097  Ω/km   0.927  +  j0.081  Ω/km   N/A   Service  Line  Length   20  m   20  m   N/A   Transformer  Rating   250  kVA   250  kVA   N/A   Transformer   Impedance     4%   4%   N/A   Voltage  Source   Series  Impedance   0.5  +  j5  Ω     0.5  +  j5  Ω   0.021  +  j0.635  Ω   Table  3.1:  Network  Equipment  Parameters   The  11  kV  model  assumed  a  voltage  source  at  1  pu  voltage,  as  opposed  to  a  transformer,   as  the  transformer’s  OLTC  would  act  to  maintain  this  voltage  in  reality.  The  low  voltage   transformers  modelled  are  equipped  with  offline-­‐tap  changers  with  6  asymmetrical  tap   settings,  ranging  from  -­‐4  to  +1.  At  typical  tap  setting  for  LV  transformers  is  -­‐3,  or  -­‐7.5%,   corresponding  with  a  LV  bus  voltage  of  430  V.  An  increase  in  each  tap  setting  will  raise   the  voltage  by  2.5%,  allowing  for  a  12.5%  voltage  range  (-­‐10%  to  +2.5%).  As  LV  
  • 29. 18     18     transformer  taps  are  offline,  they  must  be  changed  manually  and  hence  would  only  be   changed  over  the  long  term  as  total  loading  increases,  not  in  response  to  a  permanent   increase  in  the  afternoon  peak  caused  by  EV  charging,  for  example,  as  this  would  cause   voltages  to  exceed  their  upper  limits  during  lower  loading  periods.  Instead,  this   regulation  must  be  controlled  using  zone  substation  OLTC’s  which  allow  for  real-­‐time   tap  changing.  As  EV  loading  is  expected  to  only  increase  the  afternoon/evening  peak,  the   tap  setting  is  expected  to  remain  constant  in  the  future.  Although  there  may  be  future   base  load  growth  as  the  penetration  of  air  conditioners  and  other  electrical  appliances   increases,  the  relative  difference  between  low  loading  periods  and  afternoon  EV  loading   will  likely  remain  constant,  therefore  the  actual  future  LV  substation  tap  setting  can  be   disregarded.   3.2.2 DIgSILENT  Programming  Language  (DPL)  Script     A  DIgSILENT  Programming  Language  (DPL)  script  allows  the  automation  of  load  flows   to  extract  specific  data  from  a  network  model.  A  DPL  script  was  provided  by  Endeavour   Energy  which  conducts  time-­‐step  simulation  load  flows  for  house  loads,  saving  power,   losses  and  voltage  data  into  result  objects  at  half  hour  intervals.  This  script  was   modified  to  read  EV  loads,  as  well  as  execute  ‘export  result  objects’  so  that  result  data   would  be  exported  to  text  files  each  time  the  script  was  run.  The  DPL  script  was   associated  with  each  network  model,  and  allowed  load  flow  simulations  to  be  conducted   via  engine  control  of  PowerFactory.     3.2.3 Load  Profiles     3.2.3.1 House  Load  Profiles     Loads  in  PowerFactory  can  be  associated  with  CSV  files  containing  multiple  time  points   for  conducting  time-­‐step  simulations.  Each  of  the  42  house  loads  has  an  associated  CSV   file  containing  the  smart  metering  data  of  a  premise  in  the  Glenmore  Park  trial  area,   chosen  at  random  from  the  92  metered  premises.  The  smart  metering  data  contains  the   power  usage  of  the  premises  over  a  24  hour  period  at  half  hour  intervals.  Each  premise   has  been  assigned  the  same  power  factor,  determined  as  the  average  of  the  premises   power  factor  during  the  evening  hours,  found  to  be  0.9  inductive.  The  selected  load   profiles  correspond  with  the  hottest  day  of  2011,  occurring  on  November  14  at  a  
  • 30. 19     19     maximum  temperature  of  38.7°C.  The  hottest  day  of  2011  was  chosen  as  network   planning  must  take  into  account  the  worst-­‐case  loading  scenarios  that  occur  on  hot  days,   caused  primarily  by  air  conditioners.     3.2.3.2 EV  Charging  Profiles     The  spread  of  EV  charging  start  times  were  determined  by  analysing  driving  statistics   from  the  NSW  Bureau  of  Transport  Statistics  [28],  shown  in  Fig  3.4.     Figure  3.4:  Average  number  of  travellers  in  NSW  on  weekdays  in  2010/11   This  graph  shows  the  average  number  of  travellers  in  NSW  on  weekdays  by  transport   type  in  2010/11.  For  determining  vehicle  arrival  times,  only  the  ‘Vehicle  Driver’  curve   was  considered.  The  time  of  arrival  was  determined  by  shifting  the  afternoon/night   peak,  between  2  pm  and  12  am,  by  20  minutes  -­‐  the  average  vehicle  one-­‐way  trip  time.   This  curve  was  then  normalised  between  2  pm  and  12  am,  and  multiplied  by  46  to   determine  the  number  of  premises  that  would  begin  charging  at  each  half  hour  interval   within  this  period.  The  resulting  scaled  driving  arrival  curve  is  shown  in  Fig  3.5,  shown   to  follow  the  afternoon  driving  trend  displayed  in  Fig  3.4.  
  • 31. 20     20       Figure  3.5:  Scaled  driver  arrival  times   The  number  of  vehicles  arriving  at  each  half  hour  interval  was  recorded,  and  the   vehicles,  having  been  assigned  their  specific  starting  time,  were  allocated  to  premises   using  a  random  function,  so  that  the  feeder  models  were  assigned  a  realistic  variation  in   vehicle  arrival  times.     3.2.4 Loading  Assumptions       To  model  the  effects  of  charging,  the  level  two  residential  chargers  from  Chapter  2  were   considered.  Considering  the  expected  combination  of  chargers  based  on  EV  costs,  an   average  charge  rating  of  4  kW  was  determined  to  provide  a  realistic  charging  power  that   could  be  used  to  model  a  load  of  EV  charging  homes.  The  average  battery  capacity  was   chosen  to  be  25  kWh,  a  mid-­‐range  capacity  in  Table  2.1.   Assuming  a  return  trip  driving  distance  of  18.8  km  [28]  and  a  battery  consumption  of   0.168  kWh/km  [16],  the  average  charging  time  was  found  to  be  approximately  47   minutes.  Due  to  the  time-­‐step  resolution  of  half  an  hour,  however,  this  charging  duration   had  to  be  modelled  as  1  hour.  This  analysis  assumes  that  each  EV  is  charged  only  once   per  day  in  the  afternoon/evening,  and  that  driving  is  split  into  a  morning  and  afternoon   peak.  Vehicles  arriving  home  during  the  late  night  hours  are  probably  drivers  that  have   travelled  previously  during  the  day,  so  charging  has  been  assumed  to  occur  after  the   second  trip.  Vehicle  driving  patterns  have  been  based  on  weekday  statistics,  and  the   vehicles  are  assumed  to  charge  on  a  daily  basis.   In  terms  of  vehicle  penetration,  a  substation  EV  penetration  of  100%   corresponds  to  all  vehicles  being  EVs,  not  100%  of  premises  containing  an  EV.  As  there   is  an  average  of  1.7  motor  vehicles  per  household  in  Australia  [29],  a  penetration  of  59%   would  represent  an  average  of  1  vehicle  per  household.   Another  consideration  made  was  the  percentage  of  travellers  that  drive  vehicles,   as  opposed  to  using  public  transport  or  travelling  as  a  passenger.  Although  we  know  
  • 32. 21     21     that  there  is  an  average  of  1.7  vehicles  per  household,  and  that  47%  of  travellers  drive  a   vehicle  [28],  it  is  impossible  to  discern  the  percentage  of  vehicle  owners  that  drive  a   vehicle  for  the  majority  of  their  travel  during  weekdays.  This  is  because  the  number  of   travellers  includes  school  students,  for  example,  who  may  travel  as  a  passenger  or  on   public  transport,  as  well  as  those  who  own  a  vehicle  but  may  cycle  or  also  use  public   transport  to  travel  to  work.  To  further  complicate  any  assumptions  made,  there  is  no   information  relating  to  the  percentage  of  people  that  actually  travel  significant  distances   during  the  week,  including  the  considerable  proportion  of  vehicle  owners  that  fall  into   this  category  such  as  pensioners  and  those  who  work  or  care  for  children  at  home.   Therefore,  with  the  data  available,  the  most  realistic  assumptions  decided  were   that  every  vehicle  owner  travels  the  average  distance  of  20  km  return-­‐trip  on  weekdays   and  does  the  majority  of  this  travel  in  their  vehicle.  Although  analysis    may  seem  more   accurate  to  apply  a  statistical  spread  of  charger  ratings  across  each  household,  this   would  be  equivalent  to  assuming  an  average  charger  rating  for  each  household,  as  the   total  transformer  loading  would  be  the  same.  A  statistical  variation  in  charger  ratings   would  provide  a  more  accurate  model  of  voltage  regulation,  however  the  limited   number  of  premises  in  the  DIgSILENT  models  prevents  any  statistical  analysis  from   yielding  meaningful  results.  Therefore,  Eqn.  (3.3)  has  been  used  to  determine  the   charging  power  per  premise.     P =  Charger  Rating  (kW)  ∗  (Penetration/100%)  ∗  1.7  vehicles  per  premise   (3.3)     The  assumptions  made  in  this  analysis  present  an  ambiguity  issue  with  the  number  of   drivers  arriving  home  during  the  middle  of  the  day,  and  those  that  may  travel  after   arriving  home  from  work.  The  actual  number  of  drivers,  however,  is  impossible  to   predict  without  conducting  a  large-­‐scale  survey  focusing  on  the  actual  arrival  times  and   driving  patterns  of  vehicle  drivers,  therefore  the  assumptions  made  can  be  considered   as  accurate  as  possible.       3.2.5 Load  Scaling   The  load  profiles  of  premises  supplied  by  the  Woodlands  Drive  substation  represent  the   energy  use  of  premises  in  a  sample  area  of  Glenmore  Park.  These  profiles  provide  an   accurate  load  shape,  however  their  combined  substation  profile  may  not  match  the   magnitude  of  those  substations  located  in  areas  of  lower  or  higher  socio-­‐economic  
  • 33. 22     22     status,  such  as  a  wealthier  area  which  is  more  likely  to  contain  a  greater  number  of  air   conditioners  and  pool  pumps,  for  example.  To  account  for  the  diversity  between  areas   within  suburbs,  it  is  important  that  the  Woodlands  Drive  substation  load  profile  can  be   scaled  before  EV  loading  is  added,  however  non-­‐linear  line  losses  must  also  be   accounted,  therefore  this  scaling  is  not  a  straight  forward  calculation.   As  base  loading  power  increases  linearly,  represented  by  ∆ 𝑃!!"#  in  per  unit,  line  losses   increase  by  the  square  of  this  rate,  or  (∆𝑃!"#$)! .  Therefore,  if  Woodlands  Drive   substation  is  80%  loaded  under  maximum  load,  this  load  profile  cannot  be  scaled  to   represent  substation  that  is  90%  loaded,  for  example,  without  first  separating  the   combined  house  power  and  the  line  losses.   This  would  require  a  scaling  model  in  the  following  form:     𝑃!" = 𝑃! 𝑥 + 𝑃! 𝑥!   (3.4)     Where   𝑃!"  is  the  new  total  power  drawn  by  the  transformer  after  scaling,   𝑃!is  the   combined  house  power  before  scaling,   𝑃!  is  the  line  losses  before  scaling.  For  example,  if   the  total  transformer  loading  was  required  to  be  increased  from  110  kW,  where   𝑃!  =   100  kW  and   𝑃!=  10  kW,  to  240  kW,  the  combined  house  power  would  only  have  to  be   increased  by  a  factor  of  x  =  2,  to  produce  a  transformer  power  increase  of     !"# !!"  =  2.18  pu.   This  formula,  however,  does  not  take  into  account  the  line-­‐loss  increase  as  a   result  of  the  voltage  drop  that  occurs  when  constant  power  loads  are  scaled.  That  is,   when  the  power  consumption  of  a  feeder  with  constant  power  loading  increases,  so  too   does  the  voltage  drop  along  the  feeder,  causing  the  line  current,  and  hence  line  losses,  to   rise  further.  This  is  a  cyclical  response  that  converges  rapidly  due  to  the  large  difference   between  the  percentage  change  in  voltage  and  the  initial  load  power  change,  therefore   any  further  voltage  correction  can  be  considered  negligible.   Figure  3.5  shows  the  voltage  profile  of  a  typical  feeder  with  6  premises  per  phase   per  feeder  in  the  upper  graph,  approximately  the  same  as  the  Woodlands  Drive  feeders,   and  the  profile  of  the  last  4  premises  on  a  feeder  in  the  lower  graph,  with  the  voltage   levels  scaled  for  an  easier  interpretation  of  the  voltage  drop  in  each  feeder  section.    
  • 34. 23     23       Figure  3.6:  Feeder  voltage  profile,  moving  from  last  premise  to  transformer  from  right  to  left   This  feeder  shows,  when  moving  towards  the  transformer  from  right  to  left,  the  voltage   drop  increases  according  to  the  series   𝑉!"(1,  3,  6,  10)  etc.,  where   𝑉!"    is  the  voltage  drop   along  the  last  section  of  feeder,  between  the  second  last  and  last  premises.  This  series   can  be  represented  by  Eq.  (3.5).     𝑖 ! !!! = 𝑛(𝑛 + 1) 2   (3.5)     Voltage  drop  in  the  last  section  of  feeder  can  be  found  using  Eq.  (3.6).     𝑉!" = 2𝑉!" 𝑛(𝑛 + 1)   (3.6)     Where   𝑉!"  is  the  voltage  drop  along  the  entire  feeder.   For  the  feeder  in  the  top  subplot  with  6  premises,  the  total  voltage  drop  is  equal  to   !(!!!) ! 𝑉!" = 21 0.004 = 0.084  pu,  which  is  reflected  on  this  plot.  This  modelling   assumes  that  each  load  draws  the  same  current.   When  a  load  is  increased  by  a  factor   𝑥,  the  line  current  supplying  a  constant   power  load  increases  by  the  same  factor.  As  voltage  drop  is  proportional  to  current,  the   voltage  drop  also  increases  by  this  factor.  When  considering  the  last  section  of  feeder,   𝑉!"#$  is  equal  to   𝑉!"# − 𝑉!"#,  where   𝑉!"#  is  the  voltage  at  the  second  last  premise  and  
  • 35. 24     24     𝑉!"#  is  the  voltage  at  the  last  premise.   𝑉!"#$  can  be  represented  as  a  percentage  by  Eq.   (3.7).     𝑥𝑉!"#$ − 𝑉!"#$ 𝑉!"# = 𝑉!"#$(𝑥 − 1) 𝑉!"#   (3.7)     As  the  load  current  increase  is  directly  proportional  to  the  voltage  drop,  the  line  current   is  increased  by  the  factor  that  is  Eq.  (3.8).     ∆𝐼!! = 1 + 𝑉!"#$(𝑥 − 1) 𝑉!"#   (3.8)     We  now  know  the  factor  that  can  be  squared  to  scale  the  power  losses  in  the  last  section   of  feeder.  As  power  losses  increase  with  the  square  of  the  line  current,  the   𝑛!  series  can   be  used  to  represent  the  increase  in  power  moving  from  the  last  section  of  feeder  to  the   first,  i.e.   𝑃! = 𝑃!(1 + 2 + 4 + 9 + 16 + 25)  for  a  feeder  with  6  premises  per  phase.  The   sum  of  the     𝑛!  series  is  given  by  Eq.  (3.9):     𝑖! ! !!! = 𝑛(𝑛 + 1)(2𝑛 + 1) 6   (3.9)     Therefore,  if  the  total  line  losses  of  a  feeder  are  known,  the  line  losses  can  be  given  by   dividing  the  total  power  by  the  sum  of  the   𝑛!  series,  equal  to  91  for  6  premises.  Once  we   know  the  losses  and  voltage  drop  in  the  last  section  of  feeder,  and  the  scaling  factor   𝑥  by   which  the  house  loads  increase  by,  the  increase  in  line  losses  due  to  the  load  scaling  and   increased  voltage  drop  can  be  determined.  The  power  increase  ∆ 𝑃!!in  the  last  section  of   feeder  therefore  becomes  ∆ 𝑃!!∆𝐼!! ! ,  where  ∆ 𝐼!! !  is  the  increase  in  current  due  to  the   voltage  drop.  The  total  increase  in  power  due  to  voltage  drop  is  shown  in  Eq.  (3.10).   ∆𝑃! = ∆𝑃!!∆𝐼!! ! + 4∆𝑃!!2∆𝐼!! ! 9∆𝑃!!3∆𝐼!! ! + 16∆𝑃!!4∆𝐼!! ! + 25∆𝑃!!5∆𝐼!! ! + 36∆𝑃!!6∆𝐼!! !                    = ∆𝑃!!∆𝐼!! ! (1 + 8 + 27 + 64 + 125 + 216)       (3.10)      
  • 36. 25     25       This  series  represents  the  sum  of  cubes,  which  can  be  expressed  in  the  following  general   equation  form  of  Eq.  (3.11).     𝑖! ! !!! = 𝑛! (𝑛 + 1)! 4   (3.11)     Combining  Eqs.  (3.8),  (3.9)  and  (3.11),  a  general  solution  of  Eq.  (3.12)  can  be  formed  for   line  losses.     𝑃!.!"# = 6𝑃! 𝑥! 𝑛 𝑛 + 1 2𝑛 + 1 ∙ 1 + 𝑉!" 𝑥 − 1 𝑉!"# ! ∙ 𝑛! 𝑛 + 1 ! 4                            = 6𝑃! 𝑥! 𝑛 𝑛 + 1 2𝑛 + 1 ∙ 1 + 2𝑉!" 𝑥 − 1 𝑛(𝑛 + 1)𝑉!"# ! ∙ 𝑛! 𝑛 + 1 ! 4               (3.12)     Replacing  the     𝑃! 𝑥!  term  in  Eq.  (3.4)  with  Eq.  (3.12),  the  complete  transformer  power   formula  Eq.  (3.13)  is  formed.   𝑆!" = 𝑃! 𝑥 + 6𝑃! 𝑥! 𝑛 𝑛 + 1 2𝑛 + 1 ∙ 1 + 2𝑉!" 𝑥 − 1 𝑛(𝑛 + 1)𝑉!"# ! ∙ 𝑛! 𝑛 + 1 ! 4 + 𝑗𝑄! 𝑥       (3.13)       Equation  (3.13)  allows  the  apparent  transformer  power  to  be  determined  when   constant  power  house  loads  are  scaled  by  a  value  𝑥,  taking  into  account  the  non-­‐linear   nature  of  line  losses  caused  by  load  scaling  and  the  subsequent  voltage  drop.  Equation   (3.13)  assumes  that  all  houses  are  loaded  equally,  and  reactive  power  is  constant.  In   reality,  reactive  power  will  increase  slightly  in  response  to  voltage  drop,  depending  on   the  characteristics  of  the  load.  This  equation,  however,  represents  a  relatively  accurate   model  and  provides  an  insight  into  the  complexity  of  load  behaviour,  and  hence  line   losses,  in  response  to  a  change  in  load  magnitude.   Due  to  the  complexity  of  this  4th  degree  polynomial,  solving  for   𝑥  is  difficult,   therefore  loads  will  be  scaled  through  trial  and  error  for  scenarios  where  the   transformer  is  at  a  higher  capacity  than  the  Woodlands  Drive  substation.