SlideShare a Scribd company logo
1 of 1
Download to read offline
Longjiaxin	
  Zhong1,	
  Erica	
  Gunn	
  Ph.D.2,	
  Jillian	
  L.	
  Goldfarb	
  Ph.D.3	
  
1.  Department	
  of	
  Chemistry,	
  Boston	
  University,	
  590	
  Commonwealth	
  Ave,	
  Boston	
  MA	
  02215	
  
	
  2.	
  Department	
  of	
  Chemistry,	
  Simmons	
  College,	
  300	
  The	
  Fenway,	
  Boston,	
  MA	
  02115	
  	
  
3.	
  Department	
  of	
  Mechanical	
  Engineering	
  ,	
  Division	
  of	
  Materials	
  Science	
  &	
  Engineering,	
  Boston	
  University,	
  110	
  Cummington	
  Mall,	
  Boston	
  MA	
  02215	
  
References	
  
Burks,	
  G.A.	
  and	
  Harmon,	
  T.C.	
  J.	
  Chem.	
  Eng.	
  Data.	
  2001,	
  46,	
  944-­‐949.	
  
Drozdzewska,	
  K.,	
  V.	
  Kestens,	
  A.	
  Held,	
  G.	
  Roebben,	
  T.	
  Linsinger.	
  J.	
  Thermal	
  Anal.	
  Calorimetry.	
  2007,	
  88,	
  757	
  
Fitzpatrick,	
  E.M.,	
  Bartle,	
  K.D.,	
  Kubacki,	
  M.L.,	
  Jones,	
  J.M.,	
  Pourkashanian,	
  M.,	
  Ross,	
  A.B.,	
  Williams,	
  A.	
  and	
  Kubica,	
  K.	
  Fuel.	
  2009.88,	
  2409.	
  
Goldfarb,	
  J.L.	
  and	
  I.	
  Külaots	
  J.	
  Thermal	
  Anal.	
  Calorimetry.	
  2010.	
  102,	
  1063.	
  
Goldfarb,	
  J.L.	
  and	
  E.M.	
  Suuberg.	
  J.	
  Chem.	
  Thermodyn.	
  2010,	
  42,	
  1009	
  
Gupta,	
  P.,	
  T.	
  Agrawal,	
  S.S.	
  Das,	
  N.B.	
  Singh.	
  J.	
  Chem.	
  Thermodyn.	
  2012.	
  48,	
  291.	
  
Huber,	
  G.W.,	
  Iborra,	
  S.	
  and	
  Corma,	
  A.	
  Chem.	
  Rev.	
  2006,	
  106,	
  4044.	
  
Hsu,	
  E.	
  C.-­‐H.;	
  Johnson,	
  J.	
  F.	
  Mol.	
  Cryst.	
  Liq.	
  Cryst.	
  1974,27,	
  95.	
  
I.	
  Kikic,	
  P.	
  Alessi,	
  P.	
  Rasmussen	
  and	
  A.	
  Fredenslund,	
  Can.	
  J.	
  Chem.	
  Eng.,	
  1980,	
  5,	
  253.	
  
Mahmoud,	
  R.,	
  E.	
  Rogalska,	
  R.	
  Solimando,	
  M.	
  Rogalski.	
  Thermochemica	
  Acta.	
  1999,	
  325,	
  119.	
  
Mostafa,	
  A.R.,	
  Hegazi,	
  A.H.,	
  El-­‐Gayar,	
  M.Sh.	
  and	
  Anderson,	
  J.T.	
  Fuel.	
  2009,	
  88,	
  95.	
  
Müller	
  M.,	
  Kübel,	
  C.	
  and	
  	
  Müllen,	
  K.	
  Chem.	
  Eur.	
  J.	
  1998,	
  4,	
  2099.	
  
Murthy,	
  S.S.N.	
  Thermochim.	
  Acta.	
  2000,	
  359,	
  143	
  
Oja,	
  V.	
  and	
  Suuberg,	
  E.	
  M.	
  A.C.S.	
  Symposium	
  Series.	
  2005,	
  895,	
  113	
  
Rice,	
  J.W.,	
  J.	
  Fu.	
  E.M.	
  Suuberg.	
  J.	
  Chem.	
  Eng.	
  Data.	
  2010,	
  55,	
  3598.	
  
Rice,	
  J.W.,	
  J.	
  Fu,	
  E.M.	
  Suuberg.	
  Ind.	
  Eng.	
  Chem.	
  Res.	
  2011,	
  50,	
  3613.	
  
Sharma,	
  B.L.,	
  S.	
  Gupta,	
  S.	
  Tandon,	
  R.	
  Kant.	
  Materials	
  Chemistry	
  and	
  Physics.	
  2008,	
  111,	
  423.	
  
Yilmaz,	
  N.	
  and	
  A.	
  B.	
  Donaldson.	
  Fuel.	
  2007,	
  86,	
  2377.	
  
Image	
  
Munich	
  city	
  lantern	
  ward	
  Wilhelm	
  Schuepfer	
  lights	
  a	
  gas	
  street	
  light	
  in	
  July,	
  1961.	
  RED	
  GRANDY/STARS	
  AND	
  STRIPES	
  
	
  
Fluorene	
  +	
  Acenaphthene	
  
Eutec7c	
  Behavior	
  of	
  Binary	
  
Polycyclic	
  Aroma7c	
  Hydrocarbon	
  Mixtures	
  
U n i n t e n d e d	
  
c o n s e q u e n c e s	
   o f	
  
industrializa2on:	
   PAH	
  
abound	
   at	
   the	
   former	
  
m a n u f a c t u r e d	
   g a s	
  
plants	
  that	
  lit	
  the	
  way	
  to	
  
our	
   modern	
   society.	
  
Eutec7c	
  Systems	
  
• Phase	
  diagram	
  at	
  low	
  temperatures	
  
dominated	
  by	
  a	
  two-­‐phase	
  field	
  of	
  two	
  
different	
  solid	
  structures,	
  one	
  enriched	
  in	
  
component	
  A,	
  other	
  in	
  component	
  B	
  
• Stable,	
  intermediate	
  mixtures	
  form	
  between	
  
the	
  extremes	
  of	
  pure	
  component	
  A	
  and	
  pure	
  
component	
  B	
  
Solid&A&+&B&
Melt&
Tme&
TmA&
TmB&
TA+B!&AB&
Melt&
+&A&
Melt&&
+&B&
100%&A&& &&&&&&&&&&&&&&&&&&&&&100%&B&
Abstract	
  
Polycyclic	
  aromahc	
  hydrocarbons	
  (PAH)	
  are	
  byproducts	
  of	
  incomplete	
  combushon.	
  
Despite	
  their	
  ubiquitous	
  environmental	
  and	
  industrial	
  posihoning,	
  likle	
  is	
  known	
  
about	
  the	
  phase	
  behavior	
  of	
  PAH	
  mixtures,	
  which	
  is	
  important	
  in	
  predichng	
  their	
  
fate	
  and	
  transport,	
  and	
  in	
  industrial	
  crystallizahon	
  processes.	
  These	
  compounds	
  
precipitate	
  during	
  hydrocracking,	
  underscoring	
  the	
  need	
  to	
  fully	
  understand	
  their	
  
solid-­‐liquid	
  equilibrium	
  behavior	
  and	
  the	
  intermolecular	
  forces	
  at	
  play.	
  Phase	
  
diagrams	
  of	
  binary	
  polycyclic	
  aromahc	
  hydrocarbon	
  (PAH)	
  mixtures	
  display	
  single	
  
and	
  mulhple	
  eutechc	
  points	
  depending	
  on	
  the	
  compounds.	
  We	
  studied	
  the	
  behavior	
  
of	
  acenaphthene-­‐fluorene	
  and	
  fluorene-­‐phenanthrene	
  mixtures	
  of	
  varying	
  
composihon	
  using	
  differenhal	
  scanning	
  calorimetry	
  to	
  measure	
  their	
  melhng	
  points	
  
and	
  fusion	
  enthalpies.	
  As	
  is	
  omen	
  the	
  case	
  with	
  interachng	
  components,	
  the	
  
enthalpies	
  of	
  fusion	
  of	
  these	
  eutechc	
  mixtures	
  are	
  lower	
  than	
  those	
  calculated	
  by	
  an	
  
ideal	
  mixture	
  of	
  the	
  sum	
  of	
  the	
  individual	
  components.	
  
Fluorene	
  +	
  Phenanthrene	
  
Degrees	
  of	
  Devia7on	
  from	
  Ideal	
  Mixtures	
  and	
  Future	
  Work	
  
Ideal	
  Mixtures	
  
• If	
  there	
  were	
  no	
  intermolecular	
  
interachons	
  in	
  a	
  mixture,	
  we	
  
expect	
  the	
  enthalpy	
  of	
  fusion	
  to	
  be	
  
sum	
  of	
  its	
  individual	
  components	
  
	
  
• Eutechc	
  enthalpies	
  of	
  fusion	
  omen	
  
considerably	
  lower	
  than	
  ideal	
  
predichons	
  due	
  to	
  an	
  interachon	
  
energy	
  between	
  the	
  compounds	
  
Materials	
  &	
  Methods	
  
• Compounds	
  from	
  TCI	
  America	
  at	
  minimum	
  purity	
  of	
  98%;	
  frachonally	
  sublimed	
  to	
  
remove	
  impurihes	
  	
  
• Mixtures	
  fabricated	
  by	
  weighing	
  on	
  microbalance,	
  melted	
  together	
  on	
  hot	
  plate	
  at	
  
2°C	
  above	
  lowest	
  melhng	
  point	
  
• Melhng	
  points	
  and	
  enthalpies	
  of	
  fusion	
  of	
  pure	
  components	
  and	
  mixtures	
  
determined	
  on	
  a	
  TA	
  Instruments	
  Q2000	
  Differenhal	
  Scanning	
  Calorimeter	
  (DSC)	
  
using	
  hermehcally	
  sealed	
  aluminum	
  pans	
  
he ability of a binary mixture to form an ideal solution stems from the constituents’ molecular sizes and,
more importantly in the case of these similar sized PAH, specific intermolecular interactions between the
components (Dorset et al. 1989). In an ideal solution, we would expect the liquidous curve to follow the
Schröder equation for freezing point depression, representing the melting point of the mixture, T, as
!" !! = −
∆!!!
!
1
!
−
1
!!,!
(1)
where R is the universal gas constant; x1 is the mole fraction of component 1 (e.g. the solvent); ΔHf1 its
corresponding enthalpy of fusion at an absolute temperature of Tm,1. The same relation would hold for
component 2 as in the binary mixture x2 = 1 – x1. The eutectic temperature, Te, of an ideal binary mixture
is found by setting x1 = xe and T=Te (Hsu and Johnson 1974).
In a similar vein, if there were no intermolecular interactions, one might expect the enthalpy of fusion of a
mixture to be the sum of the individual components, such that:
∆!!!"#,!"#$%
= !!∆!!!
+ !!∆!!!
(5)
However, this if often not the case; the enthalpies of fusion of eutectic mixtures are often considerably
lower than those calculated by equation (5), attributed to an interaction energy between the compounds,
equal to the difference between the measured and mixing law prediction (Gupta et al. 2012).
xi	
  =	
  Mole	
  frachon	
  of	
  component	
  i	
  
ΔHfi	
  =	
  	
  Enthalpy	
  of	
  fusion	
  component	
  I	
  
n, if there were no intermolecular interactions, one might expect the enthalpy of fusion of a mixture to be
the sum of the individual components, such that:
∆!!!"#,!"#$%
= !!∆!!!
+ !!∆!!!
(5)
However, this if often not the case; the enthalpies of fusion of eutectic mixtures are often considerably
lower than those calculated by equation (5), attributed to an interaction energy between the compounds,
equal to the difference between the measured and mixing law prediction (Gupta et al. 2012).
∆!!"#$%&'#!(" = ∆!!!"#,!"#$%&"'
− ∆!!!"#,!"#$%
(6)
Sample Calculation (Acenaphthene-fluorene mixture in 50:50):
[Not pretty sure how to use this equation]
66.55℃ = 339.7!K
Fluorene	
  
C13H10	
  
Molecular	
  Weight:	
  166.2185	
  	
  
	
  
	
  
Acenaphthene	
  
C12H10	
  
Molecular	
  Weight:	
  154.2078	
  g/mol	
  
Heat/Cool	
  Thermal	
  cycle	
  at	
  5°C/min,	
  50wt%	
  (0.14mol%)	
  Fluorene	
  
69.5°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  64.3°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  56.5°C 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  51.5°C 	
  	
  	
  	
  	
  49.3°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  46.0°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  44.5°C	
  
48.5°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  50.5.3°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  55.3°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  51.5°C 	
  	
  	
  	
  	
  67.5°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  72.0°C	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  72.8°C	
  
Cooling	
  and	
  reheahng	
  of	
  mixture.	
  Some	
  evidence	
  of	
  low	
  temperature	
  phase	
  growing	
  
back	
  in	
  at	
  low	
  temperature,	
  and	
  then	
  re-­‐converhng	
  as	
  the	
  sample	
  is	
  heated.	
  
RT# 50.8#°#C# 55.0#°#C#
55.5#°#C#
(b)#
66.0°#C# 67.0#°#C#
(b)#
Sample	
  quenched	
  from	
  melt	
  between	
  
coverslips.	
  (b)	
  Images	
  taken	
  between	
  crossed	
  
polarizers;	
  crystalline	
  material	
  appears	
  bright,	
  
melt	
  appears	
  dark.	
  Appearance	
  changes	
  with	
  
temperature,	
  but	
  sample	
  remains	
  crystalline.	
  
Changes	
  very	
  possibly	
  due	
  to	
  solid-­‐solid	
  phase	
  
transformahon,	
  which	
  completes	
  around	
  66°C.	
  
1mm	
  
Mixtures	
  of	
  40-­‐60wt%	
  (46-­‐63mol%)	
  acenapthene	
  
in	
  fluorene	
  show	
  single	
  melhng	
  points	
  across	
  
composihon	
  range	
  
	
  
Mixtures	
  of	
  40-­‐60wt%	
  (46-­‐63mol%)	
  acenapthene	
  
in	
  fluorene	
  have	
  enthalpies	
  of	
  fusion	
  similar	
  to	
  
that	
  predicted	
  by	
  an	
  ideal	
  mixture.	
  Outside	
  of	
  this	
  
range,	
  we	
  find	
  negahve	
  interachon	
  enthalpies.	
  
	
  
Fluorene	
  
C13H10	
  
Molecular	
  Weight:	
  166.2185	
  	
  
	
  
	
  
Phenanthrene	
  
C14H10	
  
Molecular	
  Weight:	
  178..2292	
  	
  
Conclusions	
  &	
  Implica7ons	
  
Mixtures	
  with	
  more	
  than	
  
20wt%	
  of	
  either	
  compound	
  
show	
  single	
  melhng	
  points	
  
Enthalpies	
  of	
  fusion	
  are	
  
fairly	
  close	
  to	
  ideal	
  mixture	
  
predichons	
  
Fluorene	
  +	
  
Phenanthrene	
  mixtures	
  
show	
  considerably	
  lower	
  
enthalpies	
  of	
  interachon	
  
than	
  Fluorene	
  +	
  
Acenaphthene	
  mixtures	
  
The degree to which a mixture deviates from ideal behavior can also be described by
excess functions for enthalpy (ΔHE
), Gibbs free energy (ΔGE
), and entropy (ΔSE
).
∆!!
= −!!!
!!
!"#!!
!"
+ !!
!"#!!
!"
(7)
∆!!
= !" !!!"!! + !!!"!! (8)
∆!! = −! !!!"!! + !!!"!!+!!!
!"#!!
!"
+ !!!
!"#!!
!"
(9)
!
The	
  degree	
  to	
  which	
  a	
  mixture	
  deviates	
  from	
  ideal	
  behavior	
  can	
  
also	
  be	
  described	
  by	
  excess	
  funchons	
  for	
  enthalpy	
  (ΔHE),	
  Gibbs	
  
free	
  energy	
  (ΔGE),	
  and	
  entropy	
  (ΔSE).	
  
We	
  will	
  explore	
  the	
  degree	
  to	
  
which	
  deviahons	
  from	
  ideality	
  
stem	
  from	
  entropic	
  versus	
  
enthalpic	
  contribuhons	
  based	
  on	
  
Gibbs	
  minimizahon	
  at	
  the	
  
eutechc	
  
The	
  acenaphthene-­‐fluorene	
  system	
  exhibits	
  both	
  single	
  and	
  double	
  melhng	
  
peaks	
  from	
  low	
  mass	
  frachon	
  to	
  high	
  mass	
  frachon.	
  The	
  fluorene-­‐phenanthrene	
  
mixture	
  goes	
  from	
  eutechc	
  to	
  non-­‐eutechc	
  and	
  then	
  going	
  back	
  to	
  eutechc	
  
behavior.	
  As	
  a	
  result,	
  the	
  range	
  of	
  acenaphthene’s	
  mass	
  frachon	
  across	
  the	
  
single	
  phase	
  melhng	
  for	
  the	
  acenaphthene-­‐fluorene	
  mixture	
  was	
  between	
  44.6	
  
and	
  64.3%,	
  and	
  the	
  range	
  of	
  temperature	
  of	
  the	
  eutechcs	
  was	
  between	
  67.5	
  and	
  
66.6	
  °C.	
  The	
  range	
  of	
  fluorene’s	
  mass	
  frachon	
  to	
  achieve	
  this	
  eutechc	
  for	
  the	
  
fluorene-­‐phenanthrene	
  mixture	
  is	
  between	
  5.27	
  to	
  54.89%	
  and	
  79.89	
  to	
  95.06%,	
  
and	
  the	
  eutechcs	
  formed	
  for	
  these	
  mass	
  frachons	
  between	
  97.98	
  and	
  114.85	
  °C.	
  
The	
  fluorene-­‐phenanthrene	
  system	
  has	
  a	
  considerably	
  broader	
  eutechc.	
  As	
  is	
  
omen	
  the	
  case	
  with	
  interachng	
  components,	
  the	
  enthalpies	
  of	
  fusion	
  of	
  these	
  
eutechc	
  mixtures	
  are	
  lower	
  than	
  those	
  calculated	
  by	
  an	
  ideal	
  mixture	
  of	
  the	
  sum	
  
of	
  the	
  individual	
  components.	
  	
  

More Related Content

What's hot

Lecture 18.4- Free Energy
Lecture 18.4- Free EnergyLecture 18.4- Free Energy
Lecture 18.4- Free EnergyMary Beth Smith
 
Impact of-titratable-groups-in-studies-with-isothermal-titration-calorimetry-...
Impact of-titratable-groups-in-studies-with-isothermal-titration-calorimetry-...Impact of-titratable-groups-in-studies-with-isothermal-titration-calorimetry-...
Impact of-titratable-groups-in-studies-with-isothermal-titration-calorimetry-...science journals
 
General Chemistry and Inorganic Pharmaceutical Chemistry Module 1 Pharmacist ...
General Chemistry and Inorganic Pharmaceutical Chemistry Module 1 Pharmacist ...General Chemistry and Inorganic Pharmaceutical Chemistry Module 1 Pharmacist ...
General Chemistry and Inorganic Pharmaceutical Chemistry Module 1 Pharmacist ...Senyora Ouf'ra
 
ORGANIC CHEMISTRY (PRE-BOARD REVIEW 2014)
ORGANIC CHEMISTRY (PRE-BOARD REVIEW 2014)ORGANIC CHEMISTRY (PRE-BOARD REVIEW 2014)
ORGANIC CHEMISTRY (PRE-BOARD REVIEW 2014)Ryan Perez de Tagle
 
Research Day Poster- SJ
Research Day Poster- SJ Research Day Poster- SJ
Research Day Poster- SJ Tecia Grier
 
Pharmaceutical chemistry of inorganic medicinals
Pharmaceutical chemistry of inorganic medicinalsPharmaceutical chemistry of inorganic medicinals
Pharmaceutical chemistry of inorganic medicinalsEnter Exit
 
Current applications of isothermal titration calorimetry to the study of prot...
Current applications of isothermal titration calorimetry to the study of prot...Current applications of isothermal titration calorimetry to the study of prot...
Current applications of isothermal titration calorimetry to the study of prot...PaReJaiiZz
 
Chemical thermodynamics(chem 2052)
Chemical thermodynamics(chem 2052)Chemical thermodynamics(chem 2052)
Chemical thermodynamics(chem 2052)MollaZewdie
 
5.4 exothermic and endothermic reactions
5.4 exothermic and endothermic reactions5.4 exothermic and endothermic reactions
5.4 exothermic and endothermic reactionsMartin Brown
 
Bioenergetics, metabolism and enzymes
Bioenergetics, metabolism and enzymesBioenergetics, metabolism and enzymes
Bioenergetics, metabolism and enzymesKim Jim Raborar
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kineticscassxkillu
 
The effect of dielectric constant on the kinetics of reaction between plasm...
The effect of dielectric constant on the kinetics  of reaction  between plasm...The effect of dielectric constant on the kinetics  of reaction  between plasm...
The effect of dielectric constant on the kinetics of reaction between plasm...Alexander Decker
 

What's hot (20)

Lecture 18.4- Free Energy
Lecture 18.4- Free EnergyLecture 18.4- Free Energy
Lecture 18.4- Free Energy
 
Linear free energy relationships
Linear free energy relationshipsLinear free energy relationships
Linear free energy relationships
 
Chapter4
Chapter4Chapter4
Chapter4
 
Impact of-titratable-groups-in-studies-with-isothermal-titration-calorimetry-...
Impact of-titratable-groups-in-studies-with-isothermal-titration-calorimetry-...Impact of-titratable-groups-in-studies-with-isothermal-titration-calorimetry-...
Impact of-titratable-groups-in-studies-with-isothermal-titration-calorimetry-...
 
Biological thermodynamics
Biological thermodynamicsBiological thermodynamics
Biological thermodynamics
 
General Chemistry and Inorganic Pharmaceutical Chemistry Module 1 Pharmacist ...
General Chemistry and Inorganic Pharmaceutical Chemistry Module 1 Pharmacist ...General Chemistry and Inorganic Pharmaceutical Chemistry Module 1 Pharmacist ...
General Chemistry and Inorganic Pharmaceutical Chemistry Module 1 Pharmacist ...
 
Exam 2 review
Exam 2 reviewExam 2 review
Exam 2 review
 
ORGANIC CHEMISTRY (PRE-BOARD REVIEW 2014)
ORGANIC CHEMISTRY (PRE-BOARD REVIEW 2014)ORGANIC CHEMISTRY (PRE-BOARD REVIEW 2014)
ORGANIC CHEMISTRY (PRE-BOARD REVIEW 2014)
 
Research Day Poster- SJ
Research Day Poster- SJ Research Day Poster- SJ
Research Day Poster- SJ
 
Pharmaceutical chemistry of inorganic medicinals
Pharmaceutical chemistry of inorganic medicinalsPharmaceutical chemistry of inorganic medicinals
Pharmaceutical chemistry of inorganic medicinals
 
Current applications of isothermal titration calorimetry to the study of prot...
Current applications of isothermal titration calorimetry to the study of prot...Current applications of isothermal titration calorimetry to the study of prot...
Current applications of isothermal titration calorimetry to the study of prot...
 
Chemical thermodynamics(chem 2052)
Chemical thermodynamics(chem 2052)Chemical thermodynamics(chem 2052)
Chemical thermodynamics(chem 2052)
 
5.4 exothermic and endothermic reactions
5.4 exothermic and endothermic reactions5.4 exothermic and endothermic reactions
5.4 exothermic and endothermic reactions
 
Chemical reactions
Chemical reactionsChemical reactions
Chemical reactions
 
Bioenergetics, metabolism and enzymes
Bioenergetics, metabolism and enzymesBioenergetics, metabolism and enzymes
Bioenergetics, metabolism and enzymes
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 
methods of enzyme assay
methods of enzyme assaymethods of enzyme assay
methods of enzyme assay
 
Gas and condensed matter
Gas and condensed matterGas and condensed matter
Gas and condensed matter
 
The effect of dielectric constant on the kinetics of reaction between plasm...
The effect of dielectric constant on the kinetics  of reaction  between plasm...The effect of dielectric constant on the kinetics  of reaction  between plasm...
The effect of dielectric constant on the kinetics of reaction between plasm...
 

Viewers also liked

Research paper 3
Research paper 3Research paper 3
Research paper 3Vipan Dewan
 
Idea del proyecto y estructura de desglose del trabajo.
Idea del proyecto y estructura de desglose del trabajo.Idea del proyecto y estructura de desglose del trabajo.
Idea del proyecto y estructura de desglose del trabajo.camilo ruiz santacruz
 
Research Paper 2
Research Paper 2Research Paper 2
Research Paper 2Vipan Dewan
 
Seeking Experts In UAV Technologies; Systems And Usages For Short Term Projec...
Seeking Experts In UAV Technologies; Systems And Usages For Short Term Projec...Seeking Experts In UAV Technologies; Systems And Usages For Short Term Projec...
Seeking Experts In UAV Technologies; Systems And Usages For Short Term Projec...TACHYON INTERNATIONAL INCORPORATED
 
Samsung cctv ip camera model 6
Samsung cctv ip camera model 6Samsung cctv ip camera model 6
Samsung cctv ip camera model 6Ecway Karur
 
【OCP Summit 2016】オラクル・インフラストラクチャー・サービス(IaaS)~高いコスト競争力を持つエンタープライズIaaS~
【OCP Summit 2016】オラクル・インフラストラクチャー・サービス(IaaS)~高いコスト競争力を持つエンタープライズIaaS~【OCP Summit 2016】オラクル・インフラストラクチャー・サービス(IaaS)~高いコスト競争力を持つエンタープライズIaaS~
【OCP Summit 2016】オラクル・インフラストラクチャー・サービス(IaaS)~高いコスト競争力を持つエンタープライズIaaS~オラクルエンジニア通信
 
Investigación sobre herramientas online para hacer presentaciones
Investigación sobre herramientas online para hacer presentacionesInvestigación sobre herramientas online para hacer presentaciones
Investigación sobre herramientas online para hacer presentaciones0861maricarmen
 
2 rm (analogias y distr) 4º sec
2 rm (analogias y distr) 4º sec2 rm (analogias y distr) 4º sec
2 rm (analogias y distr) 4º secSaul Abreu
 
Oracle Database Backup Service Martin Berger
Oracle Database Backup Service Martin BergerOracle Database Backup Service Martin Berger
Oracle Database Backup Service Martin BergerDésirée Pfister
 
Sistema de Orientacion Interactiva SOI UDES
Sistema de Orientacion Interactiva SOI UDESSistema de Orientacion Interactiva SOI UDES
Sistema de Orientacion Interactiva SOI UDESJuan Godoy
 
El proyecto técnico
El proyecto técnicoEl proyecto técnico
El proyecto técnicoJuan Aguillon
 

Viewers also liked (12)

Research paper 3
Research paper 3Research paper 3
Research paper 3
 
Cartagena
CartagenaCartagena
Cartagena
 
Idea del proyecto y estructura de desglose del trabajo.
Idea del proyecto y estructura de desglose del trabajo.Idea del proyecto y estructura de desglose del trabajo.
Idea del proyecto y estructura de desglose del trabajo.
 
Research Paper 2
Research Paper 2Research Paper 2
Research Paper 2
 
Seeking Experts In UAV Technologies; Systems And Usages For Short Term Projec...
Seeking Experts In UAV Technologies; Systems And Usages For Short Term Projec...Seeking Experts In UAV Technologies; Systems And Usages For Short Term Projec...
Seeking Experts In UAV Technologies; Systems And Usages For Short Term Projec...
 
Samsung cctv ip camera model 6
Samsung cctv ip camera model 6Samsung cctv ip camera model 6
Samsung cctv ip camera model 6
 
【OCP Summit 2016】オラクル・インフラストラクチャー・サービス(IaaS)~高いコスト競争力を持つエンタープライズIaaS~
【OCP Summit 2016】オラクル・インフラストラクチャー・サービス(IaaS)~高いコスト競争力を持つエンタープライズIaaS~【OCP Summit 2016】オラクル・インフラストラクチャー・サービス(IaaS)~高いコスト競争力を持つエンタープライズIaaS~
【OCP Summit 2016】オラクル・インフラストラクチャー・サービス(IaaS)~高いコスト競争力を持つエンタープライズIaaS~
 
Investigación sobre herramientas online para hacer presentaciones
Investigación sobre herramientas online para hacer presentacionesInvestigación sobre herramientas online para hacer presentaciones
Investigación sobre herramientas online para hacer presentaciones
 
2 rm (analogias y distr) 4º sec
2 rm (analogias y distr) 4º sec2 rm (analogias y distr) 4º sec
2 rm (analogias y distr) 4º sec
 
Oracle Database Backup Service Martin Berger
Oracle Database Backup Service Martin BergerOracle Database Backup Service Martin Berger
Oracle Database Backup Service Martin Berger
 
Sistema de Orientacion Interactiva SOI UDES
Sistema de Orientacion Interactiva SOI UDESSistema de Orientacion Interactiva SOI UDES
Sistema de Orientacion Interactiva SOI UDES
 
El proyecto técnico
El proyecto técnicoEl proyecto técnico
El proyecto técnico
 

Similar to ACS PAH Eutectic Poster FINAL

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Anthony_M_ACS_NewOrleans_GM_final__
Anthony_M_ACS_NewOrleans_GM_final__Anthony_M_ACS_NewOrleans_GM_final__
Anthony_M_ACS_NewOrleans_GM_final__Anthony Medrano
 
Lect w3 152_d2 - arrhenius and catalysts_alg (1)
Lect w3 152_d2 - arrhenius and catalysts_alg (1)Lect w3 152_d2 - arrhenius and catalysts_alg (1)
Lect w3 152_d2 - arrhenius and catalysts_alg (1)chelss
 
Study of Ammonia Borane - Polyvinylpyrrolidone
Study of Ammonia Borane - PolyvinylpyrrolidoneStudy of Ammonia Borane - Polyvinylpyrrolidone
Study of Ammonia Borane - Polyvinylpyrrolidonesahithya pati
 
Final Presentation Ideal Solution 2
Final Presentation   Ideal  Solution 2Final Presentation   Ideal  Solution 2
Final Presentation Ideal Solution 2yomology
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyPatrick Françoisse
 
5th international olympiad metropolises
5th   international olympiad metropolises5th   international olympiad metropolises
5th international olympiad metropoliseskhivang10
 
Influence of temperature on the liquid liquid equilibria of methanol benzene ...
Influence of temperature on the liquid liquid equilibria of methanol benzene ...Influence of temperature on the liquid liquid equilibria of methanol benzene ...
Influence of temperature on the liquid liquid equilibria of methanol benzene ...Josemar Pereira da Silva
 
Influence of temperature on the liquid liquid equilibria of methanol benzene ...
Influence of temperature on the liquid liquid equilibria of methanol benzene ...Influence of temperature on the liquid liquid equilibria of methanol benzene ...
Influence of temperature on the liquid liquid equilibria of methanol benzene ...Josemar Pereira da Silva
 
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...IJRES Journal
 
Chemical dynamics, intro,collision theory by dr. y. s. thakare
Chemical dynamics, intro,collision theory by dr. y. s. thakareChemical dynamics, intro,collision theory by dr. y. s. thakare
Chemical dynamics, intro,collision theory by dr. y. s. thakarepramod padole
 
Understanding Intrinsic Properties of Biological Molecules in Absence of Sol...
Understanding Intrinsic Properties ofBiological Molecules in Absence of Sol...Understanding Intrinsic Properties ofBiological Molecules in Absence of Sol...
Understanding Intrinsic Properties of Biological Molecules in Absence of Sol...jennypswong
 
How Tube 3 Changed Colors Into An Orange-Brown
How Tube 3 Changed Colors Into An Orange-BrownHow Tube 3 Changed Colors Into An Orange-Brown
How Tube 3 Changed Colors Into An Orange-BrownLisa Olive
 
Thermochemistry ok1294993378
Thermochemistry   ok1294993378Thermochemistry   ok1294993378
Thermochemistry ok1294993378Navin Joshi
 
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...Javier Lemus Godoy
 

Similar to ACS PAH Eutectic Poster FINAL (20)

Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Anthony_M_ACS_NewOrleans_GM_final__
Anthony_M_ACS_NewOrleans_GM_final__Anthony_M_ACS_NewOrleans_GM_final__
Anthony_M_ACS_NewOrleans_GM_final__
 
Lect w3 152_d2 - arrhenius and catalysts_alg (1)
Lect w3 152_d2 - arrhenius and catalysts_alg (1)Lect w3 152_d2 - arrhenius and catalysts_alg (1)
Lect w3 152_d2 - arrhenius and catalysts_alg (1)
 
Study of Ammonia Borane - Polyvinylpyrrolidone
Study of Ammonia Borane - PolyvinylpyrrolidoneStudy of Ammonia Borane - Polyvinylpyrrolidone
Study of Ammonia Borane - Polyvinylpyrrolidone
 
Final Presentation Ideal Solution 2
Final Presentation   Ideal  Solution 2Final Presentation   Ideal  Solution 2
Final Presentation Ideal Solution 2
 
Chemical dynamics, intro,collision theory
Chemical dynamics, intro,collision theoryChemical dynamics, intro,collision theory
Chemical dynamics, intro,collision theory
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
Dynamic
DynamicDynamic
Dynamic
 
Dynamic
DynamicDynamic
Dynamic
 
5th international olympiad metropolises
5th   international olympiad metropolises5th   international olympiad metropolises
5th international olympiad metropolises
 
Influence of temperature on the liquid liquid equilibria of methanol benzene ...
Influence of temperature on the liquid liquid equilibria of methanol benzene ...Influence of temperature on the liquid liquid equilibria of methanol benzene ...
Influence of temperature on the liquid liquid equilibria of methanol benzene ...
 
Influence of temperature on the liquid liquid equilibria of methanol benzene ...
Influence of temperature on the liquid liquid equilibria of methanol benzene ...Influence of temperature on the liquid liquid equilibria of methanol benzene ...
Influence of temperature on the liquid liquid equilibria of methanol benzene ...
 
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...
 
Chemical dynamics, intro,collision theory by dr. y. s. thakare
Chemical dynamics, intro,collision theory by dr. y. s. thakareChemical dynamics, intro,collision theory by dr. y. s. thakare
Chemical dynamics, intro,collision theory by dr. y. s. thakare
 
Nbhtc pure
Nbhtc pureNbhtc pure
Nbhtc pure
 
Understanding Intrinsic Properties of Biological Molecules in Absence of Sol...
Understanding Intrinsic Properties ofBiological Molecules in Absence of Sol...Understanding Intrinsic Properties ofBiological Molecules in Absence of Sol...
Understanding Intrinsic Properties of Biological Molecules in Absence of Sol...
 
RamaleyPosterFinal_KRA
RamaleyPosterFinal_KRARamaleyPosterFinal_KRA
RamaleyPosterFinal_KRA
 
How Tube 3 Changed Colors Into An Orange-Brown
How Tube 3 Changed Colors Into An Orange-BrownHow Tube 3 Changed Colors Into An Orange-Brown
How Tube 3 Changed Colors Into An Orange-Brown
 
Thermochemistry ok1294993378
Thermochemistry   ok1294993378Thermochemistry   ok1294993378
Thermochemistry ok1294993378
 
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
On the-mechanism-of-proton-conductivity-in-h-sub3sub o-sbteo-sub6sub_2012_jou...
 

ACS PAH Eutectic Poster FINAL

  • 1. Longjiaxin  Zhong1,  Erica  Gunn  Ph.D.2,  Jillian  L.  Goldfarb  Ph.D.3   1.  Department  of  Chemistry,  Boston  University,  590  Commonwealth  Ave,  Boston  MA  02215    2.  Department  of  Chemistry,  Simmons  College,  300  The  Fenway,  Boston,  MA  02115     3.  Department  of  Mechanical  Engineering  ,  Division  of  Materials  Science  &  Engineering,  Boston  University,  110  Cummington  Mall,  Boston  MA  02215   References   Burks,  G.A.  and  Harmon,  T.C.  J.  Chem.  Eng.  Data.  2001,  46,  944-­‐949.   Drozdzewska,  K.,  V.  Kestens,  A.  Held,  G.  Roebben,  T.  Linsinger.  J.  Thermal  Anal.  Calorimetry.  2007,  88,  757   Fitzpatrick,  E.M.,  Bartle,  K.D.,  Kubacki,  M.L.,  Jones,  J.M.,  Pourkashanian,  M.,  Ross,  A.B.,  Williams,  A.  and  Kubica,  K.  Fuel.  2009.88,  2409.   Goldfarb,  J.L.  and  I.  Külaots  J.  Thermal  Anal.  Calorimetry.  2010.  102,  1063.   Goldfarb,  J.L.  and  E.M.  Suuberg.  J.  Chem.  Thermodyn.  2010,  42,  1009   Gupta,  P.,  T.  Agrawal,  S.S.  Das,  N.B.  Singh.  J.  Chem.  Thermodyn.  2012.  48,  291.   Huber,  G.W.,  Iborra,  S.  and  Corma,  A.  Chem.  Rev.  2006,  106,  4044.   Hsu,  E.  C.-­‐H.;  Johnson,  J.  F.  Mol.  Cryst.  Liq.  Cryst.  1974,27,  95.   I.  Kikic,  P.  Alessi,  P.  Rasmussen  and  A.  Fredenslund,  Can.  J.  Chem.  Eng.,  1980,  5,  253.   Mahmoud,  R.,  E.  Rogalska,  R.  Solimando,  M.  Rogalski.  Thermochemica  Acta.  1999,  325,  119.   Mostafa,  A.R.,  Hegazi,  A.H.,  El-­‐Gayar,  M.Sh.  and  Anderson,  J.T.  Fuel.  2009,  88,  95.   Müller  M.,  Kübel,  C.  and    Müllen,  K.  Chem.  Eur.  J.  1998,  4,  2099.   Murthy,  S.S.N.  Thermochim.  Acta.  2000,  359,  143   Oja,  V.  and  Suuberg,  E.  M.  A.C.S.  Symposium  Series.  2005,  895,  113   Rice,  J.W.,  J.  Fu.  E.M.  Suuberg.  J.  Chem.  Eng.  Data.  2010,  55,  3598.   Rice,  J.W.,  J.  Fu,  E.M.  Suuberg.  Ind.  Eng.  Chem.  Res.  2011,  50,  3613.   Sharma,  B.L.,  S.  Gupta,  S.  Tandon,  R.  Kant.  Materials  Chemistry  and  Physics.  2008,  111,  423.   Yilmaz,  N.  and  A.  B.  Donaldson.  Fuel.  2007,  86,  2377.   Image   Munich  city  lantern  ward  Wilhelm  Schuepfer  lights  a  gas  street  light  in  July,  1961.  RED  GRANDY/STARS  AND  STRIPES     Fluorene  +  Acenaphthene   Eutec7c  Behavior  of  Binary   Polycyclic  Aroma7c  Hydrocarbon  Mixtures   U n i n t e n d e d   c o n s e q u e n c e s   o f   industrializa2on:   PAH   abound   at   the   former   m a n u f a c t u r e d   g a s   plants  that  lit  the  way  to   our   modern   society.   Eutec7c  Systems   • Phase  diagram  at  low  temperatures   dominated  by  a  two-­‐phase  field  of  two   different  solid  structures,  one  enriched  in   component  A,  other  in  component  B   • Stable,  intermediate  mixtures  form  between   the  extremes  of  pure  component  A  and  pure   component  B   Solid&A&+&B& Melt& Tme& TmA& TmB& TA+B!&AB& Melt& +&A& Melt&& +&B& 100%&A&& &&&&&&&&&&&&&&&&&&&&&100%&B& Abstract   Polycyclic  aromahc  hydrocarbons  (PAH)  are  byproducts  of  incomplete  combushon.   Despite  their  ubiquitous  environmental  and  industrial  posihoning,  likle  is  known   about  the  phase  behavior  of  PAH  mixtures,  which  is  important  in  predichng  their   fate  and  transport,  and  in  industrial  crystallizahon  processes.  These  compounds   precipitate  during  hydrocracking,  underscoring  the  need  to  fully  understand  their   solid-­‐liquid  equilibrium  behavior  and  the  intermolecular  forces  at  play.  Phase   diagrams  of  binary  polycyclic  aromahc  hydrocarbon  (PAH)  mixtures  display  single   and  mulhple  eutechc  points  depending  on  the  compounds.  We  studied  the  behavior   of  acenaphthene-­‐fluorene  and  fluorene-­‐phenanthrene  mixtures  of  varying   composihon  using  differenhal  scanning  calorimetry  to  measure  their  melhng  points   and  fusion  enthalpies.  As  is  omen  the  case  with  interachng  components,  the   enthalpies  of  fusion  of  these  eutechc  mixtures  are  lower  than  those  calculated  by  an   ideal  mixture  of  the  sum  of  the  individual  components.   Fluorene  +  Phenanthrene   Degrees  of  Devia7on  from  Ideal  Mixtures  and  Future  Work   Ideal  Mixtures   • If  there  were  no  intermolecular   interachons  in  a  mixture,  we   expect  the  enthalpy  of  fusion  to  be   sum  of  its  individual  components     • Eutechc  enthalpies  of  fusion  omen   considerably  lower  than  ideal   predichons  due  to  an  interachon   energy  between  the  compounds   Materials  &  Methods   • Compounds  from  TCI  America  at  minimum  purity  of  98%;  frachonally  sublimed  to   remove  impurihes     • Mixtures  fabricated  by  weighing  on  microbalance,  melted  together  on  hot  plate  at   2°C  above  lowest  melhng  point   • Melhng  points  and  enthalpies  of  fusion  of  pure  components  and  mixtures   determined  on  a  TA  Instruments  Q2000  Differenhal  Scanning  Calorimeter  (DSC)   using  hermehcally  sealed  aluminum  pans   he ability of a binary mixture to form an ideal solution stems from the constituents’ molecular sizes and, more importantly in the case of these similar sized PAH, specific intermolecular interactions between the components (Dorset et al. 1989). In an ideal solution, we would expect the liquidous curve to follow the Schröder equation for freezing point depression, representing the melting point of the mixture, T, as !" !! = − ∆!!! ! 1 ! − 1 !!,! (1) where R is the universal gas constant; x1 is the mole fraction of component 1 (e.g. the solvent); ΔHf1 its corresponding enthalpy of fusion at an absolute temperature of Tm,1. The same relation would hold for component 2 as in the binary mixture x2 = 1 – x1. The eutectic temperature, Te, of an ideal binary mixture is found by setting x1 = xe and T=Te (Hsu and Johnson 1974). In a similar vein, if there were no intermolecular interactions, one might expect the enthalpy of fusion of a mixture to be the sum of the individual components, such that: ∆!!!"#,!"#$% = !!∆!!! + !!∆!!! (5) However, this if often not the case; the enthalpies of fusion of eutectic mixtures are often considerably lower than those calculated by equation (5), attributed to an interaction energy between the compounds, equal to the difference between the measured and mixing law prediction (Gupta et al. 2012). xi  =  Mole  frachon  of  component  i   ΔHfi  =    Enthalpy  of  fusion  component  I   n, if there were no intermolecular interactions, one might expect the enthalpy of fusion of a mixture to be the sum of the individual components, such that: ∆!!!"#,!"#$% = !!∆!!! + !!∆!!! (5) However, this if often not the case; the enthalpies of fusion of eutectic mixtures are often considerably lower than those calculated by equation (5), attributed to an interaction energy between the compounds, equal to the difference between the measured and mixing law prediction (Gupta et al. 2012). ∆!!"#$%&'#!(" = ∆!!!"#,!"#$%&"' − ∆!!!"#,!"#$% (6) Sample Calculation (Acenaphthene-fluorene mixture in 50:50): [Not pretty sure how to use this equation] 66.55℃ = 339.7!K Fluorene   C13H10   Molecular  Weight:  166.2185         Acenaphthene   C12H10   Molecular  Weight:  154.2078  g/mol   Heat/Cool  Thermal  cycle  at  5°C/min,  50wt%  (0.14mol%)  Fluorene   69.5°C                                    64.3°C                                  56.5°C                          51.5°C          49.3°C                                46.0°C                            44.5°C   48.5°C                                    50.5.3°C                            55.3°C                              51.5°C          67.5°C                                72.0°C                            72.8°C   Cooling  and  reheahng  of  mixture.  Some  evidence  of  low  temperature  phase  growing   back  in  at  low  temperature,  and  then  re-­‐converhng  as  the  sample  is  heated.   RT# 50.8#°#C# 55.0#°#C# 55.5#°#C# (b)# 66.0°#C# 67.0#°#C# (b)# Sample  quenched  from  melt  between   coverslips.  (b)  Images  taken  between  crossed   polarizers;  crystalline  material  appears  bright,   melt  appears  dark.  Appearance  changes  with   temperature,  but  sample  remains  crystalline.   Changes  very  possibly  due  to  solid-­‐solid  phase   transformahon,  which  completes  around  66°C.   1mm   Mixtures  of  40-­‐60wt%  (46-­‐63mol%)  acenapthene   in  fluorene  show  single  melhng  points  across   composihon  range     Mixtures  of  40-­‐60wt%  (46-­‐63mol%)  acenapthene   in  fluorene  have  enthalpies  of  fusion  similar  to   that  predicted  by  an  ideal  mixture.  Outside  of  this   range,  we  find  negahve  interachon  enthalpies.     Fluorene   C13H10   Molecular  Weight:  166.2185         Phenanthrene   C14H10   Molecular  Weight:  178..2292     Conclusions  &  Implica7ons   Mixtures  with  more  than   20wt%  of  either  compound   show  single  melhng  points   Enthalpies  of  fusion  are   fairly  close  to  ideal  mixture   predichons   Fluorene  +   Phenanthrene  mixtures   show  considerably  lower   enthalpies  of  interachon   than  Fluorene  +   Acenaphthene  mixtures   The degree to which a mixture deviates from ideal behavior can also be described by excess functions for enthalpy (ΔHE ), Gibbs free energy (ΔGE ), and entropy (ΔSE ). ∆!! = −!!! !! !"#!! !" + !! !"#!! !" (7) ∆!! = !" !!!"!! + !!!"!! (8) ∆!! = −! !!!"!! + !!!"!!+!!! !"#!! !" + !!! !"#!! !" (9) ! The  degree  to  which  a  mixture  deviates  from  ideal  behavior  can   also  be  described  by  excess  funchons  for  enthalpy  (ΔHE),  Gibbs   free  energy  (ΔGE),  and  entropy  (ΔSE).   We  will  explore  the  degree  to   which  deviahons  from  ideality   stem  from  entropic  versus   enthalpic  contribuhons  based  on   Gibbs  minimizahon  at  the   eutechc   The  acenaphthene-­‐fluorene  system  exhibits  both  single  and  double  melhng   peaks  from  low  mass  frachon  to  high  mass  frachon.  The  fluorene-­‐phenanthrene   mixture  goes  from  eutechc  to  non-­‐eutechc  and  then  going  back  to  eutechc   behavior.  As  a  result,  the  range  of  acenaphthene’s  mass  frachon  across  the   single  phase  melhng  for  the  acenaphthene-­‐fluorene  mixture  was  between  44.6   and  64.3%,  and  the  range  of  temperature  of  the  eutechcs  was  between  67.5  and   66.6  °C.  The  range  of  fluorene’s  mass  frachon  to  achieve  this  eutechc  for  the   fluorene-­‐phenanthrene  mixture  is  between  5.27  to  54.89%  and  79.89  to  95.06%,   and  the  eutechcs  formed  for  these  mass  frachons  between  97.98  and  114.85  °C.   The  fluorene-­‐phenanthrene  system  has  a  considerably  broader  eutechc.  As  is   omen  the  case  with  interachng  components,  the  enthalpies  of  fusion  of  these   eutechc  mixtures  are  lower  than  those  calculated  by  an  ideal  mixture  of  the  sum   of  the  individual  components.