SlideShare a Scribd company logo
1 of 165
MATHEMATICAL MODELING
MANAGEMENT SYSTEM
OUR MISSION:
BRING THE BENEFITS OF OPTIMIZATION TECHNOLOGY
TO SOCIETY:
 ENABLING PEOPLE TO APPLY OPTIMIZATION TECHNOLOGY
SUCCESSFULLY INTO THEIR ORGANIZATIONS
 BEING ENTREPRENEURS OF NEW COMPANIES
THAT BRING THE BENEFITS OF OPTIMIZATION TECHNOLOGY TO SOCIETY
Why do you choose to
programming in any
specific optimization
technology when you can
programming in all tools
at the same time with
only one effort ?FICO™
XPRESS-MOSEL
CPLEX-OPL-ODM
IMPRESS
Why do you choose to
programming in any
specific optimization
technology when you can
programming in all tools
at the same time with
only one effort ?
The best way is to have
the mathematical models
in a meta-platform and in
a second phase go to any
specific commercial
platform.
As a part of its process of
technological innovation,
DW has developed an
optimization technology
called
OPTEX
Mathematical Modeling
Management System
which is oriented to
designing, implementing
and setting up large scale
optimization models for
the real word .
OPTEX IS A META-FRAMEWORK
ORIENTED TOWARDS THE DESIGN, IMPLEMENTATION AND SETUP OF DECISION
SUPPORT SYSTEMS BASED IN MATHEMATICAL PROGRAMMING WITH SPECIAL
EMPHASIS IN THE DEVELOPMENT OF FINAL USER APPS:
 ALGEBRAIC FORMULATION IS INDEPENDENT FROM ANY PROGRAMMING
LANGUAGE
 CAN BE CONNECTED WITH ANY DATA SERVER
THEREBY GENERATING APPS USING MULTIPLE COMMERCIAL OR NONCOMMERCIAL
TECH ACCORDING TO CLIENTS’ NEEDS
OPTEX Mathematical Modeling System,
was developed to support
DecisionWare’s mathematical modeling
projects since 1991.
SUPPORTS ALL STAGES OF THE
MATHEMATICAL MODELING PROCESS
MATHEMATICAL
MODELING PROCESS
REAL
WORLD
DSS
DATABASE
OPTMER(P): =
Maximizar RMin
sujeto a:
RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+
cdbt)Pcbt)
+ (VBOLSA+
hdbt-VBOLSA-
hdbt)CMhdbt
- ECPhdbt PPO + VBOLSA+
hdbt CPOhbt} - VENFt PFIt } h,d
VBOLSA+
hdbt-VBOLSA-
hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+
dbt)
h,d,b,t
DNS+
dbt - DNS-
dbt = DEMcdbt - EVcbt c,d,b,t
ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b
VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t
VENFt  0 t
EVcbt  0 c,b,t
ECPhdbt  0 h,d,b,t
DNS+
cdbt , DNS-
cdbt  0 c,d,b,t
VBOLSA+
hdbt , VBOLSA-
hdbt  0 h,d,b,t
MATHEMATICAL
MODELING PROCESS
ALGEBRAIC MODEL DATA MODEL
MODELERS
REAL
WORLD
G.R.G.
0-1
BALAS-BENDERS
LAGRAGIAN
RELAXATION
BENDERS THEORY
BRANCH &
BOUND
P.L.
FLUJO EN
REDES
G.R.G.
/PC
G.R.G.
/PL
D.F.P.
x, p
OPTIMIZATION SOLVER
DSS
DATABASE
OPTMER(P): =
Maximizar RMin
sujeto a:
RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+
cdbt)Pcbt)
+ (VBOLSA+
hdbt-VBOLSA-
hdbt)CMhdbt
- ECPhdbt PPO + VBOLSA+
hdbt CPOhbt} - VENFt PFIt } h,d
VBOLSA+
hdbt-VBOLSA-
hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+
dbt)
h,d,b,t
DNS+
dbt - DNS-
dbt = DEMcdbt - EVcbt c,d,b,t
ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b
VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t
VENFt  0 t
EVcbt  0 c,b,t
ECPhdbt  0 h,d,b,t
DNS+
cdbt , DNS-
cdbt  0 c,d,b,t
VBOLSA+
hdbt , VBOLSA-
hdbt  0 h,d,b,t
NUMERICAL MODEL
MATHEMATICAL
MODELING PROCESS
MATRIX
GENERATION
ALGEBRAIC MODEL DATA MODEL
MODELERS
REAL
WORLD
G.R.G.
0-1
BALAS-BENDERS
LAGRAGIAN
RELAXATION
BENDERS THEORY
BRANCH &
BOUND
P.L.
FLUJO EN
REDES
G.R.G.
/PC
G.R.G.
/PL
D.F.P.
x, p
OPTIMIZATION SOLVER
DSS
DATABASE
DSS
DATABASE
OPTMER(P): =
Maximizar RMin
sujeto a:
RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+
cdbt)Pcbt)
+ (VBOLSA+
hdbt-VBOLSA-
hdbt)CMhdbt
- ECPhdbt PPO + VBOLSA+
hdbt CPOhbt} - VENFt PFIt } h,d
VBOLSA+
hdbt-VBOLSA-
hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+
dbt)
h,d,b,t
DNS+
dbt - DNS-
dbt = DEMcdbt - EVcbt c,d,b,t
ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b
VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t
VENFt  0 t
EVcbt  0 c,b,t
ECPhdbt  0 h,d,b,t
DNS+
cdbt , DNS-
cdbt  0 c,d,b,t
VBOLSA+
hdbt , VBOLSA-
hdbt  0 h,d,b,t
NUMERICAL MODEL
MATHEMATICAL
MODELING PROCESS
MATRIX
GENERATION
ALGEBRAIC MODEL DATA MODEL
DECISION MAKERS
MODELERS
REAL
WORLD
G.R.G.
0-1
BALAS-BENDERS
LAGRAGIAN
RELAXATION
BENDERS THEORY
BRANCH &
BOUND
P.L.
FLUJO EN
REDES
G.R.G.
/PC
G.R.G.
/PL
D.F.P.
x, p
OPTIMIZATION SOLVER
DSS
DATABASE
DSS
DATABASE
OPTMER(P): =
Maximizar RMin
sujeto a:
RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+
cdbt)Pcbt)
+ (VBOLSA+
hdbt-VBOLSA-
hdbt)CMhdbt
- ECPhdbt PPO + VBOLSA+
hdbt CPOhbt} - VENFt PFIt } h,d
VBOLSA+
hdbt-VBOLSA-
hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+
dbt)
h,d,b,t
DNS+
dbt - DNS-
dbt = DEMcdbt - EVcbt c,d,b,t
ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b
VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t
VENFt  0 t
EVcbt  0 c,b,t
ECPhdbt  0 h,d,b,t
DNS+
cdbt , DNS-
cdbt  0 c,d,b,t
VBOLSA+
hdbt , VBOLSA-
hdbt  0 h,d,b,t
NUMERICAL MODEL
MATHEMATICAL
MODELING PROCESS
MATRIX
GENERATION
ALGEBRAIC MODEL DATA MODEL
DECISION MAKERS
MODELERS
REAL
WORLD
THIRD PART PROVIDER
G.R.G.
0-1
BALAS-BENDERS
LAGRAGIAN
RELAXATION
BENDERS THEORY
BRANCH &
BOUND
P.L.
FLUJO EN
REDES
G.R.G.
/PC
G.R.G.
/PL
D.F.P.
x, p
OPTIMIZATION SOLVER
DSS
DATABASE
DSS
DATABASE
OPTMER(P): =
Maximizar RMin
sujeto a:
RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+
cdbt)Pcbt)
+ (VBOLSA+
hdbt-VBOLSA-
hdbt)CMhdbt
- ECPhdbt PPO + VBOLSA+
hdbt CPOhbt} - VENFt PFIt } h,d
VBOLSA+
hdbt-VBOLSA-
hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+
dbt)
h,d,b,t
DNS+
dbt - DNS-
dbt = DEMcdbt - EVcbt c,d,b,t
ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b
VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t
VENFt  0 t
EVcbt  0 c,b,t
ECPhdbt  0 h,d,b,t
DNS+
cdbt , DNS-
cdbt  0 c,d,b,t
VBOLSA+
hdbt , VBOLSA-
hdbt  0 h,d,b,t
NUMERICAL MODEL
MATHEMATICAL
MODELING PROCESS
MATRIX
GENERATION
ALGEBRAIC MODEL DATA MODEL
DECISION MAKERS
MODELERS
REAL
WORLD
MAY BE
THIRD PART PROVIDER
A DECISION SUPPORT SYSTEM
IS AS A DECISION MAKING CHAIN
INTEGRATED BY A COLLECTION
OF MODELS AND DATA FLOW
PTA
Industrial Operations
Tactical Planning
DEM
Long/Medium/Short
Demand Planning
INV
Inventory
Policy
Medium / Short Term
Demand Projections
Inventory
Policy
Production
Goals
POD
Production
Schedule
DIS
Distribution
Schedule
Distribution
Goals
PCO
Sourcing
Sourcing
Goals
Production
Orders
Distribution
Orders
Sourcing
Orders
PES
Supply Chain Design
Short / Medium Term
Market Scenarios
Expansion
Plans
DSS
Short / Medium Term
Market Scenarios
PTA
Industrial Operations
Tactical Planning
DEM
Long/Medium/Short
Demand Planning
INV
Inventory
Policy
POD
Production
Schedule
DIS
Distribution
Schedule
PCO
Sourcing
PES
Supply Chain Design
DSS
COMMON
DATA MODEL
INFORMATION
SYSTEM
SUPPORTS DESIGN, IMPLEMENTATION,
START UP AND MAINTENANCE OF COMPLEX
DECISION SUPPORT SYSTEMS,
USING AN UNIFIED DEVELOPMENT ENVIRONMENT
ALGEBRAIC LANGUAGE
ELEMENTS
ALGEBRAIC LANGUAGES
• Algebraic Programming Language
• Database Algebraic Language
USER INTERFACE
• Based in database tables
• Operates in LANs and WANs (“Cloud Computing”)
• Visual Interface (MS-Windows)
• Filling the blanks parameterization
SERVICES
• Data-Model Generator
• Final User Interface Generator
• General Language Model Generator (C, Java …), includes Matrix Generator
• Algebraic Language Model Generator (GAMS, IBM ILOG OPL, MOSEL , AIMMS … )
PROBLEM SOLUTION
• Basic problems: LP, MIP, QP, MIQP, NLP
• Large Scale Theory: Benders Partition, Lagrangean Relaxation, Disjunctive Programming, …
• Links to multiple optimization libraries (GUROBI, IBM CPLEX, XPREXX, COIN-MP, … )
• Automatic Generation of Non-anticipative Multistage Stochastic Programming (MSP)
• Parallel solution in computers grids
CONNECTIVITY
• ERP/WMS/TMS/AMS: Enterprise Information Systems
• GIS: Geographic Information Systems
• ASP: Applications Service Provider (MS-Project, Google MAPS, …)
ELEMENTS
ALGEBRAIC LANGUAGEs:
• Programming Language
• Database Language
ALGEBRAIC LANGUAGES OBJECTS
MATHEMATICAL DEFINITIONS
• Index, Sets, Parameters, Variables, Equations,
Objective Functions, Planning Horizons, Decision
Trees
DECISION SUPPORT SYSTEMS
• Problems = (Equations, Variables, Objective
Functions)
• Model = (Problems, Data Flows)
• DSS = (Models, Data Flows)
DATA MODEL
• DSN, Data Tables, Fields, Shell Windows, Data
Windows, Menus
OPTEX DATABASE
ALGEBRAIC LANGUAGE
OPTEX- DATABASE ALGEBRAIC LANGUAGE
SQL
Server
Internet - Intranet
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
MM
Server
MATHEMATICAL
MODEL
SERVER
INFORMATION
SYSTEM
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
EASY DEVELOPMENT MATHEMATICAL MODELS
IN A LAN-WAN ENVIRONMENT USING THE POWER
OF THE DATABASE SERVERS
OPTEX- DATABASE ALGEBRAIC LANGUAGE
SQL
Server
Internet - Intranet
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
MM
Server
MATHEMATICAL
MODEL
SERVER
INFORMATION
SYSTEM
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
THE IMPLEMENTATION OF A
DECISION SUPPORT SYSTEMS IS BASED IN
A FILLING THE BLANKS PROCESS
OPTEX- DATABASE ALGEBRAIC LANGUAGE
MATHEMATICAL MODELS BASIC ELEMENTS
ARE STORED IN A DATA BASE
JVB-08/94OPTEX
Min t j h CTt(GTjth)
sujeto a:
GDzth = uTN(z) LDuzth
GDzth + GHAzth + DEFzth = DEMzth
ENuth - jL1(u) GTEjuth
- vL2(u) LLvuth = 0
. . . . .
z  NOD
t = 1,T
h = 1,NH
z  NOD
t = 1,T
h = 1,NH
u  LIN
t = 1,T
h = 1,NH
INDEXESINDEXES
OPTEX- DATABASE ALGEBRAIC LANGUAGE
JVB-08/94OPTEX
Min t j h CTt(GTjth)
sujeto a:
GDzth = uTN(z) LDuzth
GDzth + GHAzth + DEFzth = DEMzth
ENuth - jL1(u) GTEjuth
- vL2(u) LLvuth = 0
. . . .
z  NOD
t = 1,T
h = 1,NH
z  NOD
t = 1,T
h = 1,NH
u  LIN
t = 1,T
h = 1,NH
SETSSETS
OPTEX- DATABASE ALGEBRAIC LANGUAGE
OPTEX- DATABASE ALGEBRAIC LANGUAGE
DATABASE
CONNECTIVITY
AUTOMATIC GENERATION OF
MATHEMATICAL MODEL- DATA MODEL
SQL CONNECTIVITY
JVB-08/94OPTEX
Min t j h CTt(GTjth)
sujeto a:
GDzth = uTN(z) LDuzth
GDzth + GHAzth + DEFzth = DEMzth
ENuth - jL1(u) GTEjuth
- vL2(u) LLvuth = 0
. . . .
z  NOD
t = 1,T
h = 1,NH
z  NOD
t = 1,T
h = 1,NH
u  LIN
t = 1,T
h = 1,NH
PARAMETERSPARAMETERS
OPTEX- DATABASE ALGEBRAIC LANGUAGE
OPTEX- DATABASE ALGEBRAIC LANGUAGE
DATABASE
CONNECTIVITY
TIPO DE SERIE INTERPRETACIÓN
E
ESCALÓN
()
I
IMPULSO
(PULSE)
P
POLI LÍNEA
(POLY LINE)
OPTEX- DATABASE ALGEBRAIC LANGUAGE
MULTIPLES FORMS OF
DATA INTERPRETATION
JVB-08/94OPTEX
Min t j h CTt(GTjth)
sujeto a:
GDzth = uTN(z) LDuzth
GDzth + GHAzth + DEFzth = DEMzth
ENuth - jL1(u) GTEjuth
- vL2(u) LLvuth = 0
. . . .
z  NOD
t = 1,T
h = 1,NH
z  NOD
t = 1,T
h = 1,NH
u  LIN
t = 1,T
h = 1,NH
VARIABLES
OPTEX- DATABASE ALGEBRAIC LANGUAGE
JVB-08/94OPTEX
Min t j h CTt(GTjth)
sujeto a:
GDzth = uTN(z) LDuzth
GDzth + GHAzth + DEFzth = DEMzth
ENuth - jL1(u) GTEjuth
- vL2(u) LLvuth = 0
. . . .
z  NOD
t = 1,T
h = 1,NH
z  NOD
t = 1,T
h = 1,NH
u  LIN
t = 1,T
h = 1,NH
CONSTRAINTS
OPTEX- DATABASE ALGEBRAIC LANGUAGE
OPTEX- DATABASE ALGEBRAIC LANGUAGE
MODELSPROBLEMS DSSs
OPTEX- DATABASE ALGEBRAIC LANGUAGE
COORDINATION DECISIONS
OVER SPACE AND TIME
MO
IL
MO
WO MO
Tiempo
OPTEX- DATABASE ALGEBRAIC LANGUAGE
FOR DISCRETE TIME MOODELS, THE
PLANNING HORIZON MAY BE IN YEARS,
MONTHS, DAY, HOURS, MINUTES, …
PROBLEMS
MODELS
OPTEX – DECISION SUPPORT SYSTEM ELEMENTS
A PROBLEM IS A COLLECTION OF CONSTRAINTS
A MODEL IS A COLLECTION OF PROBLEMS
CONNECTED BY A DATA FLOW AND A MODEL CONTROL
A DECISION SUPPORT SYSTEM IS A COLLECTION OF
MODELS AND DATA FLOW ALL USING THE SAME DATA MODEL
AND THE SAME FRAMEWORK
PTA
Aggregated Industrial
Operations
Tactical Plannings
DEM
Demand
Long/Medium/Short
Term
INV
Inventory
Policies
Demand Forecasting
Medium/Short Term
Demand Stages
Medium/Short Term
Inventory
Policies
Production
Goals
POD
Production
Scheduling
DIS
Distribution
scheduling
Distribution
Goals
PCO
Sourcing
Scheduling
Consumption
Goals
Production
Orders
Distriution
Orders
Purchase
Orders
PES
Supply Chain Design
Marjet Stages
Long/Medium Term
Expansion
Plans
DSS
DSS
MODELS
OPTEX – DECISION SUPPORT SYSTEMS ELEMENTS
ADVANCED OPTIMIZATION
INVESTMENTS COORDINATOR
INTERZONE
COORDINATOR
SECTOR 1
STOCHASTIC 1
INTERZONE
COORDINATOR
SECTOR 1
STOCHASTIC 1
INTERSECTOR OPERATIONS
COORDINATOR
STOCHASTIC CONDITION 1
DYNAMIC
COORD.
ZONA S.1
DYNAMIC
COORD.
ZONA S.ZS
DYNAMIC
COORD.
ZONE 1.1
DYNAMIC
COORD.
ZONA 1.Z1
1 T2 T-1 1 T2 T-1 1 T2 T-1 1 T2 T-1
TIME
PARTITION
INVESTMENTS
SECTOR
ZONE
DECOMPOSITION
MULTILEVEL
SYSTEM
INTERZONE
COORDINATOR
SECTOR 1
STOCHASTIC H
INTERZONE
COORDINATOR
SECTOR 1
STOCHASTIC H
INTERSECTOR OPERATIONS
COORDINATOR
STOCHASTIC CONDITION H
DYNAMIC
COORD.
ZONA S.1
DYNAMIC
COORD.
ZONA S.ZS
DYNAMIC
COORD.
ZONE 1.1
DYNAMIC
COORD.
ZONA 1.Z1
1 T2 T-1 1 T2 T-1 1 T2 T-1 1 T2 T-1
RANDOM
OPERATIONS
LARGE SCALE OPTIMIZATION
AND
DECISION SUPPORT SYSTEM ELEMENTS
MODELSPROBLEMS DSSs
OPTEX- DATABASE ALGEBRAIC LANGUAGE
NON-ANTICIPATIVE STOCHASTIC OPTIMIZATION
PROBABILISTICS CONSTRAINTS
BENDERS PARTITIONING THEORY
LAGRANGIAN RELAXATION
PARAMETRIC PROGRAMMING
DISJUNCTIVE PROGRAMMING
AUTOMATIC LINEARIZATION
….
LARGE SCALE OPTIMIZATION
AND
DECISION SUPPORT SYSTEM ELEMENTS
MODELSPROBLEMS DSSs
OPTEX- DATABASE ALGEBRAIC LANGUAGE
MODELSPROBLEMS DSSs
Problem =  (Equations, Variables, Objective Functions)
Model =  (Problems, Data Flows)
DSS =  (Models, Data Flows)
OPTEX- DATABASE ALGEBRAIC LANGUAGE
INTEGRATED
MODEL
INVESTMENTS
-
OPERATIONS
OPTEX- LARGE SCALE METHODOLOGIES
INVESTMENTS
COORDINATOR
INTERZONE
COORDINATOR
SECTOR 1
STOCHASTIC 1
INTERZONE
COORDINATOR
SECTOR 1
STOCHASTIC 1
INTERSECTOR OPERATIONS
COORDINATOR
STOCHASTIC CONDITION 1
DYNAMIC
COORD.
ZONA S.1
DYNAMIC
COORD.
ZONA S.ZS
DYNAMIC
COORD.
ZONE 1.1
DYNAMIC
COORD.
ZONA 1.Z1
1 T2 T-1 1 T2 T-1 1 T2 T-1 1 T2 T-1TIME
PARTITION
INVESTMENTS
SECTOR
ZONE
DECOMPOSITION
MULTILEVEL
SYSTEM
INTERZONE
COORDINATOR
SECTOR 1
STOCHASTIC H
INTERZONE
COORDINATOR
SECTOR 1
STOCHASTIC H
INTERSECTOR OPERATIONS
COORDINATOR
STOCHASTIC CONDITION H
DYNAMIC
COORD.
ZONA S.1
DYNAMIC
COORD.
ZONA S.ZS
DYNAMIC
COORD.
ZONE 1.1
DYNAMIC
COORD.
ZONA 1.Z1
1 T2 T-1 1 T2 T-1 1 T2 T-1 1 T2 T-1
RANDOM
OPERATIONS
PROBLEMS <-> MODELS
OPTEX- LARGE SCALE METHODOLOGIES
HYDRAULIC SYSTEM
PROBLEM: MODBENCO
CCP, CGH, CGS, COE, CSP, EQE, SQE
yk
ELECTRIC SYSTEM
PROBLEM: MODBENUNNU
DUN, NUN
pk
vk
OPTEX- BENDERS IMPLEMENTATION
HYDRAULIC SYSTEM
PROBLEM: MODBENCO
CCP, CGH, CGS, COE, CSP, EQE, SQE
yk
ELECTRIC SYSTEM
PROBLEM: MODBENNU
DUN, NUN
pk
vk
MODEL: MODBENNU
OPTEX- BENDERS IMPLEMENTATION
SUt(xt-1,xt): =
{Wt(xt-1,xt) =
Min dt
Tut |
Btut = bt - Et-1xt-1 - Atxt
Gtut = gt
utR+
}
SGt(xj
t-1):=
{aT(xj
t-1) Min =
ct
Txt + Wt(xt-1,xt) + at+1(xt)
|
Wt(xt-1,xt) + (pt
k)TAtxt 
qT(pt
k,dt
k) - (pt
k)TEt-1xj
t-1 kIU(t,j)
xtR+
at+1(xt) + kI1(t+1,j) yk,j
t+1 (pt+1
k)Tetxt
t
j jIJ(t) }
pt
k
SUt(xt-1,xt): =
{Wt(xt-1,xt) =
Min dt
Tut |
Btut = bt - Et-1xt-1 - Atxt
Gtut = gt
utR+
}
SUt(xt-1,xt): =
{Wt(xt-1,xt) =
Min dt
Tut |
Btut = bt - Et-1xt-1 - Atxt
Gtut = gt
utR+
}
p1
k
pT
k
t=1 t=T
x1 x1 xT
x1
xT-1
yk,j
t+1
yk,j
t+1
SGt(xj
t-1):=
{aT(xj
t-1) Min =
ct
Txt + Wt(xt-1,xt) + at+1(xt)
|
Wt(xt-1,xt) + (pt
k)TAtxt 
qT(pt
k,dt
k) - (pt
k)TEt-1xj
t-1 kIU(t,j)
xtR+
at+1(xt) + kI1(t+1,j) yk,j
t+1 (pt+1
k)Tetxt
t
j jIJ(t) }
SGt(xj
t-1):=
{aT(xj
t-1) Min =
ct
Txt + Wt(xt-1,xt) + at+1(xt)
|
Wt(xt-1,xt) + (pt
k)TAtxt 
qT(pt
k,dt
k) - (pt
k)TEt-1xj
t-1 kIU(t,j)
xtR+
at+1(xt) + kI1(t+1,j) yk,j
t+1 (pt+1
k)Tetxt
t
j jIJ(t) }
PROBLEM-MODEL CONCEPTUALIZATION IS ORIENTED TO ALLOW THE
MODELERS TO IMPLEMENT LARGE SCALE METHODOLOGIES LIKE
BENDERS THEORY AND LAGRANGEAN RELAXATION
USING A GENERAL PARTITION-DECOMPOSITION FRAMEWORK
OPTEX- LARGE SCALE METHODOLOGIES
PLANNING
HORIZONS
MULTI-STAGE
STOCHASTIC
DECISIONS
TREE
OPTEX- DATABASE ALGEBRAIC LANGUAGE
MATHEMATICAL MODELS
ADVANCED ELEMENTS
Scenario H
Scenario 1
Scenario 2
ARBOL DE DECISIONES DE
MULTIPLES ETAPAS
t = 1 t = 2 t = 3 t = 4
OPTEX- MULTISTAGE STOCHASTIC OPTIMIZATION
OPTEX HAS TOOLS ORIENTED TO DEVELOP
MULTISTAGE STOCHASTIC OPTIMIZATION MODELS
AUTOMATIC CONVERSION OF A
DETERMINISTIC MODEL INTO STOCHASTIC
MULTI-STAGE
DECISION TREE
MULTI-STAGE
DECISION TREE
N1
e = 1 e = 2 e = 3
t
1 13 25 36
N21
N22
N21
N22
N21
N22
N21
N22
Hidrology 1988
Hidrology 1992
Hidrology 1985
Hidrology 1990
High Demand High Price
Hidrology 1988 Low Demand Low Price
High Demand High Price
Low Demand Low PriceHidrology 1990
High Demand High Price
Low Demand Low PriceHidrology 1992
High Demand Low Price
High PriceLow Demand
High Demand High Price
Hidrology 1988
Hidrology 1988
0.125
0.0625
UNCERTAINTY DIMENSIONS
• Demand
• Fuel Prices
• Water Inflows
• Others
OPTEX HAS TOOLS ORIENTED TO DEVELOP
MULTISTAGE STOCHASTIC OPTIMIZATION
INCLUDING MULTIPLES TYPES OF RISK CONSTRAINTS
Conditional Value-at-Risk (CVaR)
Cost Probability Function
Desvío
Estándar
(s)
VaR
b=0.05
1.645 s
Cost - f(x|w)a(b)
f ( f(x|w) )
jb( f(x|w) )
OPTEX- MULTISTAGE STOCHASTIC OPTIMIZATION
AUTOMATIC CONVERSION
OF A DETERMINISTIC MODEL
INTO A STOCHASTIC MODEL
DETERMINISTIC CASE
t = 1 t = 2
Mean
Demand
Deterministics
Investment
Decisions
Deterministics
Future Operations
Decisions
TWO-STAGE DECISION TREE FOR
DEMAND: UNCERTAINTY DIMENSION
t = 1 t = 2
Scenario
Demand 10
Scenario
Demand 1
Scenario
Demand 2
Deterministics
Investment
Decisions
0.10
0.10
Uncertainty
Future Operations
Decisions
Demand 10
Demand 1
Demand 2
0.10
0.10
Demand 10
Demand 1
Demand 2
0.10
0.10
WITHOUT Extrem Event
0.90
0.10
t = 1 t = 2
Deterministics
Investment
Decisions Uncertainty
Future Operations
Decisions
TWO-STAGE DECISION TREE FOR
DEMAND: UNCERTAINTY DIMENSION 1
EXTREME EVENT: UNCERTAINTY DIMENSION 2
WITH Extrem Event
THE AUTOMATIC CONVERSION IMPLIES:
1. TO INCLUDE THE INDEXES RELATED WITH THE
UNCERTAINTY DIMENSIONS
THE AUTOMATIC CONVERSION IMPLIES:
2. TO DEFINE A DECISION TREE
3. TO SPECIFY THE NON ANTICIPATIVE VARIABLES
4. TO SPECIFY THE PARAMETERS WITH THE
UNCERTAINTY DIMENSIONS
2.
3.
4.
THE AUTOMATIC CONVERSION IMPLIES:
5. TO LINK THE MODEL WITH THE DECISION TREE
THE AUTOMATIC CONVERSION IMPLIES:
6. TO INCLUDE IN THE TABLES THE FIELDS
ASSOCIATED TO THE UNCERTAINTY DIMENSIONS
OPTEX PROGRAMMING
ALGEBRAIC LANGUAGE
(like GAMS, AMPL, LPL, …)
OPTEX PROGRAMMING ALGEBRAIC LANGUAGE
OPTEX PROGRAMMING ALGEBRAIC LANGUAGE
OPTEX PROGRAMMING ALGEBRAIC LANGUAGE
OPTEX PROGRAMMING ALGEBRAIC LANGUAGE
OPTEX PROGRAMMING ALGEBRAIC LANGUAGE
OPTEX PROGRAMMING ALGEBRAIC LANGUAGE
OPTEX PROGRAMMING ALGEBRAIC LANGUAGE
AUTOMATIC
DOCUMENTATION
Internet-Intranet
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
SERVIDOR
MODELOS
MATEMÁTICOS
OPTEX
WIDE AREA NETWORK
DOCUMENTATION
 OPTEX generates automatically the following documentation:
 Algebraic Formulation
 Information system data model
 Connectivity with other data models
Remote Access Server
Connectivity
RTF DOCUMENT
GENERATED BY OPTEX
RTF FIELD
FILLED BY OPTEX
PROBLEM SOLUTION
OPTEX – MATHEMATICAL PROBLEM FORMATS
OPTEX-MMS incorporates optimization methodologies depending on
the optimization library that is being used.
• LINEAR PROGRAMMING (LP)
• MIXED INTEGER PROGRAMMING (MIP).
• MIXED BINARY PROGRAMMING (BP)
• QUADRATIC PROGRAMMING (QP)
• QUADRATIC MIXED PROGRAMMING (QMP)
• QUADRATIC PROGRAMMING (QP-QR)
• INTEGER QUADRATIC PROGRAMMING (QMP-QR)
• NON-LINEAR PROGRAMMING (NLP)
• MIXED COMPLEMENTARITY PROGRAMMING (MCP)
OPTEX PROCESSOR
MODELS
GAMS – MPS
IBM ILOG OPL
MOSEL – AIMMS - …
MODEL RESULTS
(PRIMAL – DUAL)
PROGRAMMING
ALGEBRAIC LANGUAGE
DATABASE
ALGEBRAIC LANGUAGE
OPTEX
PROCESSOR
MODELS
C PROGRAMS
LIB or DDL LIBRARY
OPTEX
WIDE AREA NETWORK
Internet-Intranet
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
SERVIDOR
MODELOS
MATEMÁTICOS
Remote access
server connectivity
CLOUD SERVER
ALGEBRAIC
LANGUAGE
SOLVER
C ANSI
SOLVER
CLOUD LINK
SOLVING
C MODELS
Internet
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
MATHEMATICAL
MODEL’S
ERVER
OPTEX
ERP
DATABASE
Remote Access Server
Connectivity
OPTEX
Graphic User Interface
OPTEX
Mathematical Modeling
Processor
ODBC
USUARIOS
ILIMITADOS
OPTIMIZATION LIBRARY
CPLEX
FICO™
XPRESS
MATHEMATICAL MODEL
C LANGUAGE
OPTEX – C DSS PROGRAM STRUCTURE
I/O
Routines
MODELs
Routines
Main
OPTEX-COINLP
LINK
Routine
COINLP
Routines
CPLEX
Routines
CONSTRAINTs
Routines
OPTEX-CPLEX
LINK
Routine
OPTEX-xxxxx
LINK
Routine
XXXXX
Routines
PROBLEMs
Routines
LARGE SCALE OPTIMIZATION
Routines
DSS.LIB or DSS.DLL
DSS
DATABASE
OPTEX – C DSS PROGRAM STRUCTURE
MODELs
Routines
OPTEX-COINLP
LINK
Routine
COINLP
Routines
CPLEX
Routines
CONSTRAINTs
Routines
OPTEX-CPLEX
LINK
Routine
OPTEX-xxxxx
LINK
Routine
XXXXX
Routines
PROBLEMs
Routines
LARGE SCALE OPTIMIZATION
Routines
DSS.LIB or DSS.DLL
DSS
DATABASE
USER
Routines
OPTEX-USER
LINK
Routine
Customized Visual User Interface
USER
ERP
USER
TRANSACTIONAL
DATABASE
.TXT
VV_rrr.OPT
RR_rrr.OPT
XXX.EXE
Customized Visual User Interface
OPTEX: PRODUCTION PHASE
USER
TRANSACTIONAL
DATABASE
XXX.EXE
Customized Visual User Interface
OPTEX: PRODUCTION PHASE
Customized Web Visual User Interface
Customized Web Visual User Interface
SOLVING
GAMS MODELS
Internet
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
OPTEX
ERP
DATABASE
Remote Access Server
Connectivity
OPTEX
Graphic User Interface
ODBC
OPTEX
Mathematical Modeling
Processor
CPLEX
FICO™
Xpress
MATHEMATICAL
MODEL’S
ERVER
Internet
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
OPTEX
ERP
DATABASE
OPTEX
Graphic User Interface
ODBC
OPTEX
Mathematical Modeling
Processor
CPLEX
MATHEMATICAL
MODEL’S
ERVER
Remote Access Server
Connectivity
FICO™
Xpress
MATHEMATICAL MODEL
GAMS ALGERAIC LANGUAGE
SOLVING
IBM-OPL MODELS
Internet
OPTEX
ERP
DATABASE
OPTEX
Graphic User Interface
OPTEX
Mathematical Modeling
Processor
ODBC
CPLEX
OPL
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
Remote Access Server
Connectivity
MATHEMATICAL
MODEL’S
ERVER
MATHEMATICAL MODEL
IBM-OPL LANGUAGE
IBM-ODM FRAMEWORK
IBM-ODM FRAMEWORK
SOLVING
MOSEL-XPRESS MODELS
Internet
OPTEX
ERP
DATABASE
OPTEX
Graphic User Interface
OPTEX
Mathematical Modeling
Processor
ODBC
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
Remote Access Server
Connectivity
MATHEMATICAL
MODEL’S
ERVER
UNDER DEVELOPMENT
MATHEMATICAL MODEL
MOSEL ALGERAIC LANGUAGE
SOLVING
AIMMS MODELS
Internet
OPTEX
ERP
DATABASE
OPTEX
Graphic User Interface
OPTEX
Mathematical Modeling
Processor
ODBC
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
Remote Access Server
Connectivity
MATHEMATICAL
MODEL’S
ERVER
UNDER DEVELOPMENT
CPLEX
FICO™
Xpress
MATHEMATICAL MODEL
AIMMS ALGERAIC LANGUAGE
SOLVING
AMPL MODELS
(UNDER DEVELOPMENT)
Internet
OPTEX
ERP
DATABASE
OPTEX
Graphic User Interface
OPTEX
Mathematical Modeling
Processor
ODBC
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
Remote Access Server
Connectivity
MATHEMATICAL
MODEL’S
ERVER
UNDER DEVELOPMENT
CPLEX
FICO™
Xpress
MATHEMATICAL MODEL
AIMMS ALGERAIC LANGUAGEMATHEMATICAL MODEL
AMPL ALGERAIC LANGUAGE
SOLVING
iAL IMPRESS MODELS
(UNDER DEVELOPMENT)
SUPER STRUCTURE
&sUnit,&sOperation,&sPort,&sState
IMPRESS
SIMM:
MATHEMATICAL
MODEL
INFORMATION
SYSTEM
SIDI:
INDUSTRIAL
DATA
INFORMATION
SYSTEM
(UOPSS) IMPRESS Files
FUTURE LINKS
INFORMATION SYSTEMS CONNECTIVITY
INDUSTRIAL DATA
INFORMATION SYSTEM
INFORMATION
SYSTEM
Min t j h CTt(GTjth)
sujeto a:
GDzth - uTN(z) LDuzth = 0
GDzth + GHAzth + DEFzth = DEMzth
ENuth - jL1(u) GTEjuth
- vL2(u) LLvuth = 0
Sistema Descripción
Capacidad
Térmica (MW)
EEB.
ISA.
EPM
COR
Energía Eléctrica de Bogotá
Interconexión Eléctrica S.A.
Empresas Públicas de Medellín
CORELCA
45
67
0
78
MATHEMATICAL MODEL
INFORMATION SYSTEM
INDUSTRIAL DATA
INFORMATION SYSTEM
IMPLEMENTATION OF THE
INDUSTRIAL DATA
INFORMATION SYSTEM
RELACIÓN SIMM - SIDI
INDEX
Parameter
Restricción
IndexesVariable
Indexes
Indexes
ENTITY
ENTITIES
RELATIONS
SIMM:
MATHEMATICAL
MODEL
INFORMATION
SYSTEM
SIDI:
INDUSTRIAL
DATA
INFORMATION
SYSTEM
IndexesSets
IN OPTEX THE IMPLEMENTATION OF THE
INDUSTRIAL DATA INFORMATION SYSTEM IS
BASED IN A FILLING THE BLANKS GUIDED
PROCESS, SIMILAR TO THE PROCESS TO
IMPLEMENTATION OF THE MATHEMATICAL
MODELS.
THE MODELER DOESN’T NEED TO BE AN SPECIALIST
IN DATABASES LANGUAGES AND INFORMATION
SYSTEMS
IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
IN OPTEX THE IMPLEMENTATION OF THE
INDUSTRIAL DATA INFORMATION SYSTEM IS
BASED IN A FILLING THE BLANKS GUIDED
PROCESS, SIMILAR TO THE PROCESS TO
IMPLEMENTATION OF THE MATHEMATICAL
MODELS.
THE MODELER DOESN’T NEED TO BE AN SPECIALIST
IN DATABASES LANGUAGES AND INFORMATION
SYSTEMS
IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
TABLES DEFINITION
FIELDS DEFINITION
INDEX TABLES DEFINITION RELATIONAL FIELDS DEFINITION
IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
MENU DEFINITION
IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
INDUSTRIAL DATA
INFORMATION SYSTEM
IS A COLLECTION OF:
DATA TABLES, SHELL WINDOWS, DATA
WINDOWS AND MENUS ORIENTED TO THE
FINAL USER
INDUSTRIAL DATA INFORMATION SYSTEM
INDUSTRIAL DATA INFORMATION SYSTEM
THE DATABASE OF THE INFORMATION SYSTEM
IS A COLLECTION OF RELATIONAL DATA TABLES
ORIENTED TO MANAGE LARGE AMOUNT OF DATA, LIKE IN
THE REAL WORLD MODELS.
OPTEX GENERATES, ON-LINE, DATA
WINDOWS WITH A COLLECTION OF
WINDOWS-TOOLS THAT HELP THE USER IN
THE LABOR OF DATA CAPTURE.
THE DATA WINDOWS ARE JOINT IN A SHELL
WINDOWS IN A RELATIONAL APPROACH.
INDUSTRIAL DATA INFORMATION SYSTEM
HIERARCHIC INFORMATION SYSTEM FOR MODELS RESULTS
SCENARIO FAMILY
ROOT DIRECTORY
Family
No. 1
Directory
Family
No. E
Directory
Family
No. n
Directory
Scenario
No. E-X
Directory
Scenario
No. E-X
Directory
Tables
Parameters
Tables
Resulting
Parameters
Tables
Variable
Results
Tables
Parameters
Results
Tables
Variable
Results
Scenario
No. E-X
Directory
Tables
Parameter
Results
Tables
Variable
Results
AUTOMATICALLY, OPTEX GENERATES A HIERARCHIC INFORMATION
SYSTEM TO STORE THE RESULTS OF THE MODELS USING THE
CONCEPTS OF SCENARIOS AND FAMILY OF SCENARIOS.
OPTEX STORES IN TABLES
THE MATRIX AND THE
VECTORS RESULT OF THE
MATRIX GENERATION.
THIS ALLOWS THE
DEVELOPER TO VISUALIZE
AND CHECK THE VALIDITY
OF HIS MODELING
INDUSTRIAL DATA INFORMATION SYSTEM
OPTEX STORES
THE RESULTS
IN DATA
TABLES
AND/OR IN
TEXT FILES
AND/OR IN
EXCEL FILES
INDUSTRIAL DATA INFORMATION SYSTEM
OPTEX STORES
THE RESULTS
IN DATA
TABLES
AND/OR IN
TEXT FILES
AND/OR IN
EXCEL FILES
INDUSTRIAL DATA INFORMATION SYSTEM
OPTEX STORES
THE RESULTS
IN DATA
TABLES
AND/OR IN
TEXT FILES
AND/OR IN
EXCEL FILES
INDUSTRIAL DATA INFORMATION SYSTEM
OPTEX PROVIDES TOOLS
FOR VISUALIZATION OF
LITTLE MODELS.
FOR LARGE SCALE MODELS
THE STRUCTURE OF
RESULTS TABLES ARE
ORIENTED TO USE IN
MULTIDIMENSIONAL
ANALYSIS DATA TOOLS
INDUSTRIAL DATA INFORMATION SYSTEM
RELATIONAL INFORMATION SYSTEM
OPTEX
INFORMATION
SYSTEM
IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
TABLES DEFINITION
FIELDS DEFINITION
INDEX TABLES DEFINITION RELATIONAL FIELDS DEFINITION
BREWING PLANTS BREWING PLANT
PRODUCT
BREWING PLANT
HOURS
BREWING PLANT
RESOERCE
PRODUCT
BREWING PLANT
INITIAL CONDITIONS
BREWING PLANT
RESOURCE
BREWING PLANT
FACTORY
PACKING PLANTS
PACKING PLANT
DISTRIBUTION CENTER
PACKING PLANT
RESOURCE
PACKING PLANT
FACTORY
OPTEX FORM WINDOW TO CAPTURE/MODIFY DATA
INCLUDING HELP TOOLS
SOLVING
FROM EXCEL DATABASES
OPTEX
PROCESSOR
ARCHIVOS
CONECTIVIDAD
SOFTWARE TERCEROS
IBM JVIEW,- MS PROJECT
XML – OLAP SERVER
EXCEL
OUTPUT DATA
EXCEL
INPUT DATA
0
2 0
4 0
6 0
8 0
1 s t Q t r 2 n d Q t r
EXCEL BOOK
INPUT DATA
EXCEL BOOK
OUTPUT DATA
Customized EXCEL Visual User Interface
ASP - CONNECTIVITTY
ERP – TMS
AMS - WMS
DECISION
SUPPORT
INFORMATION
SYSTEM
COMPANY
ERP
INFORMATION
SYSTEM
MAPING
CONNECTIVITY
DECISION
SUPPORT
INFORMATION
SYSTEM ERP
TMS
WMS
INFORMATION
SYSTEM
XML
MAPING
ODBCs
Web Services
DECISIONMAKERS
OR SCIENTISTS
VISUALIZATION
TOOLS
CONNECTIVITY
OPEN PROJECT
MS-PROJECT
IBM ILOG
JViews
IBM ILOG
JViews
GEOGRAPHIC
INFORMATION
SYSTEM
Google
MAPs
UNDER
DEVELOPMENT
UNDER
DEVELOPMENT
OLAP
MDX
SERVER
OLAP
MDX
SERVER
XML CODE
MDX SERVER
MONDRIAN
INTERFACE
JRUBICK(PC) – OPENI(WEB)
CLIENT – SERVER ARCHITECTURE
OPTEX
SQL DATABASE
OPTEX - SERVER
MATHEMATICAL
MODELING PROCESSOR
OPTEX CLIENT
OPTEX
SQL DATABASE
OPTEX - SERVER
MATHEMATICAL
MODELING PROCESSOR
OPTEX CLIENT
OPTEX
SQL DATABASE
ERP/TMS/WMS
DATABASE
OPTEX
OLAP DATABASE
OPTEX - SERVER
MATHEMATICAL
MODELING PROCESSOR
OPTEX CLIENT
VISUALIZATION
SERVER
CLOUD LINK
EXCEL
PROGRAMS IN DIFERENT
LANGUAGES
C – GAMS – IBM OPL –
MOSEL – AIMMS - AMPL
MPS
MODEL
OPTEX
CLOUD SERVER
EXCEL
OUTPUT DATA
EXCEL
INPUT DATA
OPCHAIN
OPTIMIZING THE VALUE CHAIN
To capitalize its expertise in mathematical optimization projects,
DW ​​created OPCHAIN, a brand through which we have grouped
the solutions developed by DW, in different areas of application
using mathematical programming methodologies and technologies.
In 2012, OPCHAIN has ​​accumulated the experience of more than
thirty-five (35) years in engineering problem solving and business
analytics using mathematical programming models. OPCHAIN
models are fully programmable​​, easy to customize for each client,
and are easily integrated with other IT solutions in organizations.
OPCHAIN
OPTIMIZING THE VALUE CHAIN
OPCHAIN-SCO
SUPPLY CHAIN OPTIMIZATION
OPCHAIN-TSO
TRANSPORT SYSTEMS OPTIMIZATION
OPCHAIN-RSO
RETAIL CHAIN OPTIMIZATION
OPCHAIN-RPO
REGIONAL PLANING OPTIMIZATION
OPCHAIN-ESO
ENERGY SYSTEMS OPTIMIZATION
OPCHAIN-BANK
BANK SYSTEMS OPTIMIZATION
OPCHAIN-EDO
EDUCATIONAL SYSTEMS OPTIMIZATION
OPCHAIN-MINES
MINES SYSTEMS OPTIMIZATION
OPTEX Mathematical Modeling System,
was developed to support
DecisionWare’s mathematical modeling
projects since 1991.
OPTEX supports the development of all
multi-model OPCHAIN-DSS developed
by
SERVICES
 TO SELL OPTEX MATHEMATICAL MODELING MANAGEMENT SYSTEM
 TO SELL OPCHAIN-MODELS IN ANY PLATFORM
 (INCLUDING SOURCE CODE)
 TO CONVERT MODELS FROM ANY PLATFORM TO ANY PLATFORM
 TO DEVELOPMENT ON DEMAND MODELS IN ANY PLATFORM
 ON DEMAND OPTIMIZATION IN THE CLOUD
www.decisionware.net

More Related Content

What's hot

Tech talk ggplot2
Tech talk   ggplot2Tech talk   ggplot2
Tech talk ggplot2jalle6
 
Introduction to behavior based recommendation system
Introduction to behavior based recommendation systemIntroduction to behavior based recommendation system
Introduction to behavior based recommendation systemKimikazu Kato
 
Move your data (Hans Rosling style) with googleVis + 1 line of R code
Move your data (Hans Rosling style) with googleVis + 1 line of R codeMove your data (Hans Rosling style) with googleVis + 1 line of R code
Move your data (Hans Rosling style) with googleVis + 1 line of R codeJeffrey Breen
 
Introduction to ggplot2
Introduction to ggplot2Introduction to ggplot2
Introduction to ggplot2maikroeder
 
safe and efficient off policy reinforcement learning
safe and efficient off policy reinforcement learningsafe and efficient off policy reinforcement learning
safe and efficient off policy reinforcement learningRyo Iwaki
 
PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)Hansol Kang
 
Applying Linear Optimization Using GLPK
Applying Linear Optimization Using GLPKApplying Linear Optimization Using GLPK
Applying Linear Optimization Using GLPKJeremy Chen
 
Macroeconometrics of Investment and the User Cost of Capital Presentation Sample
Macroeconometrics of Investment and the User Cost of Capital Presentation SampleMacroeconometrics of Investment and the User Cost of Capital Presentation Sample
Macroeconometrics of Investment and the User Cost of Capital Presentation SampleThethach Chuaprapaisilp
 
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)Hansol Kang
 
Pytorch for tf_developers
Pytorch for tf_developersPytorch for tf_developers
Pytorch for tf_developersAbdul Muneer
 
Dictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationDictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationArthur Mensch
 
Tutorial: Python, PuLP and GLPK
Tutorial: Python, PuLP and GLPKTutorial: Python, PuLP and GLPK
Tutorial: Python, PuLP and GLPKsucha
 
Sparse matrix computations in MapReduce
Sparse matrix computations in MapReduceSparse matrix computations in MapReduce
Sparse matrix computations in MapReduceDavid Gleich
 
MapReduce for scientific simulation analysis
MapReduce for scientific simulation analysisMapReduce for scientific simulation analysis
MapReduce for scientific simulation analysisDavid Gleich
 
PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...
PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...
PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...Preferred Networks
 
Self-Learning Systems for Cyber Security
Self-Learning Systems for Cyber SecuritySelf-Learning Systems for Cyber Security
Self-Learning Systems for Cyber SecurityKim Hammar
 
Gradient boosting in practice: a deep dive into xgboost
Gradient boosting in practice: a deep dive into xgboostGradient boosting in practice: a deep dive into xgboost
Gradient boosting in practice: a deep dive into xgboostJaroslaw Szymczak
 
Sparse Kernel Learning for Image Annotation
Sparse Kernel Learning for Image AnnotationSparse Kernel Learning for Image Annotation
Sparse Kernel Learning for Image AnnotationSean Moran
 

What's hot (20)

Tech talk ggplot2
Tech talk   ggplot2Tech talk   ggplot2
Tech talk ggplot2
 
Introduction to behavior based recommendation system
Introduction to behavior based recommendation systemIntroduction to behavior based recommendation system
Introduction to behavior based recommendation system
 
Move your data (Hans Rosling style) with googleVis + 1 line of R code
Move your data (Hans Rosling style) with googleVis + 1 line of R codeMove your data (Hans Rosling style) with googleVis + 1 line of R code
Move your data (Hans Rosling style) with googleVis + 1 line of R code
 
Introduction to ggplot2
Introduction to ggplot2Introduction to ggplot2
Introduction to ggplot2
 
safe and efficient off policy reinforcement learning
safe and efficient off policy reinforcement learningsafe and efficient off policy reinforcement learning
safe and efficient off policy reinforcement learning
 
PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)PyTorch 튜토리얼 (Touch to PyTorch)
PyTorch 튜토리얼 (Touch to PyTorch)
 
Applying Linear Optimization Using GLPK
Applying Linear Optimization Using GLPKApplying Linear Optimization Using GLPK
Applying Linear Optimization Using GLPK
 
Macroeconometrics of Investment and the User Cost of Capital Presentation Sample
Macroeconometrics of Investment and the User Cost of Capital Presentation SampleMacroeconometrics of Investment and the User Cost of Capital Presentation Sample
Macroeconometrics of Investment and the User Cost of Capital Presentation Sample
 
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
 
Pytorch for tf_developers
Pytorch for tf_developersPytorch for tf_developers
Pytorch for tf_developers
 
Ml4nlp04 1
Ml4nlp04 1Ml4nlp04 1
Ml4nlp04 1
 
Dictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationDictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix Factorization
 
Tutorial: Python, PuLP and GLPK
Tutorial: Python, PuLP and GLPKTutorial: Python, PuLP and GLPK
Tutorial: Python, PuLP and GLPK
 
Sparse matrix computations in MapReduce
Sparse matrix computations in MapReduceSparse matrix computations in MapReduce
Sparse matrix computations in MapReduce
 
MapReduce for scientific simulation analysis
MapReduce for scientific simulation analysisMapReduce for scientific simulation analysis
MapReduce for scientific simulation analysis
 
PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...
PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...
PFN Summer Internship 2019 / Kenshin Abe: Extension of Chainer-Chemistry for ...
 
Self-Learning Systems for Cyber Security
Self-Learning Systems for Cyber SecuritySelf-Learning Systems for Cyber Security
Self-Learning Systems for Cyber Security
 
Gradient boosting in practice: a deep dive into xgboost
Gradient boosting in practice: a deep dive into xgboostGradient boosting in practice: a deep dive into xgboost
Gradient boosting in practice: a deep dive into xgboost
 
Sparse Kernel Learning for Image Annotation
Sparse Kernel Learning for Image AnnotationSparse Kernel Learning for Image Annotation
Sparse Kernel Learning for Image Annotation
 
Ceske budevice
Ceske budeviceCeske budevice
Ceske budevice
 

Similar to OPTEX MATHEMATICAL MODELING AND MANAGEMENT SYSTEM

ADMM-Based Scalable Machine Learning on Apache Spark with Sauptik Dhar and Mo...
ADMM-Based Scalable Machine Learning on Apache Spark with Sauptik Dhar and Mo...ADMM-Based Scalable Machine Learning on Apache Spark with Sauptik Dhar and Mo...
ADMM-Based Scalable Machine Learning on Apache Spark with Sauptik Dhar and Mo...Databricks
 
Learning to Compose Domain-Specific Transformations for Data Augmentation
Learning to Compose Domain-Specific Transformations for Data AugmentationLearning to Compose Domain-Specific Transformations for Data Augmentation
Learning to Compose Domain-Specific Transformations for Data AugmentationTatsuya Shirakawa
 
The Other HPC: High Productivity Computing
The Other HPC: High Productivity ComputingThe Other HPC: High Productivity Computing
The Other HPC: High Productivity ComputingUniversity of Washington
 
Achitecture Aware Algorithms and Software for Peta and Exascale
Achitecture Aware Algorithms and Software for Peta and ExascaleAchitecture Aware Algorithms and Software for Peta and Exascale
Achitecture Aware Algorithms and Software for Peta and Exascaleinside-BigData.com
 
Designing Architecture-aware Library using Boost.Proto
Designing Architecture-aware Library using Boost.ProtoDesigning Architecture-aware Library using Boost.Proto
Designing Architecture-aware Library using Boost.ProtoJoel Falcou
 
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...Naoki (Neo) SATO
 
Elegant Graphics for Data Analysis with ggplot2
Elegant Graphics for Data Analysis with ggplot2Elegant Graphics for Data Analysis with ggplot2
Elegant Graphics for Data Analysis with ggplot2yannabraham
 
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...Spark Summit
 
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Craig Chao
 
Optimization of Continuous Queries in Federated Database and Stream Processin...
Optimization of Continuous Queries in Federated Database and Stream Processin...Optimization of Continuous Queries in Federated Database and Stream Processin...
Optimization of Continuous Queries in Federated Database and Stream Processin...Zbigniew Jerzak
 
My Postdoctoral Research
My Postdoctoral ResearchMy Postdoctoral Research
My Postdoctoral ResearchPo-Ting Wu
 
Automatic Task-based Code Generation for High Performance DSEL
Automatic Task-based Code Generation for High Performance DSELAutomatic Task-based Code Generation for High Performance DSEL
Automatic Task-based Code Generation for High Performance DSELJoel Falcou
 
Fast optimization intevacoct6_3final
Fast optimization intevacoct6_3finalFast optimization intevacoct6_3final
Fast optimization intevacoct6_3finaleArtius, Inc.
 
Industrial plant optimization in reduced dimensional spaces
Industrial plant optimization in reduced dimensional spacesIndustrial plant optimization in reduced dimensional spaces
Industrial plant optimization in reduced dimensional spacesCapstone
 
【論文紹介】Relay: A New IR for Machine Learning Frameworks
【論文紹介】Relay: A New IR for Machine Learning Frameworks【論文紹介】Relay: A New IR for Machine Learning Frameworks
【論文紹介】Relay: A New IR for Machine Learning FrameworksTakeo Imai
 
Massive Matrix Factorization : Applications to collaborative filtering
Massive Matrix Factorization : Applications to collaborative filteringMassive Matrix Factorization : Applications to collaborative filtering
Massive Matrix Factorization : Applications to collaborative filteringArthur Mensch
 
Dictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationDictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix Factorizationrecsysfr
 

Similar to OPTEX MATHEMATICAL MODELING AND MANAGEMENT SYSTEM (20)

ADMM-Based Scalable Machine Learning on Apache Spark with Sauptik Dhar and Mo...
ADMM-Based Scalable Machine Learning on Apache Spark with Sauptik Dhar and Mo...ADMM-Based Scalable Machine Learning on Apache Spark with Sauptik Dhar and Mo...
ADMM-Based Scalable Machine Learning on Apache Spark with Sauptik Dhar and Mo...
 
Learning to Compose Domain-Specific Transformations for Data Augmentation
Learning to Compose Domain-Specific Transformations for Data AugmentationLearning to Compose Domain-Specific Transformations for Data Augmentation
Learning to Compose Domain-Specific Transformations for Data Augmentation
 
The Other HPC: High Productivity Computing
The Other HPC: High Productivity ComputingThe Other HPC: High Productivity Computing
The Other HPC: High Productivity Computing
 
Achitecture Aware Algorithms and Software for Peta and Exascale
Achitecture Aware Algorithms and Software for Peta and ExascaleAchitecture Aware Algorithms and Software for Peta and Exascale
Achitecture Aware Algorithms and Software for Peta and Exascale
 
Designing Architecture-aware Library using Boost.Proto
Designing Architecture-aware Library using Boost.ProtoDesigning Architecture-aware Library using Boost.Proto
Designing Architecture-aware Library using Boost.Proto
 
R Language Introduction
R Language IntroductionR Language Introduction
R Language Introduction
 
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
 
Elegant Graphics for Data Analysis with ggplot2
Elegant Graphics for Data Analysis with ggplot2Elegant Graphics for Data Analysis with ggplot2
Elegant Graphics for Data Analysis with ggplot2
 
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
 
modeling.ppt
modeling.pptmodeling.ppt
modeling.ppt
 
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
Leveraging R in Big Data of Mobile Ads (R在行動廣告大數據的應用)
 
Optimization of Continuous Queries in Federated Database and Stream Processin...
Optimization of Continuous Queries in Federated Database and Stream Processin...Optimization of Continuous Queries in Federated Database and Stream Processin...
Optimization of Continuous Queries in Federated Database and Stream Processin...
 
My Postdoctoral Research
My Postdoctoral ResearchMy Postdoctoral Research
My Postdoctoral Research
 
Automatic Task-based Code Generation for High Performance DSEL
Automatic Task-based Code Generation for High Performance DSELAutomatic Task-based Code Generation for High Performance DSEL
Automatic Task-based Code Generation for High Performance DSEL
 
Fast optimization intevacoct6_3final
Fast optimization intevacoct6_3finalFast optimization intevacoct6_3final
Fast optimization intevacoct6_3final
 
Machine Learning in Action
Machine Learning in ActionMachine Learning in Action
Machine Learning in Action
 
Industrial plant optimization in reduced dimensional spaces
Industrial plant optimization in reduced dimensional spacesIndustrial plant optimization in reduced dimensional spaces
Industrial plant optimization in reduced dimensional spaces
 
【論文紹介】Relay: A New IR for Machine Learning Frameworks
【論文紹介】Relay: A New IR for Machine Learning Frameworks【論文紹介】Relay: A New IR for Machine Learning Frameworks
【論文紹介】Relay: A New IR for Machine Learning Frameworks
 
Massive Matrix Factorization : Applications to collaborative filtering
Massive Matrix Factorization : Applications to collaborative filteringMassive Matrix Factorization : Applications to collaborative filtering
Massive Matrix Factorization : Applications to collaborative filtering
 
Dictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix FactorizationDictionary Learning for Massive Matrix Factorization
Dictionary Learning for Massive Matrix Factorization
 

OPTEX MATHEMATICAL MODELING AND MANAGEMENT SYSTEM

  • 2. OUR MISSION: BRING THE BENEFITS OF OPTIMIZATION TECHNOLOGY TO SOCIETY:  ENABLING PEOPLE TO APPLY OPTIMIZATION TECHNOLOGY SUCCESSFULLY INTO THEIR ORGANIZATIONS  BEING ENTREPRENEURS OF NEW COMPANIES THAT BRING THE BENEFITS OF OPTIMIZATION TECHNOLOGY TO SOCIETY
  • 3. Why do you choose to programming in any specific optimization technology when you can programming in all tools at the same time with only one effort ?FICO™ XPRESS-MOSEL CPLEX-OPL-ODM IMPRESS
  • 4. Why do you choose to programming in any specific optimization technology when you can programming in all tools at the same time with only one effort ? The best way is to have the mathematical models in a meta-platform and in a second phase go to any specific commercial platform.
  • 5. As a part of its process of technological innovation, DW has developed an optimization technology called OPTEX Mathematical Modeling Management System which is oriented to designing, implementing and setting up large scale optimization models for the real word .
  • 6. OPTEX IS A META-FRAMEWORK ORIENTED TOWARDS THE DESIGN, IMPLEMENTATION AND SETUP OF DECISION SUPPORT SYSTEMS BASED IN MATHEMATICAL PROGRAMMING WITH SPECIAL EMPHASIS IN THE DEVELOPMENT OF FINAL USER APPS:  ALGEBRAIC FORMULATION IS INDEPENDENT FROM ANY PROGRAMMING LANGUAGE  CAN BE CONNECTED WITH ANY DATA SERVER THEREBY GENERATING APPS USING MULTIPLE COMMERCIAL OR NONCOMMERCIAL TECH ACCORDING TO CLIENTS’ NEEDS
  • 7. OPTEX Mathematical Modeling System, was developed to support DecisionWare’s mathematical modeling projects since 1991.
  • 8. SUPPORTS ALL STAGES OF THE MATHEMATICAL MODELING PROCESS
  • 10. DSS DATABASE OPTMER(P): = Maximizar RMin sujeto a: RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+ cdbt)Pcbt) + (VBOLSA+ hdbt-VBOLSA- hdbt)CMhdbt - ECPhdbt PPO + VBOLSA+ hdbt CPOhbt} - VENFt PFIt } h,d VBOLSA+ hdbt-VBOLSA- hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+ dbt) h,d,b,t DNS+ dbt - DNS- dbt = DEMcdbt - EVcbt c,d,b,t ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t VENFt  0 t EVcbt  0 c,b,t ECPhdbt  0 h,d,b,t DNS+ cdbt , DNS- cdbt  0 c,d,b,t VBOLSA+ hdbt , VBOLSA- hdbt  0 h,d,b,t MATHEMATICAL MODELING PROCESS ALGEBRAIC MODEL DATA MODEL MODELERS REAL WORLD
  • 11. G.R.G. 0-1 BALAS-BENDERS LAGRAGIAN RELAXATION BENDERS THEORY BRANCH & BOUND P.L. FLUJO EN REDES G.R.G. /PC G.R.G. /PL D.F.P. x, p OPTIMIZATION SOLVER DSS DATABASE OPTMER(P): = Maximizar RMin sujeto a: RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+ cdbt)Pcbt) + (VBOLSA+ hdbt-VBOLSA- hdbt)CMhdbt - ECPhdbt PPO + VBOLSA+ hdbt CPOhbt} - VENFt PFIt } h,d VBOLSA+ hdbt-VBOLSA- hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+ dbt) h,d,b,t DNS+ dbt - DNS- dbt = DEMcdbt - EVcbt c,d,b,t ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t VENFt  0 t EVcbt  0 c,b,t ECPhdbt  0 h,d,b,t DNS+ cdbt , DNS- cdbt  0 c,d,b,t VBOLSA+ hdbt , VBOLSA- hdbt  0 h,d,b,t NUMERICAL MODEL MATHEMATICAL MODELING PROCESS MATRIX GENERATION ALGEBRAIC MODEL DATA MODEL MODELERS REAL WORLD
  • 12. G.R.G. 0-1 BALAS-BENDERS LAGRAGIAN RELAXATION BENDERS THEORY BRANCH & BOUND P.L. FLUJO EN REDES G.R.G. /PC G.R.G. /PL D.F.P. x, p OPTIMIZATION SOLVER DSS DATABASE DSS DATABASE OPTMER(P): = Maximizar RMin sujeto a: RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+ cdbt)Pcbt) + (VBOLSA+ hdbt-VBOLSA- hdbt)CMhdbt - ECPhdbt PPO + VBOLSA+ hdbt CPOhbt} - VENFt PFIt } h,d VBOLSA+ hdbt-VBOLSA- hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+ dbt) h,d,b,t DNS+ dbt - DNS- dbt = DEMcdbt - EVcbt c,d,b,t ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t VENFt  0 t EVcbt  0 c,b,t ECPhdbt  0 h,d,b,t DNS+ cdbt , DNS- cdbt  0 c,d,b,t VBOLSA+ hdbt , VBOLSA- hdbt  0 h,d,b,t NUMERICAL MODEL MATHEMATICAL MODELING PROCESS MATRIX GENERATION ALGEBRAIC MODEL DATA MODEL DECISION MAKERS MODELERS REAL WORLD
  • 13. G.R.G. 0-1 BALAS-BENDERS LAGRAGIAN RELAXATION BENDERS THEORY BRANCH & BOUND P.L. FLUJO EN REDES G.R.G. /PC G.R.G. /PL D.F.P. x, p OPTIMIZATION SOLVER DSS DATABASE DSS DATABASE OPTMER(P): = Maximizar RMin sujeto a: RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+ cdbt)Pcbt) + (VBOLSA+ hdbt-VBOLSA- hdbt)CMhdbt - ECPhdbt PPO + VBOLSA+ hdbt CPOhbt} - VENFt PFIt } h,d VBOLSA+ hdbt-VBOLSA- hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+ dbt) h,d,b,t DNS+ dbt - DNS- dbt = DEMcdbt - EVcbt c,d,b,t ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t VENFt  0 t EVcbt  0 c,b,t ECPhdbt  0 h,d,b,t DNS+ cdbt , DNS- cdbt  0 c,d,b,t VBOLSA+ hdbt , VBOLSA- hdbt  0 h,d,b,t NUMERICAL MODEL MATHEMATICAL MODELING PROCESS MATRIX GENERATION ALGEBRAIC MODEL DATA MODEL DECISION MAKERS MODELERS REAL WORLD THIRD PART PROVIDER
  • 14. G.R.G. 0-1 BALAS-BENDERS LAGRAGIAN RELAXATION BENDERS THEORY BRANCH & BOUND P.L. FLUJO EN REDES G.R.G. /PC G.R.G. /PL D.F.P. x, p OPTIMIZATION SOLVER DSS DATABASE DSS DATABASE OPTMER(P): = Maximizar RMin sujeto a: RMin t= 1,Tb= 1,NB{c= 1,NC((DEMcdbt-DNS+ cdbt)Pcbt) + (VBOLSA+ hdbt-VBOLSA- hdbt)CMhdbt - ECPhdbt PPO + VBOLSA+ hdbt CPOhbt} - VENFt PFIt } h,d VBOLSA+ hdbt-VBOLSA- hdbt = Hhdbt + Thdbt - c= 1,NC(DEMdbt-DNS+ dbt) h,d,b,t DNS+ dbt - DNS- dbt = DEMcdbt - EVcbt c,d,b,t ECPhdbt  c= 1,NCEVcbt - DHIhdbt - CTbt h,b VENFt b= 1,NB {c= 1,NCEVcbt - CTbt} - EFt t VENFt  0 t EVcbt  0 c,b,t ECPhdbt  0 h,d,b,t DNS+ cdbt , DNS- cdbt  0 c,d,b,t VBOLSA+ hdbt , VBOLSA- hdbt  0 h,d,b,t NUMERICAL MODEL MATHEMATICAL MODELING PROCESS MATRIX GENERATION ALGEBRAIC MODEL DATA MODEL DECISION MAKERS MODELERS REAL WORLD MAY BE THIRD PART PROVIDER
  • 15. A DECISION SUPPORT SYSTEM IS AS A DECISION MAKING CHAIN INTEGRATED BY A COLLECTION OF MODELS AND DATA FLOW
  • 16. PTA Industrial Operations Tactical Planning DEM Long/Medium/Short Demand Planning INV Inventory Policy Medium / Short Term Demand Projections Inventory Policy Production Goals POD Production Schedule DIS Distribution Schedule Distribution Goals PCO Sourcing Sourcing Goals Production Orders Distribution Orders Sourcing Orders PES Supply Chain Design Short / Medium Term Market Scenarios Expansion Plans DSS Short / Medium Term Market Scenarios
  • 17. PTA Industrial Operations Tactical Planning DEM Long/Medium/Short Demand Planning INV Inventory Policy POD Production Schedule DIS Distribution Schedule PCO Sourcing PES Supply Chain Design DSS COMMON DATA MODEL INFORMATION SYSTEM
  • 18. SUPPORTS DESIGN, IMPLEMENTATION, START UP AND MAINTENANCE OF COMPLEX DECISION SUPPORT SYSTEMS, USING AN UNIFIED DEVELOPMENT ENVIRONMENT
  • 21. ALGEBRAIC LANGUAGES • Algebraic Programming Language • Database Algebraic Language USER INTERFACE • Based in database tables • Operates in LANs and WANs (“Cloud Computing”) • Visual Interface (MS-Windows) • Filling the blanks parameterization SERVICES • Data-Model Generator • Final User Interface Generator • General Language Model Generator (C, Java …), includes Matrix Generator • Algebraic Language Model Generator (GAMS, IBM ILOG OPL, MOSEL , AIMMS … ) PROBLEM SOLUTION • Basic problems: LP, MIP, QP, MIQP, NLP • Large Scale Theory: Benders Partition, Lagrangean Relaxation, Disjunctive Programming, … • Links to multiple optimization libraries (GUROBI, IBM CPLEX, XPREXX, COIN-MP, … ) • Automatic Generation of Non-anticipative Multistage Stochastic Programming (MSP) • Parallel solution in computers grids CONNECTIVITY • ERP/WMS/TMS/AMS: Enterprise Information Systems • GIS: Geographic Information Systems • ASP: Applications Service Provider (MS-Project, Google MAPS, …) ELEMENTS
  • 22. ALGEBRAIC LANGUAGEs: • Programming Language • Database Language
  • 23. ALGEBRAIC LANGUAGES OBJECTS MATHEMATICAL DEFINITIONS • Index, Sets, Parameters, Variables, Equations, Objective Functions, Planning Horizons, Decision Trees DECISION SUPPORT SYSTEMS • Problems = (Equations, Variables, Objective Functions) • Model = (Problems, Data Flows) • DSS = (Models, Data Flows) DATA MODEL • DSN, Data Tables, Fields, Shell Windows, Data Windows, Menus
  • 25. OPTEX- DATABASE ALGEBRAIC LANGUAGE SQL Server Internet - Intranet 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r MM Server MATHEMATICAL MODEL SERVER INFORMATION SYSTEM 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r EASY DEVELOPMENT MATHEMATICAL MODELS IN A LAN-WAN ENVIRONMENT USING THE POWER OF THE DATABASE SERVERS
  • 26. OPTEX- DATABASE ALGEBRAIC LANGUAGE SQL Server Internet - Intranet 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r MM Server MATHEMATICAL MODEL SERVER INFORMATION SYSTEM 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r THE IMPLEMENTATION OF A DECISION SUPPORT SYSTEMS IS BASED IN A FILLING THE BLANKS PROCESS
  • 27. OPTEX- DATABASE ALGEBRAIC LANGUAGE MATHEMATICAL MODELS BASIC ELEMENTS ARE STORED IN A DATA BASE
  • 28. JVB-08/94OPTEX Min t j h CTt(GTjth) sujeto a: GDzth = uTN(z) LDuzth GDzth + GHAzth + DEFzth = DEMzth ENuth - jL1(u) GTEjuth - vL2(u) LLvuth = 0 . . . . . z  NOD t = 1,T h = 1,NH z  NOD t = 1,T h = 1,NH u  LIN t = 1,T h = 1,NH INDEXESINDEXES OPTEX- DATABASE ALGEBRAIC LANGUAGE
  • 29. JVB-08/94OPTEX Min t j h CTt(GTjth) sujeto a: GDzth = uTN(z) LDuzth GDzth + GHAzth + DEFzth = DEMzth ENuth - jL1(u) GTEjuth - vL2(u) LLvuth = 0 . . . . z  NOD t = 1,T h = 1,NH z  NOD t = 1,T h = 1,NH u  LIN t = 1,T h = 1,NH SETSSETS OPTEX- DATABASE ALGEBRAIC LANGUAGE
  • 30. OPTEX- DATABASE ALGEBRAIC LANGUAGE DATABASE CONNECTIVITY
  • 31. AUTOMATIC GENERATION OF MATHEMATICAL MODEL- DATA MODEL SQL CONNECTIVITY
  • 32. JVB-08/94OPTEX Min t j h CTt(GTjth) sujeto a: GDzth = uTN(z) LDuzth GDzth + GHAzth + DEFzth = DEMzth ENuth - jL1(u) GTEjuth - vL2(u) LLvuth = 0 . . . . z  NOD t = 1,T h = 1,NH z  NOD t = 1,T h = 1,NH u  LIN t = 1,T h = 1,NH PARAMETERSPARAMETERS OPTEX- DATABASE ALGEBRAIC LANGUAGE
  • 33. OPTEX- DATABASE ALGEBRAIC LANGUAGE DATABASE CONNECTIVITY
  • 34. TIPO DE SERIE INTERPRETACIÓN E ESCALÓN () I IMPULSO (PULSE) P POLI LÍNEA (POLY LINE) OPTEX- DATABASE ALGEBRAIC LANGUAGE MULTIPLES FORMS OF DATA INTERPRETATION
  • 35. JVB-08/94OPTEX Min t j h CTt(GTjth) sujeto a: GDzth = uTN(z) LDuzth GDzth + GHAzth + DEFzth = DEMzth ENuth - jL1(u) GTEjuth - vL2(u) LLvuth = 0 . . . . z  NOD t = 1,T h = 1,NH z  NOD t = 1,T h = 1,NH u  LIN t = 1,T h = 1,NH VARIABLES OPTEX- DATABASE ALGEBRAIC LANGUAGE
  • 36. JVB-08/94OPTEX Min t j h CTt(GTjth) sujeto a: GDzth = uTN(z) LDuzth GDzth + GHAzth + DEFzth = DEMzth ENuth - jL1(u) GTEjuth - vL2(u) LLvuth = 0 . . . . z  NOD t = 1,T h = 1,NH z  NOD t = 1,T h = 1,NH u  LIN t = 1,T h = 1,NH CONSTRAINTS OPTEX- DATABASE ALGEBRAIC LANGUAGE
  • 38. MODELSPROBLEMS DSSs OPTEX- DATABASE ALGEBRAIC LANGUAGE COORDINATION DECISIONS OVER SPACE AND TIME
  • 39. MO IL MO WO MO Tiempo OPTEX- DATABASE ALGEBRAIC LANGUAGE FOR DISCRETE TIME MOODELS, THE PLANNING HORIZON MAY BE IN YEARS, MONTHS, DAY, HOURS, MINUTES, …
  • 40. PROBLEMS MODELS OPTEX – DECISION SUPPORT SYSTEM ELEMENTS A PROBLEM IS A COLLECTION OF CONSTRAINTS A MODEL IS A COLLECTION OF PROBLEMS CONNECTED BY A DATA FLOW AND A MODEL CONTROL
  • 41. A DECISION SUPPORT SYSTEM IS A COLLECTION OF MODELS AND DATA FLOW ALL USING THE SAME DATA MODEL AND THE SAME FRAMEWORK PTA Aggregated Industrial Operations Tactical Plannings DEM Demand Long/Medium/Short Term INV Inventory Policies Demand Forecasting Medium/Short Term Demand Stages Medium/Short Term Inventory Policies Production Goals POD Production Scheduling DIS Distribution scheduling Distribution Goals PCO Sourcing Scheduling Consumption Goals Production Orders Distriution Orders Purchase Orders PES Supply Chain Design Marjet Stages Long/Medium Term Expansion Plans DSS DSS MODELS OPTEX – DECISION SUPPORT SYSTEMS ELEMENTS
  • 42. ADVANCED OPTIMIZATION INVESTMENTS COORDINATOR INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1 INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1 INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION 1 DYNAMIC COORD. ZONA S.1 DYNAMIC COORD. ZONA S.ZS DYNAMIC COORD. ZONE 1.1 DYNAMIC COORD. ZONA 1.Z1 1 T2 T-1 1 T2 T-1 1 T2 T-1 1 T2 T-1 TIME PARTITION INVESTMENTS SECTOR ZONE DECOMPOSITION MULTILEVEL SYSTEM INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION H DYNAMIC COORD. ZONA S.1 DYNAMIC COORD. ZONA S.ZS DYNAMIC COORD. ZONE 1.1 DYNAMIC COORD. ZONA 1.Z1 1 T2 T-1 1 T2 T-1 1 T2 T-1 1 T2 T-1 RANDOM OPERATIONS
  • 43. LARGE SCALE OPTIMIZATION AND DECISION SUPPORT SYSTEM ELEMENTS MODELSPROBLEMS DSSs OPTEX- DATABASE ALGEBRAIC LANGUAGE
  • 44. NON-ANTICIPATIVE STOCHASTIC OPTIMIZATION PROBABILISTICS CONSTRAINTS BENDERS PARTITIONING THEORY LAGRANGIAN RELAXATION PARAMETRIC PROGRAMMING DISJUNCTIVE PROGRAMMING AUTOMATIC LINEARIZATION ….
  • 45. LARGE SCALE OPTIMIZATION AND DECISION SUPPORT SYSTEM ELEMENTS MODELSPROBLEMS DSSs OPTEX- DATABASE ALGEBRAIC LANGUAGE
  • 46. MODELSPROBLEMS DSSs Problem =  (Equations, Variables, Objective Functions) Model =  (Problems, Data Flows) DSS =  (Models, Data Flows) OPTEX- DATABASE ALGEBRAIC LANGUAGE
  • 48. INVESTMENTS COORDINATOR INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1 INTERZONE COORDINATOR SECTOR 1 STOCHASTIC 1 INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION 1 DYNAMIC COORD. ZONA S.1 DYNAMIC COORD. ZONA S.ZS DYNAMIC COORD. ZONE 1.1 DYNAMIC COORD. ZONA 1.Z1 1 T2 T-1 1 T2 T-1 1 T2 T-1 1 T2 T-1TIME PARTITION INVESTMENTS SECTOR ZONE DECOMPOSITION MULTILEVEL SYSTEM INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H INTERZONE COORDINATOR SECTOR 1 STOCHASTIC H INTERSECTOR OPERATIONS COORDINATOR STOCHASTIC CONDITION H DYNAMIC COORD. ZONA S.1 DYNAMIC COORD. ZONA S.ZS DYNAMIC COORD. ZONE 1.1 DYNAMIC COORD. ZONA 1.Z1 1 T2 T-1 1 T2 T-1 1 T2 T-1 1 T2 T-1 RANDOM OPERATIONS PROBLEMS <-> MODELS OPTEX- LARGE SCALE METHODOLOGIES
  • 49. HYDRAULIC SYSTEM PROBLEM: MODBENCO CCP, CGH, CGS, COE, CSP, EQE, SQE yk ELECTRIC SYSTEM PROBLEM: MODBENUNNU DUN, NUN pk vk OPTEX- BENDERS IMPLEMENTATION
  • 50. HYDRAULIC SYSTEM PROBLEM: MODBENCO CCP, CGH, CGS, COE, CSP, EQE, SQE yk ELECTRIC SYSTEM PROBLEM: MODBENNU DUN, NUN pk vk MODEL: MODBENNU OPTEX- BENDERS IMPLEMENTATION
  • 51. SUt(xt-1,xt): = {Wt(xt-1,xt) = Min dt Tut | Btut = bt - Et-1xt-1 - Atxt Gtut = gt utR+ } SGt(xj t-1):= {aT(xj t-1) Min = ct Txt + Wt(xt-1,xt) + at+1(xt) | Wt(xt-1,xt) + (pt k)TAtxt  qT(pt k,dt k) - (pt k)TEt-1xj t-1 kIU(t,j) xtR+ at+1(xt) + kI1(t+1,j) yk,j t+1 (pt+1 k)Tetxt t j jIJ(t) } pt k SUt(xt-1,xt): = {Wt(xt-1,xt) = Min dt Tut | Btut = bt - Et-1xt-1 - Atxt Gtut = gt utR+ } SUt(xt-1,xt): = {Wt(xt-1,xt) = Min dt Tut | Btut = bt - Et-1xt-1 - Atxt Gtut = gt utR+ } p1 k pT k t=1 t=T x1 x1 xT x1 xT-1 yk,j t+1 yk,j t+1 SGt(xj t-1):= {aT(xj t-1) Min = ct Txt + Wt(xt-1,xt) + at+1(xt) | Wt(xt-1,xt) + (pt k)TAtxt  qT(pt k,dt k) - (pt k)TEt-1xj t-1 kIU(t,j) xtR+ at+1(xt) + kI1(t+1,j) yk,j t+1 (pt+1 k)Tetxt t j jIJ(t) } SGt(xj t-1):= {aT(xj t-1) Min = ct Txt + Wt(xt-1,xt) + at+1(xt) | Wt(xt-1,xt) + (pt k)TAtxt  qT(pt k,dt k) - (pt k)TEt-1xj t-1 kIU(t,j) xtR+ at+1(xt) + kI1(t+1,j) yk,j t+1 (pt+1 k)Tetxt t j jIJ(t) } PROBLEM-MODEL CONCEPTUALIZATION IS ORIENTED TO ALLOW THE MODELERS TO IMPLEMENT LARGE SCALE METHODOLOGIES LIKE BENDERS THEORY AND LAGRANGEAN RELAXATION USING A GENERAL PARTITION-DECOMPOSITION FRAMEWORK OPTEX- LARGE SCALE METHODOLOGIES
  • 53. Scenario H Scenario 1 Scenario 2 ARBOL DE DECISIONES DE MULTIPLES ETAPAS t = 1 t = 2 t = 3 t = 4 OPTEX- MULTISTAGE STOCHASTIC OPTIMIZATION OPTEX HAS TOOLS ORIENTED TO DEVELOP MULTISTAGE STOCHASTIC OPTIMIZATION MODELS AUTOMATIC CONVERSION OF A DETERMINISTIC MODEL INTO STOCHASTIC MULTI-STAGE DECISION TREE
  • 54. MULTI-STAGE DECISION TREE N1 e = 1 e = 2 e = 3 t 1 13 25 36 N21 N22 N21 N22 N21 N22 N21 N22 Hidrology 1988 Hidrology 1992 Hidrology 1985 Hidrology 1990 High Demand High Price Hidrology 1988 Low Demand Low Price High Demand High Price Low Demand Low PriceHidrology 1990 High Demand High Price Low Demand Low PriceHidrology 1992 High Demand Low Price High PriceLow Demand High Demand High Price Hidrology 1988 Hidrology 1988 0.125 0.0625 UNCERTAINTY DIMENSIONS • Demand • Fuel Prices • Water Inflows • Others
  • 55. OPTEX HAS TOOLS ORIENTED TO DEVELOP MULTISTAGE STOCHASTIC OPTIMIZATION INCLUDING MULTIPLES TYPES OF RISK CONSTRAINTS Conditional Value-at-Risk (CVaR) Cost Probability Function Desvío Estándar (s) VaR b=0.05 1.645 s Cost - f(x|w)a(b) f ( f(x|w) ) jb( f(x|w) ) OPTEX- MULTISTAGE STOCHASTIC OPTIMIZATION
  • 56. AUTOMATIC CONVERSION OF A DETERMINISTIC MODEL INTO A STOCHASTIC MODEL
  • 57. DETERMINISTIC CASE t = 1 t = 2 Mean Demand Deterministics Investment Decisions Deterministics Future Operations Decisions
  • 58. TWO-STAGE DECISION TREE FOR DEMAND: UNCERTAINTY DIMENSION t = 1 t = 2 Scenario Demand 10 Scenario Demand 1 Scenario Demand 2 Deterministics Investment Decisions 0.10 0.10 Uncertainty Future Operations Decisions
  • 59. Demand 10 Demand 1 Demand 2 0.10 0.10 Demand 10 Demand 1 Demand 2 0.10 0.10 WITHOUT Extrem Event 0.90 0.10 t = 1 t = 2 Deterministics Investment Decisions Uncertainty Future Operations Decisions TWO-STAGE DECISION TREE FOR DEMAND: UNCERTAINTY DIMENSION 1 EXTREME EVENT: UNCERTAINTY DIMENSION 2 WITH Extrem Event
  • 60. THE AUTOMATIC CONVERSION IMPLIES: 1. TO INCLUDE THE INDEXES RELATED WITH THE UNCERTAINTY DIMENSIONS
  • 61. THE AUTOMATIC CONVERSION IMPLIES: 2. TO DEFINE A DECISION TREE 3. TO SPECIFY THE NON ANTICIPATIVE VARIABLES 4. TO SPECIFY THE PARAMETERS WITH THE UNCERTAINTY DIMENSIONS 2. 3. 4.
  • 62. THE AUTOMATIC CONVERSION IMPLIES: 5. TO LINK THE MODEL WITH THE DECISION TREE
  • 63. THE AUTOMATIC CONVERSION IMPLIES: 6. TO INCLUDE IN THE TABLES THE FIELDS ASSOCIATED TO THE UNCERTAINTY DIMENSIONS
  • 73. Internet-Intranet 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r SERVIDOR MODELOS MATEMÁTICOS OPTEX WIDE AREA NETWORK DOCUMENTATION  OPTEX generates automatically the following documentation:  Algebraic Formulation  Information system data model  Connectivity with other data models Remote Access Server Connectivity
  • 77. OPTEX – MATHEMATICAL PROBLEM FORMATS OPTEX-MMS incorporates optimization methodologies depending on the optimization library that is being used. • LINEAR PROGRAMMING (LP) • MIXED INTEGER PROGRAMMING (MIP). • MIXED BINARY PROGRAMMING (BP) • QUADRATIC PROGRAMMING (QP) • QUADRATIC MIXED PROGRAMMING (QMP) • QUADRATIC PROGRAMMING (QP-QR) • INTEGER QUADRATIC PROGRAMMING (QMP-QR) • NON-LINEAR PROGRAMMING (NLP) • MIXED COMPLEMENTARITY PROGRAMMING (MCP)
  • 79. MODELS GAMS – MPS IBM ILOG OPL MOSEL – AIMMS - … MODEL RESULTS (PRIMAL – DUAL) PROGRAMMING ALGEBRAIC LANGUAGE DATABASE ALGEBRAIC LANGUAGE OPTEX PROCESSOR MODELS C PROGRAMS LIB or DDL LIBRARY
  • 80. OPTEX WIDE AREA NETWORK Internet-Intranet 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r SERVIDOR MODELOS MATEMÁTICOS Remote access server connectivity CLOUD SERVER ALGEBRAIC LANGUAGE SOLVER C ANSI SOLVER CLOUD LINK
  • 82. Internet 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r MATHEMATICAL MODEL’S ERVER OPTEX ERP DATABASE Remote Access Server Connectivity OPTEX Graphic User Interface OPTEX Mathematical Modeling Processor ODBC USUARIOS ILIMITADOS OPTIMIZATION LIBRARY CPLEX FICO™ XPRESS
  • 84. OPTEX – C DSS PROGRAM STRUCTURE I/O Routines MODELs Routines Main OPTEX-COINLP LINK Routine COINLP Routines CPLEX Routines CONSTRAINTs Routines OPTEX-CPLEX LINK Routine OPTEX-xxxxx LINK Routine XXXXX Routines PROBLEMs Routines LARGE SCALE OPTIMIZATION Routines DSS.LIB or DSS.DLL DSS DATABASE
  • 85. OPTEX – C DSS PROGRAM STRUCTURE MODELs Routines OPTEX-COINLP LINK Routine COINLP Routines CPLEX Routines CONSTRAINTs Routines OPTEX-CPLEX LINK Routine OPTEX-xxxxx LINK Routine XXXXX Routines PROBLEMs Routines LARGE SCALE OPTIMIZATION Routines DSS.LIB or DSS.DLL DSS DATABASE USER Routines OPTEX-USER LINK Routine Customized Visual User Interface USER ERP
  • 88. Customized Web Visual User Interface
  • 89. Customized Web Visual User Interface
  • 91. Internet 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r OPTEX ERP DATABASE Remote Access Server Connectivity OPTEX Graphic User Interface ODBC OPTEX Mathematical Modeling Processor CPLEX FICO™ Xpress MATHEMATICAL MODEL’S ERVER
  • 92. Internet 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r OPTEX ERP DATABASE OPTEX Graphic User Interface ODBC OPTEX Mathematical Modeling Processor CPLEX MATHEMATICAL MODEL’S ERVER Remote Access Server Connectivity FICO™ Xpress
  • 93.
  • 96. Internet OPTEX ERP DATABASE OPTEX Graphic User Interface OPTEX Mathematical Modeling Processor ODBC CPLEX OPL 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r Remote Access Server Connectivity MATHEMATICAL MODEL’S ERVER
  • 101. Internet OPTEX ERP DATABASE OPTEX Graphic User Interface OPTEX Mathematical Modeling Processor ODBC 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r Remote Access Server Connectivity MATHEMATICAL MODEL’S ERVER UNDER DEVELOPMENT
  • 104. Internet OPTEX ERP DATABASE OPTEX Graphic User Interface OPTEX Mathematical Modeling Processor ODBC 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r Remote Access Server Connectivity MATHEMATICAL MODEL’S ERVER UNDER DEVELOPMENT CPLEX FICO™ Xpress
  • 107. Internet OPTEX ERP DATABASE OPTEX Graphic User Interface OPTEX Mathematical Modeling Processor ODBC 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r Remote Access Server Connectivity MATHEMATICAL MODEL’S ERVER UNDER DEVELOPMENT CPLEX FICO™ Xpress
  • 108. MATHEMATICAL MODEL AIMMS ALGERAIC LANGUAGEMATHEMATICAL MODEL AMPL ALGERAIC LANGUAGE
  • 115. INFORMATION SYSTEM Min t j h CTt(GTjth) sujeto a: GDzth - uTN(z) LDuzth = 0 GDzth + GHAzth + DEFzth = DEMzth ENuth - jL1(u) GTEjuth - vL2(u) LLvuth = 0 Sistema Descripción Capacidad Térmica (MW) EEB. ISA. EPM COR Energía Eléctrica de Bogotá Interconexión Eléctrica S.A. Empresas Públicas de Medellín CORELCA 45 67 0 78 MATHEMATICAL MODEL INFORMATION SYSTEM INDUSTRIAL DATA INFORMATION SYSTEM
  • 116. IMPLEMENTATION OF THE INDUSTRIAL DATA INFORMATION SYSTEM
  • 117. RELACIÓN SIMM - SIDI INDEX Parameter Restricción IndexesVariable Indexes Indexes ENTITY ENTITIES RELATIONS SIMM: MATHEMATICAL MODEL INFORMATION SYSTEM SIDI: INDUSTRIAL DATA INFORMATION SYSTEM IndexesSets
  • 118. IN OPTEX THE IMPLEMENTATION OF THE INDUSTRIAL DATA INFORMATION SYSTEM IS BASED IN A FILLING THE BLANKS GUIDED PROCESS, SIMILAR TO THE PROCESS TO IMPLEMENTATION OF THE MATHEMATICAL MODELS. THE MODELER DOESN’T NEED TO BE AN SPECIALIST IN DATABASES LANGUAGES AND INFORMATION SYSTEMS IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
  • 119. IN OPTEX THE IMPLEMENTATION OF THE INDUSTRIAL DATA INFORMATION SYSTEM IS BASED IN A FILLING THE BLANKS GUIDED PROCESS, SIMILAR TO THE PROCESS TO IMPLEMENTATION OF THE MATHEMATICAL MODELS. THE MODELER DOESN’T NEED TO BE AN SPECIALIST IN DATABASES LANGUAGES AND INFORMATION SYSTEMS IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
  • 120. TABLES DEFINITION FIELDS DEFINITION INDEX TABLES DEFINITION RELATIONAL FIELDS DEFINITION IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
  • 121. MENU DEFINITION IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM
  • 122. INDUSTRIAL DATA INFORMATION SYSTEM IS A COLLECTION OF: DATA TABLES, SHELL WINDOWS, DATA WINDOWS AND MENUS ORIENTED TO THE FINAL USER INDUSTRIAL DATA INFORMATION SYSTEM
  • 123. INDUSTRIAL DATA INFORMATION SYSTEM THE DATABASE OF THE INFORMATION SYSTEM IS A COLLECTION OF RELATIONAL DATA TABLES ORIENTED TO MANAGE LARGE AMOUNT OF DATA, LIKE IN THE REAL WORLD MODELS.
  • 124. OPTEX GENERATES, ON-LINE, DATA WINDOWS WITH A COLLECTION OF WINDOWS-TOOLS THAT HELP THE USER IN THE LABOR OF DATA CAPTURE. THE DATA WINDOWS ARE JOINT IN A SHELL WINDOWS IN A RELATIONAL APPROACH. INDUSTRIAL DATA INFORMATION SYSTEM
  • 125. HIERARCHIC INFORMATION SYSTEM FOR MODELS RESULTS SCENARIO FAMILY ROOT DIRECTORY Family No. 1 Directory Family No. E Directory Family No. n Directory Scenario No. E-X Directory Scenario No. E-X Directory Tables Parameters Tables Resulting Parameters Tables Variable Results Tables Parameters Results Tables Variable Results Scenario No. E-X Directory Tables Parameter Results Tables Variable Results AUTOMATICALLY, OPTEX GENERATES A HIERARCHIC INFORMATION SYSTEM TO STORE THE RESULTS OF THE MODELS USING THE CONCEPTS OF SCENARIOS AND FAMILY OF SCENARIOS.
  • 126. OPTEX STORES IN TABLES THE MATRIX AND THE VECTORS RESULT OF THE MATRIX GENERATION. THIS ALLOWS THE DEVELOPER TO VISUALIZE AND CHECK THE VALIDITY OF HIS MODELING INDUSTRIAL DATA INFORMATION SYSTEM
  • 127. OPTEX STORES THE RESULTS IN DATA TABLES AND/OR IN TEXT FILES AND/OR IN EXCEL FILES INDUSTRIAL DATA INFORMATION SYSTEM
  • 128. OPTEX STORES THE RESULTS IN DATA TABLES AND/OR IN TEXT FILES AND/OR IN EXCEL FILES INDUSTRIAL DATA INFORMATION SYSTEM
  • 129. OPTEX STORES THE RESULTS IN DATA TABLES AND/OR IN TEXT FILES AND/OR IN EXCEL FILES INDUSTRIAL DATA INFORMATION SYSTEM
  • 130. OPTEX PROVIDES TOOLS FOR VISUALIZATION OF LITTLE MODELS. FOR LARGE SCALE MODELS THE STRUCTURE OF RESULTS TABLES ARE ORIENTED TO USE IN MULTIDIMENSIONAL ANALYSIS DATA TOOLS INDUSTRIAL DATA INFORMATION SYSTEM
  • 132. IMPLEMENTATION INDUSTRIAL DATA INFORMATION SYSTEM TABLES DEFINITION FIELDS DEFINITION INDEX TABLES DEFINITION RELATIONAL FIELDS DEFINITION
  • 133. BREWING PLANTS BREWING PLANT PRODUCT BREWING PLANT HOURS BREWING PLANT RESOERCE PRODUCT BREWING PLANT INITIAL CONDITIONS BREWING PLANT RESOURCE BREWING PLANT FACTORY
  • 134. PACKING PLANTS PACKING PLANT DISTRIBUTION CENTER PACKING PLANT RESOURCE PACKING PLANT FACTORY
  • 135. OPTEX FORM WINDOW TO CAPTURE/MODIFY DATA INCLUDING HELP TOOLS
  • 136.
  • 138. OPTEX PROCESSOR ARCHIVOS CONECTIVIDAD SOFTWARE TERCEROS IBM JVIEW,- MS PROJECT XML – OLAP SERVER EXCEL OUTPUT DATA EXCEL INPUT DATA 0 2 0 4 0 6 0 8 0 1 s t Q t r 2 n d Q t r
  • 141. Customized EXCEL Visual User Interface
  • 143. ERP – TMS AMS - WMS DECISION SUPPORT INFORMATION SYSTEM COMPANY ERP INFORMATION SYSTEM MAPING CONNECTIVITY
  • 154. CLIENT – SERVER ARCHITECTURE
  • 155. OPTEX SQL DATABASE OPTEX - SERVER MATHEMATICAL MODELING PROCESSOR OPTEX CLIENT
  • 156. OPTEX SQL DATABASE OPTEX - SERVER MATHEMATICAL MODELING PROCESSOR OPTEX CLIENT
  • 157. OPTEX SQL DATABASE ERP/TMS/WMS DATABASE OPTEX OLAP DATABASE OPTEX - SERVER MATHEMATICAL MODELING PROCESSOR OPTEX CLIENT VISUALIZATION SERVER
  • 158. CLOUD LINK EXCEL PROGRAMS IN DIFERENT LANGUAGES C – GAMS – IBM OPL – MOSEL – AIMMS - AMPL MPS MODEL
  • 161. To capitalize its expertise in mathematical optimization projects, DW ​​created OPCHAIN, a brand through which we have grouped the solutions developed by DW, in different areas of application using mathematical programming methodologies and technologies. In 2012, OPCHAIN has ​​accumulated the experience of more than thirty-five (35) years in engineering problem solving and business analytics using mathematical programming models. OPCHAIN models are fully programmable​​, easy to customize for each client, and are easily integrated with other IT solutions in organizations. OPCHAIN OPTIMIZING THE VALUE CHAIN
  • 162. OPCHAIN-SCO SUPPLY CHAIN OPTIMIZATION OPCHAIN-TSO TRANSPORT SYSTEMS OPTIMIZATION OPCHAIN-RSO RETAIL CHAIN OPTIMIZATION OPCHAIN-RPO REGIONAL PLANING OPTIMIZATION OPCHAIN-ESO ENERGY SYSTEMS OPTIMIZATION OPCHAIN-BANK BANK SYSTEMS OPTIMIZATION OPCHAIN-EDO EDUCATIONAL SYSTEMS OPTIMIZATION OPCHAIN-MINES MINES SYSTEMS OPTIMIZATION
  • 163. OPTEX Mathematical Modeling System, was developed to support DecisionWare’s mathematical modeling projects since 1991. OPTEX supports the development of all multi-model OPCHAIN-DSS developed by
  • 164. SERVICES  TO SELL OPTEX MATHEMATICAL MODELING MANAGEMENT SYSTEM  TO SELL OPCHAIN-MODELS IN ANY PLATFORM  (INCLUDING SOURCE CODE)  TO CONVERT MODELS FROM ANY PLATFORM TO ANY PLATFORM  TO DEVELOPMENT ON DEMAND MODELS IN ANY PLATFORM  ON DEMAND OPTIMIZATION IN THE CLOUD