SlideShare a Scribd company logo
1 of 27
Download to read offline
Mixing Simulations for the Scaling-up
of Succinic Acid Production from
Biorefinery Glycerol
I.S. Fragkopoulos*, A. Rigaki, C. Webb, C. Theodoropoulos
School of Chemical Engineering and Analytical Science
The University of Manchester, UK
Tuesday, April 28, 2015 | 11:15 AM | 415AB Hilton Austin
106(c) | Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II
Collaboration Network
02
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Ioannis	
  S.	
  Fragkopoulos	
  
Dr	
  Ioannis	
  
Kookos	
  
Prof	
  Ian	
  
Metcalfe	
  
Dr	
  Danai	
  
Poulidi	
  
Dr	
  Kostas	
  
Theodoropoulos	
  
	
  
Prof	
  Colin	
  
Webb	
  
Aikaterini	
  
Rigaki	
  
The	
  University	
  of	
  Manchester	
   Newcastle	
  University	
   University	
  of	
  Patras	
  Queen’s	
  University	
  Belfast	
  
Current	
  Research	
  Project	
   Electrochemical	
  PromoLon	
  in	
  
Heterogeneous	
  Catalysis	
  
Scheduling	
  of	
  
Crude	
  Oil	
  
Unloading	
  
Outline
03
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
q  Motivation: Sustainability of Biodiesel Industry
q  Bioconversion of Glycerol to Succinic Acid
q  Single Substrate model
q  The CO2 importance
q  Double Substrate model
q  The mixing framework
q  k-ε turbulence & mass transport & reaction
q  Conclusions & Future Work
Sustainability of Biodiesel Industry
04
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
q  The sustainability of biodiesel production is influenced by
v  the cost of raw materials
v  the bio-refinery’s capacity
v  the price of petroleum-diesel [1].
q  The idea of an integrated bio-refinery, where biomass is converted to bio-fuels & added value
chemicals, is plausible through the valorisation of its by-products (i.e. glycerol) [1].
q  Bio-conversion of glycerol to chemicals was assessed viable with additional environmental impact
in case these are currently produced petro-chemically [2].
[1]	
  Posada	
  J.A.,Rincon	
  L.E.,	
  Cardona	
  C.A.,	
  Bioresource	
  Technology.	
  2012;	
  111:	
  282	
  –	
  293.	
  
[2]	
  Vlysidis	
  A.,	
  Binns	
  M.,	
  Webb.	
  C,	
  Theodoropoulos	
  C.,	
  Energy.	
  2011;	
  36:	
  4671	
  –	
  4683.	
  
Bioconversion of Glycerol to Succinic Acid
05
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
ü 	
  	
  Improvement	
  of	
  	
  the	
  bioreactor	
  performance	
  [1],[2]	
  
ü 	
  	
  Improvement	
  in	
  downstream	
  processes	
  [1],[3]	
  
ü 	
  	
  MinimisaLon	
  of	
  by	
  -­‐	
  products	
  formaLon	
  [3]	
  
ü 	
  	
  Scaling	
  up	
  	
  
1.	
  Choosing	
  the	
  end	
  product	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Ac#nobacillus	
  
succinogenes	
  
Succinic	
  Acid	
  
3.	
  Turning	
  into	
  a	
  commercial	
  process	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2.	
  Choosing	
  the	
  right	
  bio-­‐catalyst	
  
[1]	
  Posada	
  J.A.,Rincon	
  L.E.,	
  Cardona	
  C.A.,	
  Bioresource	
  Technology.	
  2012;	
  111:	
  282	
  –	
  293.	
  
[2]	
  Vlysidis	
  A.,	
  Binns	
  M.,	
  Webb.	
  C,	
  Theodoropoulos	
  C.,	
  Energy.	
  2011;	
  36:	
  4671	
  –	
  4683.	
  
[3]	
  Vlysidis	
  A.,	
  Binns	
  M.,	
  Webb	
  C.,	
  Theodoropoulos	
  C.,	
  Chem.	
  Eng.	
  Trans.	
  2010;	
  24:	
  1165	
  –	
  1170.	
  	
  
Ø  One	
  of	
  the	
  top	
  12	
  
added	
  value	
  
chemicals	
  
according	
  to	
  US	
  
Renewable	
  Energy	
  
Laboratory	
  report	
  	
  
Ø  Ability	
  to	
  produce	
  
SA	
  as	
  an	
  end	
  
product	
  and	
  high	
  
tolerance	
  in	
  large	
  
SA	
  concentraLons	
  
Single Substrate Model [4],[5]
06
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
dX
dt
= µmax
⋅
GLR
GLR+ kGLR
+
GLR2
IGLR
⋅ 1−
PSA
PSA
∗
$
%
&&
'
(
))
nSA
⋅ X
/
1
S
X GLR
dGLR dX
m X
dt Y dt
= − ⋅ − ⋅
i
i i
dP dX
X
dt dt
α β= ⋅ + ⋅ , ,i SA FA AA=
Monod equation with
GLR and product inhibition
Glycerol consumption
from cells (biomass) and
maintenance
Luedeking-Piret
expression
Products
Glycerol
Biomass
Succinic
Acid
Formic
Acid
Acetic
Acid
[4]	
  Vlysidis	
  A.,	
  Binns	
  M.,	
  Webb	
  C.,	
  Theodoropoulos	
  C.,Biochem.	
  Eng.	
  J..2011;	
  58:	
  1	
  –	
  11.	
  
[5[	
  Fragkopoulos	
  I.S.,	
  Webb	
  C.,	
  Theodoropoulos	
  C.,	
  under	
  preparaTon.	
  
07
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Parameter	
  FiTng	
  in	
  Lab	
  scale	
  (Vw	
  	
  =50mL)	
  
Single Substrate Model
§  The	
  model’s	
  predic/ons	
  for	
  	
  all	
  state	
  variables	
  in	
  
good	
  agreement	
  with	
  experimental	
  data.	
  
08
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
AddiLonal	
  carbon	
  source	
  (CO2)	
  is	
  missing!	
  
Model	
  ValidaLon	
  in	
  bench	
  top	
  reactor	
  (Vw	
  	
  =0.6	
  L)	
  
Single Substrate Model
LimitaLons	
  
§  Model	
  cannot	
  be	
  used	
  as	
  a	
  predic/ve	
  
tool	
  for	
  larger	
  scales	
  	
  as	
  it	
  does	
  not	
  
contain	
  scalable	
  parameters.	
  
q 	
  Model	
  predic/ve	
  form	
  lab	
  to	
  bench	
  	
  	
  
scale	
  without	
  addi/onal	
  fi=ng	
  
Why CO2 is important?
09
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
§ 	
  Sufficient	
  CO2	
  	
  is	
  necessary	
  to	
  
enhance	
  PEP	
  acLvity	
  to	
  make	
  SA	
  
through	
  the	
  reduc/ve	
  branch	
  of	
  TCA	
  
cycle	
  [6].	
  
	
  
§ 	
  Under	
  CO2	
  	
  limi/ng	
  condi/ons,	
  less	
  SA	
  
and	
  more	
  by-­‐products	
  are	
  produced	
  [7]	
  
	
  
§ 	
  Rumen	
  bacteria	
  require	
  	
  CO2	
  	
  for	
  SA	
  
forma/on	
  and	
  for	
  biosynthesis	
  
purposes	
  as	
  well	
  [8]	
  
	
  
Yield	
  of	
  SA	
  =	
  f	
  (availability	
  of	
  CO2)	
  
	
  
How	
  can	
  we	
  control	
  the	
  CO2	
  availability?	
  
[6]	
  Binns	
  M.,	
  Vlysidis	
  A.,	
  Webb	
  C.,	
  Theodoropoulos	
  C.,	
  Atauri	
  P.,	
  Cascante	
  M.,	
  Comp.	
  Aided	
  Proc.	
  Eng.	
  2011;	
  1421	
  –	
  1425.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [7]	
  Der	
  Werf	
  M.J.V.,	
  GueZler	
  M.V.,	
  Jain	
  M.K.,	
  Zeikus	
  J.G.,	
  Archives	
  of	
  Microbiology.	
  1997;	
  167:	
  332	
  –	
  342.	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [8]	
  Dehority	
  B.A.,	
  J.	
  Bacteriol.	
  1971;	
  105	
  (1):	
  70	
  –	
  76.	
  
CO2 Sources
10
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
§ 	
  In	
  what	
  forms	
  is	
  CO2	
  	
  	
  supplied	
  in	
  the	
  fermentaLon	
  medium?	
  
1.	
  Gaseous	
  CO2	
  
2.	
  MgCO3	
  
CO2
*	
  =	
  f	
  (Gas	
  ParTal	
  Pressure,	
  
ConcentraTon	
  of	
  solutes)	
  
•  Indirect	
  CO2	
  	
  donor	
  [9]:	
  
•  Neutralisa/on	
  agent:	
  
	
  
•  Mineral	
  source	
  of	
  Magnesium	
  ca/ons.	
  	
  
2 2( )LGTR k CO COα ∗
= ⋅ −
1 2 2
3 2 3
K
MgCO H O Mg CO+ −
+ ←⎯→ +
2( ) 2 2 3 3
2
3 3
gCO H O H CO HCO H
HCO CO H
− +
− − +
+ ←⎯→ ←⎯→ +
←⎯→ +
3 4 6 4 8 10 8 2 22MgCO C H O C H MgO CO H O+ ⎯⎯→ + +
Dissolved	
  CO2	
  
[9]	
  Xi	
  Y.,	
  Chen	
  K.,	
  Li	
  J.,	
  Fang	
  X.,	
  Zheng	
  X.,	
  Sui	
  S.,	
  Wei	
  P.,	
  J	
  Ind	
  	
  Microbiol	
  Biotechnol.	
  2011;	
  38	
  (9):	
  1605	
  –	
  1612.	
  
Double Substrate Model [10]
11
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
dX
dt
= µmax
⋅
GLR
GLR+ kGLR
+
GLR2
IGLR
⋅
CO2
CO2
+ kCO2
+
CO2
2
ICO2
⋅ 1−
PSA
PSA
∗
$
%
&&
'
(
))
nSA
⋅ X
dGLR
dt
= −
1
YX /GLR
⋅
dX
dt
− mS1
⋅ X i
i i
dP dX
X
dt dt
α β= ⋅ + ⋅
ProductsGlycerol
Biomass
dCO2
dt
= −
1
YX /CO2
⋅
dX
dt
− mS2
⋅ X − kL
a CO2
*−CO2( )
CO2
•  kLa = f (Q, N, size,
type of reactor)
•  CO2
* = f (MgCO3 )
[10]	
  Rigaki	
  A.,	
  C.	
  Webb,	
  C.	
  Theodoropoulos.	
  Chem.	
  	
  Eng.	
  Trans.,	
  2013;	
  35:1033-­‐1038.	
  
12
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Parameter	
  FiTng	
  	
  
in	
  Lab	
  scale	
  (Vw	
  	
  =1L)	
  
Double Substrate Model
§  The	
  model’s	
  predic/ons	
  for	
  	
  all	
  	
  
state	
  variables	
  in	
  good	
  agreement	
  
with	
  experimental	
  data.	
  
•  kLa	
  =	
  fixed	
  
•  CO2*=	
  polynomially	
  correlated	
  	
  
13
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Double Substrate Model
Model	
  ValidaLon	
  using	
  	
  
different	
  MgCO3	
  	
  
(Vw	
  	
  =1	
  L)	
  
§  Over	
  predic/on	
  of	
  dissolved	
  
CO2	
  and	
  of	
  ace/c	
  acid.	
  
Why mixing is important?
14
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Ø  Scaling-up leads to differences between
v  model predictions and experimental observations
•  due to differences between the small and large bioreactors’
principal hydrodynamics.
Ø  Mixing times are often shorter than reaction times in small
(bio)reactors
v  in contrast with large-scale (bio)reactors where the mixing times
are much larger. [11]
Ø  Our objective is the formulation of a computational fluid dynamics
(CFD) framework
• to be used for the simulation of mixing at the macro-scale level.
•  so that the optimal operating conditions can be investigated at
various reactor scales.
[11]	
  Aki/	
  O.	
  and	
  P.M.	
  Armenante,	
  2004.	
  AIChE	
  J.,	
  50,	
  566-­‐577.	
  
The Mixing Framework [12]
15
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
2-­‐D	
  axisymmetric	
  3-­‐D	
  
ü The CFD mixing framework is developed by the integration of:
• the momentum conservation
• a k-ε turbulence model for the mixing
• the mass conservation and transport
v  also taking into account species reactions.
[12]Fragkopoulos	
  I.S.,	
  Webb	
  C.,	
  Theodoropoulos	
  C.,	
  under	
  preparaTon.	
  
The Mixing Framework
16
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Transport of Species in medium
( )i
i i i i
dC
D C C R
dt
+ ∇⋅ − ∇ + ⋅∇ =u
( ) Diffusion Termi iD C∇⋅ − ∇ →
Convection TermiC⋅∇ →u
Reaction TermiR →
Diffusion of species i in H2O
Velocity field is calculated by
the k-ε turbulence model
Individual reaction rates are expressed by
the Single Substrate kinetic equations
The Simulation Methodology
17
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Step 1
Ø  Turbulent flow simulation
Zero Initial Conditions for u, p, k, ε
(both subdomains)
u→ Steady State
Moving wall (φ direction) boundary
conditions and wall boundary conditions
elsewhere
Velocity Field: Steady State
18
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
200 rpm 400 rpm 600 rpm
The Simulation Methodology
19
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Step 2
Ø  Transport of diluted species
Desired concentration Initial
Conditions at a small layer at the top
of the reactor
Coupling with turbulent flow via
the convection term
Ci
→Transient
Zero concentration Initial Conditions
at the remaining reactor domain
Concentration Profiles: Glycerol
20
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Concentration Profiles: Biomass
21
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Concentration Profiles: Succinic Acid
22
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Conclusions
23
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
ü  Development of well-mixed reactor model
• based on Single Substrate kinetics
v taking into account a set of ODEs
v for the simulation of species mass balances.
ü  Formulation of an integrated CFD framework coupling
• a k-ε turbulence flow model for the mixing simulation
• with a transport model for species’ convection and diffusion
• also taking into account species reactions.
Ø  Estimation of optimal agitator rotation speed through
• comparing ODEs based and full CFD models
v for increasing rotation speeds.
	
  LimitaLons:	
  Size	
  independent	
  model	
  	
  &	
  	
  an	
  important	
  carbon	
  source	
  is	
  missing.	
  
Ø  Good prediction of experimental data.
ü  Development of a more detailed model
• based on Double Substrate kinetics
Ø  Differences between experimental data and model predictions due to dissolved CO2.
Future Work: Double Substrate
24
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
dCO2
dt
= −
1
YX /CO2
⋅
dX
dt
− mS2
⋅ X − kL
a CO2
*−CO2( )
CO2*: to correlate
to pH
CO2: not considered well
mixed, but calculated by the
mixing model
kLa: not fixed, but linked
directly to the kinetic energy
dissipation rate (ε) provided
by the turbulent flow
simulation
Future Work: 3-D Simulations
25
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
2-­‐D	
  axisymmetric	
   3-­‐D	
  
Ø  Take into consideration:
²  the full geometry of the Rushton impeller
²  the metallic tubes and the baffles
Future Work: Scale-up
26
Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c)
Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
Laboratory	
  Scale	
  SimulaLons	
   Pilot	
  Plant	
  SimulaLons:	
  150	
  L	
  
1	
  L,	
  	
  10L	
  
Acknowledgements
" The financial support of the Engineering and Physical Sciences
Research Council UK:
" EPSRC Doctoral Prize Fellowship
Thank you!
Email: ioannis.fragkopoulos@manchester.ac.uk
LinkedIn: www.linkedin.com/pub/ioannis-s-fragkopoulos/74/491/bb7
Ioannis S. Fragkopoulos, PhD, AMIChemE
EPSRC Research Fellow

More Related Content

Similar to ISFragkopoulos_AIChESpringMeeting2015

The Green Solution-Optimizing productivity of bi-substate microalgae cultures
The Green Solution-Optimizing productivity of bi-substate microalgae culturesThe Green Solution-Optimizing productivity of bi-substate microalgae cultures
The Green Solution-Optimizing productivity of bi-substate microalgae culturesMaggie Leng
 
JBEI Research Highlights Slides - September 2022
JBEI Research Highlights Slides - September 2022JBEI Research Highlights Slides - September 2022
JBEI Research Highlights Slides - September 2022SaraHarmon4
 
JBEI Research Highlights Slides - July 2022
JBEI Research Highlights Slides - July 2022JBEI Research Highlights Slides - July 2022
JBEI Research Highlights Slides - July 2022SaraHarmon4
 
Utilization of Food Waste to Produce Biodiesel
Utilization of Food Waste to Produce BiodieselUtilization of Food Waste to Produce Biodiesel
Utilization of Food Waste to Produce BiodieselIRJET Journal
 
JBEI Science Highlights - February 2023
JBEI Science Highlights - February 2023JBEI Science Highlights - February 2023
JBEI Science Highlights - February 2023SaraHarmon5
 
JBEI Research Highlights - April 2022
JBEI Research Highlights - April 2022JBEI Research Highlights - April 2022
JBEI Research Highlights - April 2022SaraHarmon4
 
Environmental Engineering for Enhancing the Suitability of a Microalga for En...
Environmental Engineering for Enhancing the Suitability of a Microalga for En...Environmental Engineering for Enhancing the Suitability of a Microalga for En...
Environmental Engineering for Enhancing the Suitability of a Microalga for En...IRJET Journal
 
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Otago Energy Research Centre (OERC)
 
0145PM-Carolina Zampol Lazaro.pdf
0145PM-Carolina Zampol Lazaro.pdf0145PM-Carolina Zampol Lazaro.pdf
0145PM-Carolina Zampol Lazaro.pdfMateen Abdul
 
Biophysical Potential of Crop Residues for Biochar Carbon Sequestration and C...
Biophysical Potential of Crop Residues for Biochar Carbon Sequestration and C...Biophysical Potential of Crop Residues for Biochar Carbon Sequestration and C...
Biophysical Potential of Crop Residues for Biochar Carbon Sequestration and C...Global Landscapes Forum (GLF)
 
IRJET- Hydrothermal Liquefaction Process (HTL) of Sugarcane Bagasse for the P...
IRJET- Hydrothermal Liquefaction Process (HTL) of Sugarcane Bagasse for the P...IRJET- Hydrothermal Liquefaction Process (HTL) of Sugarcane Bagasse for the P...
IRJET- Hydrothermal Liquefaction Process (HTL) of Sugarcane Bagasse for the P...IRJET Journal
 
JBEI August 2020 Highlights
JBEI August 2020 HighlightsJBEI August 2020 Highlights
JBEI August 2020 HighlightsLeahFreemanSloan
 
JBEI Research Highlights - May 2019
JBEI Research Highlights - May 2019JBEI Research Highlights - May 2019
JBEI Research Highlights - May 2019Irina Silva
 
IRJET- Design of Biogas Plant for Food Waste and Evaluation of Biogas Generat...
IRJET- Design of Biogas Plant for Food Waste and Evaluation of Biogas Generat...IRJET- Design of Biogas Plant for Food Waste and Evaluation of Biogas Generat...
IRJET- Design of Biogas Plant for Food Waste and Evaluation of Biogas Generat...IRJET Journal
 
Development of a Laboratory Scale Biodiesel Batch Reactor
Development of a Laboratory Scale Biodiesel Batch ReactorDevelopment of a Laboratory Scale Biodiesel Batch Reactor
Development of a Laboratory Scale Biodiesel Batch ReactorIRJET Journal
 
Engineering escherichia coli to convert acetic acid to free fatty acids
Engineering escherichia coli to convert acetic acid to free fatty acidsEngineering escherichia coli to convert acetic acid to free fatty acids
Engineering escherichia coli to convert acetic acid to free fatty acidszhenhua82
 
JBEI highlights March 2016
JBEI highlights March 2016JBEI highlights March 2016
JBEI highlights March 2016Irina Silva
 
A review on optimization production and upgrading
A review on optimization production and upgradingA review on optimization production and upgrading
A review on optimization production and upgradingMarco Del Valle Montero
 
Digester lab 1
Digester lab 1Digester lab 1
Digester lab 1Zifa Sire
 

Similar to ISFragkopoulos_AIChESpringMeeting2015 (20)

The Green Solution-Optimizing productivity of bi-substate microalgae cultures
The Green Solution-Optimizing productivity of bi-substate microalgae culturesThe Green Solution-Optimizing productivity of bi-substate microalgae cultures
The Green Solution-Optimizing productivity of bi-substate microalgae cultures
 
JBEI Research Highlights Slides - September 2022
JBEI Research Highlights Slides - September 2022JBEI Research Highlights Slides - September 2022
JBEI Research Highlights Slides - September 2022
 
JBEI Research Highlights Slides - July 2022
JBEI Research Highlights Slides - July 2022JBEI Research Highlights Slides - July 2022
JBEI Research Highlights Slides - July 2022
 
Utilization of Food Waste to Produce Biodiesel
Utilization of Food Waste to Produce BiodieselUtilization of Food Waste to Produce Biodiesel
Utilization of Food Waste to Produce Biodiesel
 
JBEI Science Highlights - February 2023
JBEI Science Highlights - February 2023JBEI Science Highlights - February 2023
JBEI Science Highlights - February 2023
 
JBEI Research Highlights - April 2022
JBEI Research Highlights - April 2022JBEI Research Highlights - April 2022
JBEI Research Highlights - April 2022
 
Environmental Engineering for Enhancing the Suitability of a Microalga for En...
Environmental Engineering for Enhancing the Suitability of a Microalga for En...Environmental Engineering for Enhancing the Suitability of a Microalga for En...
Environmental Engineering for Enhancing the Suitability of a Microalga for En...
 
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
Anaerobic co-digestion of defatted hydrolyzed meat processing dissolved air f...
 
0145PM-Carolina Zampol Lazaro.pdf
0145PM-Carolina Zampol Lazaro.pdf0145PM-Carolina Zampol Lazaro.pdf
0145PM-Carolina Zampol Lazaro.pdf
 
248 ritu
248 ritu248 ritu
248 ritu
 
Biophysical Potential of Crop Residues for Biochar Carbon Sequestration and C...
Biophysical Potential of Crop Residues for Biochar Carbon Sequestration and C...Biophysical Potential of Crop Residues for Biochar Carbon Sequestration and C...
Biophysical Potential of Crop Residues for Biochar Carbon Sequestration and C...
 
IRJET- Hydrothermal Liquefaction Process (HTL) of Sugarcane Bagasse for the P...
IRJET- Hydrothermal Liquefaction Process (HTL) of Sugarcane Bagasse for the P...IRJET- Hydrothermal Liquefaction Process (HTL) of Sugarcane Bagasse for the P...
IRJET- Hydrothermal Liquefaction Process (HTL) of Sugarcane Bagasse for the P...
 
JBEI August 2020 Highlights
JBEI August 2020 HighlightsJBEI August 2020 Highlights
JBEI August 2020 Highlights
 
JBEI Research Highlights - May 2019
JBEI Research Highlights - May 2019JBEI Research Highlights - May 2019
JBEI Research Highlights - May 2019
 
IRJET- Design of Biogas Plant for Food Waste and Evaluation of Biogas Generat...
IRJET- Design of Biogas Plant for Food Waste and Evaluation of Biogas Generat...IRJET- Design of Biogas Plant for Food Waste and Evaluation of Biogas Generat...
IRJET- Design of Biogas Plant for Food Waste and Evaluation of Biogas Generat...
 
Development of a Laboratory Scale Biodiesel Batch Reactor
Development of a Laboratory Scale Biodiesel Batch ReactorDevelopment of a Laboratory Scale Biodiesel Batch Reactor
Development of a Laboratory Scale Biodiesel Batch Reactor
 
Engineering escherichia coli to convert acetic acid to free fatty acids
Engineering escherichia coli to convert acetic acid to free fatty acidsEngineering escherichia coli to convert acetic acid to free fatty acids
Engineering escherichia coli to convert acetic acid to free fatty acids
 
JBEI highlights March 2016
JBEI highlights March 2016JBEI highlights March 2016
JBEI highlights March 2016
 
A review on optimization production and upgrading
A review on optimization production and upgradingA review on optimization production and upgrading
A review on optimization production and upgrading
 
Digester lab 1
Digester lab 1Digester lab 1
Digester lab 1
 

ISFragkopoulos_AIChESpringMeeting2015

  • 1. Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol I.S. Fragkopoulos*, A. Rigaki, C. Webb, C. Theodoropoulos School of Chemical Engineering and Analytical Science The University of Manchester, UK Tuesday, April 28, 2015 | 11:15 AM | 415AB Hilton Austin 106(c) | Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II
  • 2. Collaboration Network 02 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Ioannis  S.  Fragkopoulos   Dr  Ioannis   Kookos   Prof  Ian   Metcalfe   Dr  Danai   Poulidi   Dr  Kostas   Theodoropoulos     Prof  Colin   Webb   Aikaterini   Rigaki   The  University  of  Manchester   Newcastle  University   University  of  Patras  Queen’s  University  Belfast   Current  Research  Project   Electrochemical  PromoLon  in   Heterogeneous  Catalysis   Scheduling  of   Crude  Oil   Unloading  
  • 3. Outline 03 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin q  Motivation: Sustainability of Biodiesel Industry q  Bioconversion of Glycerol to Succinic Acid q  Single Substrate model q  The CO2 importance q  Double Substrate model q  The mixing framework q  k-ε turbulence & mass transport & reaction q  Conclusions & Future Work
  • 4. Sustainability of Biodiesel Industry 04 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin q  The sustainability of biodiesel production is influenced by v  the cost of raw materials v  the bio-refinery’s capacity v  the price of petroleum-diesel [1]. q  The idea of an integrated bio-refinery, where biomass is converted to bio-fuels & added value chemicals, is plausible through the valorisation of its by-products (i.e. glycerol) [1]. q  Bio-conversion of glycerol to chemicals was assessed viable with additional environmental impact in case these are currently produced petro-chemically [2]. [1]  Posada  J.A.,Rincon  L.E.,  Cardona  C.A.,  Bioresource  Technology.  2012;  111:  282  –  293.   [2]  Vlysidis  A.,  Binns  M.,  Webb.  C,  Theodoropoulos  C.,  Energy.  2011;  36:  4671  –  4683.  
  • 5. Bioconversion of Glycerol to Succinic Acid 05 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin ü     Improvement  of    the  bioreactor  performance  [1],[2]   ü     Improvement  in  downstream  processes  [1],[3]   ü     MinimisaLon  of  by  -­‐  products  formaLon  [3]   ü     Scaling  up     1.  Choosing  the  end  product                                                                               Ac#nobacillus   succinogenes   Succinic  Acid   3.  Turning  into  a  commercial  process                              2.  Choosing  the  right  bio-­‐catalyst   [1]  Posada  J.A.,Rincon  L.E.,  Cardona  C.A.,  Bioresource  Technology.  2012;  111:  282  –  293.   [2]  Vlysidis  A.,  Binns  M.,  Webb.  C,  Theodoropoulos  C.,  Energy.  2011;  36:  4671  –  4683.   [3]  Vlysidis  A.,  Binns  M.,  Webb  C.,  Theodoropoulos  C.,  Chem.  Eng.  Trans.  2010;  24:  1165  –  1170.     Ø  One  of  the  top  12   added  value   chemicals   according  to  US   Renewable  Energy   Laboratory  report     Ø  Ability  to  produce   SA  as  an  end   product  and  high   tolerance  in  large   SA  concentraLons  
  • 6. Single Substrate Model [4],[5] 06 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin dX dt = µmax ⋅ GLR GLR+ kGLR + GLR2 IGLR ⋅ 1− PSA PSA ∗ $ % && ' ( )) nSA ⋅ X / 1 S X GLR dGLR dX m X dt Y dt = − ⋅ − ⋅ i i i dP dX X dt dt α β= ⋅ + ⋅ , ,i SA FA AA= Monod equation with GLR and product inhibition Glycerol consumption from cells (biomass) and maintenance Luedeking-Piret expression Products Glycerol Biomass Succinic Acid Formic Acid Acetic Acid [4]  Vlysidis  A.,  Binns  M.,  Webb  C.,  Theodoropoulos  C.,Biochem.  Eng.  J..2011;  58:  1  –  11.   [5[  Fragkopoulos  I.S.,  Webb  C.,  Theodoropoulos  C.,  under  preparaTon.  
  • 7. 07 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Parameter  FiTng  in  Lab  scale  (Vw    =50mL)   Single Substrate Model §  The  model’s  predic/ons  for    all  state  variables  in   good  agreement  with  experimental  data.  
  • 8. 08 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin AddiLonal  carbon  source  (CO2)  is  missing!   Model  ValidaLon  in  bench  top  reactor  (Vw    =0.6  L)   Single Substrate Model LimitaLons   §  Model  cannot  be  used  as  a  predic/ve   tool  for  larger  scales    as  it  does  not   contain  scalable  parameters.   q   Model  predic/ve  form  lab  to  bench       scale  without  addi/onal  fi=ng  
  • 9. Why CO2 is important? 09 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin §   Sufficient  CO2    is  necessary  to   enhance  PEP  acLvity  to  make  SA   through  the  reduc/ve  branch  of  TCA   cycle  [6].     §   Under  CO2    limi/ng  condi/ons,  less  SA   and  more  by-­‐products  are  produced  [7]     §   Rumen  bacteria  require    CO2    for  SA   forma/on  and  for  biosynthesis   purposes  as  well  [8]     Yield  of  SA  =  f  (availability  of  CO2)     How  can  we  control  the  CO2  availability?   [6]  Binns  M.,  Vlysidis  A.,  Webb  C.,  Theodoropoulos  C.,  Atauri  P.,  Cascante  M.,  Comp.  Aided  Proc.  Eng.  2011;  1421  –  1425.                                                  [7]  Der  Werf  M.J.V.,  GueZler  M.V.,  Jain  M.K.,  Zeikus  J.G.,  Archives  of  Microbiology.  1997;  167:  332  –  342.                                                                                          [8]  Dehority  B.A.,  J.  Bacteriol.  1971;  105  (1):  70  –  76.  
  • 10. CO2 Sources 10 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin §   In  what  forms  is  CO2      supplied  in  the  fermentaLon  medium?   1.  Gaseous  CO2   2.  MgCO3   CO2 *  =  f  (Gas  ParTal  Pressure,   ConcentraTon  of  solutes)   •  Indirect  CO2    donor  [9]:   •  Neutralisa/on  agent:     •  Mineral  source  of  Magnesium  ca/ons.     2 2( )LGTR k CO COα ∗ = ⋅ − 1 2 2 3 2 3 K MgCO H O Mg CO+ − + ←⎯→ + 2( ) 2 2 3 3 2 3 3 gCO H O H CO HCO H HCO CO H − + − − + + ←⎯→ ←⎯→ + ←⎯→ + 3 4 6 4 8 10 8 2 22MgCO C H O C H MgO CO H O+ ⎯⎯→ + + Dissolved  CO2   [9]  Xi  Y.,  Chen  K.,  Li  J.,  Fang  X.,  Zheng  X.,  Sui  S.,  Wei  P.,  J  Ind    Microbiol  Biotechnol.  2011;  38  (9):  1605  –  1612.  
  • 11. Double Substrate Model [10] 11 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin dX dt = µmax ⋅ GLR GLR+ kGLR + GLR2 IGLR ⋅ CO2 CO2 + kCO2 + CO2 2 ICO2 ⋅ 1− PSA PSA ∗ $ % && ' ( )) nSA ⋅ X dGLR dt = − 1 YX /GLR ⋅ dX dt − mS1 ⋅ X i i i dP dX X dt dt α β= ⋅ + ⋅ ProductsGlycerol Biomass dCO2 dt = − 1 YX /CO2 ⋅ dX dt − mS2 ⋅ X − kL a CO2 *−CO2( ) CO2 •  kLa = f (Q, N, size, type of reactor) •  CO2 * = f (MgCO3 ) [10]  Rigaki  A.,  C.  Webb,  C.  Theodoropoulos.  Chem.    Eng.  Trans.,  2013;  35:1033-­‐1038.  
  • 12. 12 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Parameter  FiTng     in  Lab  scale  (Vw    =1L)   Double Substrate Model §  The  model’s  predic/ons  for    all     state  variables  in  good  agreement   with  experimental  data.   •  kLa  =  fixed   •  CO2*=  polynomially  correlated    
  • 13. 13 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Double Substrate Model Model  ValidaLon  using     different  MgCO3     (Vw    =1  L)   §  Over  predic/on  of  dissolved   CO2  and  of  ace/c  acid.  
  • 14. Why mixing is important? 14 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Ø  Scaling-up leads to differences between v  model predictions and experimental observations •  due to differences between the small and large bioreactors’ principal hydrodynamics. Ø  Mixing times are often shorter than reaction times in small (bio)reactors v  in contrast with large-scale (bio)reactors where the mixing times are much larger. [11] Ø  Our objective is the formulation of a computational fluid dynamics (CFD) framework • to be used for the simulation of mixing at the macro-scale level. •  so that the optimal operating conditions can be investigated at various reactor scales. [11]  Aki/  O.  and  P.M.  Armenante,  2004.  AIChE  J.,  50,  566-­‐577.  
  • 15. The Mixing Framework [12] 15 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin 2-­‐D  axisymmetric  3-­‐D   ü The CFD mixing framework is developed by the integration of: • the momentum conservation • a k-ε turbulence model for the mixing • the mass conservation and transport v  also taking into account species reactions. [12]Fragkopoulos  I.S.,  Webb  C.,  Theodoropoulos  C.,  under  preparaTon.  
  • 16. The Mixing Framework 16 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Transport of Species in medium ( )i i i i i dC D C C R dt + ∇⋅ − ∇ + ⋅∇ =u ( ) Diffusion Termi iD C∇⋅ − ∇ → Convection TermiC⋅∇ →u Reaction TermiR → Diffusion of species i in H2O Velocity field is calculated by the k-ε turbulence model Individual reaction rates are expressed by the Single Substrate kinetic equations
  • 17. The Simulation Methodology 17 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Step 1 Ø  Turbulent flow simulation Zero Initial Conditions for u, p, k, ε (both subdomains) u→ Steady State Moving wall (φ direction) boundary conditions and wall boundary conditions elsewhere
  • 18. Velocity Field: Steady State 18 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin 200 rpm 400 rpm 600 rpm
  • 19. The Simulation Methodology 19 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Step 2 Ø  Transport of diluted species Desired concentration Initial Conditions at a small layer at the top of the reactor Coupling with turbulent flow via the convection term Ci →Transient Zero concentration Initial Conditions at the remaining reactor domain
  • 20. Concentration Profiles: Glycerol 20 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
  • 21. Concentration Profiles: Biomass 21 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
  • 22. Concentration Profiles: Succinic Acid 22 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin
  • 23. Conclusions 23 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin ü  Development of well-mixed reactor model • based on Single Substrate kinetics v taking into account a set of ODEs v for the simulation of species mass balances. ü  Formulation of an integrated CFD framework coupling • a k-ε turbulence flow model for the mixing simulation • with a transport model for species’ convection and diffusion • also taking into account species reactions. Ø  Estimation of optimal agitator rotation speed through • comparing ODEs based and full CFD models v for increasing rotation speeds.  LimitaLons:  Size  independent  model    &    an  important  carbon  source  is  missing.   Ø  Good prediction of experimental data. ü  Development of a more detailed model • based on Double Substrate kinetics Ø  Differences between experimental data and model predictions due to dissolved CO2.
  • 24. Future Work: Double Substrate 24 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin dCO2 dt = − 1 YX /CO2 ⋅ dX dt − mS2 ⋅ X − kL a CO2 *−CO2( ) CO2*: to correlate to pH CO2: not considered well mixed, but calculated by the mixing model kLa: not fixed, but linked directly to the kinetic energy dissipation rate (ε) provided by the turbulent flow simulation
  • 25. Future Work: 3-D Simulations 25 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin 2-­‐D  axisymmetric   3-­‐D   Ø  Take into consideration: ²  the full geometry of the Rushton impeller ²  the metallic tubes and the baffles
  • 26. Future Work: Scale-up 26 Mixing Simulations for the Scaling-up of Succinic Acid Production from Biorefinery Glycerol | 106(c) Developments in Biomass to Biofuels, Chemicals, and Advanced Materials II | 28/05/2015 | 415AB Hilton Austin Laboratory  Scale  SimulaLons   Pilot  Plant  SimulaLons:  150  L   1  L,    10L  
  • 27. Acknowledgements " The financial support of the Engineering and Physical Sciences Research Council UK: " EPSRC Doctoral Prize Fellowship Thank you! Email: ioannis.fragkopoulos@manchester.ac.uk LinkedIn: www.linkedin.com/pub/ioannis-s-fragkopoulos/74/491/bb7 Ioannis S. Fragkopoulos, PhD, AMIChemE EPSRC Research Fellow