<line> .=. <target> <feature>:<value> <feature>:<value> ... <feature>:<value> # <info>
<target> .=. +1 | -1 | 0 | <float>
<feature> .=. <integer> | "qid"
<value> .=. <float>
<info> .=. <string>
• svm_learn.exe [options] example_file model_file
• svm_classify.exe [options] example_file model_file output_file
Example_file : data file if train -> train.dat
or if test -> test.dat
Model_file : The generated model(“model” which is the name of file in here)
Output_file : The generated prediction(“prediction” which is the name of file in here)
svm_learn.exe example1/train.dat example1/traininig_model
svm_classify.exe example1/test.dat example1/training_model example1/prediction
gunzip -c file_name.tar.gz | tar xvf - OR tar –zxvf file_name.tar.gz
./svm_learn example1/train.dat example1/model
./svm_classify example1/test.dat example1/model example1/prediction
<line> .=. <target> <feature>:<value> <feature>:<value> ... <feature>:<value> # <info>
<target> .=. <integer>
<feature> .=. <integer>
<value> .=. <float>
<info> .=. <string>
• svm_multiclass_learn [options(-c 5000)] example_file model_file
• svm_multiclass_classify [options] example_file model_file output_file
Example_file : data file if train -> train.dat
or if test -> test.dat
Model_file : The generated model(“model” which is the name of file in here)
Output_file : The generated prediction(“prediction” which is the name of file in here)
svm_multiclass_learn.exe -c 5000 example4/train.dat example4/traininig_model
svm_multiclass_classify.exe example4/test.dat example4/training_model example4/prediction
gunzip -c file_name.tar.gz | tar xvf - OR tar –zxvf file_name.tar.gz
./svm_multiclass_learn -c 5000 example4/train.dat example4/traininig_model
./svm_multiclass_classify example4/test.dat example4/training_model example4/prediction
SVM light and SVM Multiclass Practice
SVM light and SVM Multiclass Practice
SVM light and SVM Multiclass Practice
SVM light and SVM Multiclass Practice

SVM light and SVM Multiclass Practice

  • 4.
    <line> .=. <target><feature>:<value> <feature>:<value> ... <feature>:<value> # <info> <target> .=. +1 | -1 | 0 | <float> <feature> .=. <integer> | "qid" <value> .=. <float> <info> .=. <string>
  • 6.
    • svm_learn.exe [options]example_file model_file • svm_classify.exe [options] example_file model_file output_file Example_file : data file if train -> train.dat or if test -> test.dat Model_file : The generated model(“model” which is the name of file in here) Output_file : The generated prediction(“prediction” which is the name of file in here)
  • 7.
    svm_learn.exe example1/train.dat example1/traininig_model svm_classify.exeexample1/test.dat example1/training_model example1/prediction gunzip -c file_name.tar.gz | tar xvf - OR tar –zxvf file_name.tar.gz ./svm_learn example1/train.dat example1/model ./svm_classify example1/test.dat example1/model example1/prediction
  • 10.
    <line> .=. <target><feature>:<value> <feature>:<value> ... <feature>:<value> # <info> <target> .=. <integer> <feature> .=. <integer> <value> .=. <float> <info> .=. <string>
  • 12.
    • svm_multiclass_learn [options(-c5000)] example_file model_file • svm_multiclass_classify [options] example_file model_file output_file Example_file : data file if train -> train.dat or if test -> test.dat Model_file : The generated model(“model” which is the name of file in here) Output_file : The generated prediction(“prediction” which is the name of file in here)
  • 13.
    svm_multiclass_learn.exe -c 5000example4/train.dat example4/traininig_model svm_multiclass_classify.exe example4/test.dat example4/training_model example4/prediction gunzip -c file_name.tar.gz | tar xvf - OR tar –zxvf file_name.tar.gz ./svm_multiclass_learn -c 5000 example4/train.dat example4/traininig_model ./svm_multiclass_classify example4/test.dat example4/training_model example4/prediction