SlideShare a Scribd company logo
1 of 6
Download to read offline
1 Matrizes
As matrizes são tabelas de números reais utilizadas em quase todos os
ramos da ciência. Ela é composta de linhas (Horizontais) e colunas (Verticais). A
célula da matriz é o encontro de uma linha e de uma coluna e será indicada pelo
nome e tantos índices quantas forem as dimensões da matriz.
Exemplo
A i x j = 54
0145667
23679053
27817349
8477562
x












A representação anterior é uma matriz e cada número dentro da matriz é chamado
de elemento da matriz. A matriz pode ser representada entre parênteses ou entre
colchetes. No exemplo, a matriz A é do tipo 4 x 5 (quatro por cinco), isto é, 4 linhas
por 5 colunas.
Para indicarmos a ordem da matriz, dizemos primeiro o número de linhas e, em
seguida, o número de colunas. Por exemplo:





 
374
142
matriz de ordem 2 x 3 ( 2 Linhas e 3 colunas)
 491  matriz de ordem 1 x 3 ( 1 Linha e 3 colunas)
1.1 Representação Algébrica
Utilizamos letras minúsculas para indicar matrizes genéricas e letras
maiúsculas correspondentes aos elementos. Algebricamente a matriz pode ser
representada por:
mxnmnmmm
n
n
n
aaaa
aaaa
aaaa
aaaa
A






















321
3333231
2232221
1131211
com m e n  * . Como o A é bastante extenso podemos representar por
nxmijaA )(
a11 ( Lê-se a um um ) elemento localizado na 1ª Linha e 1ª Coluna
a12 ( Lê-se a um dois ) elemento localizado na 1ª Linha e 2ª Coluna
Onde, i = Linha da Matriz
j = Coluna da Matriz
2
1.2 Matriz Quadrada
Se o número de linhas de uma matriz for igual ao número de colunas, a matriz é dita
Quadrada.
Exemplo








43
41
A
é uma matriz de ordem 2












254
763
731
B
é uma matriz de ordem 3
Observações: Quando uma matriz tem todos os seus elementos iguais a zero,
dizemos que é uma matriz nula.
Os elementos aij onde i = j, formam a diagonal principal.
mxnmnmmm
n
n
n
aaaa
aaaa
aaaa
aaaa
A






















321
3333231
2232221
1131211
Diagonal Secundária Diagonal Principal
1.3 Matriz Unidade ou Identidade
A matriz quadrada de ordem n, em que todos as elementos da diagonal
principal são iguais a 1 (um) e os demais elementos iguais a 0 (zero) é denominada
matriz identidade.
Representação: In











100
010
001
nI
1.4 Matriz Transposta
Se A é uma matriz de ordem m x n , denominamos transposta de A a matriz
de ordem n x m obtida pela troca ordenada das linhas pelas colunas.
Representação : At
3
Exemplo









 

056
453
931
A
então a transposta será












049
553
631
t
A
1.5 Operação com Matrizes
As operações entre matrizes são:
1.5.1 Adição e Subtração
A adição ou a subtração de duas matrizes A e B, efetuada somando-se ou
subtraindo-se os seus elementos correspondentes e deverá ter a mesma dimensão.
Exemplo
Seja





 

54
81
A
e









43
22
B
então





 













 






 













 

17
61
43
22
54
81
91
103
43
22
54
81
BA
BA
1.5.2 Multiplicação
Na multiplicação de duas matrizes A e B, o número de colunas de A tem que ser
igual ao número de linhas de B ; O produto AB terá o mesmo número de linhas de A
e o mesmo número de colunas de B.
mxpnxpmxn BABA )( 
Sejam as matrizes A e B, então a multiplicação das matrizes é:
4




































323322321231313321321131
322322221221312321221121
321322121211311321121111
233231
2221
1211
33333231
232221
131211
babababababa
babababababa
babababababa
BA
bb
bb
bb
Be
aaa
aaa
aaa
A
xx
Obs.: A multiplicação de um número real K qualquer por uma matriz é feita
multiplicando cada um dos elementos da matriz pelo número real K.
Exemplo
Seja K = 3
Se a matriz















1512
06
54
02
AkA
1.6 Matriz Oposta
Denominamos de matriz oposta a matriz cujos elementos são simétricos dos
elementos correspondentes.
Exemplo:















91
72
91
72
AA
1.7 Propriedades
Adição
A + B = B + A (Comutativa)
(A + B) + C = A + (B + C) (Associativa)
A + 0 = A (Elemento Neutro)
A + (-A) = 0 (Elemento Oposto)
Multiplicação
A . (BC) = (AB) . C (Associativa)
A . (B + C) = AB + AC (Distributiva à Direita)
(B + C) . A = BA + CA (Distributiva à Esquerda)
Obs.: A multiplicação de matrizes não é comutativa, mas se ocorrer AB = BA,
dizemos que as matrizes A e B comutam.
5
1.8 Matriz Inversa
Seja A uma matriz quadrada, se existir uma matriz B tal que A.B = B.A = I, dizemos
que a matriz B é uma matriz inversa de A e a indicaremos por A-1. Vale lembrar que
I é a matriz identidade. Caso exista a inversa dizemos que a matriz A é inversível e,
em caso contrário, não inversível ou singular. Se a matriz quadrada A é inversível, a
sua inversa é única.
nIAAAA   11
Exemplo:
Determinar a inversa da matriz







23
21
A
. Fazendo







dc
ba
A 1
e sabendo que
nIAA  1
teremos:





























































4
1
4
3
2
1
2
1
4
1
2
1
123
02
4
3
2
1
023
12
10
01
2323
22
10
01
23
21
1
A
deb
db
db
ceaca
ca
dbca
dbca
dc
ba
1.9 DETERMINANTES
É um número real associado a matriz quadrada.
1.9.1 Determinante de uma matriz quadrada de 2ª Ordem
O determinante de uma matriz quadrada de 2ª ordem é obtido pela diferença
entre o produto dos elementos da diagonal principal e o produto dos elementos da
diagonal secundária.
6
21122211
2221
1211
det aaaa
aa
aa
AA 
Exemplo
Achar o valor do determinante
33)5(28)1(574
71
54


1.9.2 Determinante de uma matriz quadrada de 3ª Ordem
Para calcular o determinante de uma matriz quadrada de 3ª ordem
utilizaremos uma regra muita prática denominada regra de Sarrus.
Seja a matriz












154
230
321
A
. Para Calcularmos o determinante vamos repetir a 1ª e
a 2ª colunas à direita da matriz, conforme o esquema abaixo:










 54154
30230
21321
- - - + + +
det A = | A | = (1)(3)(-1) + (2)(2)(4) + (3)(0)(-5) – (2)(0)(-1) – (1)(2)(-5) – (3)(3)(4)
det A = | A | = -3 + 16 – 0 + 0 + 10 – 36 = -13

More Related Content

What's hot

Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
Rodrigo Carvalho
 
Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grau
leilamaluf
 

What's hot (20)

Potenciação
PotenciaçãoPotenciação
Potenciação
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Matrizes
MatrizesMatrizes
Matrizes
 
Matriz e Determinante
Matriz e DeterminanteMatriz e Determinante
Matriz e Determinante
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
 
Triângulos
TriângulosTriângulos
Triângulos
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
 
Prismas
PrismasPrismas
Prismas
 
Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grau
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Aula 29 estudo do plano
Aula 29   estudo do planoAula 29   estudo do plano
Aula 29 estudo do plano
 
22ª aula função afim
22ª aula   função afim22ª aula   função afim
22ª aula função afim
 
Gemetria Espacial: Prismas
Gemetria Espacial: PrismasGemetria Espacial: Prismas
Gemetria Espacial: Prismas
 
Quadrilateros
QuadrilaterosQuadrilateros
Quadrilateros
 
Matemática - Aula 5
Matemática - Aula 5Matemática - Aula 5
Matemática - Aula 5
 
Potenciação - Propriedades das potências
Potenciação - Propriedades das potênciasPotenciação - Propriedades das potências
Potenciação - Propriedades das potências
 
Funções
FunçõesFunções
Funções
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 

Viewers also liked (10)

Dilatação
DilataçãoDilatação
Dilatação
 
Cotangente, cossecante e secante
Cotangente, cossecante e secante Cotangente, cossecante e secante
Cotangente, cossecante e secante
 
Dilatação Térmica (exercícios)
Dilatação Térmica (exercícios)Dilatação Térmica (exercícios)
Dilatação Térmica (exercícios)
 
Dilatação superficial
Dilatação superficialDilatação superficial
Dilatação superficial
 
Matrizes e determinantes exercícios
Matrizes e determinantes   exercícios Matrizes e determinantes   exercícios
Matrizes e determinantes exercícios
 
Fórmulário de área e volume
Fórmulário de área e volumeFórmulário de área e volume
Fórmulário de área e volume
 
Apostila 20 matlab
Apostila 20 matlabApostila 20 matlab
Apostila 20 matlab
 
Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
 

Similar to Matrizes e determinantes

Matrizes e operacoes com matrizes 01
Matrizes e operacoes com matrizes 01Matrizes e operacoes com matrizes 01
Matrizes e operacoes com matrizes 01
Cleidison Melo
 
1_MatrizesSistemas (2).pdf
1_MatrizesSistemas (2).pdf1_MatrizesSistemas (2).pdf
1_MatrizesSistemas (2).pdf
ElsaMartins35
 

Similar to Matrizes e determinantes (20)

Matrize
MatrizeMatrize
Matrize
 
Matriz aula-1-2-3
Matriz aula-1-2-3Matriz aula-1-2-3
Matriz aula-1-2-3
 
Aula de matrizes
Aula de matrizesAula de matrizes
Aula de matrizes
 
aula4_economia.ppt
aula4_economia.pptaula4_economia.ppt
aula4_economia.ppt
 
Matriz[1]
Matriz[1]Matriz[1]
Matriz[1]
 
Matrizes e operacoes com matrizes 01
Matrizes e operacoes com matrizes 01Matrizes e operacoes com matrizes 01
Matrizes e operacoes com matrizes 01
 
2º ano matriz
2º ano matriz2º ano matriz
2º ano matriz
 
Matrizes
MatrizesMatrizes
Matrizes
 
Aula de matrizes
Aula de matrizesAula de matrizes
Aula de matrizes
 
Matrizes
MatrizesMatrizes
Matrizes
 
Plano de trabalho matrizes e determinantes.
Plano de trabalho  matrizes e determinantes.Plano de trabalho  matrizes e determinantes.
Plano de trabalho matrizes e determinantes.
 
1_MatrizesSistemas (2).pdf
1_MatrizesSistemas (2).pdf1_MatrizesSistemas (2).pdf
1_MatrizesSistemas (2).pdf
 
Apostila de matrizes ju
Apostila de matrizes juApostila de matrizes ju
Apostila de matrizes ju
 
Objeto
ObjetoObjeto
Objeto
 
Objeto de aprendizagem
Objeto de aprendizagemObjeto de aprendizagem
Objeto de aprendizagem
 
Matrizes
MatrizesMatrizes
Matrizes
 
Matrizes aula 01
Matrizes aula 01Matrizes aula 01
Matrizes aula 01
 
Matrizes
MatrizesMatrizes
Matrizes
 
Apostila álgebra linear
Apostila   álgebra linearApostila   álgebra linear
Apostila álgebra linear
 
Matemática - Vídeo Aula Matrizes
Matemática - Vídeo Aula MatrizesMatemática - Vídeo Aula Matrizes
Matemática - Vídeo Aula Matrizes
 

Recently uploaded

Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
FabianeMartins35
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
TailsonSantos1
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
AntonioVieira539017
 
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
NarlaAquino
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
tatianehilda
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
HELENO FAVACHO
 

Recently uploaded (20)

Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
 
Aula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIXAula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIX
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
Texto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptTexto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.ppt
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
 

Matrizes e determinantes

  • 1. 1 Matrizes As matrizes são tabelas de números reais utilizadas em quase todos os ramos da ciência. Ela é composta de linhas (Horizontais) e colunas (Verticais). A célula da matriz é o encontro de uma linha e de uma coluna e será indicada pelo nome e tantos índices quantas forem as dimensões da matriz. Exemplo A i x j = 54 0145667 23679053 27817349 8477562 x             A representação anterior é uma matriz e cada número dentro da matriz é chamado de elemento da matriz. A matriz pode ser representada entre parênteses ou entre colchetes. No exemplo, a matriz A é do tipo 4 x 5 (quatro por cinco), isto é, 4 linhas por 5 colunas. Para indicarmos a ordem da matriz, dizemos primeiro o número de linhas e, em seguida, o número de colunas. Por exemplo:        374 142 matriz de ordem 2 x 3 ( 2 Linhas e 3 colunas)  491  matriz de ordem 1 x 3 ( 1 Linha e 3 colunas) 1.1 Representação Algébrica Utilizamos letras minúsculas para indicar matrizes genéricas e letras maiúsculas correspondentes aos elementos. Algebricamente a matriz pode ser representada por: mxnmnmmm n n n aaaa aaaa aaaa aaaa A                       321 3333231 2232221 1131211 com m e n  * . Como o A é bastante extenso podemos representar por nxmijaA )( a11 ( Lê-se a um um ) elemento localizado na 1ª Linha e 1ª Coluna a12 ( Lê-se a um dois ) elemento localizado na 1ª Linha e 2ª Coluna Onde, i = Linha da Matriz j = Coluna da Matriz
  • 2. 2 1.2 Matriz Quadrada Se o número de linhas de uma matriz for igual ao número de colunas, a matriz é dita Quadrada. Exemplo         43 41 A é uma matriz de ordem 2             254 763 731 B é uma matriz de ordem 3 Observações: Quando uma matriz tem todos os seus elementos iguais a zero, dizemos que é uma matriz nula. Os elementos aij onde i = j, formam a diagonal principal. mxnmnmmm n n n aaaa aaaa aaaa aaaa A                       321 3333231 2232221 1131211 Diagonal Secundária Diagonal Principal 1.3 Matriz Unidade ou Identidade A matriz quadrada de ordem n, em que todos as elementos da diagonal principal são iguais a 1 (um) e os demais elementos iguais a 0 (zero) é denominada matriz identidade. Representação: In            100 010 001 nI 1.4 Matriz Transposta Se A é uma matriz de ordem m x n , denominamos transposta de A a matriz de ordem n x m obtida pela troca ordenada das linhas pelas colunas. Representação : At
  • 3. 3 Exemplo             056 453 931 A então a transposta será             049 553 631 t A 1.5 Operação com Matrizes As operações entre matrizes são: 1.5.1 Adição e Subtração A adição ou a subtração de duas matrizes A e B, efetuada somando-se ou subtraindo-se os seus elementos correspondentes e deverá ter a mesma dimensão. Exemplo Seja         54 81 A e          43 22 B então                                               17 61 43 22 54 81 91 103 43 22 54 81 BA BA 1.5.2 Multiplicação Na multiplicação de duas matrizes A e B, o número de colunas de A tem que ser igual ao número de linhas de B ; O produto AB terá o mesmo número de linhas de A e o mesmo número de colunas de B. mxpnxpmxn BABA )(  Sejam as matrizes A e B, então a multiplicação das matrizes é:
  • 4. 4                                     323322321231313321321131 322322221221312321221121 321322121211311321121111 233231 2221 1211 33333231 232221 131211 babababababa babababababa babababababa BA bb bb bb Be aaa aaa aaa A xx Obs.: A multiplicação de um número real K qualquer por uma matriz é feita multiplicando cada um dos elementos da matriz pelo número real K. Exemplo Seja K = 3 Se a matriz                1512 06 54 02 AkA 1.6 Matriz Oposta Denominamos de matriz oposta a matriz cujos elementos são simétricos dos elementos correspondentes. Exemplo:                91 72 91 72 AA 1.7 Propriedades Adição A + B = B + A (Comutativa) (A + B) + C = A + (B + C) (Associativa) A + 0 = A (Elemento Neutro) A + (-A) = 0 (Elemento Oposto) Multiplicação A . (BC) = (AB) . C (Associativa) A . (B + C) = AB + AC (Distributiva à Direita) (B + C) . A = BA + CA (Distributiva à Esquerda) Obs.: A multiplicação de matrizes não é comutativa, mas se ocorrer AB = BA, dizemos que as matrizes A e B comutam.
  • 5. 5 1.8 Matriz Inversa Seja A uma matriz quadrada, se existir uma matriz B tal que A.B = B.A = I, dizemos que a matriz B é uma matriz inversa de A e a indicaremos por A-1. Vale lembrar que I é a matriz identidade. Caso exista a inversa dizemos que a matriz A é inversível e, em caso contrário, não inversível ou singular. Se a matriz quadrada A é inversível, a sua inversa é única. nIAAAA   11 Exemplo: Determinar a inversa da matriz        23 21 A . Fazendo        dc ba A 1 e sabendo que nIAA  1 teremos:                                                              4 1 4 3 2 1 2 1 4 1 2 1 123 02 4 3 2 1 023 12 10 01 2323 22 10 01 23 21 1 A deb db db ceaca ca dbca dbca dc ba 1.9 DETERMINANTES É um número real associado a matriz quadrada. 1.9.1 Determinante de uma matriz quadrada de 2ª Ordem O determinante de uma matriz quadrada de 2ª ordem é obtido pela diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária.
  • 6. 6 21122211 2221 1211 det aaaa aa aa AA  Exemplo Achar o valor do determinante 33)5(28)1(574 71 54   1.9.2 Determinante de uma matriz quadrada de 3ª Ordem Para calcular o determinante de uma matriz quadrada de 3ª ordem utilizaremos uma regra muita prática denominada regra de Sarrus. Seja a matriz             154 230 321 A . Para Calcularmos o determinante vamos repetir a 1ª e a 2ª colunas à direita da matriz, conforme o esquema abaixo:            54154 30230 21321 - - - + + + det A = | A | = (1)(3)(-1) + (2)(2)(4) + (3)(0)(-5) – (2)(0)(-1) – (1)(2)(-5) – (3)(3)(4) det A = | A | = -3 + 16 – 0 + 0 + 10 – 36 = -13