SlideShare a Scribd company logo
1 of 20
Download to read offline
DIEGO CORTEZ 1
1. Si 𝑃(𝑥) = 2 𝑥
− 2 𝑥−1
Calcule: 𝑃(1) + 𝑃(2) + 𝑃(3)
a) 7 b) 2 c) 3 d) 4 e) 5
Resolución:
𝑅𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑙𝑜𝑠 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑑𝑒 1,2 𝑦 3 𝑒𝑛 𝑙𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥:
𝑃(1) = 21
− 21−1
= 2 − 20
= 2 − 1 = 1
𝑃(2) = 22
− 22−1
= 22
− 21
= 4 − 2 = 2
𝑃(3) = 23
− 23−1
= 23
− 22
= 8 − 4 = 4
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑃(1) + 𝑃(2) + 𝑃(3) = 1 + 2 + 4 = 7
2. Sea 𝑃(𝑥) = 4𝑥 + 1
Halle: 𝐸 =
𝑃(1)+𝑃(2)
𝑃(3)+𝑃(0)
a) 1 b) 2 c) 3 d) 4 e) 5
Resolución:
𝑃(0) = 4(0) + 1 = 1
𝑃(1) = 4(1) + 1 = 5
𝑃(2) = 4(2) + 1 = 9
𝑃(3) = 4(3) + 1 = 13
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝐸 =
𝑃(1) + 𝑃(2)
𝑃(3) + 𝑃(0)
=
5 + 9
13 + 1
=
14
14
= 1
DIEGO CORTEZ 2
3. Siendo: 𝑃(𝑥) = 𝑥2
− 4𝑥 − 6, halle:
𝐸 = 𝑃(−2) + 𝑃(2) − 𝑃(1)
a) -5 b) 2 c) -4 d) -2 e) 5
Resolución:
𝑃(−2) = (−2)2
− 4(−2) − 6 = 4 + 8 − 6 = 6
𝑃(2) = 22
− 4(2) − 6 = 4 − 8 − 6 = −10
𝑃(1) = 12
− 4(1) − 6 = 1 − 4 − 6 = −9
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝐸 = 𝑃(−2) + 𝑃(2) − 𝑃(1) = 6 − 10 − (−9) = 6 − 10 + 9 = 5
4. Si 𝐹(𝑥) = 3𝑥2
− 2; calcular:
𝐸 = 𝐹(2) 𝐹(0) 𝐹(−1)
a) 100 b) 10 c) 1 d) 0.1 e) 0.01
Resolución:
𝐹(−1) = 3(−1)2
− 2 = 3 − 2 = 1
𝐹(0) = 3(0)2
− 2 = 0 − 2 = −2
𝐹(2) = 3(2)2
− 2 = 12 − 2 = 10
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝐸 = 𝐹(2) 𝐹(0) 𝐹(−1)
= 10−21
= 10−2
=
1
100
= 0.01
DIEGO CORTEZ 3
5. Siendo 𝑃(𝑥) = 𝑥2
+ 2𝑥, hallar:
𝑅 =
𝑃(0) 𝑃(1)
+ 𝑃(1) 𝑃(−1)
𝑃(2) 𝑃(0)
a) 3 b) 1/3 c) 2 d) 1/4 e) 5
Resolución:
𝑃(−1) = (−1)2
+ 2(−1) = 1 − 2 = −1
𝑃(0) = (0)2
+ 2(0) = 0
𝑃(1) = (1)2
+ 2(1) = 1 + 2 = 3
𝑃(2) = (2)2
+ 2(2) = 4 + 4 = 8
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑅 =
𝑃(0) 𝑃(1)
+ 𝑃(1) 𝑃(−1)
𝑃(2) 𝑃(0)
=
03
+ 3−1
80
=
0 +
1
3
1
=
1
3
6. Si: 𝐹(𝑥) =
𝑥+1
2𝑥−1
Calcular el valor de:
𝑀 = (
𝐹(3) − 𝐹(1)
𝐹(2)
)
−1
a) 5/6 b) 5 c) 4 d) 6 e) -5/6
Resolución:
𝐹(1) =
1 + 1
2(1) − 1
=
2
1
= 2
𝐹(2) =
2 + 1
2(2) − 1
=
3
3
= 1
𝐹(3) =
3 + 1
2(3) − 1
=
4
5
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
DIEGO CORTEZ 4
𝑀 = (
𝐹(3) − 𝐹(1)
𝐹(2)
)
−1
= (
4
5
− 2
1
)
−1
= (
4 − 10
5
1
)
−1
= (
−6
5
1
)
−1
= (
−6
5
)
−1
=
−5
6
7. Si 𝑃(𝑥 + 1) = 3𝑥 − 2
Calcular 𝑃(2)
a) -5 b) -2 c) -4 d) 1 e) 5
Resolución:
𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(2):
𝑃(𝑥 + 1) = 𝑃(2)
𝑥 + 1 = 2
𝑥 = 1
𝑃𝑎𝑟𝑎 𝑃(2), 𝑥 = 1 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎:
𝑃(2) = 3(1) − 2 = 3 − 2 = 1
8. Si 𝑃(𝑥 + 1) = 𝑥2
Halle: 𝑃(𝑃(𝑃(3)))
a) 3 b) 64 c) 49 d) 128 e) 25
Resolución:
𝐷𝑒𝑠𝑎𝑟𝑟𝑜𝑙𝑙𝑎𝑚𝑜𝑠 𝑑𝑒 𝑎𝑑𝑒𝑛𝑡𝑟𝑜 ℎ𝑎𝑐𝑖𝑎 𝑎𝑓𝑢𝑒𝑟𝑎. 𝐸𝑛 𝑝𝑟𝑖𝑚𝑒𝑟 𝑙𝑢𝑔𝑎𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟
𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(3):
𝑃(𝑥 + 1) = 𝑃(3)
𝑥 + 1 = 3
𝑥 = 2
𝑃𝑎𝑟𝑎 𝑃(3), 𝑥 = 2 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎:
DIEGO CORTEZ 5
𝑃(3) = 22
= 4
𝐷𝑒𝑠𝑝𝑢é𝑠 𝑑𝑒 𝑒𝑙𝑙𝑜, 𝑙𝑜 𝑞𝑢𝑒 𝑛𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟 𝑞𝑢𝑒𝑑𝑎𝑟í𝑎:
𝑃(𝑃(4))
𝐴ℎ𝑜𝑟𝑎 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(4):
𝑃(𝑥 + 1) = 𝑃(4)
𝑥 + 1 = 4
𝑥 = 3
𝑃𝑎𝑟𝑎 𝑃(4), 𝑥 = 3 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎:
𝑃(3) = 32
= 9
𝐿𝑢𝑒𝑔𝑜, 𝑙𝑜 𝑞𝑢𝑒 𝑛𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟 𝑞𝑢𝑒𝑑𝑎𝑟í𝑎:
𝑃(9)
𝐴ℎ𝑜𝑟𝑎 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(9):
𝑃(𝑥 + 1) = 𝑃(9)
𝑥 + 1 = 9
𝑥 = 8
𝑃𝑎𝑟𝑎 𝑃(9), 𝑥 = 8 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎 𝑦 𝑐𝑜𝑛
𝑒𝑠𝑡𝑜 ℎ𝑎𝑙𝑙𝑎𝑟í𝑎𝑚𝑜𝑠 𝑒𝑙 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑑𝑜:
𝑃(8) = 82
= 64
9. Sea 𝐹(3𝑥 − 1) = 2𝑥 + 3
𝑃(𝑥) = 4𝑥 − 1
Halle: 𝑃(𝐹(2))
a) 19 b) 20 c) 2 d) 12 e) 11
DIEGO CORTEZ 6
Resolución:
𝐷𝑒𝑠𝑎𝑟𝑟𝑜𝑙𝑙𝑎𝑚𝑜𝑠 𝑑𝑒 𝑎𝑑𝑒𝑛𝑡𝑟𝑜 ℎ𝑎𝑐𝑖𝑎 𝑎𝑓𝑢𝑒𝑟𝑎. 𝐸𝑛 𝑝𝑟𝑖𝑚𝑒𝑟 𝑙𝑢𝑔𝑎𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟
𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝐹(2):
𝐹(3𝑥 − 1) = 𝐹(2)
3𝑥 − 1 = 2
𝑥 = 1
𝑃𝑎𝑟𝑎 𝐹(2), 𝑥 = 1 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎:
𝐹(2) = 2(1) + 3 = 2 + 3 = 5
𝐸𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑙𝑜 𝑞𝑢𝑒 𝑛𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟 𝑞𝑢𝑒𝑑𝑎𝑟í𝑎:
𝑃(5)
𝐴ℎ𝑜𝑟𝑎 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(5):
𝑃(𝑥) = 𝑃(5)
𝑥 = 5
𝑃𝑎𝑟𝑎 𝑃(5), 𝑥 = 5 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎 𝑦 𝑐𝑜𝑛
𝑒𝑙𝑙𝑜 𝑙𝑙𝑒𝑔𝑎𝑚𝑜𝑠 𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑑𝑜:
𝑃(5) = 4(5) − 1 = 20 − 1 = 19
10. Si: 𝑃(2𝑥 − 1) = 𝑥3
− 𝑥 + 1, halle:
𝑅 = 𝑃(1) + 𝑃(3) − 𝑃(−1)
a) 5 b) 4 c) 6 d) 7 e) 9
Resolución:
𝐸𝑛 𝑝𝑟𝑖𝑚𝑒𝑟 𝑙𝑢𝑔𝑎𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑥 𝑝𝑎𝑟𝑎 𝑐𝑎𝑑𝑎 𝑣𝑎𝑙𝑜𝑟 𝑞𝑢𝑒 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑃 𝑦 𝑒𝑛 𝑠𝑒𝑔𝑢𝑛𝑑𝑜
𝑙𝑢𝑔𝑎𝑟 𝑙𝑜 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑎𝑑𝑎:
𝑃(2𝑥 − 1) = 𝑃(1)
2𝑥 − 1 = 1
𝑥 = 1
DIEGO CORTEZ 7
𝑃(1) = 13
− 1 + 1 = 1
𝑃(2𝑥 − 1) = 𝑃(3)
2𝑥 − 1 = 3
𝑥 = 2
𝑃(3) = 23
− 2 + 1 = 7
𝑃(2𝑥 − 1) = 𝑃(−1)
2𝑥 − 1 = −1
𝑥 = 0
𝑃(−1) = 03
− 0 + 1 = 1
𝐹𝑖𝑛𝑎𝑙𝑚𝑒𝑛𝑡𝑒 𝑛𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑅 = 𝑃(1) + 𝑃(3) − 𝑃(−1) = 1 + 7 − (1) = 7
11. Si 𝑃(𝑥) = 3𝑥 + 2
Halle: 𝑃(5𝑥) − 5𝑃(𝑥)
a) -6 b) -8 c) -4 d) -10 e) -20
Resolución:
𝑆𝑖 𝑃(𝑥) = 3𝑥 + 2, 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑝𝑎𝑟𝑎 𝑙𝑙𝑒𝑔𝑎𝑟 𝑎 𝑃(5𝑥), 𝑠𝑜𝑙𝑜 𝑡𝑒𝑛𝑒𝑚𝑜𝑠 𝑞𝑢𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑟 5 𝑎𝑙
𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑞𝑢𝑒 𝑒𝑠𝑡á 𝑎𝑐𝑜𝑚𝑝𝑎ñ𝑎𝑛𝑑𝑜 𝑎 𝑙𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥:
𝑃(5𝑥) = 5(3𝑥) + 2 = 15𝑥 + 2
𝑃𝑎𝑟𝑎 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑟 5𝑃(𝑥), 𝑡𝑒𝑛𝑒𝑚𝑜𝑠 𝑞𝑢𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑟 5 𝑎 𝑡𝑜𝑑𝑜 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜:
5[𝑃(𝑥)] = 5(3𝑥 + 2) = 15𝑥 + 10
DIEGO CORTEZ 8
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟:
𝑃(5𝑥) − 5𝑃(𝑥) = 15𝑥 + 2 − (15𝑥 + 10) = 2 − 10 = −8
12. Sea la expresión 𝑃(𝑥) = 1 +
1
𝑥
Calcular: 𝑃(1). 𝑃(2). 𝑃(3) … 𝑃(20)
a) 20 b) 21 c) 22 d) 24 e) 25
Resolución:
𝑃(1) = 1 +
1
1
= 1 + 1 = 2
𝑃(2) = 1 +
1
2
=
3
2
𝑃(3) = 1 +
1
3
=
4
3
𝑃(19) = 1 +
1
19
=
20
19
𝑃(20) = 1 +
1
20
=
21
20
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑃(1). 𝑃(2). 𝑃(3) … 𝑃(20)
2 .
3
2
.
4
3
…
20
19
.
21
20
𝑁𝑜𝑠 𝑝𝑒𝑟𝑐𝑎𝑡𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑒𝑙 𝑛𝑢𝑚𝑒𝑟𝑎𝑑𝑜𝑟 𝑑𝑒 𝑢𝑛 𝑛ú𝑚𝑒𝑟𝑜 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑒𝑠 𝑖𝑔𝑢𝑎𝑙 𝑎𝑙 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑑𝑜𝑟 𝑑𝑒𝑙
𝑛ú𝑚𝑒𝑟𝑜 𝑞𝑢𝑒 𝑙𝑒 𝑠𝑖𝑔𝑢𝑒, 𝑝𝑜𝑟 𝑙𝑜 𝑡𝑎𝑛𝑡𝑜 𝑎𝑙 𝑠𝑒𝑟 𝑢𝑛𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑐𝑖ó𝑛, 𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑟:
2 .
3
2
.
4
3
…
20
19
.
21
20
𝐹𝑖𝑛𝑎𝑙𝑚𝑒𝑛𝑡𝑒 𝑛𝑜𝑠 𝑞𝑢𝑒𝑑𝑎 𝑒𝑙 𝑛ú𝑚𝑒𝑟𝑜 21
DIEGO CORTEZ 9
13. Si el polinomio es homogéneo:
𝑃(𝑥, 𝑦) = 3𝑥 𝑎+2
𝑦 𝑏+8
+ 𝑥 𝑑+3
𝑦7
+ 2𝑥8
𝑦5
Calcular a + b + d
a) 1 b) 5 c) 6 d) 8 e) 13
Resolución:
𝑈𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑒𝑠 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑜 𝑐𝑢𝑎𝑛𝑑𝑜 𝑠𝑢𝑠 𝑔𝑟𝑎𝑑𝑜𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑜𝑠 𝑑𝑒 𝑐𝑎𝑑𝑎 𝑡é𝑟𝑚𝑖𝑛𝑜 𝑠𝑜𝑛 𝑖𝑔𝑢𝑎𝑙𝑒𝑠:
𝑎 + 2 + 𝑏 + 8 = 𝑑 + 3 + 7 = 8 + 5
𝑎 + 𝑏 + 10 = 𝑑 + 10 = 13
𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑒𝑙 𝑐𝑜𝑙𝑜𝑟 𝑎𝑧𝑢𝑙:
𝑎 + 𝑏 + 10 = 13
𝑎 + 𝑏 = 3
𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑒𝑙 𝑐𝑜𝑙𝑜𝑟 𝑛𝑎𝑟𝑎𝑛𝑗𝑎:
𝑑 + 10 = 13
𝑑 = 3
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑎 + 𝑏 + 𝑑 = 3 + 3 = 6
14. Dado el polinomio homogéneo:
𝑃(𝑥, 𝑦) = 𝑎𝑥 𝑎+2
𝑦4
+ 2𝑏𝑥 𝑏
𝑦7
− 𝑐𝑥6
𝑦8
+ 2𝑥 𝑐
Calcule la suma de coeficientes:
a) 8 b) 13 c) 12 d) 11 e) 10
Resolución:
𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑙𝑜𝑠 𝑔𝑟𝑎𝑑𝑜𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑜𝑠 𝑝𝑜𝑟 𝑠𝑒𝑟 𝑢𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑜:
𝑎 + 2 + 4 = 𝑏 + 7 = 6 + 8 = 𝑐
DIEGO CORTEZ 10
𝑎 + 6 = 𝑏 + 7 = 14 = 𝑐
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑑𝑜 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑐𝑎𝑑𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑎 14 𝑝𝑢𝑒𝑠 𝑒𝑠 𝑒𝑙 ú𝑛𝑖𝑐𝑜
𝑡é𝑟𝑚𝑖𝑛𝑜 𝑞𝑢𝑒 𝑛𝑜 𝑝𝑜𝑠𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑐𝑎𝑑𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒:
𝑎 + 6 = 14
𝑎 = 8
𝑏 + 7 = 14
𝑏 = 7
𝑐 = 14
𝐿𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑠𝑜𝑛: 𝑎, 2𝑏, −𝑐 𝑦 2
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑙𝑎 𝑠𝑢𝑚𝑎 𝑑𝑒 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠:
𝑎 + 2𝑏 − 𝑐 + 2
8 + 2(7) − 14 + 2
10
15. Dado el polinomio homogéneo:
𝑃(𝑥, 𝑦) = 2𝑏𝑥 𝑏
𝑦 𝑐
+ 5𝑥7
𝑦2
+ 3𝑐𝑥 𝑏+7
𝑦
Calcule la suma de coeficientes:
a) 30 b) 31 c) 32 d) 33 e) 36
Resolución:
𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑙𝑜𝑠 𝑔𝑟𝑎𝑑𝑜𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑜𝑠 𝑝𝑜𝑟 𝑠𝑒𝑟 𝑢𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑜:
𝑏 + 𝑐 = 7 + 2 = 𝑏 + 7 + 1
𝑏 + 𝑐 = 9 = 𝑏 + 8
DIEGO CORTEZ 11
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑑𝑜 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑐𝑎𝑑𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑎 9 𝑝𝑢𝑒𝑠 𝑒𝑠 𝑒𝑙 ú𝑛𝑖𝑐𝑜
𝑡é𝑟𝑚𝑖𝑛𝑜 𝑞𝑢𝑒 𝑛𝑜 𝑝𝑜𝑠𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑐𝑎𝑑𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒:
𝑏 + 8 = 9
𝑏 = 1
𝑏 + 𝑐 = 9
𝑅𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑏 𝑜𝑏𝑡𝑒𝑛𝑖𝑑𝑜 𝑝𝑟𝑒𝑣𝑖𝑎𝑚𝑒𝑛𝑡𝑒:
1 + 𝑐 = 9
𝑐 = 8
𝐿𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑠𝑜𝑛: 2𝑏, 5 𝑦 3𝑐
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑙𝑎 𝑠𝑢𝑚𝑎 𝑑𝑒 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠:
2𝑏 + 5 + 3𝑐
2(1) + 5 + 3(8)
31
16. Si P(x) y Q(x) son idénticos donde:
𝑃(𝑥) = 𝑎𝑥5
+ 3𝑥2
− 4
𝑄(𝑥) = (2𝑎 − 3)𝑥5
+ (𝑐 + 2)𝑥2
+ 𝑏
Calcular a + b + c:
a) 0 b) 1 c) -1 d) 2 e) 8
Resolución:
𝐷𝑜𝑠 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜𝑠 𝑒𝑛 𝑢𝑛𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑦 𝑑𝑒𝑙 𝑚𝑖𝑠𝑚𝑜 𝑔𝑟𝑎𝑑𝑜 𝑠𝑜𝑛 𝑖𝑑é𝑛𝑡𝑖𝑐𝑜𝑠 𝑠𝑖 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑠𝑢𝑠
𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑜𝑠 𝑡é𝑟𝑚𝑖𝑛𝑜𝑠 𝑠𝑒𝑚𝑒𝑗𝑎𝑛𝑡𝑒𝑠 𝑠𝑜𝑛 𝑖𝑔𝑢𝑎𝑙𝑒𝑠:
𝑎𝑥5
+ 3𝑥2
− 4 ≡ (2𝑎 − 3)𝑥5
+ (𝑐 + 2)𝑥2
+ 𝑏
DIEGO CORTEZ 12
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑃(𝑥) 𝑐𝑜𝑛 𝑙𝑜𝑠 𝑑𝑒 𝑄(𝑥)𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎:
𝑎 = 2𝑎 − 3
𝑎 = 3
3 = 𝑐 + 2
𝑐 = 1
𝑏 = −4
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑎 + 𝑏 + 𝑐 = 3 − 4 + 1 = 0
17. Si 𝑅(𝑥) = 2𝑥2
+ 5𝑥 − 3 Es idéntica con 𝑆(𝑥) = (𝑎2
− 2)𝑥2
+ (𝑏2
+ 1)𝑥 + 𝑐
Calcular a + b + c:
a) -1 b) 1 c) 0 d) 2 e) 3
Resolución:
2𝑥2
+ 5𝑥 − 3 ≡ (𝑎2
− 2)𝑥2
+ (𝑏2
+ 1)𝑥 + 𝑐
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑅(𝑥) 𝑐𝑜𝑛 𝑙𝑜𝑠 𝑑𝑒 𝑆(𝑥)𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎:
2 = 𝑎2
− 2
𝑎 = 2
5 = 𝑏2
+ 1
𝑏 = 2
𝑐 = −3
DIEGO CORTEZ 13
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑎 + 𝑏 + 𝑐 = 2 + 2 − 3 = 1
18. Sea el polinomio completo y ordenado descendentemente:
𝑃(𝑥) = 2𝑥 𝑚−2
+ 3𝑥 𝑚−𝑛+1
+ 5𝑥 𝑚−𝑝+7
− 𝑥 𝑝−𝑞−2
Calcular q:
a) 7 b) 8 c) 9 d) 5 e) 13
Resolución:
𝐸𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑒𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑜 𝑦 𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑜 𝑑𝑒 𝑓𝑜𝑟𝑚𝑎 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑒:
𝑃(𝑥) ≡ 2𝑥3
+ 3𝑥2
+ 5𝑥1
− 𝑥0
𝐸𝑠𝑡𝑎𝑏𝑙𝑒𝑐𝑒𝑚𝑜𝑠 𝑙𝑜 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒:
2𝑥 𝑚−2
+ 3𝑥 𝑚−𝑛+1
+ 5𝑥 𝑚−𝑝+7
− 𝑥 𝑝−𝑞−2
≡ 2𝑥3
+ 3𝑥2
+ 5𝑥1
− 𝑥0
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎:
𝑚 − 2 = 3
𝑚 = 5
𝑚 − 𝑝 + 7 = 1
𝑚 − 𝑝 = −6
5 − 𝑝 = −6
𝑝 = 11
𝑝 − 𝑞 − 2 = 0
𝑞 = 𝑝 − 2
𝑞 = 11 − 2
Término independiente
DIEGO CORTEZ 14
𝑞 = 9
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑞 = 9
19. Dado: 𝑃(𝑥) = (4 + 𝑎)𝑥 + 5𝑐 + 𝑑 y 𝑄(𝑥) = 4𝑐 + 3 + (2𝑎 + 2)𝑥
Son idénticos. Calcular: a + c + d
a) 7 b) 8 c) 6 d) 5 e) 4
Resolución:
𝑂𝑟𝑑𝑒𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑄(𝑥):
𝑄(𝑥) = 4𝑐 + 3 + (2𝑎 + 2)𝑥
𝑄(𝑥) = (2𝑎 + 2)𝑥 + 4𝑐 + 3
𝑃(𝑥)𝑦 𝑄(𝑥) 𝑠𝑜𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜𝑠 𝑖𝑑é𝑛𝑡𝑖𝑐𝑜𝑠, 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠:
𝑃(𝑥) ≡ 𝑄(𝑥)
(4 + 𝑎)𝑥 + 5𝑐 + 𝑑 ≡ (2𝑎 + 2)𝑥 + 4𝑐 + 3
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎:
4 + 𝑎 = 2𝑎 + 2
𝑎 = 2
5𝑐 + 𝑑 = 4𝑐 + 3
𝑐 + 𝑑 = 3
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟 𝑎 + 𝑐 + 𝑑:
2 + 3 = 5
DIEGO CORTEZ 15
20. Si los siguientes polinomios son idénticos
𝑃(𝑥) = 𝑚𝑥2
+ 𝑛𝑥 + 𝑝
𝑄(𝑥) = 𝑎𝑥2
+ 𝑏𝑥 + 𝑐
Calcular:
𝐴 =
𝑚 + 𝑛 + 𝑝
𝑎 + 𝑏 + 𝑐
a) 1 b) 2 c) 3 d) 4 e) 5
Resolución:
𝑚𝑥2
+ 𝑛𝑥 + 𝑝 ≡ 𝑎𝑥2
+ 𝑏𝑥 + 𝑐
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎:
𝑚 = 𝑎
𝑛 = 𝑏
𝑝 = 𝑐
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝐴 =
𝑚 + 𝑛 + 𝑝
𝑎 + 𝑏 + 𝑐
=
𝑎 + 𝑏 + 𝑐
𝑎 + 𝑏 + 𝑐
= 1
𝐸𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝐴 𝑒𝑠 1. 𝑃𝑎𝑟𝑎 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟 𝐴 ℎ𝑒𝑚𝑜𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑑𝑜 𝑙𝑜𝑠 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑑𝑒 𝑚, 𝑛 𝑦 𝑝, sin 𝑒𝑚𝑏𝑎𝑟𝑔𝑜,
𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑡𝑎𝑚𝑏𝑖é𝑛 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑟 𝑙𝑜𝑠 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑑𝑒 𝑎, 𝑏 𝑦 𝑐 𝑝𝑎𝑟𝑎 𝑙𝑙𝑒𝑔𝑎𝑟 𝑎 𝑙𝑎 𝑟𝑒𝑠𝑝𝑢𝑒𝑠𝑡𝑎, 𝑙𝑎 𝑐𝑢𝑎𝑙
𝑠𝑒𝑔𝑢𝑖𝑟á 𝑠𝑖𝑒𝑛𝑑𝑜 𝑙𝑎 𝑚𝑖𝑠𝑚𝑎:
𝐴 =
𝑚 + 𝑛 + 𝑝
𝑎 + 𝑏 + 𝑐
=
𝑚 + 𝑛 + 𝑝
𝑚 + 𝑛 + 𝑝
= 1
21. Dado el polinomio idénticamente nulo:
𝑃(𝑥) = (𝑎 − 2)𝑥2
+ 𝑏𝑥 + 𝑐 + 3
DIEGO CORTEZ 16
Calcular a.b.c
a) -1 b) 0 c) 1 d) 2 e) 3
Resolución:
𝑈𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑒𝑠 𝑖𝑑é𝑛𝑡𝑖𝑐𝑎𝑚𝑒𝑛𝑡𝑒 𝑛𝑢𝑙𝑜, 𝑠𝑖 𝑠𝑢𝑠 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑛𝑢𝑚é𝑟𝑖𝑐𝑜𝑠 𝑝𝑎𝑟𝑎 𝑐𝑢𝑎𝑙𝑞𝑢𝑖𝑒𝑟 𝑣𝑎𝑙𝑜𝑟
𝑎𝑠𝑖𝑔𝑛𝑎𝑑𝑜 𝑎 𝑠𝑢 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑎 𝑠𝑖𝑒𝑚𝑝𝑟𝑒 𝑐𝑒𝑟𝑜.
𝑃(𝑥) ≡ 0
(𝑎 − 2)𝑥2
+ 𝑏𝑥 + 𝑐 + 3 ≡ 0
𝐶𝑎𝑑𝑎 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑑𝑎𝑑𝑜 𝑠𝑒 𝑖𝑔𝑢𝑎𝑙𝑎 𝑎 𝑐𝑒𝑟𝑜:
𝑎 − 2 = 0
𝑎 = 2
𝑏 = 0
𝑐 + 3 = 0
𝑐 = −3
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑎. 𝑏. 𝑐 = 2(0)(−3) = 0
22. Dado el polinomio idénticamente nulo:
𝑄(𝑥) = 3𝑥2
+ 5𝑥 − 3 + 𝑎𝑥2
+ 𝑏𝑥 − 𝑐
a) -10 b) -11 c) 7 d) -12 e) -13
Hallar a + b + c
Resolución:
𝑂𝑟𝑑𝑒𝑛𝑎𝑚𝑜𝑠 𝑦 𝑎𝑔𝑟𝑢𝑝𝑎𝑚𝑜𝑠 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜:
DIEGO CORTEZ 17
𝑄(𝑥) = 3𝑥2
+ 5𝑥 − 3 + 𝑎𝑥2
+ 𝑏𝑥 − 𝑐
𝑄(𝑥) = (3 + 𝑎)𝑥2
+ (5 + 𝑏)𝑥 − 𝑐 − 3
𝑄(𝑥) ≡ 0
(3 + 𝑎)𝑥2
+ (5 + 𝑏)𝑥 − 𝑐 − 3 ≡ 0
𝐶𝑎𝑑𝑎 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑑𝑎𝑑𝑜 𝑠𝑒 𝑖𝑔𝑢𝑎𝑙𝑎 𝑎 𝑐𝑒𝑟𝑜:
3 + 𝑎 = 0
𝑎 = −3
5 + 𝑏 = 0
𝑏 = −5
−𝑐 − 3 = 0
𝑐 = −3
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟:
𝑎 + 𝑏 + 𝑐 = −3 − 5 − 3 = −11
23. El polinomio completo y ordenado:
𝐹(𝑥) = 8𝑥 𝑛−2
+ 9𝑥 𝑛−3
+. . . + 𝑥 𝑚−10
Tiene 20 términos, halle m + n
a) 30 b) 31 c) 32 d) 27 e) 29
Resolución:
𝑃𝑜𝑟 𝑙𝑎 𝑓𝑜𝑟𝑚𝑎 𝑑𝑒 𝑙𝑜𝑠 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝐹(𝑥), 𝑒𝑛𝑡𝑒𝑛𝑑𝑒𝑚𝑜𝑠 𝑞𝑢𝑒 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑒𝑠𝑡á 𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑜 𝑑𝑒
𝑓𝑜𝑟𝑚𝑎 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑒:
𝐹(𝑥) = 8𝑥 𝑛−2
+ 9𝑥 𝑛−3
+. . . + 𝑥 𝑚−10
≡ 8𝑥19
+ 9𝑥18
+. . . + 𝑎𝑥1
+ 𝑥0
𝐷𝑜𝑛𝑑𝑒:
DIEGO CORTEZ 18
𝑥19
: 𝑡é𝑟𝑚𝑖𝑛𝑜 1
𝑥18
: 𝑡é𝑟𝑚𝑖𝑛𝑜 2
𝑎𝑥1
: 𝑡é𝑟𝑚𝑖𝑛𝑜 19
𝑥0
: 𝑡é𝑟𝑚𝑖𝑛𝑜 20
𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠:
8𝑥 𝑛−2
+ 9𝑥 𝑛−3
+. . . + 𝑥 𝑚−10
≡ 8𝑥19
+ 9𝑥18
+. . . + 𝑎𝑥1
+ 𝑥0
𝑛 − 2 = 19
𝑛 = 21
𝑚 − 10 = 0
𝑚 = 10
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑚 + 𝑛 = 10 + 21 = 31
24. Dado el polinomio homogéneo:
𝑃(𝑥, 𝑦) = 2𝑥 𝑎
𝑦3
+ 3𝑥5
𝑦7
− 𝑥 𝑏
𝑦8
Calcular a + b
a) 13 b) 14 c) 15 d) 16 e) 17
Resolución:
𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑙𝑜𝑠 𝑔𝑟𝑎𝑑𝑜𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑜𝑠 𝑝𝑜𝑟 𝑠𝑒𝑟 𝑢𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑜:
𝑎 + 3 = 5 + 7 = 𝑏 + 8
𝑎 + 3 = 12 = 𝑏 + 8
DIEGO CORTEZ 19
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑑𝑜 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑐𝑎𝑑𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑎 12 𝑝𝑢𝑒𝑠 𝑒𝑠 𝑒𝑙 ú𝑛𝑖𝑐𝑜
𝑡é𝑟𝑚𝑖𝑛𝑜 𝑞𝑢𝑒 𝑛𝑜 𝑝𝑜𝑠𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑐𝑎𝑑𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒:
𝑎 + 3 = 12
𝑎 = 9
𝑏 + 8 = 12
𝑏 = 4
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
𝑎 + 𝑏 = 9 + 4 = 13
25. Calcular a + b + c, si:
𝑎𝑥(𝑥 + 1) + 𝑏(𝑥 + 𝑐) + 𝑥2
≡ 3𝑥2
+ 8𝑥 − 12
a) 8 b) 6 c) 10 d) 11 e) 12
Resolución:
𝑂𝑟𝑑𝑒𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑑𝑒𝑙 𝑙𝑎𝑑𝑜 𝑖𝑧𝑞𝑢𝑖𝑒𝑟𝑑𝑜:
𝑎𝑥(𝑥 + 1) + 𝑏(𝑥 + 𝑐) + 𝑥2
𝑎𝑥2
+ 𝑎𝑥 + 𝑏𝑥 + 𝑏𝑐 + 𝑥2
(𝑎 + 1)𝑥2
+ (𝑎 + 𝑏)𝑥 + 𝑏𝑐
𝑇𝑒𝑛𝑖𝑒𝑛𝑑𝑜 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑜, 𝑝𝑟𝑜𝑐𝑒𝑑𝑒𝑚𝑜𝑠 𝑎 𝑖𝑔𝑢𝑎𝑙𝑎𝑟 𝑐𝑜𝑛 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑑𝑒 𝑙𝑎 𝑑𝑒𝑟𝑒𝑐ℎ𝑎
𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎:
(𝑎 + 1)𝑥2
+ (𝑎 + 𝑏)𝑥 + 𝑏𝑐 ≡ 3𝑥2
+ 8𝑥 − 12
𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎:
𝑎 + 1 = 3
𝑎 = 2
DIEGO CORTEZ 20
𝑎 + 𝑏 = 8
2 + 𝑏 = 8
𝑏 = 6
𝑏𝑐 = −12
6𝑐 = −12
𝑐 = −2
𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟 𝑎 + 𝑏 + 𝑐:
2 + 6 − 2 = 6

More Related Content

What's hot

Libro 1500 Ej PSU Mat Danny Perich
Libro 1500 Ej PSU Mat Danny PerichLibro 1500 Ej PSU Mat Danny Perich
Libro 1500 Ej PSU Mat Danny PerichCarolina Carril
 
Actividad 8 geometria proporcionalidad y semejanza
Actividad 8 geometria proporcionalidad y semejanzaActividad 8 geometria proporcionalidad y semejanza
Actividad 8 geometria proporcionalidad y semejanzaKarlos Dieter Nunez Huayapa
 
Trabajo aplicativo. paralelepipedo (2)
Trabajo aplicativo. paralelepipedo (2)Trabajo aplicativo. paralelepipedo (2)
Trabajo aplicativo. paralelepipedo (2)Walter Grandez
 
Problemas resueltos sobre Planteo de Ecuaciones
Problemas resueltos sobre Planteo de EcuacionesProblemas resueltos sobre Planteo de Ecuaciones
Problemas resueltos sobre Planteo de EcuacionesDiego Cortez Piscoya
 
Aduni repaso algebra 1
Aduni repaso algebra 1Aduni repaso algebra 1
Aduni repaso algebra 1Gerson Quiroz
 
Práctica de factorización y expresiones de matemática de bachillerato
Práctica de factorización y expresiones de matemática de bachilleratoPráctica de factorización y expresiones de matemática de bachillerato
Práctica de factorización y expresiones de matemática de bachilleratoMCMurray
 
Đáp án chính thức môn Sinh - Khối B - Kỳ thi Đại học năm 2012
Đáp án chính thức môn Sinh - Khối B - Kỳ thi Đại học năm 2012Đáp án chính thức môn Sinh - Khối B - Kỳ thi Đại học năm 2012
Đáp án chính thức môn Sinh - Khối B - Kỳ thi Đại học năm 2012dethinet
 
50 raíces y función raíz cuadrada
50 raíces y función raíz cuadrada50 raíces y función raíz cuadrada
50 raíces y función raíz cuadradaMarcelo Calderón
 
Matematica.solucionario uni....
Matematica.solucionario uni....Matematica.solucionario uni....
Matematica.solucionario uni....Kevins Huari
 
Teoría y problemas de Razonamiento Matemático PAMER ccesa007
Teoría y problemas de Razonamiento Matemático PAMER ccesa007Teoría y problemas de Razonamiento Matemático PAMER ccesa007
Teoría y problemas de Razonamiento Matemático PAMER ccesa007Demetrio Ccesa Rayme
 

What's hot (20)

Solucionario semana 2 (2)
Solucionario semana 2 (2)Solucionario semana 2 (2)
Solucionario semana 2 (2)
 
Trigonometria 12
Trigonometria 12Trigonometria 12
Trigonometria 12
 
Cepre tema 12 logaritmos. ecuaciones logaritmicas
Cepre tema 12 logaritmos. ecuaciones logaritmicasCepre tema 12 logaritmos. ecuaciones logaritmicas
Cepre tema 12 logaritmos. ecuaciones logaritmicas
 
Libro 1500 Ej PSU Mat Danny Perich
Libro 1500 Ej PSU Mat Danny PerichLibro 1500 Ej PSU Mat Danny Perich
Libro 1500 Ej PSU Mat Danny Perich
 
Actividad 8 geometria proporcionalidad y semejanza
Actividad 8 geometria proporcionalidad y semejanzaActividad 8 geometria proporcionalidad y semejanza
Actividad 8 geometria proporcionalidad y semejanza
 
LA PARÁBOLA.
LA PARÁBOLA.LA PARÁBOLA.
LA PARÁBOLA.
 
Trabajo aplicativo. paralelepipedo (2)
Trabajo aplicativo. paralelepipedo (2)Trabajo aplicativo. paralelepipedo (2)
Trabajo aplicativo. paralelepipedo (2)
 
Productos notables academia
Productos notables academiaProductos notables academia
Productos notables academia
 
Problemas resueltos sobre Planteo de Ecuaciones
Problemas resueltos sobre Planteo de EcuacionesProblemas resueltos sobre Planteo de Ecuaciones
Problemas resueltos sobre Planteo de Ecuaciones
 
Geom3 2014 g_03
Geom3 2014 g_03Geom3 2014 g_03
Geom3 2014 g_03
 
40 sistemas de ecuaciones
40 sistemas de ecuaciones40 sistemas de ecuaciones
40 sistemas de ecuaciones
 
Semana 9
Semana 9Semana 9
Semana 9
 
46 funciones (parte b)
46 funciones (parte b)46 funciones (parte b)
46 funciones (parte b)
 
Aduni repaso algebra 1
Aduni repaso algebra 1Aduni repaso algebra 1
Aduni repaso algebra 1
 
Práctica de factorización y expresiones de matemática de bachillerato
Práctica de factorización y expresiones de matemática de bachilleratoPráctica de factorización y expresiones de matemática de bachillerato
Práctica de factorización y expresiones de matemática de bachillerato
 
61 trigonometría
61 trigonometría61 trigonometría
61 trigonometría
 
Đáp án chính thức môn Sinh - Khối B - Kỳ thi Đại học năm 2012
Đáp án chính thức môn Sinh - Khối B - Kỳ thi Đại học năm 2012Đáp án chính thức môn Sinh - Khối B - Kỳ thi Đại học năm 2012
Đáp án chính thức môn Sinh - Khối B - Kỳ thi Đại học năm 2012
 
50 raíces y función raíz cuadrada
50 raíces y función raíz cuadrada50 raíces y función raíz cuadrada
50 raíces y función raíz cuadrada
 
Matematica.solucionario uni....
Matematica.solucionario uni....Matematica.solucionario uni....
Matematica.solucionario uni....
 
Teoría y problemas de Razonamiento Matemático PAMER ccesa007
Teoría y problemas de Razonamiento Matemático PAMER ccesa007Teoría y problemas de Razonamiento Matemático PAMER ccesa007
Teoría y problemas de Razonamiento Matemático PAMER ccesa007
 

Problemas resueltos sobre Polinomios

  • 1. DIEGO CORTEZ 1 1. Si 𝑃(𝑥) = 2 𝑥 − 2 𝑥−1 Calcule: 𝑃(1) + 𝑃(2) + 𝑃(3) a) 7 b) 2 c) 3 d) 4 e) 5 Resolución: 𝑅𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑙𝑜𝑠 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑑𝑒 1,2 𝑦 3 𝑒𝑛 𝑙𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥: 𝑃(1) = 21 − 21−1 = 2 − 20 = 2 − 1 = 1 𝑃(2) = 22 − 22−1 = 22 − 21 = 4 − 2 = 2 𝑃(3) = 23 − 23−1 = 23 − 22 = 8 − 4 = 4 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑃(1) + 𝑃(2) + 𝑃(3) = 1 + 2 + 4 = 7 2. Sea 𝑃(𝑥) = 4𝑥 + 1 Halle: 𝐸 = 𝑃(1)+𝑃(2) 𝑃(3)+𝑃(0) a) 1 b) 2 c) 3 d) 4 e) 5 Resolución: 𝑃(0) = 4(0) + 1 = 1 𝑃(1) = 4(1) + 1 = 5 𝑃(2) = 4(2) + 1 = 9 𝑃(3) = 4(3) + 1 = 13 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝐸 = 𝑃(1) + 𝑃(2) 𝑃(3) + 𝑃(0) = 5 + 9 13 + 1 = 14 14 = 1
  • 2. DIEGO CORTEZ 2 3. Siendo: 𝑃(𝑥) = 𝑥2 − 4𝑥 − 6, halle: 𝐸 = 𝑃(−2) + 𝑃(2) − 𝑃(1) a) -5 b) 2 c) -4 d) -2 e) 5 Resolución: 𝑃(−2) = (−2)2 − 4(−2) − 6 = 4 + 8 − 6 = 6 𝑃(2) = 22 − 4(2) − 6 = 4 − 8 − 6 = −10 𝑃(1) = 12 − 4(1) − 6 = 1 − 4 − 6 = −9 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝐸 = 𝑃(−2) + 𝑃(2) − 𝑃(1) = 6 − 10 − (−9) = 6 − 10 + 9 = 5 4. Si 𝐹(𝑥) = 3𝑥2 − 2; calcular: 𝐸 = 𝐹(2) 𝐹(0) 𝐹(−1) a) 100 b) 10 c) 1 d) 0.1 e) 0.01 Resolución: 𝐹(−1) = 3(−1)2 − 2 = 3 − 2 = 1 𝐹(0) = 3(0)2 − 2 = 0 − 2 = −2 𝐹(2) = 3(2)2 − 2 = 12 − 2 = 10 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝐸 = 𝐹(2) 𝐹(0) 𝐹(−1) = 10−21 = 10−2 = 1 100 = 0.01
  • 3. DIEGO CORTEZ 3 5. Siendo 𝑃(𝑥) = 𝑥2 + 2𝑥, hallar: 𝑅 = 𝑃(0) 𝑃(1) + 𝑃(1) 𝑃(−1) 𝑃(2) 𝑃(0) a) 3 b) 1/3 c) 2 d) 1/4 e) 5 Resolución: 𝑃(−1) = (−1)2 + 2(−1) = 1 − 2 = −1 𝑃(0) = (0)2 + 2(0) = 0 𝑃(1) = (1)2 + 2(1) = 1 + 2 = 3 𝑃(2) = (2)2 + 2(2) = 4 + 4 = 8 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑅 = 𝑃(0) 𝑃(1) + 𝑃(1) 𝑃(−1) 𝑃(2) 𝑃(0) = 03 + 3−1 80 = 0 + 1 3 1 = 1 3 6. Si: 𝐹(𝑥) = 𝑥+1 2𝑥−1 Calcular el valor de: 𝑀 = ( 𝐹(3) − 𝐹(1) 𝐹(2) ) −1 a) 5/6 b) 5 c) 4 d) 6 e) -5/6 Resolución: 𝐹(1) = 1 + 1 2(1) − 1 = 2 1 = 2 𝐹(2) = 2 + 1 2(2) − 1 = 3 3 = 1 𝐹(3) = 3 + 1 2(3) − 1 = 4 5 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛:
  • 4. DIEGO CORTEZ 4 𝑀 = ( 𝐹(3) − 𝐹(1) 𝐹(2) ) −1 = ( 4 5 − 2 1 ) −1 = ( 4 − 10 5 1 ) −1 = ( −6 5 1 ) −1 = ( −6 5 ) −1 = −5 6 7. Si 𝑃(𝑥 + 1) = 3𝑥 − 2 Calcular 𝑃(2) a) -5 b) -2 c) -4 d) 1 e) 5 Resolución: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(2): 𝑃(𝑥 + 1) = 𝑃(2) 𝑥 + 1 = 2 𝑥 = 1 𝑃𝑎𝑟𝑎 𝑃(2), 𝑥 = 1 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎: 𝑃(2) = 3(1) − 2 = 3 − 2 = 1 8. Si 𝑃(𝑥 + 1) = 𝑥2 Halle: 𝑃(𝑃(𝑃(3))) a) 3 b) 64 c) 49 d) 128 e) 25 Resolución: 𝐷𝑒𝑠𝑎𝑟𝑟𝑜𝑙𝑙𝑎𝑚𝑜𝑠 𝑑𝑒 𝑎𝑑𝑒𝑛𝑡𝑟𝑜 ℎ𝑎𝑐𝑖𝑎 𝑎𝑓𝑢𝑒𝑟𝑎. 𝐸𝑛 𝑝𝑟𝑖𝑚𝑒𝑟 𝑙𝑢𝑔𝑎𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(3): 𝑃(𝑥 + 1) = 𝑃(3) 𝑥 + 1 = 3 𝑥 = 2 𝑃𝑎𝑟𝑎 𝑃(3), 𝑥 = 2 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎:
  • 5. DIEGO CORTEZ 5 𝑃(3) = 22 = 4 𝐷𝑒𝑠𝑝𝑢é𝑠 𝑑𝑒 𝑒𝑙𝑙𝑜, 𝑙𝑜 𝑞𝑢𝑒 𝑛𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟 𝑞𝑢𝑒𝑑𝑎𝑟í𝑎: 𝑃(𝑃(4)) 𝐴ℎ𝑜𝑟𝑎 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(4): 𝑃(𝑥 + 1) = 𝑃(4) 𝑥 + 1 = 4 𝑥 = 3 𝑃𝑎𝑟𝑎 𝑃(4), 𝑥 = 3 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎: 𝑃(3) = 32 = 9 𝐿𝑢𝑒𝑔𝑜, 𝑙𝑜 𝑞𝑢𝑒 𝑛𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟 𝑞𝑢𝑒𝑑𝑎𝑟í𝑎: 𝑃(9) 𝐴ℎ𝑜𝑟𝑎 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(9): 𝑃(𝑥 + 1) = 𝑃(9) 𝑥 + 1 = 9 𝑥 = 8 𝑃𝑎𝑟𝑎 𝑃(9), 𝑥 = 8 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎 𝑦 𝑐𝑜𝑛 𝑒𝑠𝑡𝑜 ℎ𝑎𝑙𝑙𝑎𝑟í𝑎𝑚𝑜𝑠 𝑒𝑙 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑑𝑜: 𝑃(8) = 82 = 64 9. Sea 𝐹(3𝑥 − 1) = 2𝑥 + 3 𝑃(𝑥) = 4𝑥 − 1 Halle: 𝑃(𝐹(2)) a) 19 b) 20 c) 2 d) 12 e) 11
  • 6. DIEGO CORTEZ 6 Resolución: 𝐷𝑒𝑠𝑎𝑟𝑟𝑜𝑙𝑙𝑎𝑚𝑜𝑠 𝑑𝑒 𝑎𝑑𝑒𝑛𝑡𝑟𝑜 ℎ𝑎𝑐𝑖𝑎 𝑎𝑓𝑢𝑒𝑟𝑎. 𝐸𝑛 𝑝𝑟𝑖𝑚𝑒𝑟 𝑙𝑢𝑔𝑎𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝐹(2): 𝐹(3𝑥 − 1) = 𝐹(2) 3𝑥 − 1 = 2 𝑥 = 1 𝑃𝑎𝑟𝑎 𝐹(2), 𝑥 = 1 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎: 𝐹(2) = 2(1) + 3 = 2 + 3 = 5 𝐸𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑙𝑜 𝑞𝑢𝑒 𝑛𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟 𝑞𝑢𝑒𝑑𝑎𝑟í𝑎: 𝑃(5) 𝐴ℎ𝑜𝑟𝑎 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑣𝑎𝑙𝑜𝑟 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑃(5): 𝑃(𝑥) = 𝑃(5) 𝑥 = 5 𝑃𝑎𝑟𝑎 𝑃(5), 𝑥 = 5 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑑𝑖𝑐ℎ𝑜 𝑣𝑎𝑙𝑜𝑟 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎 𝑦 𝑐𝑜𝑛 𝑒𝑙𝑙𝑜 𝑙𝑙𝑒𝑔𝑎𝑚𝑜𝑠 𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑑𝑜: 𝑃(5) = 4(5) − 1 = 20 − 1 = 19 10. Si: 𝑃(2𝑥 − 1) = 𝑥3 − 𝑥 + 1, halle: 𝑅 = 𝑃(1) + 𝑃(3) − 𝑃(−1) a) 5 b) 4 c) 6 d) 7 e) 9 Resolución: 𝐸𝑛 𝑝𝑟𝑖𝑚𝑒𝑟 𝑙𝑢𝑔𝑎𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑥 𝑝𝑎𝑟𝑎 𝑐𝑎𝑑𝑎 𝑣𝑎𝑙𝑜𝑟 𝑞𝑢𝑒 𝑡𝑜𝑚𝑎𝑟í𝑎 𝑃 𝑦 𝑒𝑛 𝑠𝑒𝑔𝑢𝑛𝑑𝑜 𝑙𝑢𝑔𝑎𝑟 𝑙𝑜 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑒𝑛 𝑙𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑑𝑎𝑑𝑎: 𝑃(2𝑥 − 1) = 𝑃(1) 2𝑥 − 1 = 1 𝑥 = 1
  • 7. DIEGO CORTEZ 7 𝑃(1) = 13 − 1 + 1 = 1 𝑃(2𝑥 − 1) = 𝑃(3) 2𝑥 − 1 = 3 𝑥 = 2 𝑃(3) = 23 − 2 + 1 = 7 𝑃(2𝑥 − 1) = 𝑃(−1) 2𝑥 − 1 = −1 𝑥 = 0 𝑃(−1) = 03 − 0 + 1 = 1 𝐹𝑖𝑛𝑎𝑙𝑚𝑒𝑛𝑡𝑒 𝑛𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑅 = 𝑃(1) + 𝑃(3) − 𝑃(−1) = 1 + 7 − (1) = 7 11. Si 𝑃(𝑥) = 3𝑥 + 2 Halle: 𝑃(5𝑥) − 5𝑃(𝑥) a) -6 b) -8 c) -4 d) -10 e) -20 Resolución: 𝑆𝑖 𝑃(𝑥) = 3𝑥 + 2, 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑝𝑎𝑟𝑎 𝑙𝑙𝑒𝑔𝑎𝑟 𝑎 𝑃(5𝑥), 𝑠𝑜𝑙𝑜 𝑡𝑒𝑛𝑒𝑚𝑜𝑠 𝑞𝑢𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑟 5 𝑎𝑙 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑞𝑢𝑒 𝑒𝑠𝑡á 𝑎𝑐𝑜𝑚𝑝𝑎ñ𝑎𝑛𝑑𝑜 𝑎 𝑙𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥: 𝑃(5𝑥) = 5(3𝑥) + 2 = 15𝑥 + 2 𝑃𝑎𝑟𝑎 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑟 5𝑃(𝑥), 𝑡𝑒𝑛𝑒𝑚𝑜𝑠 𝑞𝑢𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑟 5 𝑎 𝑡𝑜𝑑𝑜 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜: 5[𝑃(𝑥)] = 5(3𝑥 + 2) = 15𝑥 + 10
  • 8. DIEGO CORTEZ 8 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟: 𝑃(5𝑥) − 5𝑃(𝑥) = 15𝑥 + 2 − (15𝑥 + 10) = 2 − 10 = −8 12. Sea la expresión 𝑃(𝑥) = 1 + 1 𝑥 Calcular: 𝑃(1). 𝑃(2). 𝑃(3) … 𝑃(20) a) 20 b) 21 c) 22 d) 24 e) 25 Resolución: 𝑃(1) = 1 + 1 1 = 1 + 1 = 2 𝑃(2) = 1 + 1 2 = 3 2 𝑃(3) = 1 + 1 3 = 4 3 𝑃(19) = 1 + 1 19 = 20 19 𝑃(20) = 1 + 1 20 = 21 20 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑃(1). 𝑃(2). 𝑃(3) … 𝑃(20) 2 . 3 2 . 4 3 … 20 19 . 21 20 𝑁𝑜𝑠 𝑝𝑒𝑟𝑐𝑎𝑡𝑎𝑚𝑜𝑠 𝑞𝑢𝑒 𝑒𝑙 𝑛𝑢𝑚𝑒𝑟𝑎𝑑𝑜𝑟 𝑑𝑒 𝑢𝑛 𝑛ú𝑚𝑒𝑟𝑜 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑒𝑠 𝑖𝑔𝑢𝑎𝑙 𝑎𝑙 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑑𝑜𝑟 𝑑𝑒𝑙 𝑛ú𝑚𝑒𝑟𝑜 𝑞𝑢𝑒 𝑙𝑒 𝑠𝑖𝑔𝑢𝑒, 𝑝𝑜𝑟 𝑙𝑜 𝑡𝑎𝑛𝑡𝑜 𝑎𝑙 𝑠𝑒𝑟 𝑢𝑛𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑐𝑖ó𝑛, 𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑟: 2 . 3 2 . 4 3 … 20 19 . 21 20 𝐹𝑖𝑛𝑎𝑙𝑚𝑒𝑛𝑡𝑒 𝑛𝑜𝑠 𝑞𝑢𝑒𝑑𝑎 𝑒𝑙 𝑛ú𝑚𝑒𝑟𝑜 21
  • 9. DIEGO CORTEZ 9 13. Si el polinomio es homogéneo: 𝑃(𝑥, 𝑦) = 3𝑥 𝑎+2 𝑦 𝑏+8 + 𝑥 𝑑+3 𝑦7 + 2𝑥8 𝑦5 Calcular a + b + d a) 1 b) 5 c) 6 d) 8 e) 13 Resolución: 𝑈𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑒𝑠 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑜 𝑐𝑢𝑎𝑛𝑑𝑜 𝑠𝑢𝑠 𝑔𝑟𝑎𝑑𝑜𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑜𝑠 𝑑𝑒 𝑐𝑎𝑑𝑎 𝑡é𝑟𝑚𝑖𝑛𝑜 𝑠𝑜𝑛 𝑖𝑔𝑢𝑎𝑙𝑒𝑠: 𝑎 + 2 + 𝑏 + 8 = 𝑑 + 3 + 7 = 8 + 5 𝑎 + 𝑏 + 10 = 𝑑 + 10 = 13 𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑒𝑙 𝑐𝑜𝑙𝑜𝑟 𝑎𝑧𝑢𝑙: 𝑎 + 𝑏 + 10 = 13 𝑎 + 𝑏 = 3 𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑒𝑙 𝑐𝑜𝑙𝑜𝑟 𝑛𝑎𝑟𝑎𝑛𝑗𝑎: 𝑑 + 10 = 13 𝑑 = 3 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑎 + 𝑏 + 𝑑 = 3 + 3 = 6 14. Dado el polinomio homogéneo: 𝑃(𝑥, 𝑦) = 𝑎𝑥 𝑎+2 𝑦4 + 2𝑏𝑥 𝑏 𝑦7 − 𝑐𝑥6 𝑦8 + 2𝑥 𝑐 Calcule la suma de coeficientes: a) 8 b) 13 c) 12 d) 11 e) 10 Resolución: 𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑙𝑜𝑠 𝑔𝑟𝑎𝑑𝑜𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑜𝑠 𝑝𝑜𝑟 𝑠𝑒𝑟 𝑢𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑜: 𝑎 + 2 + 4 = 𝑏 + 7 = 6 + 8 = 𝑐
  • 10. DIEGO CORTEZ 10 𝑎 + 6 = 𝑏 + 7 = 14 = 𝑐 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑑𝑜 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑐𝑎𝑑𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑎 14 𝑝𝑢𝑒𝑠 𝑒𝑠 𝑒𝑙 ú𝑛𝑖𝑐𝑜 𝑡é𝑟𝑚𝑖𝑛𝑜 𝑞𝑢𝑒 𝑛𝑜 𝑝𝑜𝑠𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑐𝑎𝑑𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒: 𝑎 + 6 = 14 𝑎 = 8 𝑏 + 7 = 14 𝑏 = 7 𝑐 = 14 𝐿𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑠𝑜𝑛: 𝑎, 2𝑏, −𝑐 𝑦 2 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑙𝑎 𝑠𝑢𝑚𝑎 𝑑𝑒 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠: 𝑎 + 2𝑏 − 𝑐 + 2 8 + 2(7) − 14 + 2 10 15. Dado el polinomio homogéneo: 𝑃(𝑥, 𝑦) = 2𝑏𝑥 𝑏 𝑦 𝑐 + 5𝑥7 𝑦2 + 3𝑐𝑥 𝑏+7 𝑦 Calcule la suma de coeficientes: a) 30 b) 31 c) 32 d) 33 e) 36 Resolución: 𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑙𝑜𝑠 𝑔𝑟𝑎𝑑𝑜𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑜𝑠 𝑝𝑜𝑟 𝑠𝑒𝑟 𝑢𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑜: 𝑏 + 𝑐 = 7 + 2 = 𝑏 + 7 + 1 𝑏 + 𝑐 = 9 = 𝑏 + 8
  • 11. DIEGO CORTEZ 11 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑑𝑜 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑐𝑎𝑑𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑎 9 𝑝𝑢𝑒𝑠 𝑒𝑠 𝑒𝑙 ú𝑛𝑖𝑐𝑜 𝑡é𝑟𝑚𝑖𝑛𝑜 𝑞𝑢𝑒 𝑛𝑜 𝑝𝑜𝑠𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑐𝑎𝑑𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒: 𝑏 + 8 = 9 𝑏 = 1 𝑏 + 𝑐 = 9 𝑅𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑏 𝑜𝑏𝑡𝑒𝑛𝑖𝑑𝑜 𝑝𝑟𝑒𝑣𝑖𝑎𝑚𝑒𝑛𝑡𝑒: 1 + 𝑐 = 9 𝑐 = 8 𝐿𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑠𝑜𝑛: 2𝑏, 5 𝑦 3𝑐 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑙𝑎 𝑠𝑢𝑚𝑎 𝑑𝑒 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠: 2𝑏 + 5 + 3𝑐 2(1) + 5 + 3(8) 31 16. Si P(x) y Q(x) son idénticos donde: 𝑃(𝑥) = 𝑎𝑥5 + 3𝑥2 − 4 𝑄(𝑥) = (2𝑎 − 3)𝑥5 + (𝑐 + 2)𝑥2 + 𝑏 Calcular a + b + c: a) 0 b) 1 c) -1 d) 2 e) 8 Resolución: 𝐷𝑜𝑠 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜𝑠 𝑒𝑛 𝑢𝑛𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑦 𝑑𝑒𝑙 𝑚𝑖𝑠𝑚𝑜 𝑔𝑟𝑎𝑑𝑜 𝑠𝑜𝑛 𝑖𝑑é𝑛𝑡𝑖𝑐𝑜𝑠 𝑠𝑖 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑠𝑢𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑜𝑠 𝑡é𝑟𝑚𝑖𝑛𝑜𝑠 𝑠𝑒𝑚𝑒𝑗𝑎𝑛𝑡𝑒𝑠 𝑠𝑜𝑛 𝑖𝑔𝑢𝑎𝑙𝑒𝑠: 𝑎𝑥5 + 3𝑥2 − 4 ≡ (2𝑎 − 3)𝑥5 + (𝑐 + 2)𝑥2 + 𝑏
  • 12. DIEGO CORTEZ 12 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑃(𝑥) 𝑐𝑜𝑛 𝑙𝑜𝑠 𝑑𝑒 𝑄(𝑥)𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎: 𝑎 = 2𝑎 − 3 𝑎 = 3 3 = 𝑐 + 2 𝑐 = 1 𝑏 = −4 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑎 + 𝑏 + 𝑐 = 3 − 4 + 1 = 0 17. Si 𝑅(𝑥) = 2𝑥2 + 5𝑥 − 3 Es idéntica con 𝑆(𝑥) = (𝑎2 − 2)𝑥2 + (𝑏2 + 1)𝑥 + 𝑐 Calcular a + b + c: a) -1 b) 1 c) 0 d) 2 e) 3 Resolución: 2𝑥2 + 5𝑥 − 3 ≡ (𝑎2 − 2)𝑥2 + (𝑏2 + 1)𝑥 + 𝑐 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑅(𝑥) 𝑐𝑜𝑛 𝑙𝑜𝑠 𝑑𝑒 𝑆(𝑥)𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎: 2 = 𝑎2 − 2 𝑎 = 2 5 = 𝑏2 + 1 𝑏 = 2 𝑐 = −3
  • 13. DIEGO CORTEZ 13 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑎 + 𝑏 + 𝑐 = 2 + 2 − 3 = 1 18. Sea el polinomio completo y ordenado descendentemente: 𝑃(𝑥) = 2𝑥 𝑚−2 + 3𝑥 𝑚−𝑛+1 + 5𝑥 𝑚−𝑝+7 − 𝑥 𝑝−𝑞−2 Calcular q: a) 7 b) 8 c) 9 d) 5 e) 13 Resolución: 𝐸𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑒𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑜 𝑦 𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑜 𝑑𝑒 𝑓𝑜𝑟𝑚𝑎 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑒: 𝑃(𝑥) ≡ 2𝑥3 + 3𝑥2 + 5𝑥1 − 𝑥0 𝐸𝑠𝑡𝑎𝑏𝑙𝑒𝑐𝑒𝑚𝑜𝑠 𝑙𝑜 𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒: 2𝑥 𝑚−2 + 3𝑥 𝑚−𝑛+1 + 5𝑥 𝑚−𝑝+7 − 𝑥 𝑝−𝑞−2 ≡ 2𝑥3 + 3𝑥2 + 5𝑥1 − 𝑥0 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎: 𝑚 − 2 = 3 𝑚 = 5 𝑚 − 𝑝 + 7 = 1 𝑚 − 𝑝 = −6 5 − 𝑝 = −6 𝑝 = 11 𝑝 − 𝑞 − 2 = 0 𝑞 = 𝑝 − 2 𝑞 = 11 − 2 Término independiente
  • 14. DIEGO CORTEZ 14 𝑞 = 9 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑞 = 9 19. Dado: 𝑃(𝑥) = (4 + 𝑎)𝑥 + 5𝑐 + 𝑑 y 𝑄(𝑥) = 4𝑐 + 3 + (2𝑎 + 2)𝑥 Son idénticos. Calcular: a + c + d a) 7 b) 8 c) 6 d) 5 e) 4 Resolución: 𝑂𝑟𝑑𝑒𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑄(𝑥): 𝑄(𝑥) = 4𝑐 + 3 + (2𝑎 + 2)𝑥 𝑄(𝑥) = (2𝑎 + 2)𝑥 + 4𝑐 + 3 𝑃(𝑥)𝑦 𝑄(𝑥) 𝑠𝑜𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜𝑠 𝑖𝑑é𝑛𝑡𝑖𝑐𝑜𝑠, 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠: 𝑃(𝑥) ≡ 𝑄(𝑥) (4 + 𝑎)𝑥 + 5𝑐 + 𝑑 ≡ (2𝑎 + 2)𝑥 + 4𝑐 + 3 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎: 4 + 𝑎 = 2𝑎 + 2 𝑎 = 2 5𝑐 + 𝑑 = 4𝑐 + 3 𝑐 + 𝑑 = 3 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟 𝑎 + 𝑐 + 𝑑: 2 + 3 = 5
  • 15. DIEGO CORTEZ 15 20. Si los siguientes polinomios son idénticos 𝑃(𝑥) = 𝑚𝑥2 + 𝑛𝑥 + 𝑝 𝑄(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 Calcular: 𝐴 = 𝑚 + 𝑛 + 𝑝 𝑎 + 𝑏 + 𝑐 a) 1 b) 2 c) 3 d) 4 e) 5 Resolución: 𝑚𝑥2 + 𝑛𝑥 + 𝑝 ≡ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎: 𝑚 = 𝑎 𝑛 = 𝑏 𝑝 = 𝑐 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝐴 = 𝑚 + 𝑛 + 𝑝 𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 + 𝑐 = 1 𝐸𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝐴 𝑒𝑠 1. 𝑃𝑎𝑟𝑎 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟 𝐴 ℎ𝑒𝑚𝑜𝑠 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑑𝑜 𝑙𝑜𝑠 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑑𝑒 𝑚, 𝑛 𝑦 𝑝, sin 𝑒𝑚𝑏𝑎𝑟𝑔𝑜, 𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑡𝑎𝑚𝑏𝑖é𝑛 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑎𝑟 𝑙𝑜𝑠 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑑𝑒 𝑎, 𝑏 𝑦 𝑐 𝑝𝑎𝑟𝑎 𝑙𝑙𝑒𝑔𝑎𝑟 𝑎 𝑙𝑎 𝑟𝑒𝑠𝑝𝑢𝑒𝑠𝑡𝑎, 𝑙𝑎 𝑐𝑢𝑎𝑙 𝑠𝑒𝑔𝑢𝑖𝑟á 𝑠𝑖𝑒𝑛𝑑𝑜 𝑙𝑎 𝑚𝑖𝑠𝑚𝑎: 𝐴 = 𝑚 + 𝑛 + 𝑝 𝑎 + 𝑏 + 𝑐 = 𝑚 + 𝑛 + 𝑝 𝑚 + 𝑛 + 𝑝 = 1 21. Dado el polinomio idénticamente nulo: 𝑃(𝑥) = (𝑎 − 2)𝑥2 + 𝑏𝑥 + 𝑐 + 3
  • 16. DIEGO CORTEZ 16 Calcular a.b.c a) -1 b) 0 c) 1 d) 2 e) 3 Resolución: 𝑈𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑒𝑠 𝑖𝑑é𝑛𝑡𝑖𝑐𝑎𝑚𝑒𝑛𝑡𝑒 𝑛𝑢𝑙𝑜, 𝑠𝑖 𝑠𝑢𝑠 𝑣𝑎𝑙𝑜𝑟𝑒𝑠 𝑛𝑢𝑚é𝑟𝑖𝑐𝑜𝑠 𝑝𝑎𝑟𝑎 𝑐𝑢𝑎𝑙𝑞𝑢𝑖𝑒𝑟 𝑣𝑎𝑙𝑜𝑟 𝑎𝑠𝑖𝑔𝑛𝑎𝑑𝑜 𝑎 𝑠𝑢 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑎 𝑠𝑖𝑒𝑚𝑝𝑟𝑒 𝑐𝑒𝑟𝑜. 𝑃(𝑥) ≡ 0 (𝑎 − 2)𝑥2 + 𝑏𝑥 + 𝑐 + 3 ≡ 0 𝐶𝑎𝑑𝑎 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑑𝑎𝑑𝑜 𝑠𝑒 𝑖𝑔𝑢𝑎𝑙𝑎 𝑎 𝑐𝑒𝑟𝑜: 𝑎 − 2 = 0 𝑎 = 2 𝑏 = 0 𝑐 + 3 = 0 𝑐 = −3 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑎. 𝑏. 𝑐 = 2(0)(−3) = 0 22. Dado el polinomio idénticamente nulo: 𝑄(𝑥) = 3𝑥2 + 5𝑥 − 3 + 𝑎𝑥2 + 𝑏𝑥 − 𝑐 a) -10 b) -11 c) 7 d) -12 e) -13 Hallar a + b + c Resolución: 𝑂𝑟𝑑𝑒𝑛𝑎𝑚𝑜𝑠 𝑦 𝑎𝑔𝑟𝑢𝑝𝑎𝑚𝑜𝑠 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜:
  • 17. DIEGO CORTEZ 17 𝑄(𝑥) = 3𝑥2 + 5𝑥 − 3 + 𝑎𝑥2 + 𝑏𝑥 − 𝑐 𝑄(𝑥) = (3 + 𝑎)𝑥2 + (5 + 𝑏)𝑥 − 𝑐 − 3 𝑄(𝑥) ≡ 0 (3 + 𝑎)𝑥2 + (5 + 𝑏)𝑥 − 𝑐 − 3 ≡ 0 𝐶𝑎𝑑𝑎 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑑𝑎𝑑𝑜 𝑠𝑒 𝑖𝑔𝑢𝑎𝑙𝑎 𝑎 𝑐𝑒𝑟𝑜: 3 + 𝑎 = 0 𝑎 = −3 5 + 𝑏 = 0 𝑏 = −5 −𝑐 − 3 = 0 𝑐 = −3 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 ℎ𝑎𝑙𝑙𝑎𝑟: 𝑎 + 𝑏 + 𝑐 = −3 − 5 − 3 = −11 23. El polinomio completo y ordenado: 𝐹(𝑥) = 8𝑥 𝑛−2 + 9𝑥 𝑛−3 +. . . + 𝑥 𝑚−10 Tiene 20 términos, halle m + n a) 30 b) 31 c) 32 d) 27 e) 29 Resolución: 𝑃𝑜𝑟 𝑙𝑎 𝑓𝑜𝑟𝑚𝑎 𝑑𝑒 𝑙𝑜𝑠 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝐹(𝑥), 𝑒𝑛𝑡𝑒𝑛𝑑𝑒𝑚𝑜𝑠 𝑞𝑢𝑒 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑒𝑠𝑡á 𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑜 𝑑𝑒 𝑓𝑜𝑟𝑚𝑎 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝑒: 𝐹(𝑥) = 8𝑥 𝑛−2 + 9𝑥 𝑛−3 +. . . + 𝑥 𝑚−10 ≡ 8𝑥19 + 9𝑥18 +. . . + 𝑎𝑥1 + 𝑥0 𝐷𝑜𝑛𝑑𝑒:
  • 18. DIEGO CORTEZ 18 𝑥19 : 𝑡é𝑟𝑚𝑖𝑛𝑜 1 𝑥18 : 𝑡é𝑟𝑚𝑖𝑛𝑜 2 𝑎𝑥1 : 𝑡é𝑟𝑚𝑖𝑛𝑜 19 𝑥0 : 𝑡é𝑟𝑚𝑖𝑛𝑜 20 𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠: 8𝑥 𝑛−2 + 9𝑥 𝑛−3 +. . . + 𝑥 𝑚−10 ≡ 8𝑥19 + 9𝑥18 +. . . + 𝑎𝑥1 + 𝑥0 𝑛 − 2 = 19 𝑛 = 21 𝑚 − 10 = 0 𝑚 = 10 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑚 + 𝑛 = 10 + 21 = 31 24. Dado el polinomio homogéneo: 𝑃(𝑥, 𝑦) = 2𝑥 𝑎 𝑦3 + 3𝑥5 𝑦7 − 𝑥 𝑏 𝑦8 Calcular a + b a) 13 b) 14 c) 15 d) 16 e) 17 Resolución: 𝐼𝑔𝑢𝑎𝑙𝑎𝑚𝑜𝑠 𝑙𝑜𝑠 𝑔𝑟𝑎𝑑𝑜𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑜𝑠 𝑝𝑜𝑟 𝑠𝑒𝑟 𝑢𝑛 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 ℎ𝑜𝑚𝑜𝑔é𝑛𝑒𝑜: 𝑎 + 3 = 5 + 7 = 𝑏 + 8 𝑎 + 3 = 12 = 𝑏 + 8
  • 19. DIEGO CORTEZ 19 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑝𝑜𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑑𝑜 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑐𝑎𝑑𝑎 𝑒𝑐𝑢𝑎𝑐𝑖ó𝑛 𝑎 12 𝑝𝑢𝑒𝑠 𝑒𝑠 𝑒𝑙 ú𝑛𝑖𝑐𝑜 𝑡é𝑟𝑚𝑖𝑛𝑜 𝑞𝑢𝑒 𝑛𝑜 𝑝𝑜𝑠𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑐𝑎𝑑𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒: 𝑎 + 3 = 12 𝑎 = 9 𝑏 + 8 = 12 𝑏 = 4 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛: 𝑎 + 𝑏 = 9 + 4 = 13 25. Calcular a + b + c, si: 𝑎𝑥(𝑥 + 1) + 𝑏(𝑥 + 𝑐) + 𝑥2 ≡ 3𝑥2 + 8𝑥 − 12 a) 8 b) 6 c) 10 d) 11 e) 12 Resolución: 𝑂𝑟𝑑𝑒𝑛𝑎𝑚𝑜𝑠 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑑𝑒𝑙 𝑙𝑎𝑑𝑜 𝑖𝑧𝑞𝑢𝑖𝑒𝑟𝑑𝑜: 𝑎𝑥(𝑥 + 1) + 𝑏(𝑥 + 𝑐) + 𝑥2 𝑎𝑥2 + 𝑎𝑥 + 𝑏𝑥 + 𝑏𝑐 + 𝑥2 (𝑎 + 1)𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑏𝑐 𝑇𝑒𝑛𝑖𝑒𝑛𝑑𝑜 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑜, 𝑝𝑟𝑜𝑐𝑒𝑑𝑒𝑚𝑜𝑠 𝑎 𝑖𝑔𝑢𝑎𝑙𝑎𝑟 𝑐𝑜𝑛 𝑒𝑙 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑜 𝑑𝑒 𝑙𝑎 𝑑𝑒𝑟𝑒𝑐ℎ𝑎 𝑑𝑒𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎: (𝑎 + 1)𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑏𝑐 ≡ 3𝑥2 + 8𝑥 − 12 𝑃𝑙𝑎𝑛𝑡𝑒𝑎𝑚𝑜𝑠 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛𝑒𝑠 𝑖𝑔𝑢𝑎𝑙𝑎𝑛𝑑𝑜 𝑙𝑜𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒𝑠 𝑠𝑒𝑔ú𝑛 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑎: 𝑎 + 1 = 3 𝑎 = 2
  • 20. DIEGO CORTEZ 20 𝑎 + 𝑏 = 8 2 + 𝑏 = 8 𝑏 = 6 𝑏𝑐 = −12 6𝑐 = −12 𝑐 = −2 𝑁𝑜𝑠 𝑝𝑖𝑑𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟 𝑎 + 𝑏 + 𝑐: 2 + 6 − 2 = 6