SlideShare a Scribd company logo
1 of 114
Download to read offline
1
Debjani Chakravarty,
Sunny Livingston,
Lewis Wilson, Caleb Wild
A Comprehensive Energy
Plan for the United States
To Year 2065
2
Table of Contents
I. Executive Summary ...........................................................................................3
Objectives
Mission Statement
Keys to Success
II. SWOT Analysis of the existing U.S Energy Policy.............................................4
Strengths
Weaknesses
Opportunities
Threats
III. Goals ..................................................................................................................6
Agency
Education Agenda
Environmental Agenda
Infrastructure Agenda
Electricity supply goals
Transportation supply goals
IV. Supply (2015—2065) ........................................................................................34
Oil
Natural Gas
Coal
Nuclear Energy
Wind Energy
Solar Power
Hydroelectricity
Biofuels
3
Executive Summary
Why is this topic important: Economic (conditions, financial incentives, and budget for energy),
political, social, oil crises, blackouts, shortages, Important because competing for resources, need
for good leaders with integrity, public understanding and appreciation of projects with long term
benefits.
Objectives
Within the first ten years we intend to focus on the Education and Public Awareness Agenda in
order to increase awareness of the current problems facing US energy policy. We will be
attempting to make small policy changes through the traditional legislative process while gaining
support and consensus for the restructuring of energy policy governance. Some of these policy
changes will include appropriate increases on environmental regulation pertaining to energy
production, the utilization of the Yucca Mountain Nuclear Waste Repository, small adjustments
to the energy mix, an incentive plan for car manufacturers to begin making flex fuel available,
and the increase in percentage of electric vehicles.
By 2040, we hope that our new independent Energy & Environment Commission will be fully
implemented and operating effectively. This will allow for increased efficiency and productivity
pertaining to energy policy. We will have made real change to the US energy mix. Our flex fuel
and electric vehicle goals will have had a significant impact on fuel consumption by this time.
By 2065, our energy mix will be highly diversified due to a large shift of the transportation
consumption to electricity.
4
Mission Statement
Our mission is to decrease the vulnerability of the United States Energy Supply Portfolio. We
plan to achieve this by diversifying our supply and increasing efficiency wherever possible. We
are also separating consumption into two groups: Transportation and Electricity. This is to ensure
that we implement appropriate policy that takes into account the limitations and opportunities of
both sectors. We believe it is possible and probable for the United States to have an energy
policy that provides an affordable, efficient, and available energy supply.
Keys to Success
We want to create an Independent Agency that will allow for efficient and productive
governance. We have a robust Education Agenda that will empower the public to make informed
decisions and be conducive to fruitful debate. We have a strong Environmental Agenda that puts
us on a path of sustainable coexistence with our surroundings. We have Infrastructure Goals that
will enable and support our energy supply goals. We have Transportation Energy Supply Goals
that will empower consumers to drive the market for fuel choice. All of these things tie together
to support our Electricity Energy Supply Goals which diversify our supply in order to decrease
vulnerability.
SWOT Analysis of the existing U.S Energy Policy
Strengths
In the United States, there are several factors that have contributed to the success of our energy
industry. One of these factors are private property. An example is the somewhat recent success
of natural gas production in the US. Some of the reasons for the success of producing these shale
5
formations are the technology of hydraulic fracturing and horizontal drilling, the availability of
credit, and private ownership of minerals.
Weaknesses
The current system has no comprehensive long-term plan and there is a lack of energy education
among the public. The policies are highly politicized mainly due to campaign funding
influencing policy. Short term policies undermine infrastructure planning. We have an overall
fragmented and dysfunctional energy policy.
Opportunities
We have a vast domestic supply that is underutilized. Many changes can be made to processes by
which funds are appropriated to different projects. Due to misinformation and the fragmented
natured of different energy related and regulatory departments, we fail to reach maximum
efficiency in execution of our current energy plans.
Threats
We are too reliant on one fuel source especially in transportation. There is geopolitical volatility
that could disrupt our supply. There is an increasing middle class population in China and India
that will drive up demand too quickly for us to respond creating a shortage.
6
Goals
Agency
The Independent Energy and Environment Commission
Before any progress can be made towards securing a prosperous energy future for the United
States we must accept two contradicting realities. Firstly, the current governmental structure is
both inadequate and consistently unable to manage energy, energy related policy and
enforcement. Secondly, the government, or a governmental body, is the only institution that is
able to manage energy, energy related policy and enforcement.1
It is hard to disagree with the above statement, so we are therefore left with quite the conundrum,
how do we as a nation manage energy, when the only body that would be able to do so
consistently fails? Moreover, there is no real evidence to suggest that this pattern of shortcoming
is due to change. There clearly needs to be a drastic change in order for us to be able to
effectively manage energy as a nation, and to allow us to move forward towards goals that would
benefit all of us. The question then, is what change will be most effective to meet our aims.
As is so often the case, the most effective way to plan for the future is to study the past. This
brings us to 1913. This may seem unusual, as in 1913 there was no energy issue, cars were
uncommon and most homes were only beginning to become electrified. Obviously the coal that
1
Original quote
7
was used to fuel progress was causing a great deal of harm, but no one was aware of this, so why
1913? Whilst it is true that 1913 was not a year of energy concern, it was a year of financial
concern. America was beginning to emerge as an economic world power, and the operation of an
ever growing economy was become a headache for those in Washington. The solution was the
creation of the Federal Reserve System, by act of congress on December 23rd
1913. Over 100
years ago, the leaders of the nation realized that the economy was too important to be left to the
will of political infighting and indecision, and the result was a body separate from government to
oversee America’s most vital asset, the economy.
The Federal Reserve has proven a great success, and it is a model that has been replicated
globally, although European central banks predated the Fed, many global banks such as the
World Bank, and IMF have been modelled on the Feds success. Today however, we live in a
different, almost every aspect of our daily lives, including the economy, hinges on energy. This
is perhaps the most important issue of our time, and as the economy required in 1913, 100 years
later it seems only fitting that energy, with all of its components, deserves the same specialized
treatment.
What is different about the Fed?
The most obvious difference between the Federal Reserve and any other government body is,
that within its very design, autonomy. The Federal Reserve was created to be isolated from the
turmoil of capitol hill, the first and perhaps most important aspect that was written in to its
creation, was the appointment of the board.
8
There are 7 positions on the board, each position holds a 14 year tenure. A board member can
only serve once, and appointments are structured leading to one position opening every other
year. This means that there is only one appointment per political cycle, and two per presidency.
A board member sitting through their full term will outlast 3 presidencies, and as a result they are
able to operate in the way they see best for the nation, regardless of political pressure. This is
strengthened by the fact they can only sit once, so need not be popular as they could never be
reappointed.
The autonomous nature of the Fed allows it to operate in the way it views best, regardless of how
popular or not that may be. The Fed has control over fiscal policy, and recently that has seen the
Fed implement fiscal stimulus programs, and interest rate controls to guide the US economy
through a turbulent market led collapse. If the Fed was control within the normal governmental
structure, they would not have the ability to react as is necessary to overcome economics issues
as they have been able to do.
This structure seems the only real option to overcome the issues that now grip our nation and
economy, the issue of energy and the environment. An issue this complex and this politicized
can only be effectively managed by a body of government that is separated and protected from
the turmoil of Washington. The Federal Reserve model is ideal for this.
Creation of the IEEC
Our proposal is the creation of the Independent Energy and Environment Commission. This body
would have the roles of the Department of Energy, the Environmental Protection Agency, and
the Federal Energy Regulatory Commission the National Oceanic and Atmospheric
Administration, the Energy Information Agency and the Nuclear Regulatory Commission rolled
9
into it. The IEEC would operate separately from government, and would have the power to make
and enforce energy and environmental policy without the political pressures of Washington. The
IEEC, much like the Fed, will have regional branches, which will be able to monitor and report
on energy and environmental issue specific to their region. These seven branches will have a
representative each on the board, these board members will be appointed, and will serve 14 year
terms, that will be staggered biannually, again like the Fed.
Structuring the board so that each region is equally represented will ensure that the policies
passed are neither biased nor unrealistic. As a consensus amongst the board will be necessary to
pass legislation. This will ensure that a policy passed is not attainable in one region but
unattainable in another, thus nullifying the usefulness of the IEEC. Much like the Fed, the board
members and employees of the IEEC will be academics and experts in the world of energy and
environment, and will not be from business. This will ensure that the decisions of the individual
within the IEEC are us unbiased as can be possible, as there will be no financial influences on
their decisions. Much like the Fed is a rotating door between the higher offices and the
classrooms of top institutions, such as Georgetown, Harvard, MIT, Columbia etc. The IEEC will
be structured in a similar way. With this, the IEEC should be a hub of intellectuals and research,
with a goal to attain the most sensible and promising outcomes for the nation, away from politics
and business. Working for the IEEC should be a goal for anyone in energy or environment
related fields, just like working for the Federal Reserve is a goal on many economics and finance
students.
10
Regional Boards
Atlantic North
Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New
York, Pennsylvania, Rhode Island, Vermont.
Atlantic South
Alabama, Florida, Georgia, North Carolina, South Carolina, Virginia, West Virginia.
Gulf Central
Alaska, Arkansas, Kansas, Louisiana, Mississippi, Oklahoma, Tennessee, Texas.
Great Lakes and Midwest
Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, Wisconsin.
Mountain
Colorado, Montana, Nebraska, North Dakota, South Dakota, Wyoming
Desert
Arizona, Idaho, Nevada, Utah, Idaho
Pacific
California, Hawaii, Oregon, Washington
Funding
The question of how to find the IEEC is the most simple to answer. The IEEC will be a number
of pre-existing governmental bodies rolled into one entity. The pre-existing bodies already have
11
their own budgets and funding. The IEEC would simply inherit the funding from the
governmental bodies that are rolled into it. Below is a table that illustrates the level of funding
the IEEC would inherit, with the figures being taken from the respective governmental
organizations own websites. It is clear to see that there is a great deal of funding available upon
the creation of the IEEC.
Department
2015 Budget
(Millions)
Department of Energy $27,0002
Environmental Protection Agency $10,0003
Federal Energy Regulatory Commission $1754
National Oceanic and Atmospheric
Administration $5,5005
Energy Information Administration $1176
Nuclear Regulatory Commission $10607
IEEC Inherited Budget $43,852
2
Budget information from the Department of Energy
3
Budget information from the EPA
4
Budget information from the FERC
5
Budget information from NOAA
6
Budget information from the EIA
7
Budget information from the NRC
12
Economics Efficiency
One of the key issue in politics today is excessive government spending. A government that is
not being ran economically efficiently is causing a great kick back from the public, and is
causing a movement calling for smaller government. With the creation of the IEEC there would
be great savings to the government and to tax payers. Many roles are repeated across agencies,
this is an inefficiency that the IEEC would eradicate, and in turn there would be financial
savings. Communication between energy and environment agencies would also be no longer
necessary. As a result, this time consuming and inefficient bureaucratic headache would be
avoided all together, this dramatic increase in efficiency will save a great deal of time, which
ultimately saves a great deal of money.
In a time where government spending is under such scrutiny, the idea of an efficient
hybridized government body may prove very appealing to the American voters. The impact of
cost saving measure on public opinion should not be underestimated.
The Process of Creating the IEEC
There is a cone of possibility regarding the creation of the IEEC. The two key approaches
however are one short term approach and one medium term approach. The short term approach
requires events to occur that are completely out of our control that will force the hand of the
voting public and congress. The medium term approach is completely within our control, and is a
realistic timely approach towards building momentum for the creation of the IEEC.
Short term
Over the next year the US will see the closure of around 200 coal power plants, this is going to
put an extreme strain on the grid, to the point where many expect black and brown outs all across
13
the country next winter. The regions that are expected to be worst hit include New York and
Washington DC, this will be very unpopular indeed, especially in those politically influential
areas.
Today as this is being written, tensions in the Middle East are at an all-time high, and this
is the Middle East we are talking about so that really is saying something. ISIS, and Al Qaeda are
struggling to remain the premium brand in Islamic terrorism, and this publicity battle is being
fought amongst the richest oil reserves in the world. Meanwhile tensions between Saudi Arabia
and Iran have never been greater, and a proxy war currently being fought in Yemen is the last
step in a path that leads toward a conflict that would not only interrupt oils supply from two of
the world largest suppliers, but would also likely close the Arabian gulf and straits of Hormuz.
This doesn’t take into account the continuing unrest in Libya, although not in the Middle East,
their troubles are incredibly similar. Finally the impact of Boko Haram in Nigeria is threatening
to disrupt the oil supply from Nigeria, one of the fastest growing export markets globally.
What we are proposing for our short term creation plan is not too farfetched. The closure
of coal plants create black outs and brown out over a cold winter. Also we see electricity prices
increase as supply is strained. This is coupled with an oil shock caused by an eruption in one of
the many potential conflict zones in the Middle East. The combination of a lack of supply for oil
and electricity, as well as high prices for both, will bring to the i
attention of the American voter
the inadequacies of the current model towards energy and the environment. This tide of
frustration and political will should be enough to push through the creation of the IEEC, with the
promise to the American people of more efficient and reliable energy management, and the
promise to deliver reliable energy at a consistent price. This is not an unfeasible scenario, and if
14
it presents itself the nation would be primes for a major change in energy and environment
management at a governmental level.
Medium Term
The medium term approach is completely within our control. Through robust education of the
population we can encourage discussion that will ultimately lead to a consensus toward the need
to create an independent body to oversee energy and the environment. As people are made aware
of the reality surrounding the situation of our current energy and environmental management, as
well as educated regarding the alternative approaches towards managing energy and the
environment, there will be a natural progression towards an independent body to manage the
nation’s most vital resource.
Our focus on energy and environmental education through schooling will also pay
dividends when it comes to the creation of the IEEC. The students that are educated by this
program will all be of voting age by the medium term period of this plan. As a result the
momentum will be heavily in favour of creating an independent body to manage energy and the
environment, this will be due to the large numbers of voters who are educated regarding the
problems and solutions that face the energy and environment sectors.
15
Education Agenda
We believe that education and public awareness will play a necessary and important role in
achieving the goals in our energy plan. A more educated and energy cautious population will
drive changes in energy and environmental policy. It will create more jobs in energy efficiency
and environmental sector and in turn boost our nation’s economy.
Education Middle/High School, Colleges and Vocational Training:
Why we need to educate our current population?
 Many jobs are going unfilled simply for lack of people with the right skill sets. Even with
more than 13 million Americans unemployed, the manufacturing sector cannot find
people with the skills to take nearly 600,000 unfilled jobs, according to a study last fall
by the Manufacturing Institute and Deloitte.
 In a recent study by the Lemselson-MIT Invention Index, which gauges innovation
aptitude among young adults, 60 percent of young adults (ages 16 to 25) named at least
one factor that prevented them from pursuing further education or work in the STEM
fields. Thirty-four percent said they don't know much about the fields, a third said they
were too challenging, and 28 percent said they were not well-prepared at school to seek
further education in these areas.
 The average age of Members of the House at the beginning of the 113th Congress
was 57.0 years; of Senators, 62.0 years in 2014
 Only 38% of young eligible adults vote. Only approximately 50% of the working
population (25-50 years) vote. Both numbers have been declining. Highest percentage of
votes held by ages 65 and over. This subgroup is unlikely to be open to radical reform in
16
the way our nation perceives energy. Thus energy awareness should be directed to the
young adult and working population to drive policy changes through greater and more
educated voter turnout.
 The current employment-to-population ratio stands at 58.7 – far below pre-recession
levels. This is a statistical ratio that measures the proportion of the country's working-age
population (ages 15 to 64 in most OECD countries) that is employed. This includes
people that have stopped looking for work. Current unemployment rate – 5.5%. Also
16% of Americans below poverty thresholdfor family of 4 around 20k annual income.
Low-income families also tend to be most energy in-efficient. Need vocational training in
energy related technical or field jobs to attract this population. Will increase employment
to population ratio and decrease tax burden on the group.
17
 Educated middle school and high school students will go on to pursue energy related
careers or majors in college. Will be more aware of their energy consumption, energy
supply and energy future of the nation. They will drive policy changes as they come of
voting age.
What can we do?
 Public School and Private Company partnership: The president's STEM campaign
leverages mostly private-sector funding. A nongovernmental organization, Change the
Equation was set up by more than 100 CEOs, with the cooperation of state governments
and educational organizations and foundations to align corporate efforts in STEM
education.
 Interdisciplinary Energy and Sustainability curriculum with all STEM courses or fulfill
an Energy and Sustainability core with specific number of credit hours required for
graduation
 Middle School and High School Outreach by private companies
 While there is no national curriculum in the United States, states, school districts and
national associations do require or recommend that certain standards be used to guide
school instruction – No Child Left Behind Act
 Public school curricula, funding, teaching, employment, and other policies are set
through locally elected school boards, who have jurisdiction over individual school
districts. State governments set educational standards and mandate standardized tests for
public school systems.
 Postsecondary standards are the primary responsibility of individual institutions of higher
education. However, institutions develop and enforce their standards with reference to
18
the policies administered by state agencies, the requirements of accrediting agencies, the
expectations of professional associations and employers, and the practices of peer
institutions.
 Should offer Energy and Sustainability minor in all colleges if possible.
Public Awareness Agenda:
It is always more economic to use less energy than generate it even from renewable sources,
therefore a household should always start by saving energy. Ever increasing energy prices
provide an economic incentive whilst limiting climate change provides a societal incentive.
Incentivizing and creating energy awareness in Working/Voting Age Population by:
 Reduce Electricity use: Smart Home system-Real Time Energy Consumption Report
A smart home may be defined as a well-designed structure with sufficient access to
assets, communication, controls, data, and information technologies for enhancing the
occupants’ quality of life through comfort, convenience, reduced costs, and increased
connectivity. A commonly cited reason for this slow growth has been the exorbitant
cost associated with upgrading existing building stock to include “smart”
technologies such as network connected appliances. However, consumers have
historically been willing to incur significant costs for new communication
technologies, such as cellular telephones, broadband internet connections, and
television services. According to the US Bureau of Labor Statistics the average
homeowner spent approximately 11% more on entertainment (including cell phone
and internet services) in 2010 than 25 years ago. Data indicate that consumers are
willing to spend more on hybrid vehicles than on similarly sized traditional vehicles
for reasons other than economic payback.
19
 Looking inward, a smart home employs automated home energy management
(AHEM), an elegant network that self manages end-use systems based on information
flowing from the occupants and the smart meter. The value of AHEM is in
reconciliation of the energy use of connected systems in a house with the occupant’s
objectives of comfort and cost as well as the information received from the service
provider. Sensors and controls work together via a wireless home area network
(HAN) to gather relevant data, process the information using effective algorithms,
and implement control strategies that simultaneously co-optimize several objectives:
comfort and convenience at minimal cost to the occupant, efficiency in energy
consumption, and timely response to the request of the service provider
 Changes to the end-user electricity pricing structures – from fixed tariffs to dynamic
prices that may change several times over a day – that reflect the use of the assets on
the grid at any given time. If these structures are implemented to provide a tangible
financial incentive for customers to respond to the requests of the service providers
for demand reduction, the customers can receive measurable monetary value for their
participation, in addition to the increased reliability of their service. Financial
incentives are but one motivating factor for the adoption of smart homes.
 Changes to energy policies and available subsidies for retrofitting existing homes
with smart appliances as well as building new homes with smart technologies are
viewed as non-technological enablers. In the US, the Energy Policy Act of 2005, the
Energy Independence and Security Act of 2007, and the American Recovery and
Reinvestment Act of 2009 have all provided tax incentives, credits or deductions for
residential energy efficiency upgrades.
20
 Lack of industry-accepted device communication and interoperability standards is a
critical barrier to more wide-spread adoption of smart home technologies. Several
ISO and IEEE standards activities are underway or recently completed to begin
addressing this barrier. Key among them are ISO/IEC 15045, 15067, 18012, and
IEEE 2030.
 Feedback and automation are essential features of achieving this in a smart home.
However, an optimal energy efficiency strategy requires both features be designed
with the end-user in mind.
 Reduce Heat losses: Home insulation system -The average U.S. family spends
$1,900 a year on home utility bills. Heating and cooling your home account for the
largest portion (54 percent) of your utility bills.
 Ways your house is losing heat:
o Poorly insulated attics – heat escapes from the top
o Wrong-sized heating systems – Depending on your house’s square footage,
your furnace could be producing more heat than you need
o Holes in exterior walls – gaps where windows, doors or walls weren’t joined
together let heat seep out
o Leaky ducts – leaky ducts mean heat that is intended to keep you toasty in
your living room escapes into walls instead, never making it in not the rooms
you need to heat.
 How can insulation help?
o Proper insulation lets you save more and makes better use of the energy and
heat in your house
21
o As much as 20 percent of your energy bill can be saved by good roof
insulation
o Insulation reduces the costs of heating and cooling by over 40 percent
o Wall insulation can reduce this loss by 2/3 and make your home more
comfortable
o You can lose as much as 10 percent of heat through uninsulated floors
o Insulation pays for itself in around five to six years
22
Environmental Agenda
 Under the Independent Agency  more communication between
EPA,DOI,USDA,NOAA,NRAC,DOE: Pooling of resources, experts from all areas
coming together, faster reaction time and formulating and implementing fair regulation
and standards.
 Implement Carbon Capture and Sequestration in the short term- Since currently
storage of CO2 has been an issue for most Coal Power plants due to lack of verified
storage sites or huge upfront costs, we believe CO2 should be used for EOR as much as
possible. Much of the easy-to-produce oil already recovered from U.S. oil fields,
producers have attempted several tertiary, or enhanced oil recovery (EOR), techniques
that offer prospects for ultimately producing 30 to 60 percent, or more, of the reservoir's
original oil in place. CO2-EOR works most commonly by injecting CO2 into already
developed oil fields where it mixes with and “releases” the oil from the formation,
thereby freeing it to move to production wells. CO2 that emerges with the oil is separated
in above-ground facilities and re-injected into the formation. CO2-EOR projects resemble
a closed-loop system where the CO2 is injected, produces oil, is stored in the formation,
or is recycled back into the injection well. Federal and state-level incentives can foster
the initial, large-scale CCS projects that are needed to fully demonstrate the technology.
At the federal level, Section 45Q tax credits provide $10 per metric ton of CO2 stored
through enhanced oil recovery and $20 per metric ton of CO2 stored through deep saline
formations. The National Enhanced Oil Recovery Initiative recommends an expansion of
the existing 45Q tax credit for capturing carbon dioxide for use in EOR, as well as
modifications to improve the functionality and financial certainty of 45Q tax credits. The
23
Initiative also recommends U.S. states to consider incentives such as allowing cost
recovery through the electricity rate base for CCS power projects; including CCS under
electricity portfolio standards; offering long-term off-take agreements for the products of
a CCS project; and providing supportive tax policy for CCS or CO2-EOR projects. For
the long and medium term a fair, sustainable and effective Cap and Trade Program
needs to be implemented to reach new target to cut net greenhouse gas emissions 26-28
percent below 2005 levels by 2025. The new U.S. goal will double the pace of carbon
pollution reduction from 1.2 percent per year on average during the 2005-2020 period to
2.3-2.8 percent per year on average between 2020 and 2025.
 Recycling and Waste Management: Over the last few decades, the generation,
recycling, composting, and disposal of MSW have changed substantially. Solid waste
generation per person per day peaked in 2000 while the 4.38 pounds per person per day is
the lowest since the 1980’s. The recycling rate has increased–from less than 10 percent of
MSW generated in 1980 to over 34 percent in 2012. Disposal of waste to a landfill has
decreased from 89 percent of the amount generated in 1980 to under 54 percent of MSW
in 2012.No U.S National Recycling Law. Responsibility given to States. America’s very
first federal solid waste law, 1965’s Solid Waste Disposal Act—itself an amendment to
the original Clean Air Act—didn’t even mention recycling. “Eleven years later, Congress
passed the Resource Conservation and Recovery Act (RCRA), which remains the
cornerstone of federal solid waste and recycling legislation,” reports Miller. RCRA
abolished open dumps and required the Environmental Protection Agency (EPA) to
create guidelines for solid waste disposal and regulations for hazardous waste
management, but had little to say about recycling except to call for an increase in federal
24
purchases of products made with recycled content. Resource Management Issue since
they are limited. More population leads to more waste generated. In 2012, Americans
generated about 251 million tons1 of trash and recycled and composted almost 87 million
tons of this material, equivalent to a 34.5 percent recycling rate. Glass, PET bottles and
jars and selected consumer electronics have lowest rate of recycling in the U.S- about
30% for each in 2012. We need innovative ways to separate our waste more effectively.
 Reduce and regulate nitrogen use by using radioactive markers and sensors to
measure different chemical concentrations in water: Minimizing nitrogen fertilizer
rates while maintaining crop yields is essential both for improving agricultural
profitability and reducing environmental consequences of farming, such as leaching and
runoff from agricultural crop fields, which can be major sources of nitrogen to streams,
rivers, and estuaries in the Southeast. Two-thirds of U.S. coastal systems are moderately
to severely impaired due to nutrient loading; there are now approximately 300 hypoxic
(low oxygen) zones along the U.S. coastline and the number is growing. One third of
U.S. streams and two fifths of U.S. lakes are impaired by high nitrogen concentrations.
More than 1.5 million Americans drink well water contaminated with too much (or close
to too much) nitrate (a regulated drinking water pollutant), potentially placing them at
increased risk of birth defects and cancer. More research is needed to deepen
understanding of these health risks. Several pathogenic infections, including coral
diseases, bird die-offs, fish diseases, and human diarrheal diseases and vector-borne
infections are associated with nutrient losses from agriculture and from sewage entering
ecosystems. Nitrogen is intimately linked with the carbon cycle and has both warming
and cooling effects on the climate. Regulation of nitrogen oxide (NOX) emissions from
25
energy and transportation sectors has greatly improved air quality, especially in the
eastern U.S. Nitrogen oxide is expected to decline further as stronger regulations take
effect, but ammonia remains mostly unregulated and is expected to increase unless better
controls on ammonia emissions from livestock operations are implemented. Nitrogen loss
from farm and livestock operations can be reduced 30-50% using current practices and
technologies and up to 70-90% with innovative applications of existing methods. Current
U.S. agricultural policies and support systems, as well as declining investments in
agricultural extension, impede the adoption of these practices.
 Restoration Liability: EPA has not implemented a 1980 statutory mandate under
Superfund to require businesses handling hazardous substances to demonstrate their
ability to pay for potential environmental cleanups--that is, to provide financial
assurances. EPA has cited competing priorities and lack of funds as reasons for not
implementing this mandate, but its inaction has exposed the Superfund program and U.S.
taxpayers to potentially enormous cleanup costs at gold, lead, and other mining sites and
at other industrial operations, such as metal-plating businesses. Also, EPA has done little
to ensure that businesses comply with its existing financial assurance requirements in
cleanup agreements and orders. Greater oversight and enforcement of financial
assurances would better guarantee that cleanup funds will be available if needed. Also,
greater use of other existing authorities--such as tax offsets, which allow the government
to redirect tax refunds it owes businesses to agencies with claims against them--could
produce additional payments for cleanups from financially distressed businesses.
26
Infrastructure Agenda
Our primary reason for transitioning to a nuclear fueled electricity sector are the benefits that come
from a power generation station that is low in emissions and high in energy density. We would
like to have Generation IV nuclear facilities built, preferably with the capability to reuse spent
fuel.8
By the time we reach our 50th year in our timeline, there is the hope that thorium has begun
to replace uranium as the fuel of choice, due to it being cheaper, safer, and more plentiful. If
facilities are not built to reuse spent fuel, with Harry Reid now retiring, we fully expect Yucca
Mountain to finally be approved.9
Having a nuclear fueled energy grid would also allow us to reach the goal of 60% of the
transportation sector being run on batteries. The possibility of blackouts or brownouts should be a
concern of the past, as our energy grid would be less centralized, and more distributed, with the
energy being generated and consumed right at the limits of the grid. Having an energy grid supplied
by nuclear facilities would also be beneficial to our goal of having a more extensive smart grid.
Nuclear generation stations are highly reliable, as they are always on and can quickly ramp up to
supply energy during peak usage times. They also allow for more flexibility in network topology,
demand-side management, and load adjustment/load balancing. These facilities would, in real-
time, “talk” to connected devices (like televisions, air conditioners, dishwashers, etc.) in order to
more efficiently monitor voltage usage through Voltage/VAR Optimization (monitors usage along
the lines than just at the distribution center). A smart grid would also allow for mathematical
prediction models to be utilized, which determines when more energy is about to be needed,
8
"Generation IV Nuclear Reactors: WNA." World Nuclear Association. N.p., n.d. Web. 09 May
2015.
9
Northey, Hannah. "GAO: Death of Yucca Mountain Caused by Political Maneuvering." The
New York Times. N.p., 11 May 2011. Web. 09 May 2015.
27
allowing for a smooth process of bringing extra power online, instead of always having some spare
generators in a dissipative standby mode.10
To help ease the loads on the nation’s highways and byways, we also propose a more extensive
public transportation system based on high speed rail. We would like to first connect major cities
with their outlying suburbs, with bus systems that can ferry people from the main hubs to specific
business districts. Eventually, we would like most cities in the US to have systems that more
readily match those in Europe, China, or Japan.
But, we know that our roads and bridges are not going anywhere anytime soon. We would also
like to propose a new hybrid system to fund the needed maintenance that much of the country’s
roads need. The way we think this can be done is to implement a more extensive tollway program,
or some sort of hybrid program, that focuses on funneling tax money to the most used roads and
bridges. Potentially, sensors would be placed at intersections and along roadways to monitor usage,
allowing municipalities, cities, and states to better monitor which roads are being used most, and
what projects are most deserving of money.
As we all know, this country is basically broke, and does not realistically have the money to fix an
infrastructure system that has a D rating from ASCE. So, to solve this funding issue, we would
propose a variety of revenue options. Private/public ownership of new infrastructure (roads,
bridges, rail lines) would probably be the best bet, with something like a 20/20/30/30
(federal/state/local/private) split, with ownership and maintenance responsibilities turning over to
the local and private interests once the investment has been paid off. We would want to structure
government loans in such a way that the taxpayers are paid back with interest, so that they are not
10
"Smart Grid." Energy.gov. N.p., n.d. Web. 09 May 2015.
28
double taxed. We would also recommend the federal government finally raise the gas tax to meet
current funding needs, and to withhold funding from the states until they do the same also.
Electricity supply goals
Our goals for electricity are to diversify our supply as much as possible. Therefore it is
inevitable that we will be shifting some of the supply from hydrocarbons to renewables. This is
not due to a bias for renewables. It is simply because any resource will have vulnerabilities. We
need to spread that risk to as many resources as possible in order to prepare for a disruption in
supply. There are two considerations that we have to keep in mind when determining supply
goals – the economy and the environment. If I am unemployed, I am less likely to care about the
level of CO2 emissions. Similarly, if my environment is so damaged that I am experiencing
health problems and increased healthcare cost, the savings on energy may not seem worth it.
Therefore neither aspect can be neglected. We have to find a balance that is economically and
environmentally sustainable.
Total Energy % changes by sector
Current (2015) 2025 2040 2065
E T E T E T E T
Coal 35% -- 33% -- 23% -- 15% --
Oil -- 93% -- 80% -- 48% -- 25%
Natural Gas 35% 1% 33% 5% 23% 18% 15% 25%
Hydroelectric 4.50% -- 4.50% -- 4.50% -- 4.50% --
Nuclear 18% -- 18% -- 26% -- 34% --
Wind 2% -- 5% -- 11% -- 15% --
29
Solar 2% -- 5% -- 11% -- 15% --
Bio 1% 5% 1% 10% 1% 18% 1% 25%
Hydrogen -- -- -- 5% -- 15% -- 25%
Sector totals 98% 99% 100% 100% 100% 99% 100% 100%
Quadrillion BTUs by sector
Current (2015) 2025 2040 2065
E T E T E T E T
Coal 24.7 -- 24.3 -- 20 -- 15 --
Oil -- 25.3 -- 21.8 -- 9.2 -- 2.5
Natural Gas 24.7 0.97 24.3 -- 20 -- 15 2.5
Hydroelectric 3.17 -- 3.17 -- 3.17 -- 3.17 --
Nuclear 12.7 -- 13 -- 22.5 -- 34 --
Wind 1.4 -- 3.7 -- 9.5 -- 15 --
Solar 1.4 -- 3.7 -- 9.5 -- 15 --
Bio 0.7 1.4 0.7 2.8 0.8 3.5 1 2.5
Hydrogen -- -- -- 1.4 -- 2.8 -- 2.5
sector totals 68.77 27.67 72.87 26 85.47 15.5 98.17 10
total check 96.44 98.87 100.97 108.17
Total Energy 97.83 101 106 110
30
Overall Quadrillion BTUs
Current (2015) 2025 2040 2065
Coal 24.7 24.3 20 15
Oil 25.3 21.8 9.2 2.5
Natural Gas 25.67 24.3 20 17.5
Hydroelectric 3.17 3.17 3.17 3.17
Nuclear 12.7 13 22.5 34
Wind 1.4 3.7 9.5 15
Solar 1.4 3.7 9.5 15
Bio 2.1 3.5 4.3 3.5
Hydrogen 0 1.4 2.8 2.5
Total check 96.44 98.87 100.97 108.17
Total Energy 97.83 101 106 110
Overall Percentage Changes
Current (2015) 2025 2040 2065
Coal 26% 25% 20% 14%
Oil 26% 22% 9% 2%
Natural Gas 27% 25% 20% 16%
Hydroelectric 3% 3% 3% 3%
Nuclear 13% 13% 22% 31%
Wind 1% 4% 9% 14%
31
Solar 1% 4% 9% 14%
Bio 2% 4% 4% 3%
Hydrogen 0% 1% 3% 2%
Total check 1.00 1.00 1.00 1.00
Electricity
Current (2015) 2025 2040 2065
m Households
137 m
Households 138.6 m Households
140.3 m
Households
25.1m Electric
vehicles
57 m Electric
vehicles
114.8 m Electric
vehicles
174 m Electric
vehicles
Electricity supply: Electricity supply: Electricity supply: Electricity supply:
35% Coal 33% Coal 23% Coal 15% Coal
35% Natural Gas 33% Natural Gas 23% Natural Gas 15% Natural Gas
4.5% Hydroelectric
4.5%
Hydroelectric
4.5% Hydroelectric 4.5% Hydroelectric
18% Nuclear 18% Nuclear 26% Nuclear 34% Nuclear
2% Wind 5% Wind 11% Wind 15% Wind
2% Solar 5% Solar 11% Solar 15% Solar
1% Bio 1% Bio 1% Bio 1% Bio
32
Transportation supply goals
One of the goals for the transportation sector is to increase fuel competition. There are
two objectives that will help in achieving this goal. The first is the minimum required percentage
of all light-duty vehicles sold in the US to be powered by electricity. This will open up a much
more diverse supply source with the medium being electricity. The second only applies to the
remaining non-electric vehicles. It is the requirement for all light-duty, non-electric vehicles sold
in the US to have a minimum of three fuel options that are readily available for consumers to
utilize. This will provide more certainty for business owners who want to make capital
investments in alternative fueling stations. Investors and business owners will react quickly to
such a significant number of flex fuel vehicles. It will also empower consumers to guide the
market for transportation fuel. To incentivize manufacturers to install flex fuel, we will offer to
lower their required emission standards. Not only will this give them the power to choose in
order to decrease resistance for flex fuel and the emission standards, it will also further validate
the enforceability of the emission standards. It will also include localized pilot projects to try
new methods for public transportation. Some of which will include adding a monorail system
above the inside shoulder lanes or HOV lanes to existing highways. There was a proposed
project in China for a bus project that was elevated. It allowed for the free flow of traffic
underneath. If we could do a monorail along the highway where the majority of people already
travel, it is likely that it would have a significant impact on the flow of traffic.
33
Transportation
Current (2015) 2025 2040 2065
319m Population 351.5m Population 393.8m Population 426m Population
121m Households 137m Households 138.6m Households 140.3m Households
2.07
Vehicles/household
2.07
Vehicles/household
2.07
Vehicles/household
2.07
Vehicles/household
251m Cars on the
road
284m Cars on the
road
287m Cars on the
road
290m Cars on the
road
10% EV (25.1 m)
20% Electric (57
m)
40% Electric (114.8
m)
60% Electric
225.9m Non-
Electric
227 m Non-
Electric
172 m Non-Electric 116 m Non-Electric
Non-electric fuel
supply:
Non-electric fuel
supply:
Non-electric fuel
supply:
Non-electric fuel
supply:
93% Oil (210m
cars)
80% Oil (181 m
cars)
48% Oil (82 m cars) 25% Oil (29 m cars)
1% Natural Gas
(2.3m cars)
5% Natural Gas
(11 m cars)
15% Natural Gas
(26 m cars)
25% Natural Gas
(29 m cars)
5% Biofuel (22 m
cars)
10% Biofuel (22 m
cars)
18% Biofuel (31 m
cars)
25% Biofuel (29 m
cars)
0% Hydrogen
5% Hydrogen (11
m cars)
15% Hydrogen (26
m cars)
25% Hydrogen (29
m cars)
34
Supply (2015—2065)
Oil
Black Gold, the most sought after commodity in the world. It transformed the way we live our
lives, revolutionized transport, made the world a small place and even managed to save the
whale. We will stop at nothing as a society to obtain oil, and that includes damaging our
environment and even going to war, but what does the future hold for the largest industry on
earth?
Since the 1860s when John D. Rockefeller opened his first refinery, oil has been a staple in the
energy mix for the US and now the world. Oil, of course, pre dates the combustion engine, and
was first used for heating and lighting, replacing whale oil as the primary source of lighting fuel.
As the combustion engine took hold of transportation, oil became ever more in demand. Oil then
fuelled world wars one and two, by the end of which the combustion engine dominated the globe
as the primary source of transportation.
Oil and politics have a habit of going hand in hand, in the Second World War, the allies relied
heavily on oil from Venezuela, which allowed the Venezuelan government to pressure Great
Britain and the United States into paying a higher rate for their oil. Mexico was both the first
ever nation to nationalize oil production, and the first nation to declare bankruptcy as a result of
their poor commodities management. In Nigeria, since independence from the British, there has
been constant conflicts, the most notable of these is the Biafra war, which have been fought for
oil. Nigeria itself went from a nation of 3 states to a nation of 36 states, so that smaller
communities could access the oil wealth of the south western region.
Today, oil and conflict are, unfortunately, tied together. The Middle East, North and West Africa
and even some Asian states, are engulfed by conflict that has at its core the control of oil. This
35
greed for oil is understandable, as the demand for oil is ever increasing, and only seems set to
increase over the upcoming years as China and India continue to grow their middle class. The
graph below, from BP, illustrates the upward trend in oil consumption.
11
For all the talk of peak oil, as it stands, we are finding more and more oil each year. The higher
the demand for oil is, the more oil we will continue to find. As there are many more resources
out there, they are just currently uneconomical to extract. However there is always some
uncertainty surrounding oil, as the nations with the largest reserves are very coy when it comes
to revealing how much oil they truly have. It must also be said that the oil industry is a
11
Graph from BP Statistical Review of World Energy 2013
36
vulnerable one. A major conflict around the Arabian Gulf would destroy supply, and rocket oil
prices at the same time, and the damage to supply may be irreversible.
Oil in the USA
For this plan we are looking at oil in the US, both from a supply and demand perspective, as this
is what we can realistically control and alter. Policy in the US may be able to alter prices
globally, but it will not dictate to the OPEC nations how to operate their oil businesses.
Supply in the US has been revolutionized by the shale boom. Fracking has unlocked vast
reserves, and as a result since 2010 supply has rocketed domestically. However, it must be noted
that US shale oil is very expensive to extract, as a result the recent low oil prices have hit US
producer hard, with many wells closing down due to being uneconomical. The US also has vast
reserves in Alaska, however this oil is difficult to extract, especially in such an environmentally
sensitive region. The graph below, courtesy of Fuelfix, illustrates the US racking boom, and its
impact on supply.
37
12
The US consumption of oil has actually decreased over the last decade. This is in part due to
improvements in vehicle efficiency, and part due to the high gasoline prices in 2007-2012
altering American buying habits, shifting tastes towards smaller vehicles. Although production
has increased dramatically, it still does not come close to consumption. The US currently
consumes between 17-19 million barrels of oil a day, and sources only 9-12 million barrels of
this domestically, the gap is made up by imported oil. The below graph, from the Energy
Tribune, illustrates this and shows how this has changed in recent years.
12
Graph from Fuel fix
38
13
As long as price can support production, there is a great deal of oil on US soil. There is also a
continuing trend towards efficiency in transport, and industry movement away from the
combustion engine. It may not, therefore, be long before US production can meet domestic
demand.
10 Year Plan
As domestic demand stabilizes due to the continued introduction of electric vehicles to the
market, and production of US oil reserves continues to develop as prices recover from their
current slump, we will approach an equilibrium of supply and demand. A majority of US oil
demand will be met by US oil supply as prices will stabilize at around $80 per barrel, and around
$3 per gallon.
25 Year Plan
13
Graph from Energy Tribune
39
Oil production will stabilize over this period, at around 12-14 million barrels per day
domestically. This supply will begin to outstrip the domestic demand. Oil prices will remain
constant, at around $3 per gallon, adjusted for inflation, and some of US oil production will be
exported to developing nations who have higher oil demand. This exported oil will be sold at a
higher price on the international market. For this to occur legislation would have to change to
allow the export of crude oil, but as we are predicting that supply will out do demand, the
decision to allow export should be a simple one.
50 Year Plan
By this stage oil will account for only 10% of the fuel used for transportation in the US. As a
result demand will be much lower than it is today. Oil production will taper down, as it will not
be economically sensible to drill new wells. Prices for oil will stay at around $3 per gallon,
adjusted for inflation, and will be available and affordable for those who still decide to use this
fuel source.
Natural Gas
As with any supply source, there are pros and cons. The pros of natural gas include: the
ability to use it for electricity and transportation - making it a comparable substitute for oil, our
vast domestic supply, and relatively low prices. The cons include: the fact that there is a finite
supply, it is a hydrocarbon which means it has relatively higher emissions than some other
sources, US exporting has the potential to increase prices making it less economical as a
substitute, larger storage capacity required compared to oil as a transportation fuel source,
compression or liquefaction required for some transport and storage, increased fueling times, the
increased cost to retrofit vehicles to accept it as a fuel source and the environmental concerns
related to extraction.
40
Our goal for 2025 is to decrease our use of natural gas for electricity generation from
35% to 33 % and to increase our use of natural gas in transportation from 1% to 5%. This may
seem counterintuitive. However, the goal is to enable a more level playing field for energy
competition. We need to take gradual steps to allow for more flex fuel options, which include
CNG, in order to decrease the reliance on oil as the primary transportation source. It also
includes a more diversified energy mix for electricity generation. Over the three phases, the
natural gas consumption will change from 24 to 18 quadrillion BTU’s. Currently, the price of
natural gas is fairly cheap because of a vast domestic supply. However, the cost will be
increasing in the near future because of a gradual increase in the export of natural gas. This
increase in cost will have a ripple effect through the economy. It will effect feedstock for the
petrochemical industry which will extend to almost every product that we manufacture or export.
It will also increase the cost per kilowatt hour from natural gas electricity plants.
We currently have estimated reserves of about 353,994 billion cubic feet as of December
31, 2014.14
The energy density is 0.0364 MJ/L.15
According to the Open EI Cost Database, a
Natural Gas Combined Cycle produces electricity at $.05 per kilowatt-hour. Electricity from a
combustion turbine is $.07 per kilowatt-hour.16
At an average price of $3.52 per gallon of
gasoline, CNG costs 5.6 cents per mile. This is compared to 8 cents per mile of gasoline.17
“LNG's cost per mile is generally less than or equal to the price of diesel” (EPA). The average
cost to build a plant is $330 million which is relatively attractive compared to other energy
sources.18
By 2025, we should see 25% of all vehicles with two fuel options. This means that
14
Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves"
15
http://en.wikipedia.org/wiki/Energy_density. Accessed May 2015.
16
OpenEI Transparent Cost Database.
17
http://www.caranddriver.com/reviews/2012-honda-civic-natural-gas-test-review. Accessed May 2015
18
http://www.eia.gov/forecasts/capitalcost/. Table 1 and 2. Accessed May 2015.
41
there will likely be an increase in vehicles using natural gas. The degree to which the automakers
opt for natural gas instead of other alternative fuels will determine the widespread capital
investment made in fueling stations. We will also be experiencing higher prices due to US
natural gas exports. Asia’s consumption and OPEC’s production will play major roles in the
price of our natural gas. We may see a slight increase or we may see a dramatic increase due to a
shortage.
Included in the education agenda will be information on why we have a history of using
hydrocarbons as a fuel source. The next generation needs to be aware that the reason we use
hydrocarbons is because of cost and energy density. They also need to understand the importance
of balancing these benefits with the environmental consequences. Future generations need to be
more cognizant of their daily use of energy resources. Simple things on a large scale can make a
difference. The public needs to be better informed about the issues surrounding natural gas.
There have been videos of people setting their faucets on fire because of water contamination. If
a water source is suspected to be contaminated, people need to be aware of who to contact, how
to have their water tested by the agency for a comparison, how to petition the entity responsible
for a solution, the extent to which they can use the water, etc.
The extraction and production of natural gas poses a few different environmental
concerns. In extraction, fracking which has increased production dramatically, has been accused
of causing water table and well contamination. We propose that any new lease contract include a
pre-drilling sample of any existing water sources so that it can be compared to post-drilling
samples in order to protect the drilling company from liability. If it is found that drilling
operations have contaminated any water supply, the population effected by the contaminated
supply would have legal rights to pursue damages. Chemical marker to identify companies,
42
People have also claimed that fracking or drilling mud contains potentially toxic
materials and chemicals that are being left in the ground. However, currently there is no way to
mitigate these effects because companies are protected from disclosing the chemicals used by
claiming that it is proprietary information. We support the recent rule that requires that drilling
companies disclose the chemicals used on federal land. It will take effect in June 2015.19
In
addition, we propose that on non-federal land, pre-drilling soil samples be taken by the new
regulatory agency in order to compare to post-drilling samples. These should be audited
regularly to ensure that the companies are not using any chemicals on a list of toxic or hazardous
chemicals which will be created by the new regulatory agency. The use of water for drilling
should be capped at a certain percentage per barrel recovered. We need to create an incentive for
drilling companies to recycle the water used for drilling or find better methods for secondary and
tertiary recovery. There have been attempts to use captured CO2. The process is called CO2-
EOR. It uses CO2 that has been purchased from coal plants with CCS. It injects the CO2 into
existing wells to recover additional barrels. Canada’s SaskPower's Boundary Dam project has
been successful as well as the US Kemper Project.20 21
These projects increase the efficiency of
natural gas wells by decreasing water use and increasing production, whilst increasing the
efficiency of coal plants by decreasing the coal plant’s net cost and managing its CO2 waste.
This is one solution to the environmental problems caused by hydrocarbons. Another is the use
of natural gas as a vehicle fuel substitute. According to the DOE, “Based on this model, natural
gas emits approximately 6%-11% lower levels of GHGs than gasoline throughout the fuel life
19
http://www.npr.org/blogs/thetwo-way/2015/03/20/394282086/interior-dept-issues-new-fracking-rules-for-federal-lands.
Accessed May 2015.
20
Boundary Dam integrated CCS project". www.zeroco2.no. ZeroCO2.
21
CO2 Capture at the Kemper County IGCC Project" (PDF). www.netl.doe.gov. DOE's National Energy Technology Laboratory.
43
cycle.”22
This is why we intend for CNG and LNG to gain a significant share of the vehicle fuel
source mix. While building consensus in support for our agency, we will attempt to pass small
pieces of legislation to tighten the restrictions on water used in drilling projects by 2025. By
2065, the agency will implement the mandatory recycling of any water used in the drilling
process.
Before the natural gas boom, we were building import or regasification facilities to
prepare for a shortage of natural gas. After the boom, we are building export or liquefaction
facilities to prepare for an increase in exports. It is very likely that Asia’s energy consumption
will cause prices of natural gas to skyrocket. We need to be prepared for a depletion of our own
natural gas supplies in the future. The ideal situation is for us to maintain two-way capacity so
that we are able to react quickly to changes in the market. Pipeline leaks are a concern but can be
addressed by increasing the quality and frequency of routine inspections. Currently we are
experiencing a shortage of talent and knowledge on the regulatory side of energy. This is where
vocational programs can play a role. Along with coal, any natural gas plants that are eventually
taken offline will not be demolished. Incentives will be put in place to freeze property taxes for
decommissioned plants with the stipulation that the tax savings be used for emission reduction
R&D in other areas of the company. As soon as the flex fuel option includes natural gas, we will
see fueling stations begin to include natural gas.
After US begins to increase exports, prices of natural gas only vehicles may not be as
attractive. Currently there are a few options when considering a natural gas vehicle. They are
natural gas only, natural gas and diesel ignition, and a traditional fueling system combined with a
22
http://www.afdc.energy.gov/vehicles/natural_gas_emissions.html. Accessed May 2015.
44
natural gas fueling system. Our goal would be to gravitate toward a dual or multi-fueling system.
We do not simply want to switch sources. We want to provide the opportunity to choose.
According to the DOE, there are approximately 150,000 natural gas vehicles on the
road.23
These vehicles may be using compressed natural gas CNG or liquefied natural gas LNG.
CNG is more appropriate for light duty vehicles because of the relatively short distances and
limited storage capacity. LNG can be used for vehicles that are going to be traveling much
longer distances and that have more capacity for storage such as semi-trucks. It is preferable to
use LNG because the energy density of LNG is 22.2 MJ/L which is more than double that of
CNG at 9MJ/L.24
Either one can be used as a substitute for oil which is the most important
attribute. A CNG tank is more expensive than a typical gasoline tank.
It is possible to retrofit a vehicle to run on natural gas. These kits cost about $5,000 to
$10,000. The kit itself is only about $1,000. The $2,000 tank plus the labor to install bring it to
about $5,000 minimum.25
However, manufacturers are providing additional options as well. For
example, Ford will install a CNG fueling system as an option at purchasing so that it is installed
by a certified installer and will not invalidate the warranty. They have seen an increase in sales
over the last five years.26
23
http://www.afdc.energy.gov/vehicles/natural_gas.html. Accessed May 2015.
24
http://en.wikipedia.org/wiki/Energy_density. Accessed May 2015.
25
http://www.skycng.com/FAQpage.php. Accessed May 2015.
26
https://media.ford.com/content/fordmedia/fna/us/en/news/2015/05/04/2016-f150-alternative-
fuel-leadership.html. Accessed May 2015.
45
Figure 1 Ford sales of commercial vehicles with CNG/propane gaseous engine-prep packages27
Many other car manufactures have produced models that accept natural gas. These
include Honda, Ford, BMW, Volvo, Chevrolet and Volkswagen. By 2065, if natural gas supplies
25% of transportation needs excluding electric vehicles, and 15% of our electricity needs, we
will require 17.5 quadrillion BTUs. That is 15 quadrillion BTUs for electricity and 2.5
quadrillion BTUs for transportation as a fuel. Semi-trucks should almost all be converted over to
a flex fuel system that includes LNG. By this time, it is highly likely that the demand from Asia
will have driven up the price for natural gas. However, all non-electric vehicles will have flex
fuel options. This means that not only are the vehicles flexible in that they can use a variety of
fuels. They are also flexible pertaining to pricing. If natural gas prices have become
uneconomical to even consider, drivers will have a minimum of two other fuel options.
27
https://media.ford.com/content/fordmedia/fna/us/en/news/2015/05/04/2016-f150-alternative-
fuel-leadership.html. Accessed May 2015.
46
Coal
According to the IEA “Coal currently provides 40% of the world’s electricity needs. It is
the second source of primary energy in the world after oil, and the first source of electricity
generation.” In the US, we used 924.4 million short tons in 2013 which was an increase of 4%
from the previous year. The electric power sector consumed about 92.8% of the total U.S. coal
consumption in 2013. (EIA) Coal is so widely used because it is cheaper and more readily
available. However, there are significant environmental side effects from the use of coal. These
are primarily related to emissions. These emissions can be mitigated with new technology that
either captures the CO2 before it can escape into the atmosphere or gasifying the coal and
separating the components. We do not believe that we should discontinue the use of coal any
time soon. Instead, we should implement the technology that is available to target the unwanted
environmental consequences.
Figure 1: EIA Coal Reserves
47
In the US, the demonstrated reserve base DRB was estimated to contain 480 billion short
tons (EIA 2014). According to the Open EI Transparent Cost Database, pulverized, unscrubbed
coal is $.04 per kilowatt-hour. Pulverized scrubbed coal is $.05 per kilowatt-hour. And the
electricity from an integrated gasification combined cycle coal plant is $.08 per kilowatt-hour.
The cost to build a coal plant is significantly higher than most other power plants. According to
the EIA, the average cost of an upgraded coal plant is around $3 billion. Compare this to its
replacement, natural gas, whose average cost to build a new plant is around $330 million.28
People have a general bad perception of coal. They call it dirty energy. Therefore, coal
has been stigmatized. If people were more educated on the new technology available for “clean
coal” they may be less zealous about its demise. People do not know to seek out this information.
This problem can only be solved with a focus on education and public awareness.
Emissions from coal are the worst of all the energy technologies. A typical coal plant
emits 820 g CO2/kWhe. However, an upgraded plant with emission-cutting technology can emit
anywhere from 160 to 220 g CO2/kWhe (IPCC 2014).29
This is an opportunity to continue our
use of coal which we have an overabundance of.
28
http://www.eia.gov/forecasts/capitalcost/. Table 1 and 2. Accessed May 2015.
29
"IPCC Working Group III – Mitigation of Climate Change, Annex II I:
Technology - specific cost and performance parameters" (PDF). IPCC. 2014.
48
Nuclear Energy
Current State 2015:
Nuclear power plants split uranium atoms inside a reactor in a process called fission. At a
nuclear energy facility, the heat from fission is used to produce steam, which spins a turbine to
generate electricity. A single uranium fuel pellet the size of a pencil eraser contains the same
amount of energy as 17,000 cubic feet of natural gas, 1,780 pounds of coal or 149 gallons of
oil.30
There are no emissions of carbon dioxide, nitrogen oxides and sulfur dioxide during the
production of electricity at nuclear energy facilities. Nuclear energy is the only clean-air source
of energy that produces electricity 24 hours a day, every day. A renewable energy source uses an
essentially limitless supply of fuel, whether wind, the sun or water. Nuclear energy is often
called a sustainable energy source, because there is enough uranium in the world to fuel reactors
for 100 years or more. Compared to other non-emitting sources, nuclear energy facilities are
relatively compact. The U.S. has its most prominent uranium reserves in New Mexico, Texas,
and Wyoming. The U.S. Department of Energy has approximated there to be at least 300 million
pounds of uranium in these areas.31
A typical nuclear power plant in a year generates 20 metric tons of used nuclear fuel. The
nuclear industry generates a total of about 2,000 - 2,300 metric tons of used fuel per year. High-
30
"STP Nuclear Operating Company / Welcome / Welcome." STP Nuclear Operating Company
/ Welcome / Welcome. Web. 11 May 2015.
31
Union of Concerned Scientists. "How Nuclear Power Works". Union of Concerned Scientists. Retrieved 29
April 2014.
49
level radioactive waste is the byproduct of recycling used nuclear fuel, which in its final form
will be disposed of in a permanent disposal facility.
Low-level radioactive waste (LLRW) consists of items that have come in contact with
radioactive materials, such as gloves, personal protective clothing, tools, water purification filters
and resins, plant hardware, and wastes from reactor cooling-water cleanup systems. It generally
has levels of radioactivity that decay to background radioactivity levels in less than 500 years.
About 95 percent decays to background levels within 100 years or less. The United States has the
4th largest uranium reserves in the world.32
In 2013, the US electricity generation was 4294 billion kWh gross, 1717 billion
kWh(40%) of it from coal-fired plant, 1150 billion kWh (27%) from gas, 822 billion kWh (18%)
nuclear, 291 billion kWh from hydro, 170 billion kWh from wind, 12 billion kWh from solar and
18 billion kWh from geothermal (IEA data). Annual electricity demand is projected to increase
to 5,000 billion kWh in 2030.Annual per capita electricity consumption in 2012 was 11,900
kWh. Total capacity is 1068 GWe, less than one- tenth of which is nuclear. The country's 100
nuclear reactors produced 798 billion kWh in 2014, over 19% of total electrical output. There are
now 99 units operable (98.7 GWe) and five under construction.33
According to the EIA, there are currently 61 commercially operating nuclear power
plants with 99 nuclear reactors in 30 states in the United States. Thirty-five of these plants have
two or more reactors. The Palo Verde plant in Arizona has 3 reactors and had the largest
combined net summer generating capacity of 3,937 megawatts (MW) in 2012. Fort Calhoun in
Nebraska with a single reactor had the smallest net summer capacity at 479 megawatts (MW) in
32
The Sierra Club of Southeastern PA And CCP Coalition for a Sustainable Future
33
"World Nuclear Association." Nuclear Power in the USA. Web. 11 May 2015.
50
2012.Four reactors were taken out of service in 2013: the Crystal River plant in Florida with one
reactor in February; the Kewaunee plant in Wisconsin with one reactor in April; and the San
Onofre plant in California with two reactors in June. The Vermont Yankee plant in Vermont,
with a single reactor, was taken out of service in December 2014.
Figure 2: Current U.S Nuclear Power Plants (EIA)
Nuclear energy is one of America’s lowest-cost “round the clock” electricity sources,
with national average production costs at 2.4 cents per kilowatt-hour in 2012. Similarly, the
average cost of electricity produced by coal was 3.27 cents per kilowatt-hour, natural gas 3.4
cents. The average production cost for nuclear energy has remained well below three cents per
kilowatt-hour for the past 18 years. Nuclear and coal plants, in fact, have consistently been the
51
most stable and predictable source of low-priced power among all base load or always-on
generators for decades. Nuclear energy can maintain this long-term price stability because only
31 percent of the production cost is fuel cost. By way of comparison, fuel accounts for 80 to 90
percent of the cost of electricity produced by coal- or gas-fired electric generation, both of which
have low production costs today because of the current abundance — and therefore low cost —
of fuel.34
Figure 3: U.S Electricity Production Costs
Dry cask storage is a method of storing high-level radioactive waste, such as spent
nuclear fuel that has already been cooled in the spent for at least one year and often as much as
ten years. Casks are typically steel cylinders that are either welded or bolted closed. The fuel
34
"Nuclear Power's Production Costs Are Low." Nuclear Matters. Web. 12 May 2015.
52
rods inside are surrounded by inert gas. Ideally, the steel cylinder provides leak-tight
containment of the spent fuel. Each cylinder is surrounded by additional steel, concrete, or other
material to provide radiation shielding to workers and members of the public.
The NRC describes the dry casks used in the US as "designed to resist floods, tornadoes,
projectiles, temperature extremes, and other unusual scenarios”. As of the end of 2009, 13,856
metric tons of commercial spent fuel – or about 22 percent – were stored in dry casks. 35
Since the Obama administration suspended the NRC’s review of the Yucca Mountain
repository program in 2010, the federal government has not had a viable program for the
management of used nuclear fuel from commercial nuclear energy facilities and high-level
radioactive waste from government defense and research activities. More nuclear waste is being
loaded into sealed metal casks filled with inert gas.
35
"Spent Fuel Storage in Pools and Dry CasksKey Points and Questions & Answers." NRC:
Spent Fuel Storage in Pools and Dry Casks. Web. 12 May 2015.
53
Figure 4: U.S Nuclear Fuel Storage (NEI)
The Nuclear Waste Policy Act of 1982: The Nuclear Waste Policy Act of 1982 created a
timetable and procedure for establishing a permanent, underground repository for high-level
radioactive waste by the mid-1990s, and provided for some temporary federal storage of waste,
including spent fuel from civilian nuclear reactors.
The Act established a Nuclear Waste Fund composed of fees levied against electric
utilities to pay for the costs of constructing and operating a permanent repository, and set the fee
at one mill per kilowatt-hour of nuclear electricity generated. Utilities were charged a one-time
fee for storage of spent fuel created before enactment of the law. The Nuclear Waste Fund
receives almost $750 million in fee revenues each year and has an unspent balance of $25
billion. However (according to the Draft Report by the Blue Ribbon Commission on America’s
54
Nuclear Future), actions by both Congress and the Executive Branch have made the money in the
fund effectively inaccessible to serving its original purpose. The commission made several
recommendations on how this situation may be corrected. In late 2013, a federal court ruled that
the Department of Energy must stop collecting fees for nuclear waste disposal until provisions
are made to collect nuclear waste. In December 1987, Congress amended the Nuclear Waste
Policy Act to designate Yucca Mountain, Nevada as the only site to be characterized as a
permanent repository for all of the nation's nuclear waste. The Obama Administration rejected
use of the site in the 2010 United States federal budget, which eliminated all funding except that
needed to answer inquiries from the Nuclear Regulatory Commission. In Obama's 2011 budget
proposal released February 1, all funding for nuclear waste disposal was zeroed out for the next
ten years and it proposed to dissolve the Office of Civilian Waste Management required by the
NWPA.36
A series of ten Gallup polls from 1994 to 2012 found support for nuclear energy in the
United States varying from 46% to 59%, with opposition ranging from 33% to 48%. In nine out
of the ten polls, both a plurality and a majority favored nuclear power; the exception was a 2001
poll in which 46% favored, and 48% opposed nuclear power. Polls taken just before the
Fukishima accident and a year after the accident found identical percentages of 57% favoring
nuclear power.
Phase I: In 10 years-2025
According to EIA’s 2015 Energy Outlook, total electricity demand grows by 29%
(0.9%/year), from 3,826 billion kWh in 2012 to 4,954 billion kWh in 2040. In the year 2025, U.S
36
Draft Report to the Secretary of Energy Future. Blue Ribbon Commission on America’s
Nuclear: July 29, 2011.
55
net electricity consumption will be 5,207 billion kWh compared to 4,429 billion kWh in 2015.
Due to the significant number of coal-fired plant retirements–97 gigawatts by 2035 there is
greater need for additional base load capacity. Also, LNG exports by 2019 might also effect
electricity generation by 2025 due to changes in market prices for natural gas. Thus, projections
of nuclear capacity and generation are influenced by assumptions about the potential for capacity
uprates, new licensing requirements, future operating costs, and outside influences such as
natural gas prices and incentives for other generating technologies. As nuclear power plants are
complex construction projects, their construction periods are longer than other large power
plants. It is typically expected to take 5 to 7 years to build a large nuclear unit (not including the
time required for planning and licensing).Therefore, in the first ten years of or energy plan we
aim to build support of electricity generation through our education agenda since, there will be
no new functioning nuclear plant generation that will significantly increase their share in 2025
from the estimated 18% in 2015.We believe from 2015-2025 our education agenda and increased
public awareness will drive policy changes and encourage private companies and stakeholders to
start investing in new nuclear generating capacity. In this period of time we would specifically
like to focus on building of small scale “cookie cutter” reactors which will be localized and be
distributed power. Because of their small size—300 megawatts or less, compared to a typical
nuclear power plant of 1,000 megawatts—they have many useful applications, including
generating emission-free electricity in remote locations where there is little to no access to the
main power grid or providing process heat to industrial applications. They are "modular" in
design, which means they can be manufactured completely in a factory and delivered and
installed at the site in modules, giving them the name "small modular reactors," or SMRs.37
In
37
"Small Reactor Designs." Small Reactors. Web. 12 May 2015.
56
addition we advocate to for extensive research into thorium based nuclear reactors for fourth
generation nuclear power plants to minimize environmental risks and storage problems. The US
still relies on second-generation light-water, solid-fuel reactors that operate, on average, at more
than 90 percent capacity. Fourth-generation reactors will be even more efficient than third-
generation union with the potential to produce more electricity at less cost. They operate at much
higher temperatures but at lower pressures than third-generation reactors. Thorium is better
suited to run them than uranium because it has a higher melting point. That substitution would
minimize the danger of a meltdown at the reactor’s core, which happened partially at Three Mile
Island and wholly at Fukushima.
Funds for research into Thorium based nuclear reactors as well as research for finding
new nuclear waste storage sites should be allocated from the Nuclear Waste Fund since the
utilities as tax payers have already paid for it over the years. We anticipate that by 2025
legislation will push for Yucca Mountain to start accepting nuclear waste from all around the
country. However, we would still want to continue the process of finding new storage sites
within these ten years.
Phase II: In 25 years- 2040
As mentioned previously in the section above, U.S electricity demand will be 4,954
billion kWh in 2040 according to EIA. This is a slight decrease from the consumption in 2025
and can be attributed to changes in economic growth, advances in energy-efficient technologies,
and electricity prices. In regards to U.S nuclear power capacity, the World Nuclear Organization
states that, “Coal is projected to retain the largest share of the electricity generation mix to 2035,
though by 2020 about 49 GWe of coal-fired capacity is expected to be retired, due to
environmental constraints and low efficiency, coupled with a continued drop in the fuel price of
57
gas relative to coal. Coal-fired capacity in 2011 was 318 GWe. If today’s (2015) nuclear plants
retire after 60 years of operation, If today’s nuclear plants retire after 60 years of operation, 22
GWe of new nuclear capacity would be needed by 2030, and 55 GWe by 2035 to maintain a
20% (approx.) nuclear share”. We also believe that growth in electricity generation from nuclear
power will eat up the heavy costs of wind and solar energy – both of which are expected to
increase in supply according to our energy plan. By 2040 we expect a 25% increase in nuclear
generating capacity primarily from small based thorium 4th
generation reactors. In addition there
will also be a simultaneous increase in wind and solar energy by 20% during this time to
supplement our zero carbon emission electricity generation plan. In our plan we also call for
increased distributed power which will increase the efficiency of electricity generation and
decrease inefficiency from transmission. According to GE’s publication on the subject,
“Distributed power technologies includes diesel and gas reciprocating engines, gas turbines, fuel
cells, solar panels and small wind turbines. Although there is no standard definition, distributed
power technologies are less than 100 megawatts (MW) in size—and typically less than 50 MW
which is the limit that distribution systems can accommodate at distribution voltages. They are
highly flexible and suitable across a range of applications including electric power, mechanical
power and propulsion. Distributed power technologies can stand alone, or they can work together
within a network of integrated technologies to meet the needs of both large and small energy
users”. The rise of distributed power is being driven by the ability of distributed power systems
to overcome the constraints that typically inhibit the development of large capital projects and
transmission and distribution lines. Because they are small, they have lower capital requirements
and can be built and become operational faster and with less risk than large power plants. In
addition, distributed power systems can be incrementally added to meet growing energy needs.
58
Phase III: In 50 years-2065
By 2065 we expect nuclear power generation to increase to 34% to support our efforts to
increase renewables (wind, solar, hydro) by 30% as well as move towards a low carbon and oil
dependent energy market. Since in these 50 years we will have a greater number of 4th
generation
nuclear reactors we will see a significant decrease in demand for electricity in part due to
increased efficiency from nuclear generation. Increasing thermal efficiency, the ratio between
electricity and heat produced, key to improving the overall economics of nuclear power. Fossil-
fueled power plants have slowly improved their thermal efficiencies over the last several
decades, but light-water reactors haven’t changed. LWRs have thermal efficiencies under 33
percent, compared to modern coal plants at approximately 39 percent and combined-cycle gas
plants at 50 to 60 percent. A higher thermal efficiency increases the amount of electricity
produced for a given reactor size. Higher thermal efficiency also means less waste heat and less
water needed for cooling, which lessens the thermal environmental impact and the costs of
dealing with waste heat. Thermal efficiency is dependent on the temperature of the reactor core
and how efficiently the working fluid can be compressed and expanded. Higher temperatures
allow for the use of a more efficient power conversion system, usually through the use of a
Brayton cycle turbine –– the same system used in a combined-cycle natural gas turbine. For this
reason, many advanced reactor designs target higher operating temperatures in order to utilize
Brayton cycle turbines, while others use alternate means to boost efficiency. Reactor designs that
employ a Brayton cycle engine are also better able to adjust their power output (load-follow).
This may be economically attractive to utilities that operate in deregulated electricity markets, as
59
they can more easily match power output from intermittent renewables. Generation IV nuclear
power plants can achieve up to 45% efficiency in their lifetime. 38
Wind Energy
Current State 2015:
Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by
the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns
and speeds vary greatly across the United States and are modified by bodies of water, vegetation,
and differences in terrain. The terms wind energy or wind power describe the process by which
the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic
energy in the wind into mechanical power. This mechanical power can be used for specific tasks
or a generator can convert this mechanical power into electricity.
In a wind turbine, the wind blows on the angled blades of the rotor, causing it to spin,
converting some of the wind’s kinetic energy into mechanical energy. Sensors in the turbine
detect how strongly the wind is blowing and from which direction. The rotor automatically turns
38
How to make Nuclear Cheap. Breakthrough Institute: June 2014
60
to face the wind, and automatically brakes in dangerously high winds to protect the turbine from
damage. From the figure below: A shaft and gearbox connect the rotor to a generator (1), so
when the rotor spins, so does the generator. The generator uses an electromagnetic field to
convert this mechanical energy into electrical energy. The electrical energy from the generator is
transmitted along cables to a substation (2). Here, the electrical energy generated by all the
turbines in the wind farm is combined and converted to a high voltage. The national grid uses
high voltages to transmit electricity efficiently through the power lines (3) to the homes and
businesses that need it (4). Here, other transformers reduce the voltage back down to a usable
level.39
Figure 5: How Electricity is generated through Wind (EDF)
39
"How Electricity Is Generated through Wind." EDF Energy. Web. 12 May 2015.
61
Wind power in the United States is a branch of the energy industry, expanding quickly
over the last several years. As of the end of 2014 the capacity was 65,879 MW. The U.S. wind
industry has had an average annual growth of 25.6% over the last 10 years (beginning of 2005-
end of 2014). Through December 2014, the electricity produced from wind power in the United
States amounted to 181.79 terawatt-hours, or 4.44% of all generated electrical energy. 40
Sixteen states have installed over 1,000 MW of wind capacity with Michigan just
breaking the mark in the 4th quarter of 2013. Texas, with 14,098 MW of capacity, has the most
installed wind power capacity of any U.S. state, and also has more under construction than any
other state currently has installed. Second and third are California and Iowa with 5,917 MW and
40
"AWEA 4th quarter 2014 Public Market Report" (PDF). American Wind Energy
Association(AWEA). January 2014..
62
5,688 MW respectively. The Alta Wind Energy Center in California is the largest wind farm in
the United States with a capacity of 1320 MW of power. 41
As of 2014, the wind industry in the USA is able to produce more power at lower cost by
using taller wind turbines with longer blades, capturing the faster winds at higher elevations.
This has opened up new opportunities and in Indiana, Michigan, and Ohio, the price of power
from wind turbines built 300 feet to 400 feet above the ground can now compete with
conventional fossil fuels like coal. Prices have fallen to about 4 cents per kilowatt-hour in some
cases and utilities have been increasing the amount of wind energy in their portfolio, saying it is
their cheapest option.42
41
Terra-Gen Closes on Financing for Phases VII and IX, Business Wire, April 17, 2012
42
Diane Cardwell (March 20, 2014). "Wind Industry’s New Technologies Are Helping It
Compete on Price". New York Times.
63
Figure 6: 2014 U.S Wind Power Capacity (NREL)
The Production Tax Credit (PTC) is a federal incentive that provides financial support for
the development of renewable energy facilities. On January 1, 2013 the production tax credit was
extended for another year. Combined with state renewable electricity standards, the PTC has
been a major driver of wind power development in the United States. This development has
resulted in significant economic benefits, according to the U.S. Department of Energy:
 Between 2007 and 2014, U.S. wind capacity has nearly quadrupled, representing an
annual average investment of nearly $15 billion.
 More than 550 manufacturing facilities located in 43 states produce 70 percent of the
wind turbines and components installed in the United States, up from 20 percent in
2006 – 2007.
64
 The cost of generating electricity from wind has fallen by more than 40 percent over the
past three years.
But Congress has repeatedly gone back and forth between expiring and extending the
PTC, which has wreaked havoc on the wind industry. Originally enacted as part of the Energy
Policy Act of 1992, Congress has extended the provision six times and has allowed it to expire
on six occasions. This "on-again/off-again" status has resulted in a boom-bust cycle of
development. In the years following expiration, installations dropped between 76 and 93 percent,
with corresponding job losses.
Short-term extensions of the PTC are insufficient for sustaining the long-term growth of
renewable energy. The planning and permitting process for new wind facilities can take up to
two years or longer to complete. As a result, many renewable energy developers that depend on
the PTC to improve a facility's cost effectiveness may hesitate to start a new project due to the
uncertainty that the credit will still be available to them when the project is completed.
As of 2014, the United States still had no operational offshore wind power facilities.
Development is hindered by relatively high cost compared to onshore facilities. A number of
projects are under development with some at advanced stages of development. The United
States, though, has very large offshore wind energy resources due to strong, consistent winds off
the long U.S. coastline.
65
Figure 7: U.S Annual Average Offshore Wind Speed at 90 meters (NREL)
The National Renewable Energy Laboratory (NREL) provided an assessment of potential
generating capacity from offshore wind, totaling 4,150 gigawatts (GW). At the end of 2009, the
Nation's total electric generating capacity was 1,025 GW. The NREL assessment does not
consider cost or transmission availability, and assumes all locations meeting certain
characteristics will be available for offshore wind development.
Offshore winds are attractive as a power source as they are typically both stronger and
steadier than winds onshore. Offshore wind turbines, however, are costlier, take longer to build,
and are more challenging to maintain. The United States does not currently have any operating,
utility-scale offshore wind capacity, although some projects are in the planning stages. Factors
other than wind resource availability, including the future availability of subsidies for wind
generation, the cost of natural gas and other competing technologies, and issues surrounding the
66
allocation of costs for transmission projects that could connect wind-rich regions with major load
centers, will likely play a dominant role in determining the future use of wind power.
Coastal residents have opposed offshore wind farms because of fears about impacts on
marine life, the environment, electricity rates, aesthetics, and recreation such as fishing and
boating. However, residents also cite improved electricity rates, air quality, and job creation as
positive impacts they would expect from wind farms. Wind turbines can be positioned at some
distance from shore, impacts to recreation and fishing can be managed by careful planning of
wind farm locations.
In June 2009, Secretary of the Interior Ken Salazar issued five exploratory leases for
wind power production on the Outer Continental Shelf offshore from New Jersey and Delaware.
The leases authorize data gathering activities, allowing for the construction of meteorological
towers on the Outer Continental Shelf from six to 18 miles (29 km) offshore. Four areas are
being considered. On February 7, 2011, Salazar and Stephen Chu announced a national strategy
to have offshore wind power of 10 GW in 2020, and 54 GW in 2030. Projects are under
development in areas of the East Coast, Great Lakes, and Gulf coast.
Phase I: In 10 years -2025
As mentioned earlier in the plan, according to EIA’s 2015 Energy Outlook, total
electricity demand grows by 29% (0.9%/year), from 3,826 billion kWh in 2012 to 4,954 billion
kWh in 2040. In the year 2025, U.S net electricity consumption will be 5,207 billion kWh
compared to 4,429 billion kWh in 2015. Also, renewables (mainly solar and wind) account for
more than half the capacity added through 2022, largely to take advantage of the current
production tax credit and to help meet state renewable targets. Renewable capacity additions are
67
significant in most of the cases, and in the Reference case they represent 38% of the capacity
added from 2013 to 2040. The 109 GW of renewable capacity additions in the Reference case
are primarily wind (49 GW) and solar (48 GW) technologies, including 31 GW of solar PV
installations in the end-use sectors.
In the first 10 years of our plan we advocate for reform in the Production Tax Credit. The
current system makes the wind energy sector too dependent on government subsidies. Thus, they
are impacted heavily by the volatility of policy changes. Since it was introduced over 20 years
ago, it has been allowed to lapse several times, and last year it very nearly expired, only to be
extended for a year at the last minute. This leads to a potentially wasteful boom-and-bust cycle
as wind developers rush to take advantage of the credit while it’s available. It would not be in the
best interest of the nation or the wind industry to make PTC permanent. That would provide little
incentive to innovate. Wind farm developers will simply keep buying the same wind
turbines that have been shown to make a profit in the past, or ones that are only incrementally
better. According to Kevin Bulls from the MIT Technology report, “A better approach would be
to establish the production tax credit for a fixed time, and then decrease the size of the credit on a
predictable schedule. That way it becomes clear that new technologies will be needed to keep
wind farms profitable. And because turbine makers can be reasonably confident that the bottom
won’t suddenly drop out of the market, they can justify investments in longer-term R&D projects
that could make wind power considerably cheaper or more reliable”
Another option is to specifically require innovation as a condition of getting the tax
credit. Such a requirement might involve tying the credit to specific cost and performance
targets, which would be changed as technology improves and would be set up, say, based on the
needs of utilities. Without such a requirement, wind farm developers (and those who fund them)
68
will choose established technology with a track record that makes it easy to predict return on
investment. There will only be incremental improvements, rather than major changes that might
allow wind to stand on its own in the long term.
We believe that such reform will create a long term sustainable market for the wind
industry. Our Independent Agency should spearhead the reform in PTC and consult with all its 7
regions to gradually wean off government subsidies. Since we expect a 5% growth in electricity
generation from wind by 2025 and 20% by 2040, a PTC reform is vital to achieve these supply
goals.
Phase II: In 25 years- 2040
U.S electricity demand will be 4,954 billion kWh in 2040 according to EIA. This
is a slight decrease from the consumption in 2025 and can be attributed to changes in economic
growth, advances in energy-efficient technologies, and electricity prices. With PTC reform in
place we should expect a growth in energy efficient wind turbines. While a previous focus of the
wind industry was increasing the total nameplate capacity of wind turbines, the focus has shifted
to the capacity factor of the turbine, which helps keeps energy cost low by providing the most
possible power. One of the deciding forces so far for increasing capacity factors has been an
increase in the size of the rotors used on wind turbines. GE's predominant turbine in the U.S.,
which has a 1.6 MW capacity, currently comes with a 100-meter rotor, compared to a 70-meter
rotor in the past. Betz's law calculates the maximum power that can be extracted from the wind,
independent of the design of a wind turbine in open flow. According to Betz's law, no turbine
can capture more than 16/27 (59.3%) of the kinetic energy in wind. The factor 16/27 (0.593) is
known as Betz's coefficient. Practical utility-scale wind turbines achieve at peak 75% to 80% of
the Betz limit. It shows the maximum possible energy — known as the Betz limit — that may be
69
derived by means of an infinitely thin rotor from a fluid flowing at a certain speed. Increasing the
size of the turbine rotors creates new challenges for manufacturers, however. Rotors scale poorly
with size, so the cost can go up faster than the revenue generated by the increased capacity
factor. Turbine rotors are affected by two different forces: torque, which turns the rotors and
creates energy, and thrust, which pushes against the turbine. Dealing with thrust can be difficult
when designing a rotor. However, we expect breakthroughs in rotor technology to improve
efficiency, some of which have already gained momentum in 2015.
By 2025 we also hope to see U.S offshore wind technology coming online with
enhancements in transmission and distributed power. Moreover, we believe our education
agenda will educated the public on energy supply and demand which will increase acceptance for
onshore/offshore wind farms.
Phase III: In 50 years-2065
In 50 years we expect wind energy to provide 20% of U.S electricity. According to
Department of Energy’s report - Wind Vision: A New Era for Wind Power in the United States
:Wind energy has already cut electric sector carbon emissions by over 5 percent; those emissions
will fall by an additional 16 percent by 2050 as wind increases from 4.5 percent of our electricity
mix to 20 percent. Cumulatively through 2050, wind’s pollution reductions would avoid $400
billion in climate change damages. Wind would save an additional $108 billion in public health
costs by cutting other air pollutants, including preventing 22,000 premature deaths. In conclusion
we advocate the following measures to achieve growth in wind industry through 2065:
 Improved weather forecasting, and optimized layout of turbines at wind farms for
maximum power
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan
US Energy Plan

More Related Content

What's hot

IEA Fatih Birol Testimony - US Senate Hearing
IEA Fatih Birol Testimony - US Senate HearingIEA Fatih Birol Testimony - US Senate Hearing
IEA Fatih Birol Testimony - US Senate HearingEnergy for One World
 
EC4024 Lecture 14: Iceland and Ireland: Fair and Unfair Comparisons
EC4024 Lecture 14: Iceland and Ireland: Fair and Unfair ComparisonsEC4024 Lecture 14: Iceland and Ireland: Fair and Unfair Comparisons
EC4024 Lecture 14: Iceland and Ireland: Fair and Unfair ComparisonsStephen Kinsella
 
KTG w/ Sandy Leeds 2.9.10- "Hot Topics From the Financial Markets"
KTG w/ Sandy Leeds 2.9.10- "Hot Topics From the Financial Markets" KTG w/ Sandy Leeds 2.9.10- "Hot Topics From the Financial Markets"
KTG w/ Sandy Leeds 2.9.10- "Hot Topics From the Financial Markets" UT Austin McCombs School of Business
 
Debt dynamics, the primary deficit, and sustainability
Debt dynamics, the primary deficit, and sustainabilityDebt dynamics, the primary deficit, and sustainability
Debt dynamics, the primary deficit, and sustainabilityEd Dolan
 
Arra messaging
Arra messagingArra messaging
Arra messagingmikejwolf
 
What is the cyclical deficit and why should we care
What is the cyclical deficit and why should we careWhat is the cyclical deficit and why should we care
What is the cyclical deficit and why should we careEd Dolan
 
The State of American Energy Speech
The State of American Energy SpeechThe State of American Energy Speech
The State of American Energy SpeechPorts-To-Plains Blog
 
Gasoline Pushes US Inflation Higher in August
Gasoline Pushes US Inflation Higher in AugustGasoline Pushes US Inflation Higher in August
Gasoline Pushes US Inflation Higher in AugustEd Dolan
 
Quantitative Easing
Quantitative EasingQuantitative Easing
Quantitative Easingtutor2u
 
Inflation Watch: August 2011
Inflation Watch: August 2011Inflation Watch: August 2011
Inflation Watch: August 2011REALTORS
 
Eco 572 Education Specialist-snaptutorial.com
Eco 572 Education Specialist-snaptutorial.comEco 572 Education Specialist-snaptutorial.com
Eco 572 Education Specialist-snaptutorial.comrobertlesew63
 
The Current Macroeconomic Situation, June 10, 2008: The Last Financial Crisis...
The Current Macroeconomic Situation, June 10, 2008: The Last Financial Crisis...The Current Macroeconomic Situation, June 10, 2008: The Last Financial Crisis...
The Current Macroeconomic Situation, June 10, 2008: The Last Financial Crisis...Brad DeLong
 
Can the EU survive the Eurozone Crisis?
Can the EU survive the Eurozone Crisis?Can the EU survive the Eurozone Crisis?
Can the EU survive the Eurozone Crisis?Massimiliano Hasan
 
Discussion 4 descriptionin recent years, the surging demand
Discussion 4 descriptionin recent years, the surging demandDiscussion 4 descriptionin recent years, the surging demand
Discussion 4 descriptionin recent years, the surging demandronak56
 

What's hot (19)

IEA Fatih Birol Testimony - US Senate Hearing
IEA Fatih Birol Testimony - US Senate HearingIEA Fatih Birol Testimony - US Senate Hearing
IEA Fatih Birol Testimony - US Senate Hearing
 
U.s. debt crisis
U.s. debt crisisU.s. debt crisis
U.s. debt crisis
 
EC4024 Lecture 14: Iceland and Ireland: Fair and Unfair Comparisons
EC4024 Lecture 14: Iceland and Ireland: Fair and Unfair ComparisonsEC4024 Lecture 14: Iceland and Ireland: Fair and Unfair Comparisons
EC4024 Lecture 14: Iceland and Ireland: Fair and Unfair Comparisons
 
KTG w/ Sandy Leeds 2.9.10- "Hot Topics From the Financial Markets"
KTG w/ Sandy Leeds 2.9.10- "Hot Topics From the Financial Markets" KTG w/ Sandy Leeds 2.9.10- "Hot Topics From the Financial Markets"
KTG w/ Sandy Leeds 2.9.10- "Hot Topics From the Financial Markets"
 
Debt dynamics, the primary deficit, and sustainability
Debt dynamics, the primary deficit, and sustainabilityDebt dynamics, the primary deficit, and sustainability
Debt dynamics, the primary deficit, and sustainability
 
Arra messaging
Arra messagingArra messaging
Arra messaging
 
What is the cyclical deficit and why should we care
What is the cyclical deficit and why should we careWhat is the cyclical deficit and why should we care
What is the cyclical deficit and why should we care
 
The State of American Energy Speech
The State of American Energy SpeechThe State of American Energy Speech
The State of American Energy Speech
 
Introductio1.docx
Introductio1.docxIntroductio1.docx
Introductio1.docx
 
Gasoline Pushes US Inflation Higher in August
Gasoline Pushes US Inflation Higher in AugustGasoline Pushes US Inflation Higher in August
Gasoline Pushes US Inflation Higher in August
 
Stimulus²
Stimulus²Stimulus²
Stimulus²
 
Quantitative Easing
Quantitative EasingQuantitative Easing
Quantitative Easing
 
CSEC Economics SBA
CSEC Economics SBACSEC Economics SBA
CSEC Economics SBA
 
Energy Economics
Energy EconomicsEnergy Economics
Energy Economics
 
Inflation Watch: August 2011
Inflation Watch: August 2011Inflation Watch: August 2011
Inflation Watch: August 2011
 
Eco 572 Education Specialist-snaptutorial.com
Eco 572 Education Specialist-snaptutorial.comEco 572 Education Specialist-snaptutorial.com
Eco 572 Education Specialist-snaptutorial.com
 
The Current Macroeconomic Situation, June 10, 2008: The Last Financial Crisis...
The Current Macroeconomic Situation, June 10, 2008: The Last Financial Crisis...The Current Macroeconomic Situation, June 10, 2008: The Last Financial Crisis...
The Current Macroeconomic Situation, June 10, 2008: The Last Financial Crisis...
 
Can the EU survive the Eurozone Crisis?
Can the EU survive the Eurozone Crisis?Can the EU survive the Eurozone Crisis?
Can the EU survive the Eurozone Crisis?
 
Discussion 4 descriptionin recent years, the surging demand
Discussion 4 descriptionin recent years, the surging demandDiscussion 4 descriptionin recent years, the surging demand
Discussion 4 descriptionin recent years, the surging demand
 

Similar to US Energy Plan

What If...America's Energy Renaissance Never Actually Happened?
What If...America's Energy Renaissance Never Actually Happened?What If...America's Energy Renaissance Never Actually Happened?
What If...America's Energy Renaissance Never Actually Happened?Marcellus Drilling News
 
ECON 301 Week 5 DiscussionsGroup 2 US Trade PolicySummaryFor.docx
ECON 301 Week 5 DiscussionsGroup 2 US Trade PolicySummaryFor.docxECON 301 Week 5 DiscussionsGroup 2 US Trade PolicySummaryFor.docx
ECON 301 Week 5 DiscussionsGroup 2 US Trade PolicySummaryFor.docxjack60216
 
Explain the US.Government.docx
Explain the US.Government.docxExplain the US.Government.docx
Explain the US.Government.docxintel-writers.com
 
Jmm economic model preface 072111
Jmm economic model   preface 072111Jmm economic model   preface 072111
Jmm economic model preface 072111JamesMMarshall
 
Bch standard presentation (v2)
Bch standard presentation (v2)Bch standard presentation (v2)
Bch standard presentation (v2)ChristelH
 
Measuring Well-Being in policy
Measuring Well-Being in policyMeasuring Well-Being in policy
Measuring Well-Being in policylebenmitzukunft
 
Higher Education and the Triple Crunch
Higher Education and the Triple CrunchHigher Education and the Triple Crunch
Higher Education and the Triple CrunchRichard Hall
 
Week 3 - Discussion Forum 2Required ResourcesTextsGwartney
Week 3 - Discussion Forum 2Required ResourcesTextsGwartneyWeek 3 - Discussion Forum 2Required ResourcesTextsGwartney
Week 3 - Discussion Forum 2Required ResourcesTextsGwartneynicolleszkyj
 
Week 3 - Discussion Forum 1Required ResourcesTextsGwartney.docx
Week 3 - Discussion Forum 1Required ResourcesTextsGwartney.docxWeek 3 - Discussion Forum 1Required ResourcesTextsGwartney.docx
Week 3 - Discussion Forum 1Required ResourcesTextsGwartney.docxjessiehampson
 
The crisis of teaching forward and the need for academic activism
The crisis of teaching forward and the need for academic activismThe crisis of teaching forward and the need for academic activism
The crisis of teaching forward and the need for academic activismRichard Hall
 
Econ 100 b fall 2012 lecture 1 notes
Econ 100 b fall 2012 lecture 1 notesEcon 100 b fall 2012 lecture 1 notes
Econ 100 b fall 2012 lecture 1 notesMinh Le
 
Toward a New Agenda for America
Toward a New Agenda for AmericaToward a New Agenda for America
Toward a New Agenda for AmericaSustainable Brands
 

Similar to US Energy Plan (20)

What If...America's Energy Renaissance Never Actually Happened?
What If...America's Energy Renaissance Never Actually Happened?What If...America's Energy Renaissance Never Actually Happened?
What If...America's Energy Renaissance Never Actually Happened?
 
The presidentsmanagementagenda (1)
The presidentsmanagementagenda (1)The presidentsmanagementagenda (1)
The presidentsmanagementagenda (1)
 
Frackin Good
Frackin GoodFrackin Good
Frackin Good
 
ECON 301 Week 5 DiscussionsGroup 2 US Trade PolicySummaryFor.docx
ECON 301 Week 5 DiscussionsGroup 2 US Trade PolicySummaryFor.docxECON 301 Week 5 DiscussionsGroup 2 US Trade PolicySummaryFor.docx
ECON 301 Week 5 DiscussionsGroup 2 US Trade PolicySummaryFor.docx
 
Explain the US.Government.docx
Explain the US.Government.docxExplain the US.Government.docx
Explain the US.Government.docx
 
Jmm economic model preface 072111
Jmm economic model   preface 072111Jmm economic model   preface 072111
Jmm economic model preface 072111
 
Bch standard presentation (v2)
Bch standard presentation (v2)Bch standard presentation (v2)
Bch standard presentation (v2)
 
Opening remarks by Peter G. Peterson
Opening remarks by Peter G. PetersonOpening remarks by Peter G. Peterson
Opening remarks by Peter G. Peterson
 
Learning Event No.4: Highlights. ARDD2012 Rio
Learning Event No.4: Highlights. ARDD2012 RioLearning Event No.4: Highlights. ARDD2012 Rio
Learning Event No.4: Highlights. ARDD2012 Rio
 
Measuring Well-Being in policy
Measuring Well-Being in policyMeasuring Well-Being in policy
Measuring Well-Being in policy
 
Eizenstat - Keynote Address
Eizenstat - Keynote AddressEizenstat - Keynote Address
Eizenstat - Keynote Address
 
IT IS NOT SUSTAINABLE
IT IS NOT SUSTAINABLEIT IS NOT SUSTAINABLE
IT IS NOT SUSTAINABLE
 
Higher Education and the Triple Crunch
Higher Education and the Triple CrunchHigher Education and the Triple Crunch
Higher Education and the Triple Crunch
 
Week 3 - Discussion Forum 2Required ResourcesTextsGwartney
Week 3 - Discussion Forum 2Required ResourcesTextsGwartneyWeek 3 - Discussion Forum 2Required ResourcesTextsGwartney
Week 3 - Discussion Forum 2Required ResourcesTextsGwartney
 
Solutions Intro
Solutions IntroSolutions Intro
Solutions Intro
 
Week 3 - Discussion Forum 1Required ResourcesTextsGwartney.docx
Week 3 - Discussion Forum 1Required ResourcesTextsGwartney.docxWeek 3 - Discussion Forum 1Required ResourcesTextsGwartney.docx
Week 3 - Discussion Forum 1Required ResourcesTextsGwartney.docx
 
The crisis of teaching forward and the need for academic activism
The crisis of teaching forward and the need for academic activismThe crisis of teaching forward and the need for academic activism
The crisis of teaching forward and the need for academic activism
 
Econ 100 b fall 2012 lecture 1 notes
Econ 100 b fall 2012 lecture 1 notesEcon 100 b fall 2012 lecture 1 notes
Econ 100 b fall 2012 lecture 1 notes
 
Toward a New Agenda for America
Toward a New Agenda for AmericaToward a New Agenda for America
Toward a New Agenda for America
 
LeftonCapstone IRP+RPS
LeftonCapstone IRP+RPSLeftonCapstone IRP+RPS
LeftonCapstone IRP+RPS
 

US Energy Plan

  • 1. 1 Debjani Chakravarty, Sunny Livingston, Lewis Wilson, Caleb Wild A Comprehensive Energy Plan for the United States To Year 2065
  • 2. 2 Table of Contents I. Executive Summary ...........................................................................................3 Objectives Mission Statement Keys to Success II. SWOT Analysis of the existing U.S Energy Policy.............................................4 Strengths Weaknesses Opportunities Threats III. Goals ..................................................................................................................6 Agency Education Agenda Environmental Agenda Infrastructure Agenda Electricity supply goals Transportation supply goals IV. Supply (2015—2065) ........................................................................................34 Oil Natural Gas Coal Nuclear Energy Wind Energy Solar Power Hydroelectricity Biofuels
  • 3. 3 Executive Summary Why is this topic important: Economic (conditions, financial incentives, and budget for energy), political, social, oil crises, blackouts, shortages, Important because competing for resources, need for good leaders with integrity, public understanding and appreciation of projects with long term benefits. Objectives Within the first ten years we intend to focus on the Education and Public Awareness Agenda in order to increase awareness of the current problems facing US energy policy. We will be attempting to make small policy changes through the traditional legislative process while gaining support and consensus for the restructuring of energy policy governance. Some of these policy changes will include appropriate increases on environmental regulation pertaining to energy production, the utilization of the Yucca Mountain Nuclear Waste Repository, small adjustments to the energy mix, an incentive plan for car manufacturers to begin making flex fuel available, and the increase in percentage of electric vehicles. By 2040, we hope that our new independent Energy & Environment Commission will be fully implemented and operating effectively. This will allow for increased efficiency and productivity pertaining to energy policy. We will have made real change to the US energy mix. Our flex fuel and electric vehicle goals will have had a significant impact on fuel consumption by this time. By 2065, our energy mix will be highly diversified due to a large shift of the transportation consumption to electricity.
  • 4. 4 Mission Statement Our mission is to decrease the vulnerability of the United States Energy Supply Portfolio. We plan to achieve this by diversifying our supply and increasing efficiency wherever possible. We are also separating consumption into two groups: Transportation and Electricity. This is to ensure that we implement appropriate policy that takes into account the limitations and opportunities of both sectors. We believe it is possible and probable for the United States to have an energy policy that provides an affordable, efficient, and available energy supply. Keys to Success We want to create an Independent Agency that will allow for efficient and productive governance. We have a robust Education Agenda that will empower the public to make informed decisions and be conducive to fruitful debate. We have a strong Environmental Agenda that puts us on a path of sustainable coexistence with our surroundings. We have Infrastructure Goals that will enable and support our energy supply goals. We have Transportation Energy Supply Goals that will empower consumers to drive the market for fuel choice. All of these things tie together to support our Electricity Energy Supply Goals which diversify our supply in order to decrease vulnerability. SWOT Analysis of the existing U.S Energy Policy Strengths In the United States, there are several factors that have contributed to the success of our energy industry. One of these factors are private property. An example is the somewhat recent success of natural gas production in the US. Some of the reasons for the success of producing these shale
  • 5. 5 formations are the technology of hydraulic fracturing and horizontal drilling, the availability of credit, and private ownership of minerals. Weaknesses The current system has no comprehensive long-term plan and there is a lack of energy education among the public. The policies are highly politicized mainly due to campaign funding influencing policy. Short term policies undermine infrastructure planning. We have an overall fragmented and dysfunctional energy policy. Opportunities We have a vast domestic supply that is underutilized. Many changes can be made to processes by which funds are appropriated to different projects. Due to misinformation and the fragmented natured of different energy related and regulatory departments, we fail to reach maximum efficiency in execution of our current energy plans. Threats We are too reliant on one fuel source especially in transportation. There is geopolitical volatility that could disrupt our supply. There is an increasing middle class population in China and India that will drive up demand too quickly for us to respond creating a shortage.
  • 6. 6 Goals Agency The Independent Energy and Environment Commission Before any progress can be made towards securing a prosperous energy future for the United States we must accept two contradicting realities. Firstly, the current governmental structure is both inadequate and consistently unable to manage energy, energy related policy and enforcement. Secondly, the government, or a governmental body, is the only institution that is able to manage energy, energy related policy and enforcement.1 It is hard to disagree with the above statement, so we are therefore left with quite the conundrum, how do we as a nation manage energy, when the only body that would be able to do so consistently fails? Moreover, there is no real evidence to suggest that this pattern of shortcoming is due to change. There clearly needs to be a drastic change in order for us to be able to effectively manage energy as a nation, and to allow us to move forward towards goals that would benefit all of us. The question then, is what change will be most effective to meet our aims. As is so often the case, the most effective way to plan for the future is to study the past. This brings us to 1913. This may seem unusual, as in 1913 there was no energy issue, cars were uncommon and most homes were only beginning to become electrified. Obviously the coal that 1 Original quote
  • 7. 7 was used to fuel progress was causing a great deal of harm, but no one was aware of this, so why 1913? Whilst it is true that 1913 was not a year of energy concern, it was a year of financial concern. America was beginning to emerge as an economic world power, and the operation of an ever growing economy was become a headache for those in Washington. The solution was the creation of the Federal Reserve System, by act of congress on December 23rd 1913. Over 100 years ago, the leaders of the nation realized that the economy was too important to be left to the will of political infighting and indecision, and the result was a body separate from government to oversee America’s most vital asset, the economy. The Federal Reserve has proven a great success, and it is a model that has been replicated globally, although European central banks predated the Fed, many global banks such as the World Bank, and IMF have been modelled on the Feds success. Today however, we live in a different, almost every aspect of our daily lives, including the economy, hinges on energy. This is perhaps the most important issue of our time, and as the economy required in 1913, 100 years later it seems only fitting that energy, with all of its components, deserves the same specialized treatment. What is different about the Fed? The most obvious difference between the Federal Reserve and any other government body is, that within its very design, autonomy. The Federal Reserve was created to be isolated from the turmoil of capitol hill, the first and perhaps most important aspect that was written in to its creation, was the appointment of the board.
  • 8. 8 There are 7 positions on the board, each position holds a 14 year tenure. A board member can only serve once, and appointments are structured leading to one position opening every other year. This means that there is only one appointment per political cycle, and two per presidency. A board member sitting through their full term will outlast 3 presidencies, and as a result they are able to operate in the way they see best for the nation, regardless of political pressure. This is strengthened by the fact they can only sit once, so need not be popular as they could never be reappointed. The autonomous nature of the Fed allows it to operate in the way it views best, regardless of how popular or not that may be. The Fed has control over fiscal policy, and recently that has seen the Fed implement fiscal stimulus programs, and interest rate controls to guide the US economy through a turbulent market led collapse. If the Fed was control within the normal governmental structure, they would not have the ability to react as is necessary to overcome economics issues as they have been able to do. This structure seems the only real option to overcome the issues that now grip our nation and economy, the issue of energy and the environment. An issue this complex and this politicized can only be effectively managed by a body of government that is separated and protected from the turmoil of Washington. The Federal Reserve model is ideal for this. Creation of the IEEC Our proposal is the creation of the Independent Energy and Environment Commission. This body would have the roles of the Department of Energy, the Environmental Protection Agency, and the Federal Energy Regulatory Commission the National Oceanic and Atmospheric Administration, the Energy Information Agency and the Nuclear Regulatory Commission rolled
  • 9. 9 into it. The IEEC would operate separately from government, and would have the power to make and enforce energy and environmental policy without the political pressures of Washington. The IEEC, much like the Fed, will have regional branches, which will be able to monitor and report on energy and environmental issue specific to their region. These seven branches will have a representative each on the board, these board members will be appointed, and will serve 14 year terms, that will be staggered biannually, again like the Fed. Structuring the board so that each region is equally represented will ensure that the policies passed are neither biased nor unrealistic. As a consensus amongst the board will be necessary to pass legislation. This will ensure that a policy passed is not attainable in one region but unattainable in another, thus nullifying the usefulness of the IEEC. Much like the Fed, the board members and employees of the IEEC will be academics and experts in the world of energy and environment, and will not be from business. This will ensure that the decisions of the individual within the IEEC are us unbiased as can be possible, as there will be no financial influences on their decisions. Much like the Fed is a rotating door between the higher offices and the classrooms of top institutions, such as Georgetown, Harvard, MIT, Columbia etc. The IEEC will be structured in a similar way. With this, the IEEC should be a hub of intellectuals and research, with a goal to attain the most sensible and promising outcomes for the nation, away from politics and business. Working for the IEEC should be a goal for anyone in energy or environment related fields, just like working for the Federal Reserve is a goal on many economics and finance students.
  • 10. 10 Regional Boards Atlantic North Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont. Atlantic South Alabama, Florida, Georgia, North Carolina, South Carolina, Virginia, West Virginia. Gulf Central Alaska, Arkansas, Kansas, Louisiana, Mississippi, Oklahoma, Tennessee, Texas. Great Lakes and Midwest Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, Wisconsin. Mountain Colorado, Montana, Nebraska, North Dakota, South Dakota, Wyoming Desert Arizona, Idaho, Nevada, Utah, Idaho Pacific California, Hawaii, Oregon, Washington Funding The question of how to find the IEEC is the most simple to answer. The IEEC will be a number of pre-existing governmental bodies rolled into one entity. The pre-existing bodies already have
  • 11. 11 their own budgets and funding. The IEEC would simply inherit the funding from the governmental bodies that are rolled into it. Below is a table that illustrates the level of funding the IEEC would inherit, with the figures being taken from the respective governmental organizations own websites. It is clear to see that there is a great deal of funding available upon the creation of the IEEC. Department 2015 Budget (Millions) Department of Energy $27,0002 Environmental Protection Agency $10,0003 Federal Energy Regulatory Commission $1754 National Oceanic and Atmospheric Administration $5,5005 Energy Information Administration $1176 Nuclear Regulatory Commission $10607 IEEC Inherited Budget $43,852 2 Budget information from the Department of Energy 3 Budget information from the EPA 4 Budget information from the FERC 5 Budget information from NOAA 6 Budget information from the EIA 7 Budget information from the NRC
  • 12. 12 Economics Efficiency One of the key issue in politics today is excessive government spending. A government that is not being ran economically efficiently is causing a great kick back from the public, and is causing a movement calling for smaller government. With the creation of the IEEC there would be great savings to the government and to tax payers. Many roles are repeated across agencies, this is an inefficiency that the IEEC would eradicate, and in turn there would be financial savings. Communication between energy and environment agencies would also be no longer necessary. As a result, this time consuming and inefficient bureaucratic headache would be avoided all together, this dramatic increase in efficiency will save a great deal of time, which ultimately saves a great deal of money. In a time where government spending is under such scrutiny, the idea of an efficient hybridized government body may prove very appealing to the American voters. The impact of cost saving measure on public opinion should not be underestimated. The Process of Creating the IEEC There is a cone of possibility regarding the creation of the IEEC. The two key approaches however are one short term approach and one medium term approach. The short term approach requires events to occur that are completely out of our control that will force the hand of the voting public and congress. The medium term approach is completely within our control, and is a realistic timely approach towards building momentum for the creation of the IEEC. Short term Over the next year the US will see the closure of around 200 coal power plants, this is going to put an extreme strain on the grid, to the point where many expect black and brown outs all across
  • 13. 13 the country next winter. The regions that are expected to be worst hit include New York and Washington DC, this will be very unpopular indeed, especially in those politically influential areas. Today as this is being written, tensions in the Middle East are at an all-time high, and this is the Middle East we are talking about so that really is saying something. ISIS, and Al Qaeda are struggling to remain the premium brand in Islamic terrorism, and this publicity battle is being fought amongst the richest oil reserves in the world. Meanwhile tensions between Saudi Arabia and Iran have never been greater, and a proxy war currently being fought in Yemen is the last step in a path that leads toward a conflict that would not only interrupt oils supply from two of the world largest suppliers, but would also likely close the Arabian gulf and straits of Hormuz. This doesn’t take into account the continuing unrest in Libya, although not in the Middle East, their troubles are incredibly similar. Finally the impact of Boko Haram in Nigeria is threatening to disrupt the oil supply from Nigeria, one of the fastest growing export markets globally. What we are proposing for our short term creation plan is not too farfetched. The closure of coal plants create black outs and brown out over a cold winter. Also we see electricity prices increase as supply is strained. This is coupled with an oil shock caused by an eruption in one of the many potential conflict zones in the Middle East. The combination of a lack of supply for oil and electricity, as well as high prices for both, will bring to the i attention of the American voter the inadequacies of the current model towards energy and the environment. This tide of frustration and political will should be enough to push through the creation of the IEEC, with the promise to the American people of more efficient and reliable energy management, and the promise to deliver reliable energy at a consistent price. This is not an unfeasible scenario, and if
  • 14. 14 it presents itself the nation would be primes for a major change in energy and environment management at a governmental level. Medium Term The medium term approach is completely within our control. Through robust education of the population we can encourage discussion that will ultimately lead to a consensus toward the need to create an independent body to oversee energy and the environment. As people are made aware of the reality surrounding the situation of our current energy and environmental management, as well as educated regarding the alternative approaches towards managing energy and the environment, there will be a natural progression towards an independent body to manage the nation’s most vital resource. Our focus on energy and environmental education through schooling will also pay dividends when it comes to the creation of the IEEC. The students that are educated by this program will all be of voting age by the medium term period of this plan. As a result the momentum will be heavily in favour of creating an independent body to manage energy and the environment, this will be due to the large numbers of voters who are educated regarding the problems and solutions that face the energy and environment sectors.
  • 15. 15 Education Agenda We believe that education and public awareness will play a necessary and important role in achieving the goals in our energy plan. A more educated and energy cautious population will drive changes in energy and environmental policy. It will create more jobs in energy efficiency and environmental sector and in turn boost our nation’s economy. Education Middle/High School, Colleges and Vocational Training: Why we need to educate our current population?  Many jobs are going unfilled simply for lack of people with the right skill sets. Even with more than 13 million Americans unemployed, the manufacturing sector cannot find people with the skills to take nearly 600,000 unfilled jobs, according to a study last fall by the Manufacturing Institute and Deloitte.  In a recent study by the Lemselson-MIT Invention Index, which gauges innovation aptitude among young adults, 60 percent of young adults (ages 16 to 25) named at least one factor that prevented them from pursuing further education or work in the STEM fields. Thirty-four percent said they don't know much about the fields, a third said they were too challenging, and 28 percent said they were not well-prepared at school to seek further education in these areas.  The average age of Members of the House at the beginning of the 113th Congress was 57.0 years; of Senators, 62.0 years in 2014  Only 38% of young eligible adults vote. Only approximately 50% of the working population (25-50 years) vote. Both numbers have been declining. Highest percentage of votes held by ages 65 and over. This subgroup is unlikely to be open to radical reform in
  • 16. 16 the way our nation perceives energy. Thus energy awareness should be directed to the young adult and working population to drive policy changes through greater and more educated voter turnout.  The current employment-to-population ratio stands at 58.7 – far below pre-recession levels. This is a statistical ratio that measures the proportion of the country's working-age population (ages 15 to 64 in most OECD countries) that is employed. This includes people that have stopped looking for work. Current unemployment rate – 5.5%. Also 16% of Americans below poverty thresholdfor family of 4 around 20k annual income. Low-income families also tend to be most energy in-efficient. Need vocational training in energy related technical or field jobs to attract this population. Will increase employment to population ratio and decrease tax burden on the group.
  • 17. 17  Educated middle school and high school students will go on to pursue energy related careers or majors in college. Will be more aware of their energy consumption, energy supply and energy future of the nation. They will drive policy changes as they come of voting age. What can we do?  Public School and Private Company partnership: The president's STEM campaign leverages mostly private-sector funding. A nongovernmental organization, Change the Equation was set up by more than 100 CEOs, with the cooperation of state governments and educational organizations and foundations to align corporate efforts in STEM education.  Interdisciplinary Energy and Sustainability curriculum with all STEM courses or fulfill an Energy and Sustainability core with specific number of credit hours required for graduation  Middle School and High School Outreach by private companies  While there is no national curriculum in the United States, states, school districts and national associations do require or recommend that certain standards be used to guide school instruction – No Child Left Behind Act  Public school curricula, funding, teaching, employment, and other policies are set through locally elected school boards, who have jurisdiction over individual school districts. State governments set educational standards and mandate standardized tests for public school systems.  Postsecondary standards are the primary responsibility of individual institutions of higher education. However, institutions develop and enforce their standards with reference to
  • 18. 18 the policies administered by state agencies, the requirements of accrediting agencies, the expectations of professional associations and employers, and the practices of peer institutions.  Should offer Energy and Sustainability minor in all colleges if possible. Public Awareness Agenda: It is always more economic to use less energy than generate it even from renewable sources, therefore a household should always start by saving energy. Ever increasing energy prices provide an economic incentive whilst limiting climate change provides a societal incentive. Incentivizing and creating energy awareness in Working/Voting Age Population by:  Reduce Electricity use: Smart Home system-Real Time Energy Consumption Report A smart home may be defined as a well-designed structure with sufficient access to assets, communication, controls, data, and information technologies for enhancing the occupants’ quality of life through comfort, convenience, reduced costs, and increased connectivity. A commonly cited reason for this slow growth has been the exorbitant cost associated with upgrading existing building stock to include “smart” technologies such as network connected appliances. However, consumers have historically been willing to incur significant costs for new communication technologies, such as cellular telephones, broadband internet connections, and television services. According to the US Bureau of Labor Statistics the average homeowner spent approximately 11% more on entertainment (including cell phone and internet services) in 2010 than 25 years ago. Data indicate that consumers are willing to spend more on hybrid vehicles than on similarly sized traditional vehicles for reasons other than economic payback.
  • 19. 19  Looking inward, a smart home employs automated home energy management (AHEM), an elegant network that self manages end-use systems based on information flowing from the occupants and the smart meter. The value of AHEM is in reconciliation of the energy use of connected systems in a house with the occupant’s objectives of comfort and cost as well as the information received from the service provider. Sensors and controls work together via a wireless home area network (HAN) to gather relevant data, process the information using effective algorithms, and implement control strategies that simultaneously co-optimize several objectives: comfort and convenience at minimal cost to the occupant, efficiency in energy consumption, and timely response to the request of the service provider  Changes to the end-user electricity pricing structures – from fixed tariffs to dynamic prices that may change several times over a day – that reflect the use of the assets on the grid at any given time. If these structures are implemented to provide a tangible financial incentive for customers to respond to the requests of the service providers for demand reduction, the customers can receive measurable monetary value for their participation, in addition to the increased reliability of their service. Financial incentives are but one motivating factor for the adoption of smart homes.  Changes to energy policies and available subsidies for retrofitting existing homes with smart appliances as well as building new homes with smart technologies are viewed as non-technological enablers. In the US, the Energy Policy Act of 2005, the Energy Independence and Security Act of 2007, and the American Recovery and Reinvestment Act of 2009 have all provided tax incentives, credits or deductions for residential energy efficiency upgrades.
  • 20. 20  Lack of industry-accepted device communication and interoperability standards is a critical barrier to more wide-spread adoption of smart home technologies. Several ISO and IEEE standards activities are underway or recently completed to begin addressing this barrier. Key among them are ISO/IEC 15045, 15067, 18012, and IEEE 2030.  Feedback and automation are essential features of achieving this in a smart home. However, an optimal energy efficiency strategy requires both features be designed with the end-user in mind.  Reduce Heat losses: Home insulation system -The average U.S. family spends $1,900 a year on home utility bills. Heating and cooling your home account for the largest portion (54 percent) of your utility bills.  Ways your house is losing heat: o Poorly insulated attics – heat escapes from the top o Wrong-sized heating systems – Depending on your house’s square footage, your furnace could be producing more heat than you need o Holes in exterior walls – gaps where windows, doors or walls weren’t joined together let heat seep out o Leaky ducts – leaky ducts mean heat that is intended to keep you toasty in your living room escapes into walls instead, never making it in not the rooms you need to heat.  How can insulation help? o Proper insulation lets you save more and makes better use of the energy and heat in your house
  • 21. 21 o As much as 20 percent of your energy bill can be saved by good roof insulation o Insulation reduces the costs of heating and cooling by over 40 percent o Wall insulation can reduce this loss by 2/3 and make your home more comfortable o You can lose as much as 10 percent of heat through uninsulated floors o Insulation pays for itself in around five to six years
  • 22. 22 Environmental Agenda  Under the Independent Agency  more communication between EPA,DOI,USDA,NOAA,NRAC,DOE: Pooling of resources, experts from all areas coming together, faster reaction time and formulating and implementing fair regulation and standards.  Implement Carbon Capture and Sequestration in the short term- Since currently storage of CO2 has been an issue for most Coal Power plants due to lack of verified storage sites or huge upfront costs, we believe CO2 should be used for EOR as much as possible. Much of the easy-to-produce oil already recovered from U.S. oil fields, producers have attempted several tertiary, or enhanced oil recovery (EOR), techniques that offer prospects for ultimately producing 30 to 60 percent, or more, of the reservoir's original oil in place. CO2-EOR works most commonly by injecting CO2 into already developed oil fields where it mixes with and “releases” the oil from the formation, thereby freeing it to move to production wells. CO2 that emerges with the oil is separated in above-ground facilities and re-injected into the formation. CO2-EOR projects resemble a closed-loop system where the CO2 is injected, produces oil, is stored in the formation, or is recycled back into the injection well. Federal and state-level incentives can foster the initial, large-scale CCS projects that are needed to fully demonstrate the technology. At the federal level, Section 45Q tax credits provide $10 per metric ton of CO2 stored through enhanced oil recovery and $20 per metric ton of CO2 stored through deep saline formations. The National Enhanced Oil Recovery Initiative recommends an expansion of the existing 45Q tax credit for capturing carbon dioxide for use in EOR, as well as modifications to improve the functionality and financial certainty of 45Q tax credits. The
  • 23. 23 Initiative also recommends U.S. states to consider incentives such as allowing cost recovery through the electricity rate base for CCS power projects; including CCS under electricity portfolio standards; offering long-term off-take agreements for the products of a CCS project; and providing supportive tax policy for CCS or CO2-EOR projects. For the long and medium term a fair, sustainable and effective Cap and Trade Program needs to be implemented to reach new target to cut net greenhouse gas emissions 26-28 percent below 2005 levels by 2025. The new U.S. goal will double the pace of carbon pollution reduction from 1.2 percent per year on average during the 2005-2020 period to 2.3-2.8 percent per year on average between 2020 and 2025.  Recycling and Waste Management: Over the last few decades, the generation, recycling, composting, and disposal of MSW have changed substantially. Solid waste generation per person per day peaked in 2000 while the 4.38 pounds per person per day is the lowest since the 1980’s. The recycling rate has increased–from less than 10 percent of MSW generated in 1980 to over 34 percent in 2012. Disposal of waste to a landfill has decreased from 89 percent of the amount generated in 1980 to under 54 percent of MSW in 2012.No U.S National Recycling Law. Responsibility given to States. America’s very first federal solid waste law, 1965’s Solid Waste Disposal Act—itself an amendment to the original Clean Air Act—didn’t even mention recycling. “Eleven years later, Congress passed the Resource Conservation and Recovery Act (RCRA), which remains the cornerstone of federal solid waste and recycling legislation,” reports Miller. RCRA abolished open dumps and required the Environmental Protection Agency (EPA) to create guidelines for solid waste disposal and regulations for hazardous waste management, but had little to say about recycling except to call for an increase in federal
  • 24. 24 purchases of products made with recycled content. Resource Management Issue since they are limited. More population leads to more waste generated. In 2012, Americans generated about 251 million tons1 of trash and recycled and composted almost 87 million tons of this material, equivalent to a 34.5 percent recycling rate. Glass, PET bottles and jars and selected consumer electronics have lowest rate of recycling in the U.S- about 30% for each in 2012. We need innovative ways to separate our waste more effectively.  Reduce and regulate nitrogen use by using radioactive markers and sensors to measure different chemical concentrations in water: Minimizing nitrogen fertilizer rates while maintaining crop yields is essential both for improving agricultural profitability and reducing environmental consequences of farming, such as leaching and runoff from agricultural crop fields, which can be major sources of nitrogen to streams, rivers, and estuaries in the Southeast. Two-thirds of U.S. coastal systems are moderately to severely impaired due to nutrient loading; there are now approximately 300 hypoxic (low oxygen) zones along the U.S. coastline and the number is growing. One third of U.S. streams and two fifths of U.S. lakes are impaired by high nitrogen concentrations. More than 1.5 million Americans drink well water contaminated with too much (or close to too much) nitrate (a regulated drinking water pollutant), potentially placing them at increased risk of birth defects and cancer. More research is needed to deepen understanding of these health risks. Several pathogenic infections, including coral diseases, bird die-offs, fish diseases, and human diarrheal diseases and vector-borne infections are associated with nutrient losses from agriculture and from sewage entering ecosystems. Nitrogen is intimately linked with the carbon cycle and has both warming and cooling effects on the climate. Regulation of nitrogen oxide (NOX) emissions from
  • 25. 25 energy and transportation sectors has greatly improved air quality, especially in the eastern U.S. Nitrogen oxide is expected to decline further as stronger regulations take effect, but ammonia remains mostly unregulated and is expected to increase unless better controls on ammonia emissions from livestock operations are implemented. Nitrogen loss from farm and livestock operations can be reduced 30-50% using current practices and technologies and up to 70-90% with innovative applications of existing methods. Current U.S. agricultural policies and support systems, as well as declining investments in agricultural extension, impede the adoption of these practices.  Restoration Liability: EPA has not implemented a 1980 statutory mandate under Superfund to require businesses handling hazardous substances to demonstrate their ability to pay for potential environmental cleanups--that is, to provide financial assurances. EPA has cited competing priorities and lack of funds as reasons for not implementing this mandate, but its inaction has exposed the Superfund program and U.S. taxpayers to potentially enormous cleanup costs at gold, lead, and other mining sites and at other industrial operations, such as metal-plating businesses. Also, EPA has done little to ensure that businesses comply with its existing financial assurance requirements in cleanup agreements and orders. Greater oversight and enforcement of financial assurances would better guarantee that cleanup funds will be available if needed. Also, greater use of other existing authorities--such as tax offsets, which allow the government to redirect tax refunds it owes businesses to agencies with claims against them--could produce additional payments for cleanups from financially distressed businesses.
  • 26. 26 Infrastructure Agenda Our primary reason for transitioning to a nuclear fueled electricity sector are the benefits that come from a power generation station that is low in emissions and high in energy density. We would like to have Generation IV nuclear facilities built, preferably with the capability to reuse spent fuel.8 By the time we reach our 50th year in our timeline, there is the hope that thorium has begun to replace uranium as the fuel of choice, due to it being cheaper, safer, and more plentiful. If facilities are not built to reuse spent fuel, with Harry Reid now retiring, we fully expect Yucca Mountain to finally be approved.9 Having a nuclear fueled energy grid would also allow us to reach the goal of 60% of the transportation sector being run on batteries. The possibility of blackouts or brownouts should be a concern of the past, as our energy grid would be less centralized, and more distributed, with the energy being generated and consumed right at the limits of the grid. Having an energy grid supplied by nuclear facilities would also be beneficial to our goal of having a more extensive smart grid. Nuclear generation stations are highly reliable, as they are always on and can quickly ramp up to supply energy during peak usage times. They also allow for more flexibility in network topology, demand-side management, and load adjustment/load balancing. These facilities would, in real- time, “talk” to connected devices (like televisions, air conditioners, dishwashers, etc.) in order to more efficiently monitor voltage usage through Voltage/VAR Optimization (monitors usage along the lines than just at the distribution center). A smart grid would also allow for mathematical prediction models to be utilized, which determines when more energy is about to be needed, 8 "Generation IV Nuclear Reactors: WNA." World Nuclear Association. N.p., n.d. Web. 09 May 2015. 9 Northey, Hannah. "GAO: Death of Yucca Mountain Caused by Political Maneuvering." The New York Times. N.p., 11 May 2011. Web. 09 May 2015.
  • 27. 27 allowing for a smooth process of bringing extra power online, instead of always having some spare generators in a dissipative standby mode.10 To help ease the loads on the nation’s highways and byways, we also propose a more extensive public transportation system based on high speed rail. We would like to first connect major cities with their outlying suburbs, with bus systems that can ferry people from the main hubs to specific business districts. Eventually, we would like most cities in the US to have systems that more readily match those in Europe, China, or Japan. But, we know that our roads and bridges are not going anywhere anytime soon. We would also like to propose a new hybrid system to fund the needed maintenance that much of the country’s roads need. The way we think this can be done is to implement a more extensive tollway program, or some sort of hybrid program, that focuses on funneling tax money to the most used roads and bridges. Potentially, sensors would be placed at intersections and along roadways to monitor usage, allowing municipalities, cities, and states to better monitor which roads are being used most, and what projects are most deserving of money. As we all know, this country is basically broke, and does not realistically have the money to fix an infrastructure system that has a D rating from ASCE. So, to solve this funding issue, we would propose a variety of revenue options. Private/public ownership of new infrastructure (roads, bridges, rail lines) would probably be the best bet, with something like a 20/20/30/30 (federal/state/local/private) split, with ownership and maintenance responsibilities turning over to the local and private interests once the investment has been paid off. We would want to structure government loans in such a way that the taxpayers are paid back with interest, so that they are not 10 "Smart Grid." Energy.gov. N.p., n.d. Web. 09 May 2015.
  • 28. 28 double taxed. We would also recommend the federal government finally raise the gas tax to meet current funding needs, and to withhold funding from the states until they do the same also. Electricity supply goals Our goals for electricity are to diversify our supply as much as possible. Therefore it is inevitable that we will be shifting some of the supply from hydrocarbons to renewables. This is not due to a bias for renewables. It is simply because any resource will have vulnerabilities. We need to spread that risk to as many resources as possible in order to prepare for a disruption in supply. There are two considerations that we have to keep in mind when determining supply goals – the economy and the environment. If I am unemployed, I am less likely to care about the level of CO2 emissions. Similarly, if my environment is so damaged that I am experiencing health problems and increased healthcare cost, the savings on energy may not seem worth it. Therefore neither aspect can be neglected. We have to find a balance that is economically and environmentally sustainable. Total Energy % changes by sector Current (2015) 2025 2040 2065 E T E T E T E T Coal 35% -- 33% -- 23% -- 15% -- Oil -- 93% -- 80% -- 48% -- 25% Natural Gas 35% 1% 33% 5% 23% 18% 15% 25% Hydroelectric 4.50% -- 4.50% -- 4.50% -- 4.50% -- Nuclear 18% -- 18% -- 26% -- 34% -- Wind 2% -- 5% -- 11% -- 15% --
  • 29. 29 Solar 2% -- 5% -- 11% -- 15% -- Bio 1% 5% 1% 10% 1% 18% 1% 25% Hydrogen -- -- -- 5% -- 15% -- 25% Sector totals 98% 99% 100% 100% 100% 99% 100% 100% Quadrillion BTUs by sector Current (2015) 2025 2040 2065 E T E T E T E T Coal 24.7 -- 24.3 -- 20 -- 15 -- Oil -- 25.3 -- 21.8 -- 9.2 -- 2.5 Natural Gas 24.7 0.97 24.3 -- 20 -- 15 2.5 Hydroelectric 3.17 -- 3.17 -- 3.17 -- 3.17 -- Nuclear 12.7 -- 13 -- 22.5 -- 34 -- Wind 1.4 -- 3.7 -- 9.5 -- 15 -- Solar 1.4 -- 3.7 -- 9.5 -- 15 -- Bio 0.7 1.4 0.7 2.8 0.8 3.5 1 2.5 Hydrogen -- -- -- 1.4 -- 2.8 -- 2.5 sector totals 68.77 27.67 72.87 26 85.47 15.5 98.17 10 total check 96.44 98.87 100.97 108.17 Total Energy 97.83 101 106 110
  • 30. 30 Overall Quadrillion BTUs Current (2015) 2025 2040 2065 Coal 24.7 24.3 20 15 Oil 25.3 21.8 9.2 2.5 Natural Gas 25.67 24.3 20 17.5 Hydroelectric 3.17 3.17 3.17 3.17 Nuclear 12.7 13 22.5 34 Wind 1.4 3.7 9.5 15 Solar 1.4 3.7 9.5 15 Bio 2.1 3.5 4.3 3.5 Hydrogen 0 1.4 2.8 2.5 Total check 96.44 98.87 100.97 108.17 Total Energy 97.83 101 106 110 Overall Percentage Changes Current (2015) 2025 2040 2065 Coal 26% 25% 20% 14% Oil 26% 22% 9% 2% Natural Gas 27% 25% 20% 16% Hydroelectric 3% 3% 3% 3% Nuclear 13% 13% 22% 31% Wind 1% 4% 9% 14%
  • 31. 31 Solar 1% 4% 9% 14% Bio 2% 4% 4% 3% Hydrogen 0% 1% 3% 2% Total check 1.00 1.00 1.00 1.00 Electricity Current (2015) 2025 2040 2065 m Households 137 m Households 138.6 m Households 140.3 m Households 25.1m Electric vehicles 57 m Electric vehicles 114.8 m Electric vehicles 174 m Electric vehicles Electricity supply: Electricity supply: Electricity supply: Electricity supply: 35% Coal 33% Coal 23% Coal 15% Coal 35% Natural Gas 33% Natural Gas 23% Natural Gas 15% Natural Gas 4.5% Hydroelectric 4.5% Hydroelectric 4.5% Hydroelectric 4.5% Hydroelectric 18% Nuclear 18% Nuclear 26% Nuclear 34% Nuclear 2% Wind 5% Wind 11% Wind 15% Wind 2% Solar 5% Solar 11% Solar 15% Solar 1% Bio 1% Bio 1% Bio 1% Bio
  • 32. 32 Transportation supply goals One of the goals for the transportation sector is to increase fuel competition. There are two objectives that will help in achieving this goal. The first is the minimum required percentage of all light-duty vehicles sold in the US to be powered by electricity. This will open up a much more diverse supply source with the medium being electricity. The second only applies to the remaining non-electric vehicles. It is the requirement for all light-duty, non-electric vehicles sold in the US to have a minimum of three fuel options that are readily available for consumers to utilize. This will provide more certainty for business owners who want to make capital investments in alternative fueling stations. Investors and business owners will react quickly to such a significant number of flex fuel vehicles. It will also empower consumers to guide the market for transportation fuel. To incentivize manufacturers to install flex fuel, we will offer to lower their required emission standards. Not only will this give them the power to choose in order to decrease resistance for flex fuel and the emission standards, it will also further validate the enforceability of the emission standards. It will also include localized pilot projects to try new methods for public transportation. Some of which will include adding a monorail system above the inside shoulder lanes or HOV lanes to existing highways. There was a proposed project in China for a bus project that was elevated. It allowed for the free flow of traffic underneath. If we could do a monorail along the highway where the majority of people already travel, it is likely that it would have a significant impact on the flow of traffic.
  • 33. 33 Transportation Current (2015) 2025 2040 2065 319m Population 351.5m Population 393.8m Population 426m Population 121m Households 137m Households 138.6m Households 140.3m Households 2.07 Vehicles/household 2.07 Vehicles/household 2.07 Vehicles/household 2.07 Vehicles/household 251m Cars on the road 284m Cars on the road 287m Cars on the road 290m Cars on the road 10% EV (25.1 m) 20% Electric (57 m) 40% Electric (114.8 m) 60% Electric 225.9m Non- Electric 227 m Non- Electric 172 m Non-Electric 116 m Non-Electric Non-electric fuel supply: Non-electric fuel supply: Non-electric fuel supply: Non-electric fuel supply: 93% Oil (210m cars) 80% Oil (181 m cars) 48% Oil (82 m cars) 25% Oil (29 m cars) 1% Natural Gas (2.3m cars) 5% Natural Gas (11 m cars) 15% Natural Gas (26 m cars) 25% Natural Gas (29 m cars) 5% Biofuel (22 m cars) 10% Biofuel (22 m cars) 18% Biofuel (31 m cars) 25% Biofuel (29 m cars) 0% Hydrogen 5% Hydrogen (11 m cars) 15% Hydrogen (26 m cars) 25% Hydrogen (29 m cars)
  • 34. 34 Supply (2015—2065) Oil Black Gold, the most sought after commodity in the world. It transformed the way we live our lives, revolutionized transport, made the world a small place and even managed to save the whale. We will stop at nothing as a society to obtain oil, and that includes damaging our environment and even going to war, but what does the future hold for the largest industry on earth? Since the 1860s when John D. Rockefeller opened his first refinery, oil has been a staple in the energy mix for the US and now the world. Oil, of course, pre dates the combustion engine, and was first used for heating and lighting, replacing whale oil as the primary source of lighting fuel. As the combustion engine took hold of transportation, oil became ever more in demand. Oil then fuelled world wars one and two, by the end of which the combustion engine dominated the globe as the primary source of transportation. Oil and politics have a habit of going hand in hand, in the Second World War, the allies relied heavily on oil from Venezuela, which allowed the Venezuelan government to pressure Great Britain and the United States into paying a higher rate for their oil. Mexico was both the first ever nation to nationalize oil production, and the first nation to declare bankruptcy as a result of their poor commodities management. In Nigeria, since independence from the British, there has been constant conflicts, the most notable of these is the Biafra war, which have been fought for oil. Nigeria itself went from a nation of 3 states to a nation of 36 states, so that smaller communities could access the oil wealth of the south western region. Today, oil and conflict are, unfortunately, tied together. The Middle East, North and West Africa and even some Asian states, are engulfed by conflict that has at its core the control of oil. This
  • 35. 35 greed for oil is understandable, as the demand for oil is ever increasing, and only seems set to increase over the upcoming years as China and India continue to grow their middle class. The graph below, from BP, illustrates the upward trend in oil consumption. 11 For all the talk of peak oil, as it stands, we are finding more and more oil each year. The higher the demand for oil is, the more oil we will continue to find. As there are many more resources out there, they are just currently uneconomical to extract. However there is always some uncertainty surrounding oil, as the nations with the largest reserves are very coy when it comes to revealing how much oil they truly have. It must also be said that the oil industry is a 11 Graph from BP Statistical Review of World Energy 2013
  • 36. 36 vulnerable one. A major conflict around the Arabian Gulf would destroy supply, and rocket oil prices at the same time, and the damage to supply may be irreversible. Oil in the USA For this plan we are looking at oil in the US, both from a supply and demand perspective, as this is what we can realistically control and alter. Policy in the US may be able to alter prices globally, but it will not dictate to the OPEC nations how to operate their oil businesses. Supply in the US has been revolutionized by the shale boom. Fracking has unlocked vast reserves, and as a result since 2010 supply has rocketed domestically. However, it must be noted that US shale oil is very expensive to extract, as a result the recent low oil prices have hit US producer hard, with many wells closing down due to being uneconomical. The US also has vast reserves in Alaska, however this oil is difficult to extract, especially in such an environmentally sensitive region. The graph below, courtesy of Fuelfix, illustrates the US racking boom, and its impact on supply.
  • 37. 37 12 The US consumption of oil has actually decreased over the last decade. This is in part due to improvements in vehicle efficiency, and part due to the high gasoline prices in 2007-2012 altering American buying habits, shifting tastes towards smaller vehicles. Although production has increased dramatically, it still does not come close to consumption. The US currently consumes between 17-19 million barrels of oil a day, and sources only 9-12 million barrels of this domestically, the gap is made up by imported oil. The below graph, from the Energy Tribune, illustrates this and shows how this has changed in recent years. 12 Graph from Fuel fix
  • 38. 38 13 As long as price can support production, there is a great deal of oil on US soil. There is also a continuing trend towards efficiency in transport, and industry movement away from the combustion engine. It may not, therefore, be long before US production can meet domestic demand. 10 Year Plan As domestic demand stabilizes due to the continued introduction of electric vehicles to the market, and production of US oil reserves continues to develop as prices recover from their current slump, we will approach an equilibrium of supply and demand. A majority of US oil demand will be met by US oil supply as prices will stabilize at around $80 per barrel, and around $3 per gallon. 25 Year Plan 13 Graph from Energy Tribune
  • 39. 39 Oil production will stabilize over this period, at around 12-14 million barrels per day domestically. This supply will begin to outstrip the domestic demand. Oil prices will remain constant, at around $3 per gallon, adjusted for inflation, and some of US oil production will be exported to developing nations who have higher oil demand. This exported oil will be sold at a higher price on the international market. For this to occur legislation would have to change to allow the export of crude oil, but as we are predicting that supply will out do demand, the decision to allow export should be a simple one. 50 Year Plan By this stage oil will account for only 10% of the fuel used for transportation in the US. As a result demand will be much lower than it is today. Oil production will taper down, as it will not be economically sensible to drill new wells. Prices for oil will stay at around $3 per gallon, adjusted for inflation, and will be available and affordable for those who still decide to use this fuel source. Natural Gas As with any supply source, there are pros and cons. The pros of natural gas include: the ability to use it for electricity and transportation - making it a comparable substitute for oil, our vast domestic supply, and relatively low prices. The cons include: the fact that there is a finite supply, it is a hydrocarbon which means it has relatively higher emissions than some other sources, US exporting has the potential to increase prices making it less economical as a substitute, larger storage capacity required compared to oil as a transportation fuel source, compression or liquefaction required for some transport and storage, increased fueling times, the increased cost to retrofit vehicles to accept it as a fuel source and the environmental concerns related to extraction.
  • 40. 40 Our goal for 2025 is to decrease our use of natural gas for electricity generation from 35% to 33 % and to increase our use of natural gas in transportation from 1% to 5%. This may seem counterintuitive. However, the goal is to enable a more level playing field for energy competition. We need to take gradual steps to allow for more flex fuel options, which include CNG, in order to decrease the reliance on oil as the primary transportation source. It also includes a more diversified energy mix for electricity generation. Over the three phases, the natural gas consumption will change from 24 to 18 quadrillion BTU’s. Currently, the price of natural gas is fairly cheap because of a vast domestic supply. However, the cost will be increasing in the near future because of a gradual increase in the export of natural gas. This increase in cost will have a ripple effect through the economy. It will effect feedstock for the petrochemical industry which will extend to almost every product that we manufacture or export. It will also increase the cost per kilowatt hour from natural gas electricity plants. We currently have estimated reserves of about 353,994 billion cubic feet as of December 31, 2014.14 The energy density is 0.0364 MJ/L.15 According to the Open EI Cost Database, a Natural Gas Combined Cycle produces electricity at $.05 per kilowatt-hour. Electricity from a combustion turbine is $.07 per kilowatt-hour.16 At an average price of $3.52 per gallon of gasoline, CNG costs 5.6 cents per mile. This is compared to 8 cents per mile of gasoline.17 “LNG's cost per mile is generally less than or equal to the price of diesel” (EPA). The average cost to build a plant is $330 million which is relatively attractive compared to other energy sources.18 By 2025, we should see 25% of all vehicles with two fuel options. This means that 14 Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves" 15 http://en.wikipedia.org/wiki/Energy_density. Accessed May 2015. 16 OpenEI Transparent Cost Database. 17 http://www.caranddriver.com/reviews/2012-honda-civic-natural-gas-test-review. Accessed May 2015 18 http://www.eia.gov/forecasts/capitalcost/. Table 1 and 2. Accessed May 2015.
  • 41. 41 there will likely be an increase in vehicles using natural gas. The degree to which the automakers opt for natural gas instead of other alternative fuels will determine the widespread capital investment made in fueling stations. We will also be experiencing higher prices due to US natural gas exports. Asia’s consumption and OPEC’s production will play major roles in the price of our natural gas. We may see a slight increase or we may see a dramatic increase due to a shortage. Included in the education agenda will be information on why we have a history of using hydrocarbons as a fuel source. The next generation needs to be aware that the reason we use hydrocarbons is because of cost and energy density. They also need to understand the importance of balancing these benefits with the environmental consequences. Future generations need to be more cognizant of their daily use of energy resources. Simple things on a large scale can make a difference. The public needs to be better informed about the issues surrounding natural gas. There have been videos of people setting their faucets on fire because of water contamination. If a water source is suspected to be contaminated, people need to be aware of who to contact, how to have their water tested by the agency for a comparison, how to petition the entity responsible for a solution, the extent to which they can use the water, etc. The extraction and production of natural gas poses a few different environmental concerns. In extraction, fracking which has increased production dramatically, has been accused of causing water table and well contamination. We propose that any new lease contract include a pre-drilling sample of any existing water sources so that it can be compared to post-drilling samples in order to protect the drilling company from liability. If it is found that drilling operations have contaminated any water supply, the population effected by the contaminated supply would have legal rights to pursue damages. Chemical marker to identify companies,
  • 42. 42 People have also claimed that fracking or drilling mud contains potentially toxic materials and chemicals that are being left in the ground. However, currently there is no way to mitigate these effects because companies are protected from disclosing the chemicals used by claiming that it is proprietary information. We support the recent rule that requires that drilling companies disclose the chemicals used on federal land. It will take effect in June 2015.19 In addition, we propose that on non-federal land, pre-drilling soil samples be taken by the new regulatory agency in order to compare to post-drilling samples. These should be audited regularly to ensure that the companies are not using any chemicals on a list of toxic or hazardous chemicals which will be created by the new regulatory agency. The use of water for drilling should be capped at a certain percentage per barrel recovered. We need to create an incentive for drilling companies to recycle the water used for drilling or find better methods for secondary and tertiary recovery. There have been attempts to use captured CO2. The process is called CO2- EOR. It uses CO2 that has been purchased from coal plants with CCS. It injects the CO2 into existing wells to recover additional barrels. Canada’s SaskPower's Boundary Dam project has been successful as well as the US Kemper Project.20 21 These projects increase the efficiency of natural gas wells by decreasing water use and increasing production, whilst increasing the efficiency of coal plants by decreasing the coal plant’s net cost and managing its CO2 waste. This is one solution to the environmental problems caused by hydrocarbons. Another is the use of natural gas as a vehicle fuel substitute. According to the DOE, “Based on this model, natural gas emits approximately 6%-11% lower levels of GHGs than gasoline throughout the fuel life 19 http://www.npr.org/blogs/thetwo-way/2015/03/20/394282086/interior-dept-issues-new-fracking-rules-for-federal-lands. Accessed May 2015. 20 Boundary Dam integrated CCS project". www.zeroco2.no. ZeroCO2. 21 CO2 Capture at the Kemper County IGCC Project" (PDF). www.netl.doe.gov. DOE's National Energy Technology Laboratory.
  • 43. 43 cycle.”22 This is why we intend for CNG and LNG to gain a significant share of the vehicle fuel source mix. While building consensus in support for our agency, we will attempt to pass small pieces of legislation to tighten the restrictions on water used in drilling projects by 2025. By 2065, the agency will implement the mandatory recycling of any water used in the drilling process. Before the natural gas boom, we were building import or regasification facilities to prepare for a shortage of natural gas. After the boom, we are building export or liquefaction facilities to prepare for an increase in exports. It is very likely that Asia’s energy consumption will cause prices of natural gas to skyrocket. We need to be prepared for a depletion of our own natural gas supplies in the future. The ideal situation is for us to maintain two-way capacity so that we are able to react quickly to changes in the market. Pipeline leaks are a concern but can be addressed by increasing the quality and frequency of routine inspections. Currently we are experiencing a shortage of talent and knowledge on the regulatory side of energy. This is where vocational programs can play a role. Along with coal, any natural gas plants that are eventually taken offline will not be demolished. Incentives will be put in place to freeze property taxes for decommissioned plants with the stipulation that the tax savings be used for emission reduction R&D in other areas of the company. As soon as the flex fuel option includes natural gas, we will see fueling stations begin to include natural gas. After US begins to increase exports, prices of natural gas only vehicles may not be as attractive. Currently there are a few options when considering a natural gas vehicle. They are natural gas only, natural gas and diesel ignition, and a traditional fueling system combined with a 22 http://www.afdc.energy.gov/vehicles/natural_gas_emissions.html. Accessed May 2015.
  • 44. 44 natural gas fueling system. Our goal would be to gravitate toward a dual or multi-fueling system. We do not simply want to switch sources. We want to provide the opportunity to choose. According to the DOE, there are approximately 150,000 natural gas vehicles on the road.23 These vehicles may be using compressed natural gas CNG or liquefied natural gas LNG. CNG is more appropriate for light duty vehicles because of the relatively short distances and limited storage capacity. LNG can be used for vehicles that are going to be traveling much longer distances and that have more capacity for storage such as semi-trucks. It is preferable to use LNG because the energy density of LNG is 22.2 MJ/L which is more than double that of CNG at 9MJ/L.24 Either one can be used as a substitute for oil which is the most important attribute. A CNG tank is more expensive than a typical gasoline tank. It is possible to retrofit a vehicle to run on natural gas. These kits cost about $5,000 to $10,000. The kit itself is only about $1,000. The $2,000 tank plus the labor to install bring it to about $5,000 minimum.25 However, manufacturers are providing additional options as well. For example, Ford will install a CNG fueling system as an option at purchasing so that it is installed by a certified installer and will not invalidate the warranty. They have seen an increase in sales over the last five years.26 23 http://www.afdc.energy.gov/vehicles/natural_gas.html. Accessed May 2015. 24 http://en.wikipedia.org/wiki/Energy_density. Accessed May 2015. 25 http://www.skycng.com/FAQpage.php. Accessed May 2015. 26 https://media.ford.com/content/fordmedia/fna/us/en/news/2015/05/04/2016-f150-alternative- fuel-leadership.html. Accessed May 2015.
  • 45. 45 Figure 1 Ford sales of commercial vehicles with CNG/propane gaseous engine-prep packages27 Many other car manufactures have produced models that accept natural gas. These include Honda, Ford, BMW, Volvo, Chevrolet and Volkswagen. By 2065, if natural gas supplies 25% of transportation needs excluding electric vehicles, and 15% of our electricity needs, we will require 17.5 quadrillion BTUs. That is 15 quadrillion BTUs for electricity and 2.5 quadrillion BTUs for transportation as a fuel. Semi-trucks should almost all be converted over to a flex fuel system that includes LNG. By this time, it is highly likely that the demand from Asia will have driven up the price for natural gas. However, all non-electric vehicles will have flex fuel options. This means that not only are the vehicles flexible in that they can use a variety of fuels. They are also flexible pertaining to pricing. If natural gas prices have become uneconomical to even consider, drivers will have a minimum of two other fuel options. 27 https://media.ford.com/content/fordmedia/fna/us/en/news/2015/05/04/2016-f150-alternative- fuel-leadership.html. Accessed May 2015.
  • 46. 46 Coal According to the IEA “Coal currently provides 40% of the world’s electricity needs. It is the second source of primary energy in the world after oil, and the first source of electricity generation.” In the US, we used 924.4 million short tons in 2013 which was an increase of 4% from the previous year. The electric power sector consumed about 92.8% of the total U.S. coal consumption in 2013. (EIA) Coal is so widely used because it is cheaper and more readily available. However, there are significant environmental side effects from the use of coal. These are primarily related to emissions. These emissions can be mitigated with new technology that either captures the CO2 before it can escape into the atmosphere or gasifying the coal and separating the components. We do not believe that we should discontinue the use of coal any time soon. Instead, we should implement the technology that is available to target the unwanted environmental consequences. Figure 1: EIA Coal Reserves
  • 47. 47 In the US, the demonstrated reserve base DRB was estimated to contain 480 billion short tons (EIA 2014). According to the Open EI Transparent Cost Database, pulverized, unscrubbed coal is $.04 per kilowatt-hour. Pulverized scrubbed coal is $.05 per kilowatt-hour. And the electricity from an integrated gasification combined cycle coal plant is $.08 per kilowatt-hour. The cost to build a coal plant is significantly higher than most other power plants. According to the EIA, the average cost of an upgraded coal plant is around $3 billion. Compare this to its replacement, natural gas, whose average cost to build a new plant is around $330 million.28 People have a general bad perception of coal. They call it dirty energy. Therefore, coal has been stigmatized. If people were more educated on the new technology available for “clean coal” they may be less zealous about its demise. People do not know to seek out this information. This problem can only be solved with a focus on education and public awareness. Emissions from coal are the worst of all the energy technologies. A typical coal plant emits 820 g CO2/kWhe. However, an upgraded plant with emission-cutting technology can emit anywhere from 160 to 220 g CO2/kWhe (IPCC 2014).29 This is an opportunity to continue our use of coal which we have an overabundance of. 28 http://www.eia.gov/forecasts/capitalcost/. Table 1 and 2. Accessed May 2015. 29 "IPCC Working Group III – Mitigation of Climate Change, Annex II I: Technology - specific cost and performance parameters" (PDF). IPCC. 2014.
  • 48. 48 Nuclear Energy Current State 2015: Nuclear power plants split uranium atoms inside a reactor in a process called fission. At a nuclear energy facility, the heat from fission is used to produce steam, which spins a turbine to generate electricity. A single uranium fuel pellet the size of a pencil eraser contains the same amount of energy as 17,000 cubic feet of natural gas, 1,780 pounds of coal or 149 gallons of oil.30 There are no emissions of carbon dioxide, nitrogen oxides and sulfur dioxide during the production of electricity at nuclear energy facilities. Nuclear energy is the only clean-air source of energy that produces electricity 24 hours a day, every day. A renewable energy source uses an essentially limitless supply of fuel, whether wind, the sun or water. Nuclear energy is often called a sustainable energy source, because there is enough uranium in the world to fuel reactors for 100 years or more. Compared to other non-emitting sources, nuclear energy facilities are relatively compact. The U.S. has its most prominent uranium reserves in New Mexico, Texas, and Wyoming. The U.S. Department of Energy has approximated there to be at least 300 million pounds of uranium in these areas.31 A typical nuclear power plant in a year generates 20 metric tons of used nuclear fuel. The nuclear industry generates a total of about 2,000 - 2,300 metric tons of used fuel per year. High- 30 "STP Nuclear Operating Company / Welcome / Welcome." STP Nuclear Operating Company / Welcome / Welcome. Web. 11 May 2015. 31 Union of Concerned Scientists. "How Nuclear Power Works". Union of Concerned Scientists. Retrieved 29 April 2014.
  • 49. 49 level radioactive waste is the byproduct of recycling used nuclear fuel, which in its final form will be disposed of in a permanent disposal facility. Low-level radioactive waste (LLRW) consists of items that have come in contact with radioactive materials, such as gloves, personal protective clothing, tools, water purification filters and resins, plant hardware, and wastes from reactor cooling-water cleanup systems. It generally has levels of radioactivity that decay to background radioactivity levels in less than 500 years. About 95 percent decays to background levels within 100 years or less. The United States has the 4th largest uranium reserves in the world.32 In 2013, the US electricity generation was 4294 billion kWh gross, 1717 billion kWh(40%) of it from coal-fired plant, 1150 billion kWh (27%) from gas, 822 billion kWh (18%) nuclear, 291 billion kWh from hydro, 170 billion kWh from wind, 12 billion kWh from solar and 18 billion kWh from geothermal (IEA data). Annual electricity demand is projected to increase to 5,000 billion kWh in 2030.Annual per capita electricity consumption in 2012 was 11,900 kWh. Total capacity is 1068 GWe, less than one- tenth of which is nuclear. The country's 100 nuclear reactors produced 798 billion kWh in 2014, over 19% of total electrical output. There are now 99 units operable (98.7 GWe) and five under construction.33 According to the EIA, there are currently 61 commercially operating nuclear power plants with 99 nuclear reactors in 30 states in the United States. Thirty-five of these plants have two or more reactors. The Palo Verde plant in Arizona has 3 reactors and had the largest combined net summer generating capacity of 3,937 megawatts (MW) in 2012. Fort Calhoun in Nebraska with a single reactor had the smallest net summer capacity at 479 megawatts (MW) in 32 The Sierra Club of Southeastern PA And CCP Coalition for a Sustainable Future 33 "World Nuclear Association." Nuclear Power in the USA. Web. 11 May 2015.
  • 50. 50 2012.Four reactors were taken out of service in 2013: the Crystal River plant in Florida with one reactor in February; the Kewaunee plant in Wisconsin with one reactor in April; and the San Onofre plant in California with two reactors in June. The Vermont Yankee plant in Vermont, with a single reactor, was taken out of service in December 2014. Figure 2: Current U.S Nuclear Power Plants (EIA) Nuclear energy is one of America’s lowest-cost “round the clock” electricity sources, with national average production costs at 2.4 cents per kilowatt-hour in 2012. Similarly, the average cost of electricity produced by coal was 3.27 cents per kilowatt-hour, natural gas 3.4 cents. The average production cost for nuclear energy has remained well below three cents per kilowatt-hour for the past 18 years. Nuclear and coal plants, in fact, have consistently been the
  • 51. 51 most stable and predictable source of low-priced power among all base load or always-on generators for decades. Nuclear energy can maintain this long-term price stability because only 31 percent of the production cost is fuel cost. By way of comparison, fuel accounts for 80 to 90 percent of the cost of electricity produced by coal- or gas-fired electric generation, both of which have low production costs today because of the current abundance — and therefore low cost — of fuel.34 Figure 3: U.S Electricity Production Costs Dry cask storage is a method of storing high-level radioactive waste, such as spent nuclear fuel that has already been cooled in the spent for at least one year and often as much as ten years. Casks are typically steel cylinders that are either welded or bolted closed. The fuel 34 "Nuclear Power's Production Costs Are Low." Nuclear Matters. Web. 12 May 2015.
  • 52. 52 rods inside are surrounded by inert gas. Ideally, the steel cylinder provides leak-tight containment of the spent fuel. Each cylinder is surrounded by additional steel, concrete, or other material to provide radiation shielding to workers and members of the public. The NRC describes the dry casks used in the US as "designed to resist floods, tornadoes, projectiles, temperature extremes, and other unusual scenarios”. As of the end of 2009, 13,856 metric tons of commercial spent fuel – or about 22 percent – were stored in dry casks. 35 Since the Obama administration suspended the NRC’s review of the Yucca Mountain repository program in 2010, the federal government has not had a viable program for the management of used nuclear fuel from commercial nuclear energy facilities and high-level radioactive waste from government defense and research activities. More nuclear waste is being loaded into sealed metal casks filled with inert gas. 35 "Spent Fuel Storage in Pools and Dry CasksKey Points and Questions & Answers." NRC: Spent Fuel Storage in Pools and Dry Casks. Web. 12 May 2015.
  • 53. 53 Figure 4: U.S Nuclear Fuel Storage (NEI) The Nuclear Waste Policy Act of 1982: The Nuclear Waste Policy Act of 1982 created a timetable and procedure for establishing a permanent, underground repository for high-level radioactive waste by the mid-1990s, and provided for some temporary federal storage of waste, including spent fuel from civilian nuclear reactors. The Act established a Nuclear Waste Fund composed of fees levied against electric utilities to pay for the costs of constructing and operating a permanent repository, and set the fee at one mill per kilowatt-hour of nuclear electricity generated. Utilities were charged a one-time fee for storage of spent fuel created before enactment of the law. The Nuclear Waste Fund receives almost $750 million in fee revenues each year and has an unspent balance of $25 billion. However (according to the Draft Report by the Blue Ribbon Commission on America’s
  • 54. 54 Nuclear Future), actions by both Congress and the Executive Branch have made the money in the fund effectively inaccessible to serving its original purpose. The commission made several recommendations on how this situation may be corrected. In late 2013, a federal court ruled that the Department of Energy must stop collecting fees for nuclear waste disposal until provisions are made to collect nuclear waste. In December 1987, Congress amended the Nuclear Waste Policy Act to designate Yucca Mountain, Nevada as the only site to be characterized as a permanent repository for all of the nation's nuclear waste. The Obama Administration rejected use of the site in the 2010 United States federal budget, which eliminated all funding except that needed to answer inquiries from the Nuclear Regulatory Commission. In Obama's 2011 budget proposal released February 1, all funding for nuclear waste disposal was zeroed out for the next ten years and it proposed to dissolve the Office of Civilian Waste Management required by the NWPA.36 A series of ten Gallup polls from 1994 to 2012 found support for nuclear energy in the United States varying from 46% to 59%, with opposition ranging from 33% to 48%. In nine out of the ten polls, both a plurality and a majority favored nuclear power; the exception was a 2001 poll in which 46% favored, and 48% opposed nuclear power. Polls taken just before the Fukishima accident and a year after the accident found identical percentages of 57% favoring nuclear power. Phase I: In 10 years-2025 According to EIA’s 2015 Energy Outlook, total electricity demand grows by 29% (0.9%/year), from 3,826 billion kWh in 2012 to 4,954 billion kWh in 2040. In the year 2025, U.S 36 Draft Report to the Secretary of Energy Future. Blue Ribbon Commission on America’s Nuclear: July 29, 2011.
  • 55. 55 net electricity consumption will be 5,207 billion kWh compared to 4,429 billion kWh in 2015. Due to the significant number of coal-fired plant retirements–97 gigawatts by 2035 there is greater need for additional base load capacity. Also, LNG exports by 2019 might also effect electricity generation by 2025 due to changes in market prices for natural gas. Thus, projections of nuclear capacity and generation are influenced by assumptions about the potential for capacity uprates, new licensing requirements, future operating costs, and outside influences such as natural gas prices and incentives for other generating technologies. As nuclear power plants are complex construction projects, their construction periods are longer than other large power plants. It is typically expected to take 5 to 7 years to build a large nuclear unit (not including the time required for planning and licensing).Therefore, in the first ten years of or energy plan we aim to build support of electricity generation through our education agenda since, there will be no new functioning nuclear plant generation that will significantly increase their share in 2025 from the estimated 18% in 2015.We believe from 2015-2025 our education agenda and increased public awareness will drive policy changes and encourage private companies and stakeholders to start investing in new nuclear generating capacity. In this period of time we would specifically like to focus on building of small scale “cookie cutter” reactors which will be localized and be distributed power. Because of their small size—300 megawatts or less, compared to a typical nuclear power plant of 1,000 megawatts—they have many useful applications, including generating emission-free electricity in remote locations where there is little to no access to the main power grid or providing process heat to industrial applications. They are "modular" in design, which means they can be manufactured completely in a factory and delivered and installed at the site in modules, giving them the name "small modular reactors," or SMRs.37 In 37 "Small Reactor Designs." Small Reactors. Web. 12 May 2015.
  • 56. 56 addition we advocate to for extensive research into thorium based nuclear reactors for fourth generation nuclear power plants to minimize environmental risks and storage problems. The US still relies on second-generation light-water, solid-fuel reactors that operate, on average, at more than 90 percent capacity. Fourth-generation reactors will be even more efficient than third- generation union with the potential to produce more electricity at less cost. They operate at much higher temperatures but at lower pressures than third-generation reactors. Thorium is better suited to run them than uranium because it has a higher melting point. That substitution would minimize the danger of a meltdown at the reactor’s core, which happened partially at Three Mile Island and wholly at Fukushima. Funds for research into Thorium based nuclear reactors as well as research for finding new nuclear waste storage sites should be allocated from the Nuclear Waste Fund since the utilities as tax payers have already paid for it over the years. We anticipate that by 2025 legislation will push for Yucca Mountain to start accepting nuclear waste from all around the country. However, we would still want to continue the process of finding new storage sites within these ten years. Phase II: In 25 years- 2040 As mentioned previously in the section above, U.S electricity demand will be 4,954 billion kWh in 2040 according to EIA. This is a slight decrease from the consumption in 2025 and can be attributed to changes in economic growth, advances in energy-efficient technologies, and electricity prices. In regards to U.S nuclear power capacity, the World Nuclear Organization states that, “Coal is projected to retain the largest share of the electricity generation mix to 2035, though by 2020 about 49 GWe of coal-fired capacity is expected to be retired, due to environmental constraints and low efficiency, coupled with a continued drop in the fuel price of
  • 57. 57 gas relative to coal. Coal-fired capacity in 2011 was 318 GWe. If today’s (2015) nuclear plants retire after 60 years of operation, If today’s nuclear plants retire after 60 years of operation, 22 GWe of new nuclear capacity would be needed by 2030, and 55 GWe by 2035 to maintain a 20% (approx.) nuclear share”. We also believe that growth in electricity generation from nuclear power will eat up the heavy costs of wind and solar energy – both of which are expected to increase in supply according to our energy plan. By 2040 we expect a 25% increase in nuclear generating capacity primarily from small based thorium 4th generation reactors. In addition there will also be a simultaneous increase in wind and solar energy by 20% during this time to supplement our zero carbon emission electricity generation plan. In our plan we also call for increased distributed power which will increase the efficiency of electricity generation and decrease inefficiency from transmission. According to GE’s publication on the subject, “Distributed power technologies includes diesel and gas reciprocating engines, gas turbines, fuel cells, solar panels and small wind turbines. Although there is no standard definition, distributed power technologies are less than 100 megawatts (MW) in size—and typically less than 50 MW which is the limit that distribution systems can accommodate at distribution voltages. They are highly flexible and suitable across a range of applications including electric power, mechanical power and propulsion. Distributed power technologies can stand alone, or they can work together within a network of integrated technologies to meet the needs of both large and small energy users”. The rise of distributed power is being driven by the ability of distributed power systems to overcome the constraints that typically inhibit the development of large capital projects and transmission and distribution lines. Because they are small, they have lower capital requirements and can be built and become operational faster and with less risk than large power plants. In addition, distributed power systems can be incrementally added to meet growing energy needs.
  • 58. 58 Phase III: In 50 years-2065 By 2065 we expect nuclear power generation to increase to 34% to support our efforts to increase renewables (wind, solar, hydro) by 30% as well as move towards a low carbon and oil dependent energy market. Since in these 50 years we will have a greater number of 4th generation nuclear reactors we will see a significant decrease in demand for electricity in part due to increased efficiency from nuclear generation. Increasing thermal efficiency, the ratio between electricity and heat produced, key to improving the overall economics of nuclear power. Fossil- fueled power plants have slowly improved their thermal efficiencies over the last several decades, but light-water reactors haven’t changed. LWRs have thermal efficiencies under 33 percent, compared to modern coal plants at approximately 39 percent and combined-cycle gas plants at 50 to 60 percent. A higher thermal efficiency increases the amount of electricity produced for a given reactor size. Higher thermal efficiency also means less waste heat and less water needed for cooling, which lessens the thermal environmental impact and the costs of dealing with waste heat. Thermal efficiency is dependent on the temperature of the reactor core and how efficiently the working fluid can be compressed and expanded. Higher temperatures allow for the use of a more efficient power conversion system, usually through the use of a Brayton cycle turbine –– the same system used in a combined-cycle natural gas turbine. For this reason, many advanced reactor designs target higher operating temperatures in order to utilize Brayton cycle turbines, while others use alternate means to boost efficiency. Reactor designs that employ a Brayton cycle engine are also better able to adjust their power output (load-follow). This may be economically attractive to utilities that operate in deregulated electricity markets, as
  • 59. 59 they can more easily match power output from intermittent renewables. Generation IV nuclear power plants can achieve up to 45% efficiency in their lifetime. 38 Wind Energy Current State 2015: Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks or a generator can convert this mechanical power into electricity. In a wind turbine, the wind blows on the angled blades of the rotor, causing it to spin, converting some of the wind’s kinetic energy into mechanical energy. Sensors in the turbine detect how strongly the wind is blowing and from which direction. The rotor automatically turns 38 How to make Nuclear Cheap. Breakthrough Institute: June 2014
  • 60. 60 to face the wind, and automatically brakes in dangerously high winds to protect the turbine from damage. From the figure below: A shaft and gearbox connect the rotor to a generator (1), so when the rotor spins, so does the generator. The generator uses an electromagnetic field to convert this mechanical energy into electrical energy. The electrical energy from the generator is transmitted along cables to a substation (2). Here, the electrical energy generated by all the turbines in the wind farm is combined and converted to a high voltage. The national grid uses high voltages to transmit electricity efficiently through the power lines (3) to the homes and businesses that need it (4). Here, other transformers reduce the voltage back down to a usable level.39 Figure 5: How Electricity is generated through Wind (EDF) 39 "How Electricity Is Generated through Wind." EDF Energy. Web. 12 May 2015.
  • 61. 61 Wind power in the United States is a branch of the energy industry, expanding quickly over the last several years. As of the end of 2014 the capacity was 65,879 MW. The U.S. wind industry has had an average annual growth of 25.6% over the last 10 years (beginning of 2005- end of 2014). Through December 2014, the electricity produced from wind power in the United States amounted to 181.79 terawatt-hours, or 4.44% of all generated electrical energy. 40 Sixteen states have installed over 1,000 MW of wind capacity with Michigan just breaking the mark in the 4th quarter of 2013. Texas, with 14,098 MW of capacity, has the most installed wind power capacity of any U.S. state, and also has more under construction than any other state currently has installed. Second and third are California and Iowa with 5,917 MW and 40 "AWEA 4th quarter 2014 Public Market Report" (PDF). American Wind Energy Association(AWEA). January 2014..
  • 62. 62 5,688 MW respectively. The Alta Wind Energy Center in California is the largest wind farm in the United States with a capacity of 1320 MW of power. 41 As of 2014, the wind industry in the USA is able to produce more power at lower cost by using taller wind turbines with longer blades, capturing the faster winds at higher elevations. This has opened up new opportunities and in Indiana, Michigan, and Ohio, the price of power from wind turbines built 300 feet to 400 feet above the ground can now compete with conventional fossil fuels like coal. Prices have fallen to about 4 cents per kilowatt-hour in some cases and utilities have been increasing the amount of wind energy in their portfolio, saying it is their cheapest option.42 41 Terra-Gen Closes on Financing for Phases VII and IX, Business Wire, April 17, 2012 42 Diane Cardwell (March 20, 2014). "Wind Industry’s New Technologies Are Helping It Compete on Price". New York Times.
  • 63. 63 Figure 6: 2014 U.S Wind Power Capacity (NREL) The Production Tax Credit (PTC) is a federal incentive that provides financial support for the development of renewable energy facilities. On January 1, 2013 the production tax credit was extended for another year. Combined with state renewable electricity standards, the PTC has been a major driver of wind power development in the United States. This development has resulted in significant economic benefits, according to the U.S. Department of Energy:  Between 2007 and 2014, U.S. wind capacity has nearly quadrupled, representing an annual average investment of nearly $15 billion.  More than 550 manufacturing facilities located in 43 states produce 70 percent of the wind turbines and components installed in the United States, up from 20 percent in 2006 – 2007.
  • 64. 64  The cost of generating electricity from wind has fallen by more than 40 percent over the past three years. But Congress has repeatedly gone back and forth between expiring and extending the PTC, which has wreaked havoc on the wind industry. Originally enacted as part of the Energy Policy Act of 1992, Congress has extended the provision six times and has allowed it to expire on six occasions. This "on-again/off-again" status has resulted in a boom-bust cycle of development. In the years following expiration, installations dropped between 76 and 93 percent, with corresponding job losses. Short-term extensions of the PTC are insufficient for sustaining the long-term growth of renewable energy. The planning and permitting process for new wind facilities can take up to two years or longer to complete. As a result, many renewable energy developers that depend on the PTC to improve a facility's cost effectiveness may hesitate to start a new project due to the uncertainty that the credit will still be available to them when the project is completed. As of 2014, the United States still had no operational offshore wind power facilities. Development is hindered by relatively high cost compared to onshore facilities. A number of projects are under development with some at advanced stages of development. The United States, though, has very large offshore wind energy resources due to strong, consistent winds off the long U.S. coastline.
  • 65. 65 Figure 7: U.S Annual Average Offshore Wind Speed at 90 meters (NREL) The National Renewable Energy Laboratory (NREL) provided an assessment of potential generating capacity from offshore wind, totaling 4,150 gigawatts (GW). At the end of 2009, the Nation's total electric generating capacity was 1,025 GW. The NREL assessment does not consider cost or transmission availability, and assumes all locations meeting certain characteristics will be available for offshore wind development. Offshore winds are attractive as a power source as they are typically both stronger and steadier than winds onshore. Offshore wind turbines, however, are costlier, take longer to build, and are more challenging to maintain. The United States does not currently have any operating, utility-scale offshore wind capacity, although some projects are in the planning stages. Factors other than wind resource availability, including the future availability of subsidies for wind generation, the cost of natural gas and other competing technologies, and issues surrounding the
  • 66. 66 allocation of costs for transmission projects that could connect wind-rich regions with major load centers, will likely play a dominant role in determining the future use of wind power. Coastal residents have opposed offshore wind farms because of fears about impacts on marine life, the environment, electricity rates, aesthetics, and recreation such as fishing and boating. However, residents also cite improved electricity rates, air quality, and job creation as positive impacts they would expect from wind farms. Wind turbines can be positioned at some distance from shore, impacts to recreation and fishing can be managed by careful planning of wind farm locations. In June 2009, Secretary of the Interior Ken Salazar issued five exploratory leases for wind power production on the Outer Continental Shelf offshore from New Jersey and Delaware. The leases authorize data gathering activities, allowing for the construction of meteorological towers on the Outer Continental Shelf from six to 18 miles (29 km) offshore. Four areas are being considered. On February 7, 2011, Salazar and Stephen Chu announced a national strategy to have offshore wind power of 10 GW in 2020, and 54 GW in 2030. Projects are under development in areas of the East Coast, Great Lakes, and Gulf coast. Phase I: In 10 years -2025 As mentioned earlier in the plan, according to EIA’s 2015 Energy Outlook, total electricity demand grows by 29% (0.9%/year), from 3,826 billion kWh in 2012 to 4,954 billion kWh in 2040. In the year 2025, U.S net electricity consumption will be 5,207 billion kWh compared to 4,429 billion kWh in 2015. Also, renewables (mainly solar and wind) account for more than half the capacity added through 2022, largely to take advantage of the current production tax credit and to help meet state renewable targets. Renewable capacity additions are
  • 67. 67 significant in most of the cases, and in the Reference case they represent 38% of the capacity added from 2013 to 2040. The 109 GW of renewable capacity additions in the Reference case are primarily wind (49 GW) and solar (48 GW) technologies, including 31 GW of solar PV installations in the end-use sectors. In the first 10 years of our plan we advocate for reform in the Production Tax Credit. The current system makes the wind energy sector too dependent on government subsidies. Thus, they are impacted heavily by the volatility of policy changes. Since it was introduced over 20 years ago, it has been allowed to lapse several times, and last year it very nearly expired, only to be extended for a year at the last minute. This leads to a potentially wasteful boom-and-bust cycle as wind developers rush to take advantage of the credit while it’s available. It would not be in the best interest of the nation or the wind industry to make PTC permanent. That would provide little incentive to innovate. Wind farm developers will simply keep buying the same wind turbines that have been shown to make a profit in the past, or ones that are only incrementally better. According to Kevin Bulls from the MIT Technology report, “A better approach would be to establish the production tax credit for a fixed time, and then decrease the size of the credit on a predictable schedule. That way it becomes clear that new technologies will be needed to keep wind farms profitable. And because turbine makers can be reasonably confident that the bottom won’t suddenly drop out of the market, they can justify investments in longer-term R&D projects that could make wind power considerably cheaper or more reliable” Another option is to specifically require innovation as a condition of getting the tax credit. Such a requirement might involve tying the credit to specific cost and performance targets, which would be changed as technology improves and would be set up, say, based on the needs of utilities. Without such a requirement, wind farm developers (and those who fund them)
  • 68. 68 will choose established technology with a track record that makes it easy to predict return on investment. There will only be incremental improvements, rather than major changes that might allow wind to stand on its own in the long term. We believe that such reform will create a long term sustainable market for the wind industry. Our Independent Agency should spearhead the reform in PTC and consult with all its 7 regions to gradually wean off government subsidies. Since we expect a 5% growth in electricity generation from wind by 2025 and 20% by 2040, a PTC reform is vital to achieve these supply goals. Phase II: In 25 years- 2040 U.S electricity demand will be 4,954 billion kWh in 2040 according to EIA. This is a slight decrease from the consumption in 2025 and can be attributed to changes in economic growth, advances in energy-efficient technologies, and electricity prices. With PTC reform in place we should expect a growth in energy efficient wind turbines. While a previous focus of the wind industry was increasing the total nameplate capacity of wind turbines, the focus has shifted to the capacity factor of the turbine, which helps keeps energy cost low by providing the most possible power. One of the deciding forces so far for increasing capacity factors has been an increase in the size of the rotors used on wind turbines. GE's predominant turbine in the U.S., which has a 1.6 MW capacity, currently comes with a 100-meter rotor, compared to a 70-meter rotor in the past. Betz's law calculates the maximum power that can be extracted from the wind, independent of the design of a wind turbine in open flow. According to Betz's law, no turbine can capture more than 16/27 (59.3%) of the kinetic energy in wind. The factor 16/27 (0.593) is known as Betz's coefficient. Practical utility-scale wind turbines achieve at peak 75% to 80% of the Betz limit. It shows the maximum possible energy — known as the Betz limit — that may be
  • 69. 69 derived by means of an infinitely thin rotor from a fluid flowing at a certain speed. Increasing the size of the turbine rotors creates new challenges for manufacturers, however. Rotors scale poorly with size, so the cost can go up faster than the revenue generated by the increased capacity factor. Turbine rotors are affected by two different forces: torque, which turns the rotors and creates energy, and thrust, which pushes against the turbine. Dealing with thrust can be difficult when designing a rotor. However, we expect breakthroughs in rotor technology to improve efficiency, some of which have already gained momentum in 2015. By 2025 we also hope to see U.S offshore wind technology coming online with enhancements in transmission and distributed power. Moreover, we believe our education agenda will educated the public on energy supply and demand which will increase acceptance for onshore/offshore wind farms. Phase III: In 50 years-2065 In 50 years we expect wind energy to provide 20% of U.S electricity. According to Department of Energy’s report - Wind Vision: A New Era for Wind Power in the United States :Wind energy has already cut electric sector carbon emissions by over 5 percent; those emissions will fall by an additional 16 percent by 2050 as wind increases from 4.5 percent of our electricity mix to 20 percent. Cumulatively through 2050, wind’s pollution reductions would avoid $400 billion in climate change damages. Wind would save an additional $108 billion in public health costs by cutting other air pollutants, including preventing 22,000 premature deaths. In conclusion we advocate the following measures to achieve growth in wind industry through 2065:  Improved weather forecasting, and optimized layout of turbines at wind farms for maximum power