SlideShare a Scribd company logo
1 of 25
Exanitide and its enantiomers
separation by RP-HPLC
WH, Kao; JR, Ai; YN, Lin; CW, Tsai; RC, Ruaan &
WY, Chen*
Bio-Recognition Engineering Lab., CME, NCU
2011/08/29
Condition of Exanitide Purification
Chromatogram
Impurity: peptide enantiomers:
racemization of Serine
Short Chain Peptide Isomer
• Identical molecular formula
– Sequence isomers (positional isomer)
• SFDENLGK
• SFEDNLGK
– Diastereomers
• IGLisoDCASSEFFK
• IGLDCASSEFFK
– Enantiomers
• LALARELEELN
• LALAD-RELEELN
Peptide Isomer Separation by RP-HPLC
• Peptide isomers
– Same hydrophobicity
– Difference in 3D-structure
• Structure flexibility
• Solution conformation energy
– Lower energy  short retention time
– Higher energy  long retention time
Lower energy
Higher energy
tR
Int.
Solution conformation energy
• Conformation Energy =
“Non-bonded Energy” + “Bonded energy”
• Non-bonded Energy= Eelectrostatic + EV.D.W.
• Bonded energy= bond energy + angle energy +
dihedral energy.
Our previous study:
RPLC retention of sequence isomers
• GELE (GELELKLKLEG)
• GELK (GELKLELKLEG)
• Solution conformation energy: GELK > GELE
23 24 25 26 27
-0.8
-0.4
0.0
0.4
0.8
1.2
1.6
2.0
GELE
GELK
lnk'
ACN (%) Tsai et. al., 2010 JPCB
Recently study:
Peptide enantiomers separation
0 2 4 6 8 10 30 40
-100
0
100
200
300
400
IL-K7F89
IL-K7F89 (DL2)
IL-K7F89 (DW4)
IL-K7F89 (DK7)
IL-K7F89 (DW11)
AU
Retention time (min)
Econf (Kcal/mol)
tR
e = 66
Sample in
30% ACN
ILK7F89 278.9 (2) 4.79 (2)
ILK7F89-D-L2 271.6 (5) 2.74 (5)
ILK7F89-D-W4 276.3 (3) 4.10 (3)
ILK7F89-D-K7 274.9 (4) 2.78 (4)
ILK7F89-D-W11 279.8 (1) 5.14 (1)
Prediction for Short Peptide Enantiomer
 Solution energy calculation
– LALARELEELN (135.747 kcal/mol)
– LALA-D-RELEELN (138.991 kcal/mol)
RP-HPLC
• Column: ACE C18-column
• Flow rate: 1.0 mL/min
• Detection: UV 215 nm
• Sample: 0.5 mg/mL
• Mobile phase:
– A: H2O + 0.1% TFA
– B: ACN + 0.1% TFA
– C: THF + 0.1% TFA
Effect of Elution Strength
0 2 4 6 8 10 12 14
-100
0
100
200
300
400
42 % ACN
40 % ACN
39 % ACN
38 % ACN
mV
Elution time (min)
Long RT & Broad
API
Co-elution of all peptide enantiomers
0 2 4 6 8 10
-200
-100
0
100
200
300
400
500
600
D-Ser11
D-Ser32
D-Ser39
API
mV
Elution time (min)
42 % ACN
Co-elution of D-Ser 39 & API
0 2 4 6 8 10
-200
-100
0
100
200
300
400
D-Ser11
D-Ser32
D-Ser39
API
mV
Elution time (min)
40 % ACN
Good Correlation between Energy & RT
Solution conformation
energy (kcal/mol)
Retention Time
(min)
D-Ser32 416.666 6.72
API 415.928 5.25
D-Ser39 414.096 5.16
D-Ser11 412.512 4.47
Energy
RT
Co-eleution
Model at 36 % ACN
Solubility Parameter of Solvent
Solvent
δ, MPa1/2
δt δd δp δh
Water 47.80 15.60 16.00 42.30
Methanol 29.60 15.10 12.30 22.30
Acetonitrile 24.40 15.30 18.00 6.10
Tetrahydrofuran (THF) 19.40 16.80 5.70 8.00
ACE column 23.96 15.80 15.73 8.79
Daiso column
0 1 2 3 4 5 6 7 8 9 10
-200
-100
0
100
200
300
400
500
600
700
800
mV
Elution Time (min)
API_iso_0.85_MeOH_DAISO
API_iso_0.83_MeOH_DAISO
API_iso_0.80_MeOH_DAISO
API_iso_0.75_MeOH_DAISO
API_iso_0.72_MeOH_DAISO
API_iso_0.71_MeOH_DAISO
API_iso_0.70_MeOH_DAISO
Change the mobile phase to MeOH
• Low Separation Resolution
Change the resin to Daiso
• Low Separation Resolution
0 1 2 3 4 5 6 7 8 9 10
-50
0
50
100
150
200
250
300
350
mV
Elution Time (min)
D-Ser39_iso_0.40_ACN_DAISO
D-Ser39_iso_0.42_ACN_DAISO
D-Ser39_iso_0.44_ACN_DAISO
Sample solvent effect
200 220 240 260 280 300
-20
-15
-10
-5
0
5
10
15
20
H2
O (D-Ser39)
H2
O (API)
40% ACN (D-Ser39)
40% ACN (API)
(mdeg)
Wavelength (nm)
a-helix
Lower helicity
Similar structure
Effect of Sample Solvent Strength
Solution conformation energy (kcal/mol)
55% ACN 36% ACN 0% ACN
D-Ser39 413.612 414.096 412.914
API 416.898 415.928 415.748
D (D-Ser39-API) -3.286 -1.832 -2.834
Non-retention in column
Sample Solvent Effect
API
D-Ser39
5 6 7 8 9 10
0
50
100
mV
Elution time (min)
0
50
100
150
200
mV
0% ACN
40% ACN
Broad
40 % ACN
Solubility Parameter of Solvent
Solvent
δ, MPa1/2
δt δd δp δh
Water 47.80 15.60 16.00 42.30
Methanol 29.60 15.10 12.30 22.30
Acetonitrile 24.40 15.30 18.00 6.10
Tetrahydrofuran (THF) 19.40 16.80 5.70 8.00
ACE column 23.96 15.80 15.73 8.79
Change the mobile phase
0 1 2 3 4 5 6 7 8
-100
0
100
200
300
400
500
600
mV
Elution time (min)
D-Ser39
API
37% THF
0 1 2 3 4 5 6 7 8 9 10
-50
0
50
100
150
200
250
300
350
400
450
mV
Elution Time (min)
Mixture_0.75_API_iso_0.40_ACN
Mixture_0.50_API_iso_0.40_ACN
Mixture_0.25_API_iso_0.40_ACN
Mixture of API and D-Ser39
40% ACN isocratic elution
0 1 2 3 4 5 6 7
-50
0
50
100
150
200
250
300
350
400
450
mV
Elution Time (min)
Mixture_0.75_API_iso_0.37_THF
Mixture_0.50_API_iso_0.37_THF
Mixture_0.25_API_iso_0.37_THF
Mixture of API and D-Ser39
37% THF isocratic elution
Summary
• MD simulation for the solution conformation energy
calculation facilitated the prediction of the retention
behaviors of peptide enantiomer in RP-HPLC.
• Sample solvent could be utilized to tune the retention
behavior.

More Related Content

Similar to Exanitide_impurity_separation_by_MD_and_RP-HPLC_v01

Research efforts direct ethanol fuel cell defc
Research efforts direct ethanol fuel cell defcResearch efforts direct ethanol fuel cell defc
Research efforts direct ethanol fuel cell defcAhmed ElSheikh
 
Photochemical study of micelles in photogalvanic cell for solar energy conver
Photochemical study of micelles in photogalvanic cell for solar energy converPhotochemical study of micelles in photogalvanic cell for solar energy conver
Photochemical study of micelles in photogalvanic cell for solar energy converIAEME Publication
 
Pittcon 3 5-2014
Pittcon 3 5-2014Pittcon 3 5-2014
Pittcon 3 5-2014Xiuxia Du
 
Hydrogen bonding and molecular design (EuroQSAR 2010)
Hydrogen bonding and molecular design (EuroQSAR 2010)Hydrogen bonding and molecular design (EuroQSAR 2010)
Hydrogen bonding and molecular design (EuroQSAR 2010)Peter Kenny
 
NaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolutionNaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolutionLawrence Berkeley National Laboratory
 
Phase behavior and characterization of PECs AIChE 2014
Phase behavior and characterization of PECs AIChE 2014 Phase behavior and characterization of PECs AIChE 2014
Phase behavior and characterization of PECs AIChE 2014 David Scheuing
 
Macromolecules 2008,41,7805 7811
Macromolecules 2008,41,7805 7811Macromolecules 2008,41,7805 7811
Macromolecules 2008,41,7805 7811niba50
 
Presentation on Electrocyclic Reactions
Presentation on  Electrocyclic ReactionsPresentation on  Electrocyclic Reactions
Presentation on Electrocyclic ReactionsAvishek Das
 
Dielectric Relaxation And Molecular Interaction Studies Of PEG With Non-Polar...
Dielectric Relaxation And Molecular Interaction Studies Of PEG With Non-Polar...Dielectric Relaxation And Molecular Interaction Studies Of PEG With Non-Polar...
Dielectric Relaxation And Molecular Interaction Studies Of PEG With Non-Polar...IOSR Journals
 
G04013845
G04013845G04013845
G04013845IJMER
 
G04013845
G04013845G04013845
G04013845IJMER
 
Electro catalytic performance of pt-supported poly (o-phenylenediamine) micro...
Electro catalytic performance of pt-supported poly (o-phenylenediamine) micro...Electro catalytic performance of pt-supported poly (o-phenylenediamine) micro...
Electro catalytic performance of pt-supported poly (o-phenylenediamine) micro...tshankar20134
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52Dinesh Barawkar
 
SueKlefstad-SampleIndex-GenChemReview
SueKlefstad-SampleIndex-GenChemReviewSueKlefstad-SampleIndex-GenChemReview
SueKlefstad-SampleIndex-GenChemReviewSue Klefstad
 
Synthesis and Characterization of Comb-Polymethacrylate
Synthesis and Characterization of  Comb-PolymethacrylateSynthesis and Characterization of  Comb-Polymethacrylate
Synthesis and Characterization of Comb-PolymethacrylateJUAN DU
 

Similar to Exanitide_impurity_separation_by_MD_and_RP-HPLC_v01 (20)

Research efforts direct ethanol fuel cell defc
Research efforts direct ethanol fuel cell defcResearch efforts direct ethanol fuel cell defc
Research efforts direct ethanol fuel cell defc
 
Photochemical study of micelles in photogalvanic cell for solar energy conver
Photochemical study of micelles in photogalvanic cell for solar energy converPhotochemical study of micelles in photogalvanic cell for solar energy conver
Photochemical study of micelles in photogalvanic cell for solar energy conver
 
Pittcon 3 5-2014
Pittcon 3 5-2014Pittcon 3 5-2014
Pittcon 3 5-2014
 
An Introduction to super capacitors by M.Aadil.
An Introduction to super capacitors by M.Aadil.An Introduction to super capacitors by M.Aadil.
An Introduction to super capacitors by M.Aadil.
 
Hydrogen bonding and molecular design (EuroQSAR 2010)
Hydrogen bonding and molecular design (EuroQSAR 2010)Hydrogen bonding and molecular design (EuroQSAR 2010)
Hydrogen bonding and molecular design (EuroQSAR 2010)
 
NaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolutionNaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolution
 
Phase behavior and characterization of PECs AIChE 2014
Phase behavior and characterization of PECs AIChE 2014 Phase behavior and characterization of PECs AIChE 2014
Phase behavior and characterization of PECs AIChE 2014
 
Macromolecules 2008,41,7805 7811
Macromolecules 2008,41,7805 7811Macromolecules 2008,41,7805 7811
Macromolecules 2008,41,7805 7811
 
Presentation on Electrocyclic Reactions
Presentation on  Electrocyclic ReactionsPresentation on  Electrocyclic Reactions
Presentation on Electrocyclic Reactions
 
Dielectric Relaxation And Molecular Interaction Studies Of PEG With Non-Polar...
Dielectric Relaxation And Molecular Interaction Studies Of PEG With Non-Polar...Dielectric Relaxation And Molecular Interaction Studies Of PEG With Non-Polar...
Dielectric Relaxation And Molecular Interaction Studies Of PEG With Non-Polar...
 
G04013845
G04013845G04013845
G04013845
 
G04013845
G04013845G04013845
G04013845
 
G04013845
G04013845G04013845
G04013845
 
Effect of Coupling Chain Length on the Electric –Optic Properties of Siloxane...
Effect of Coupling Chain Length on the Electric –Optic Properties of Siloxane...Effect of Coupling Chain Length on the Electric –Optic Properties of Siloxane...
Effect of Coupling Chain Length on the Electric –Optic Properties of Siloxane...
 
Electro catalytic performance of pt-supported poly (o-phenylenediamine) micro...
Electro catalytic performance of pt-supported poly (o-phenylenediamine) micro...Electro catalytic performance of pt-supported poly (o-phenylenediamine) micro...
Electro catalytic performance of pt-supported poly (o-phenylenediamine) micro...
 
2006_JSC
2006_JSC2006_JSC
2006_JSC
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
 
SueKlefstad-SampleIndex-GenChemReview
SueKlefstad-SampleIndex-GenChemReviewSueKlefstad-SampleIndex-GenChemReview
SueKlefstad-SampleIndex-GenChemReview
 
Pushkar N Patil
Pushkar N PatilPushkar N Patil
Pushkar N Patil
 
Synthesis and Characterization of Comb-Polymethacrylate
Synthesis and Characterization of  Comb-PolymethacrylateSynthesis and Characterization of  Comb-Polymethacrylate
Synthesis and Characterization of Comb-Polymethacrylate
 

Exanitide_impurity_separation_by_MD_and_RP-HPLC_v01

  • 1. Exanitide and its enantiomers separation by RP-HPLC WH, Kao; JR, Ai; YN, Lin; CW, Tsai; RC, Ruaan & WY, Chen* Bio-Recognition Engineering Lab., CME, NCU 2011/08/29
  • 2. Condition of Exanitide Purification
  • 4. Short Chain Peptide Isomer • Identical molecular formula – Sequence isomers (positional isomer) • SFDENLGK • SFEDNLGK – Diastereomers • IGLisoDCASSEFFK • IGLDCASSEFFK – Enantiomers • LALARELEELN • LALAD-RELEELN
  • 5. Peptide Isomer Separation by RP-HPLC • Peptide isomers – Same hydrophobicity – Difference in 3D-structure • Structure flexibility • Solution conformation energy – Lower energy  short retention time – Higher energy  long retention time Lower energy Higher energy tR Int.
  • 6. Solution conformation energy • Conformation Energy = “Non-bonded Energy” + “Bonded energy” • Non-bonded Energy= Eelectrostatic + EV.D.W. • Bonded energy= bond energy + angle energy + dihedral energy.
  • 7. Our previous study: RPLC retention of sequence isomers • GELE (GELELKLKLEG) • GELK (GELKLELKLEG) • Solution conformation energy: GELK > GELE 23 24 25 26 27 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 GELE GELK lnk' ACN (%) Tsai et. al., 2010 JPCB
  • 8. Recently study: Peptide enantiomers separation 0 2 4 6 8 10 30 40 -100 0 100 200 300 400 IL-K7F89 IL-K7F89 (DL2) IL-K7F89 (DW4) IL-K7F89 (DK7) IL-K7F89 (DW11) AU Retention time (min) Econf (Kcal/mol) tR e = 66 Sample in 30% ACN ILK7F89 278.9 (2) 4.79 (2) ILK7F89-D-L2 271.6 (5) 2.74 (5) ILK7F89-D-W4 276.3 (3) 4.10 (3) ILK7F89-D-K7 274.9 (4) 2.78 (4) ILK7F89-D-W11 279.8 (1) 5.14 (1)
  • 9. Prediction for Short Peptide Enantiomer  Solution energy calculation – LALARELEELN (135.747 kcal/mol) – LALA-D-RELEELN (138.991 kcal/mol)
  • 10. RP-HPLC • Column: ACE C18-column • Flow rate: 1.0 mL/min • Detection: UV 215 nm • Sample: 0.5 mg/mL • Mobile phase: – A: H2O + 0.1% TFA – B: ACN + 0.1% TFA – C: THF + 0.1% TFA
  • 11. Effect of Elution Strength 0 2 4 6 8 10 12 14 -100 0 100 200 300 400 42 % ACN 40 % ACN 39 % ACN 38 % ACN mV Elution time (min) Long RT & Broad API
  • 12. Co-elution of all peptide enantiomers 0 2 4 6 8 10 -200 -100 0 100 200 300 400 500 600 D-Ser11 D-Ser32 D-Ser39 API mV Elution time (min) 42 % ACN
  • 13. Co-elution of D-Ser 39 & API 0 2 4 6 8 10 -200 -100 0 100 200 300 400 D-Ser11 D-Ser32 D-Ser39 API mV Elution time (min) 40 % ACN
  • 14. Good Correlation between Energy & RT Solution conformation energy (kcal/mol) Retention Time (min) D-Ser32 416.666 6.72 API 415.928 5.25 D-Ser39 414.096 5.16 D-Ser11 412.512 4.47 Energy RT Co-eleution Model at 36 % ACN
  • 15. Solubility Parameter of Solvent Solvent δ, MPa1/2 δt δd δp δh Water 47.80 15.60 16.00 42.30 Methanol 29.60 15.10 12.30 22.30 Acetonitrile 24.40 15.30 18.00 6.10 Tetrahydrofuran (THF) 19.40 16.80 5.70 8.00 ACE column 23.96 15.80 15.73 8.79 Daiso column
  • 16. 0 1 2 3 4 5 6 7 8 9 10 -200 -100 0 100 200 300 400 500 600 700 800 mV Elution Time (min) API_iso_0.85_MeOH_DAISO API_iso_0.83_MeOH_DAISO API_iso_0.80_MeOH_DAISO API_iso_0.75_MeOH_DAISO API_iso_0.72_MeOH_DAISO API_iso_0.71_MeOH_DAISO API_iso_0.70_MeOH_DAISO Change the mobile phase to MeOH • Low Separation Resolution
  • 17. Change the resin to Daiso • Low Separation Resolution 0 1 2 3 4 5 6 7 8 9 10 -50 0 50 100 150 200 250 300 350 mV Elution Time (min) D-Ser39_iso_0.40_ACN_DAISO D-Ser39_iso_0.42_ACN_DAISO D-Ser39_iso_0.44_ACN_DAISO
  • 18. Sample solvent effect 200 220 240 260 280 300 -20 -15 -10 -5 0 5 10 15 20 H2 O (D-Ser39) H2 O (API) 40% ACN (D-Ser39) 40% ACN (API) (mdeg) Wavelength (nm) a-helix Lower helicity Similar structure
  • 19. Effect of Sample Solvent Strength Solution conformation energy (kcal/mol) 55% ACN 36% ACN 0% ACN D-Ser39 413.612 414.096 412.914 API 416.898 415.928 415.748 D (D-Ser39-API) -3.286 -1.832 -2.834 Non-retention in column
  • 20. Sample Solvent Effect API D-Ser39 5 6 7 8 9 10 0 50 100 mV Elution time (min) 0 50 100 150 200 mV 0% ACN 40% ACN Broad 40 % ACN
  • 21. Solubility Parameter of Solvent Solvent δ, MPa1/2 δt δd δp δh Water 47.80 15.60 16.00 42.30 Methanol 29.60 15.10 12.30 22.30 Acetonitrile 24.40 15.30 18.00 6.10 Tetrahydrofuran (THF) 19.40 16.80 5.70 8.00 ACE column 23.96 15.80 15.73 8.79
  • 22. Change the mobile phase 0 1 2 3 4 5 6 7 8 -100 0 100 200 300 400 500 600 mV Elution time (min) D-Ser39 API 37% THF
  • 23. 0 1 2 3 4 5 6 7 8 9 10 -50 0 50 100 150 200 250 300 350 400 450 mV Elution Time (min) Mixture_0.75_API_iso_0.40_ACN Mixture_0.50_API_iso_0.40_ACN Mixture_0.25_API_iso_0.40_ACN Mixture of API and D-Ser39 40% ACN isocratic elution
  • 24. 0 1 2 3 4 5 6 7 -50 0 50 100 150 200 250 300 350 400 450 mV Elution Time (min) Mixture_0.75_API_iso_0.37_THF Mixture_0.50_API_iso_0.37_THF Mixture_0.25_API_iso_0.37_THF Mixture of API and D-Ser39 37% THF isocratic elution
  • 25. Summary • MD simulation for the solution conformation energy calculation facilitated the prediction of the retention behaviors of peptide enantiomer in RP-HPLC. • Sample solvent could be utilized to tune the retention behavior.