SlideShare a Scribd company logo
1 of 19
Download to read offline
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
1
Cours de mécanique vibratoire Année universitaire : 2020-2021
Enseignante : Lamia HACHANI
Niveau : 2ième année ingénieur
Spécialité : Mécatronique
Table des matières
Chapitre 1 : SYSTEMES À UN DDL (Degré De Liberté)
Connaissances de base : L’oscillateur élémentaire linéaire (OEL)
1- Généralités
2- Vibration libre
2-1 : Système considéré
2-2 : Forme canonique de l’équation
2-3 : Solution et Interprétation
2-4 : Décroissance des pseudo-oscillations
2-5 Excitation de base
2-6 Energie mécanique d’un oscillateur
2-7 Puissance dissipée dans l’amortisseur
2-8 : Analogie électrique-mécanique
3- Vibration forcée
3-1 : Système considéré
3-2 : Forme canonique de l’équation
3-3 : Réponse harmonique
3-3-1 : Fonction de transfert
3-3-2 : Réponse en fréquence
3-3-3 Etude de la résonnance en vitesse
3-3-4 Puissance consommée en régime permanent
3-3-5 : Réponse en phase - Diagramme de Bode
3-3-6 : Impédance mécanique Z
3-3-7 : Puissance dissipée dans un oscillateur forcé-Résonance
Chapitre 2 : SYSTEMES À 2 DDL
1- Introduction
2- Degré de liberté- Coordonnées généralisées
3- Cas du système à 2 ddls
3-1 : Système étudié
3-2 : Méthode modale - écriture matricielle
3-2 : Modes et fréquences propres de vibration
Chapitre 3 : SYSTEMES À PLUSIEURS DDL
Introduction aux équations de Lagrange
1- Introduction
2- Système à plusieurs ddl
3- Equation de Lagrange+PTV
3-1 : Déplacement virtuel
3-2 : Equation de Lagrange : Démonstration
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
2
3-2 : Force généralisée
3-2 : Principe des travaux virtuels PTV
3-3 : Application directe de l’équation de Lagrange
4- Forme pratique des équations de Lagrange
4-1 : Forme développée des équations de Lagrange
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
3
Cours de mécanique vibratoire
Chapitre 1 : Système à Un Degré De Liberté (1DDL)
Connaissances de base : rappels et oscillateur harmonique
Qu'est ce que la vibration mécanique?
La mécanique est l'étude du comportement dynamique des corps.
Une vibration est le mouvement d'un système mécanique qui reste voisin d'un état de repos. Un
telmouvementpeut se scinder en deux sous parties:
-1- l'étude des vibrations libres: soit un mouvement oscillatoire non entretenu
(pendule, circuit résonnant,...).
-2- les vibrations forcées: soit un système soumis à des sollicitations extérieures. On
peut en définir deux catégories :
-2.1- Le régime transitoire: le système est soumis à des sollicitations extérieures et
répond. On cherche alors à savoir quelle est sa réponse avant stabilisation (s'il y a lieu).
-2.2- Le régime permanent: le système est soumis à des sollicitations extérieures
périodiques et l'on cherche à savoir quel est son comportement une fois dépassé le stade
du régime transitoire.
Exemples d’applications :
-les vibrations dues aux engins mécaniques
- Certaines machines industrielles fixes ( tables vibrantes utilisées dans l’industrie des
béton dans l’emploi des dalles préfabriquées , concasseurs …)
- les vibrations transmises aux membres supérieurs par des machines portatives guidées
à la main ( pilonneuses utilisées principalement pour le compactages des tranches lors
de la pose de canalisations pour l’eau , le gaz ou l’éléctricité, plaques vibrantes….) ou
par des pièces travaillées tenues à la main polissage …)
Tout système mécanique, incluant les machines industrielles les plus complexes, peut
être représenté par des modèles formés : d’un ressort, un amortisseur et une masse.
Travail demandé :
Système mécanique vibratoire courant : présentation- Modélisation- Etude dynamique (
1ddl)
Principe d'analyse
Notre objectif est de mettre en place une équation différentielle qui nous permettra de
déterminer le comportement dynamique du système. C'est à dire ses fréquences de
résonance, et ses réponses à des sollicitations périodiques, par exemple. Cette équation
différentielle dépendra des
- Caractéristiques physiques du système
- Conditions Initiales
- Sollicitations Extérieures éventuelles
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
4
Introduction
La prédiction du comportement vibratoire des systèmes mécanique à un degré de
liberté est fondamentale pour pouvoir aborder ensuite le comportement vibratoire des
systèmes discrets (complexes) à (n ddl).
Nous allons présenter différents types de mouvement « oscillations libres », «
oscillations forcées », réponse à une excitation harmonique puis périodique. Puis
analyser les principales propriétés de ces réponses qui seront utilisées pour évaluer
expérimentalement les caractéristiques mécaniques de l’oscillateur : sa masse, sa
raideur, son amortissement.
Système à un degré de liberté:
Nous allons étudier un système simple ou modélisé comme tel. Le système le plus simple
que l'on puisse étudier est un système qui ne dépend que d'un paramètre, on l'appelle
aussi système à un degré de liberté.
Prenons pour exemple un système Masse - Ressort - Amortisseur, ce système est
l'Oscillateur élémentaire linéaire de la mécanique (OEL) :
Il s’agit d’une équation différentielle du second ordre, linéaire, à coefficients constants.
1- Généralités
Le modèle mécanique élémentaire que nous allons étudier est constitué :
Fig1 : Modèle de 1ddl
d’une masse m
d’un ressort de raideur k (supposé linéaire)
d’un amortisseur de constante d’amortissement visqueux ou résistance b Soumis à une
excitation extérieure F(t), la masse se déplace par rapport à sa position d’équilibre
statique dans la direction x.
Autre exemple
On considère un pendule de torsion constitué d'un fil, de constante de torsion C, et d'une
tige fixée en son centre à l'une des extrémités de fil, l'autre extrémité étant fixée à un
support. On appelle J le moment d'inertie de la tige par rapport à un axe passant par son
centre. Si l'on écarte la tige de sa position d'équilibre et qu'on la libère, elle se met à
osciller autour de sa position d'équilibre.
On appelle respectivement  et  l'abscisse angulaire et la vitesse angulaire de la tige à
l'instant t.
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
5
La tige est soumise au seul couple de torsion du fil :=-C  D'après le théorème du
moment cinétique, J = = -C 
Forme canonique de l’équation
La mise en équation du modèle mécanique élémentaire représenté ci-contre, à
partir de la loi de Newton ou du principe fondamental de la dynamique (PFD) conduit à
une équation différentielle du second ordre à coefficients constants :
Posons
, est la pulsation propre du système libre conservatif ( sans
amortissement) ou pulsation naturelle non amortie
b : constante d’amortissement visqueux ou résistance
= est le facteur d’amortissement visqueux ( sans dimension)
L’équation du mouvement se met sous sa forme canonique :
[1]
en rad/s : fréquence propre et période propre
La réponse dynamique d’un système décrit par l’équation [1] est la somme de la
solution générale de problème homogène (F = 0) et d’une solution particulière.
Si, la force extérieure et les conditions initiales, sont données. La réponse dynamique du
système peut être déterminée analytiquement.
Eq générale ssm composante transitoire
Equation diff avec (sm) solu géne
Eq particulière avec sm comp permanante
2-Vibration libre
2-1 : Système considéré
Soit l'oscillateur harmonique amorti par effet visqueux (proportionnel à la vitesse)
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
6
Fig 2 : Représentation schématique d'un oscillateur amorti simple
On dit qu'un frottement est fluide lorsque la force de frottement est proportionnelle à la
vitesse : f=-b , le signe moins signifie que le vecteur force est de sens opposé au vecteur
vitesse. Ce type de frottement agit lorsqu'un corps se déplace dans un fluide (gaz ou
liquide).
L'étude dynamique d'un pendule élastique horizontal soumis à ce frottement aboutit à
l'équation :m
Le mouvement de l'oscillateur amorti dépend de l'importance du coefficient de
frottement b.
Nous allons étudier la réponse du système à des conditions initiales non nulles,
en absence de force extérieure.
Soit résoudre : avec les conditions initiales :
2-1 Aspect analytique
Les solutions de l’équation homogène : sont cherchées sous la
forme : x = Aert ; = rAert ; = Aert
r est solution de l’équation caractéristique :
Le discriminent réduit de cette équation est
Trois cas se présentent :
é
é
Remarque : En mécanique nous auront presque toujours ε <1, et dans la plus part des
cas ε<<1
Le cas ε = 0 correspond à l’oscillateur non amorti, ou système conservatif
é é
Les racines de l’équation sont réelles :
b
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
7
On pose
x = (A ch ’t + B sh ’t)
Les constantes sont déterminées par les conditions initiales :
D’où
a- Amortissement fort
Si le frottement est fort, le mouvement
est apériodique.
Le système, ayant été écarté de sa position
d'équilibre, revient lentement vers cette
position d'équilibre, mais sans osciller.
Ce mouvement est d'autant plus lent que le
frottement est important.
Cas 2 : mouvement apériodique critique : amortissement critique ; C’est le
cas de la voiture
L’équation admet une racine double
x = (A + Bt)
Les conditions initiales x(t) = ( +
b-Amortissement critique
En partant d'un frottement fort, si l'on diminue ce frottement, le mouvement
apériodique se fait avec un retour vers la position d'équilibre de plus en plus rapide.
Pour une valeur particulière de ce frottement, le régime est dit critique: parmi tous les
mouvements apériodiques de cet oscillateur, c'est celui pour lequel le retour vers la
position d'équilibre est le plus rapide. Si, à partir de cette valeur particulière, on
diminuait encore le frottement, le mouvement de l'oscillateur deviendrait pseudo-
périodique
Ce régime critique présente un intérêt important pour les systèmes mécaniques
soumis à des vibrations. On désire très souvent que ces systèmes reviennent rapidement
à leur position d'équilibre, mais sans osciller. La suspension de ces systèmes est donc
couplée à des amortisseurs réglés sur le régime critique (cas des voitures automobile…
Cas 3 : ε <1 mouvement sinusoïdal amorti (le plus souvent en mécanique)
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
8
On pose pseudo pulsation propre ou la pulsation amortie du
système
Les racines de l’équation sont complexes : = − ± i
x (t)= (A cos t + B sin t)
Les conditions Les constantes sont déterminées par les conditions initiales :
d’où avec
peut se mettre aussi sous la forme suivant :
Avec et
Fig3 : Réponse libre d’un système 1ddl pour différente valeurs de 
Toutes les courbes de réponse tendent vers zéro, c’est pourquoi ce régime sera dit
régime transitoire.
c-Amortissement faible
Si le frottement est faible, le
mouvement est pseudopériodique.
Le système, ayant été écarté de sa
position d'équilibre, oscille, mais
l'amplitude des oscillations diminuent
progressivement et leur valeur tend
vers 0. c’est pourquoi ce régime sera dit
régime transitoire.
L'oscillateur se rapproche
progressivement de sa position
d'équilibre.
Théoriquement l'équilibre n'est jamais
atteint.
Temps de relaxation :  = >1/
Facteur de qualité : Du fait des frottements il y’a dissipation d’énergie mécanique, cette
dissipation est caractérisée par un facteur de qualité Q définie par : Q=
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
9
Remarques:
" Le signal est pseudo - périodique, on voit une ondulation dont la pseudo période est
constante et dont l’amplitude décroît avec le temps. En effet, x(t) contient des produits
de fonctions exponentielles à coefficients réels et complexes. L’amplitude varie
exponentiellement (décroissante bien sûr) avec le temps. C’est à dire que le logarithme
rapport entre deux battements successifs est constant (d’où l’expression de
l’amortissement en décibels).
2-4 : Décroissance des pseudo-oscillations
En reprenant l’expression de x(t) dans le cas oscillatoire amorti, on exprime le rapport
des amplitudes de 2 oscillations consécutives.
D1/D2= Xexp(-
Ceci donne après calculs l’expression du décrément logartithmique :
=ln(D1/D2)=
2-5 : Excitation de base
On considère l’exemple d’une suspension de voiture ( modèle ¼ de vhéicule),
modèle 1ddl ; On imagine que le vhéicule roule sur une route bosselée et provoque un
deplacement de la forme :
Déterminer l’amplitude des oscillation ?
X(t)


Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
10
2-5 : Cas du système conservatif
Ce cas particulier est obtenu en négligeant l’amortissement cette hypothèse
est purement théorique pour les problèmes de mécanique.
L’équation :
x = Xmsin(t+) La réponse n’est pas amortie, on ne pourra plus parler de
régime transitoire.
2- 6 : l'énergie mécanique d'un oscillateur
a- Cas d’un système conservatif
On considère le pendule élastique horizontal vu
précédemment.
Le système est formé du solide (S) de masse m et du
ressort de raideur k.
On écarte le solide de sa position d'équilibre et on le
libère.
À un instant donné, le centre d'inertie G du solide
(S) a une abscisse X, une vitesse .
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
11
L'équation horaire du mouvement s'écrit X=Xmsin(t+) et la vitesse
.
Energie cinetique pour un pendule élastique :
Energie potentielle d’un pendule élastique :
Energie mécanique : Em= = + =
avec m : vitesse maximale du solide (lorsqu'il passe à sa position d'équilibre x = 0).
 Remarques :
 l'énergie mécanique du système est constante : elle ne dépend que de
l'amplitude.
 le système est conservatif
 au cours des oscillations lorsque l'énergie potentielle augmente, l'énergie
cinétique diminue et réciproquement.
b: Energie en régime libre dissipatif
Energie mécanique : Em= = +
Dans le cas d’un amortissement faible on a:
=
Avec
et comme et on obtient =
D’où E=
,
or donc E= , ainsi l’énergie oscille à la pulsation
autour d’une valeur moyenne décroissante.
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
12
2-7 : Puissance dissipée dans l’amortisseur p
p(t)=force dissipative*vitesse=b =b
2-8: Analogie avec les circuits électriques
L’équation différentielle du 2nd ordre linéaire à coefficients constants est
identique en électricité à un circuit RLC en série.
C
Loi de Kirchoff : Ri+Ldi/dt+q/c=0 or i =dq/dt
Analogie électro-mécanique
Circuit RLC Ressort-masse-amortissement
q: charge x: déplacement
L: inductance propre m: masse
R: résistance b: constante d’amortissement
1/C: inverse de la capacité k : constante de raideur
i=dq/dt: intensité dx/dt=v : vitesse
f0= f0=
i
R
L
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
13
Le système est maintenant soumis à une excitation F(t) non nulle
3-2 : Forme canonique de l’équation
L’équation du mouvement pour un oscillateur harmonique amorti soumis à une force
extérieure F(t) s’écrit :
1er membre 2nd membre non nul
Le même que pour les Terme d’excitation forcée :
oscillations libres. imposé par le dispositif extérieur
3-3 : Régime permanent- réponse harmonique
Le cas le plus simple est celui d'une force harmonique,
ie F(t) = F cos(t+). La solution générale de l'équation du mouvement est alors une
combinaison linéaire de la solution générale de l'équation sans second.
Comme précédemment, on peut ré-écrire l’équation précédente comme :
, avec F(t) = F cos(t+)
Une méthode simple consiste à utiliser la notation complexe
F(t) = F cos(t+) soit en notation complexe , et F(t)=Re[
En régime permanent, on considère une solution particulière sous la forme :
x(t)=A cos(t++) soit en notation complexe , x(t)=Re[
On considère l’équation différentielle en notation complexe :
A partir de cette dernière notation, l’amplitude complexe
= A = A  =A(cos+isin) avec =
3- Vibration forcée
3-1 : Système considéré
F(t)
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
14
Et la phase de déplacement tg=-arg(X)
On peut alors exprimer le module et la phase du déplacement x(t) comme suit :
3-4: Fonction de transfert
Entrée Sortie ( Réponse)
Force F cos(t+) Elongation A cos(t++)
Par définition la fonction de transfert H( =
On peut d’ores et déjà exprimer la fonction de transfert H( ou fonction de réponse en
fréquence
On retrouve la fonction de transfert d’un filtre passe-bas du second ordre, identique à
celle d’un circuit RLC en régime sinusoïdal.
Cette fonction de transfert peut être représentée suivant sont amplitude et sa phase ou
suivant ses partie réelle et imaginaire.
3-4 : Réponse en fréquence
L’amplitude de la fonction de transfert s’appelle admittance.
Représenter en fonction de
La dérivée de l’amplitude de la fonction de transfert s’annule pour :
) si . La courbe passe
par un maximum : la courbe prend la forme d’un pic de résonnance. On voit apparaître
un phénomène de résonance pour . (Il y’a danger pour la structure
mécanique).
Losque il s’agit d’antirésonance.
Filtre mécanique
Filtre mécanique
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
15
Diagramme de Bode : Le diagramme de Bode consiste à représenter l’amplitude et la
phase ϕ en fonction de la pulsation réduite r=  / 0
La réponse en fréquence est représentée sur la figure suivante :
Réponse de l’amplitude
Lorsque le système est excité à la pulsation par le vibreur, l’amplitude des oscillations de
la masse devient maximale.
Cette pulsation de résonance est toujours inférieure à la pulsation
propre : r <  0. Plus l’amortissement est faible plus r se rapproche de .
3-5: Réponse en phase : déphasage
 A basse fréquence pour (<< 0), le déphasage est faible (0) ; le déplacement
de l’oscillateur est est donc en phase avec la force d’excitation.
 Aux alentours de la résonnance ( 0), le déphasage =- /2 le comportement
est déterminé par le facteur d’amortissement . Il s’agit d’une résonance de phase
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
16
Le déplacement l’oscillateur est en avance de /2 sur l’excitation.
 A haute fréquence le déplacement vibre en opposition de phase
avec l’excitation. Le déplacement l’oscillateur est en avance de sur l’excitation.
Réponse de la phase
3.6 Etude de la résonance en vitesse : v=
En dérivant l’équation (1) par rapport au temps en prenant , on obtient :

En notation complexe : , l’équation du mouvement devient :
La vitesse complexe s’écrit alors :
Le module de la vitesse :
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
17
Il s’agit cette fois d’un filtre mécanique passe –bande du 2ième ordre , il y’a toujours
résonance pour =
V
Vm=
Résonance en vitesse
3-7 : Puissance consommée en régime permanent :
Puissance instantanée= force extérieure. Vitesse de déplacement
P(t)=F(t).V(t)=-
F   =   
Puissance réactive Puissance active
énergie nulle consommée par l’amortisseur
3-8 : Impédance mécanique
L’impédance mécanique est un nombre complexe. Elle est définie par le rapport
de l’amplitude complexe de la force excitatrice sur l’amplitude complexe de la vitesse
de l’oscillateur.
Or l’amplitude complexe de la vitesse
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
18
Elle peut s’écrire aussi :
En fonction de b et de  
Rél( : est la résistance et Im (
Il est possible de représenter l’impédance de l’oscillateur forcé dans un référentiel de
Fresnel. Rél( =b et Im ( 



 
3-9 Puissance dissipée dans un oscillateur forcé- Résonance
La puissance dissipée = force excitatrice. Vitesse de déplacement
Comme = F cos(t+e) et = V cos(t+v)
P= F Vcos(t+e ) cos(t+v) Or ; par conséquent
P= [cos(2t+e+v )+ cos] avec = e-v
La puissance moyenne est alors cos
Or à partir de la construction de Fresnel cos= on obtient
En tenant compte de l’expression de Z
b
m-K/
Mécanique vibratoire :ING_2 Chapitre 1
L. HACHANI
19
La puissance est maximale pour
=
Le phénomène de la résonance se produit lorsque la pulsation réduite vaut 1.
On remarque que la résonance est aigue quand le facteur de qualité est élevé.
Si Q est faible la résonance est floue.
La puissance moyenne fournie par l’excitateur est entièrement dissipée par l’excitateur.

More Related Content

What's hot

Exercices Flexion Plane Simple
Exercices Flexion Plane SimpleExercices Flexion Plane Simple
Exercices Flexion Plane SimpleMohamed Mtaallah
 
les filtres analogiques.pdf
les filtres analogiques.pdfles filtres analogiques.pdf
les filtres analogiques.pdfSABIR Hamza
 
Pince+bras+manipulateur+(corrigé)
Pince+bras+manipulateur+(corrigé)Pince+bras+manipulateur+(corrigé)
Pince+bras+manipulateur+(corrigé)Mohamed Trabelsi
 
Dynamique des structures cours
Dynamique des structures coursDynamique des structures cours
Dynamique des structures coursMohamed Abid
 
cours1_courtellemont.ppt
cours1_courtellemont.pptcours1_courtellemont.ppt
cours1_courtellemont.pptTITANIUMALFREDO
 
CAHIER DE COURS 22-23-Bac.pdf
CAHIER DE COURS 22-23-Bac.pdfCAHIER DE COURS 22-23-Bac.pdf
CAHIER DE COURS 22-23-Bac.pdfWassimOudni
 
Résumé Cours Génie Mécanique 4ST
Résumé Cours Génie Mécanique 4STRésumé Cours Génie Mécanique 4ST
Résumé Cours Génie Mécanique 4STMohamed Mtaallah
 
Modèlisation des systèmes mécaniques
Modèlisation des systèmes mécaniquesModèlisation des systèmes mécaniques
Modèlisation des systèmes mécaniquesmedrouam
 
Automatisme_cours.ppt
Automatisme_cours.pptAutomatisme_cours.ppt
Automatisme_cours.pptMarouaneLbk
 
Désignation des matériaux métalliques
Désignation des matériaux métalliquesDésignation des matériaux métalliques
Désignation des matériaux métalliquesRafael Nadal
 
TOLÉRANCES DIMENSIONNELLES.ppt
TOLÉRANCES DIMENSIONNELLES.pptTOLÉRANCES DIMENSIONNELLES.ppt
TOLÉRANCES DIMENSIONNELLES.pptmohieddine2
 
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmcT. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmctawfik-masrour
 
Cours d'électronique
Cours d'électroniqueCours d'électronique
Cours d'électroniqueRaja Birje
 

What's hot (20)

Vibration Mécanique
Vibration MécaniqueVibration Mécanique
Vibration Mécanique
 
Vib et-ondes-2006-2007
Vib et-ondes-2006-2007Vib et-ondes-2006-2007
Vib et-ondes-2006-2007
 
Exercices Flexion Plane Simple
Exercices Flexion Plane SimpleExercices Flexion Plane Simple
Exercices Flexion Plane Simple
 
les filtres analogiques.pdf
les filtres analogiques.pdfles filtres analogiques.pdf
les filtres analogiques.pdf
 
Pince+bras+manipulateur+(corrigé)
Pince+bras+manipulateur+(corrigé)Pince+bras+manipulateur+(corrigé)
Pince+bras+manipulateur+(corrigé)
 
Dynamique des structures cours
Dynamique des structures coursDynamique des structures cours
Dynamique des structures cours
 
cours1_courtellemont.ppt
cours1_courtellemont.pptcours1_courtellemont.ppt
cours1_courtellemont.ppt
 
CAHIER DE COURS 22-23-Bac.pdf
CAHIER DE COURS 22-23-Bac.pdfCAHIER DE COURS 22-23-Bac.pdf
CAHIER DE COURS 22-23-Bac.pdf
 
Résumé Cours Génie Mécanique 4ST
Résumé Cours Génie Mécanique 4STRésumé Cours Génie Mécanique 4ST
Résumé Cours Génie Mécanique 4ST
 
Modèlisation des systèmes mécaniques
Modèlisation des systèmes mécaniquesModèlisation des systèmes mécaniques
Modèlisation des systèmes mécaniques
 
Chap 12 transmission du mouvement
Chap 12   transmission du mouvementChap 12   transmission du mouvement
Chap 12 transmission du mouvement
 
Tome 1 vibrations
Tome 1 vibrationsTome 1 vibrations
Tome 1 vibrations
 
Automatisme_cours.ppt
Automatisme_cours.pptAutomatisme_cours.ppt
Automatisme_cours.ppt
 
Désignation des matériaux métalliques
Désignation des matériaux métalliquesDésignation des matériaux métalliques
Désignation des matériaux métalliques
 
TOLÉRANCES DIMENSIONNELLES.ppt
TOLÉRANCES DIMENSIONNELLES.pptTOLÉRANCES DIMENSIONNELLES.ppt
TOLÉRANCES DIMENSIONNELLES.ppt
 
Automatisme cours-1
Automatisme cours-1Automatisme cours-1
Automatisme cours-1
 
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmcT. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
 
Cahier Meca 3 ST Part 2/2
Cahier Meca 3 ST Part 2/2Cahier Meca 3 ST Part 2/2
Cahier Meca 3 ST Part 2/2
 
Cours d'électronique
Cours d'électroniqueCours d'électronique
Cours d'électronique
 
Cahier Meca 4 ST Part 2/2
Cahier Meca 4 ST Part 2/2Cahier Meca 4 ST Part 2/2
Cahier Meca 4 ST Part 2/2
 

Similar to Mec_Vib_chapitre 1.pdf

Transp_1-1.pdf
Transp_1-1.pdfTransp_1-1.pdf
Transp_1-1.pdfAuRevoir4
 
Modelisation systemes 1ddl
Modelisation systemes 1ddlModelisation systemes 1ddl
Modelisation systemes 1ddlMED MED
 
Matlab Static and Time-Based Analysis of a Homogenous Beam Fixed at Both Ends
Matlab Static and Time-Based Analysis of a Homogenous Beam Fixed at Both EndsMatlab Static and Time-Based Analysis of a Homogenous Beam Fixed at Both Ends
Matlab Static and Time-Based Analysis of a Homogenous Beam Fixed at Both EndsAlexanderABANOBI
 
Cours1 Représentation des systèmes dynamiques continus LTI
Cours1 Représentation des systèmes dynamiques continus LTI Cours1 Représentation des systèmes dynamiques continus LTI
Cours1 Représentation des systèmes dynamiques continus LTI sarah Benmerzouk
 
cours cinétique S5 2023 chapitre 2.pptx
cours cinétique S5 2023 chapitre 2.pptxcours cinétique S5 2023 chapitre 2.pptx
cours cinétique S5 2023 chapitre 2.pptxMohamedRadid1
 
Cours4 Systèmes linéaires asservis: Analyse de la stabilité
Cours4 Systèmes linéaires asservis: Analyse de la stabilitéCours4 Systèmes linéaires asservis: Analyse de la stabilité
Cours4 Systèmes linéaires asservis: Analyse de la stabilitésarah Benmerzouk
 
VLSI-Chapitre1-Diaporama-2022.pptx
VLSI-Chapitre1-Diaporama-2022.pptxVLSI-Chapitre1-Diaporama-2022.pptx
VLSI-Chapitre1-Diaporama-2022.pptxmouadmourad1
 
Cours r.d.m btps3
Cours r.d.m btps3Cours r.d.m btps3
Cours r.d.m btps3sabdou
 
oscillateurs harmoniques libres et oscillateurs libres amortis.pptx.ppt
oscillateurs harmoniques libres et oscillateurs libres  amortis.pptx.pptoscillateurs harmoniques libres et oscillateurs libres  amortis.pptx.ppt
oscillateurs harmoniques libres et oscillateurs libres amortis.pptx.ppthermoussa
 
Vdocuments.site cours de-structurepdf
Vdocuments.site cours de-structurepdfVdocuments.site cours de-structurepdf
Vdocuments.site cours de-structurepdfBlerivinci Vinci
 
Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires sarah Benmerzouk
 
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-td-1ddl a...
T. Masrour -  cours dynamique des systèmes - vibrations - chapitre1-td-1ddl a...T. Masrour -  cours dynamique des systèmes - vibrations - chapitre1-td-1ddl a...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-td-1ddl a...tawfik-masrour
 
20894657 cours-genie-autom-isai
20894657 cours-genie-autom-isai20894657 cours-genie-autom-isai
20894657 cours-genie-autom-isaiMayssa Rjaibia
 

Similar to Mec_Vib_chapitre 1.pdf (20)

Tome 1 vibrations
Tome 1 vibrationsTome 1 vibrations
Tome 1 vibrations
 
Transp_1-1.pdf
Transp_1-1.pdfTransp_1-1.pdf
Transp_1-1.pdf
 
Vib 1 agm
Vib 1 agmVib 1 agm
Vib 1 agm
 
null.pdf
null.pdfnull.pdf
null.pdf
 
Modelisation systemes 1ddl
Modelisation systemes 1ddlModelisation systemes 1ddl
Modelisation systemes 1ddl
 
Notion de base
Notion de baseNotion de base
Notion de base
 
Matlab Static and Time-Based Analysis of a Homogenous Beam Fixed at Both Ends
Matlab Static and Time-Based Analysis of a Homogenous Beam Fixed at Both EndsMatlab Static and Time-Based Analysis of a Homogenous Beam Fixed at Both Ends
Matlab Static and Time-Based Analysis of a Homogenous Beam Fixed at Both Ends
 
Cours1 Représentation des systèmes dynamiques continus LTI
Cours1 Représentation des systèmes dynamiques continus LTI Cours1 Représentation des systèmes dynamiques continus LTI
Cours1 Représentation des systèmes dynamiques continus LTI
 
cours cinétique S5 2023 chapitre 2.pptx
cours cinétique S5 2023 chapitre 2.pptxcours cinétique S5 2023 chapitre 2.pptx
cours cinétique S5 2023 chapitre 2.pptx
 
Cours4 Systèmes linéaires asservis: Analyse de la stabilité
Cours4 Systèmes linéaires asservis: Analyse de la stabilitéCours4 Systèmes linéaires asservis: Analyse de la stabilité
Cours4 Systèmes linéaires asservis: Analyse de la stabilité
 
Chapitre02
Chapitre02Chapitre02
Chapitre02
 
VLSI-Chapitre1-Diaporama-2022.pptx
VLSI-Chapitre1-Diaporama-2022.pptxVLSI-Chapitre1-Diaporama-2022.pptx
VLSI-Chapitre1-Diaporama-2022.pptx
 
Cours r.d.m btps3
Cours r.d.m btps3Cours r.d.m btps3
Cours r.d.m btps3
 
oscillateurs harmoniques libres et oscillateurs libres amortis.pptx.ppt
oscillateurs harmoniques libres et oscillateurs libres  amortis.pptx.pptoscillateurs harmoniques libres et oscillateurs libres  amortis.pptx.ppt
oscillateurs harmoniques libres et oscillateurs libres amortis.pptx.ppt
 
Vdocuments.site cours de-structurepdf
Vdocuments.site cours de-structurepdfVdocuments.site cours de-structurepdf
Vdocuments.site cours de-structurepdf
 
Cours vom djelouah
Cours vom djelouahCours vom djelouah
Cours vom djelouah
 
Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires Chapitre 1 Représentation d'état des systèmes linéaires
Chapitre 1 Représentation d'état des systèmes linéaires
 
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-td-1ddl a...
T. Masrour -  cours dynamique des systèmes - vibrations - chapitre1-td-1ddl a...T. Masrour -  cours dynamique des systèmes - vibrations - chapitre1-td-1ddl a...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-td-1ddl a...
 
DDS Serie 2 exercices
DDS Serie 2 exercicesDDS Serie 2 exercices
DDS Serie 2 exercices
 
20894657 cours-genie-autom-isai
20894657 cours-genie-autom-isai20894657 cours-genie-autom-isai
20894657 cours-genie-autom-isai
 

Mec_Vib_chapitre 1.pdf

  • 1. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 1 Cours de mécanique vibratoire Année universitaire : 2020-2021 Enseignante : Lamia HACHANI Niveau : 2ième année ingénieur Spécialité : Mécatronique Table des matières Chapitre 1 : SYSTEMES À UN DDL (Degré De Liberté) Connaissances de base : L’oscillateur élémentaire linéaire (OEL) 1- Généralités 2- Vibration libre 2-1 : Système considéré 2-2 : Forme canonique de l’équation 2-3 : Solution et Interprétation 2-4 : Décroissance des pseudo-oscillations 2-5 Excitation de base 2-6 Energie mécanique d’un oscillateur 2-7 Puissance dissipée dans l’amortisseur 2-8 : Analogie électrique-mécanique 3- Vibration forcée 3-1 : Système considéré 3-2 : Forme canonique de l’équation 3-3 : Réponse harmonique 3-3-1 : Fonction de transfert 3-3-2 : Réponse en fréquence 3-3-3 Etude de la résonnance en vitesse 3-3-4 Puissance consommée en régime permanent 3-3-5 : Réponse en phase - Diagramme de Bode 3-3-6 : Impédance mécanique Z 3-3-7 : Puissance dissipée dans un oscillateur forcé-Résonance Chapitre 2 : SYSTEMES À 2 DDL 1- Introduction 2- Degré de liberté- Coordonnées généralisées 3- Cas du système à 2 ddls 3-1 : Système étudié 3-2 : Méthode modale - écriture matricielle 3-2 : Modes et fréquences propres de vibration Chapitre 3 : SYSTEMES À PLUSIEURS DDL Introduction aux équations de Lagrange 1- Introduction 2- Système à plusieurs ddl 3- Equation de Lagrange+PTV 3-1 : Déplacement virtuel 3-2 : Equation de Lagrange : Démonstration
  • 2. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 2 3-2 : Force généralisée 3-2 : Principe des travaux virtuels PTV 3-3 : Application directe de l’équation de Lagrange 4- Forme pratique des équations de Lagrange 4-1 : Forme développée des équations de Lagrange
  • 3. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 3 Cours de mécanique vibratoire Chapitre 1 : Système à Un Degré De Liberté (1DDL) Connaissances de base : rappels et oscillateur harmonique Qu'est ce que la vibration mécanique? La mécanique est l'étude du comportement dynamique des corps. Une vibration est le mouvement d'un système mécanique qui reste voisin d'un état de repos. Un telmouvementpeut se scinder en deux sous parties: -1- l'étude des vibrations libres: soit un mouvement oscillatoire non entretenu (pendule, circuit résonnant,...). -2- les vibrations forcées: soit un système soumis à des sollicitations extérieures. On peut en définir deux catégories : -2.1- Le régime transitoire: le système est soumis à des sollicitations extérieures et répond. On cherche alors à savoir quelle est sa réponse avant stabilisation (s'il y a lieu). -2.2- Le régime permanent: le système est soumis à des sollicitations extérieures périodiques et l'on cherche à savoir quel est son comportement une fois dépassé le stade du régime transitoire. Exemples d’applications : -les vibrations dues aux engins mécaniques - Certaines machines industrielles fixes ( tables vibrantes utilisées dans l’industrie des béton dans l’emploi des dalles préfabriquées , concasseurs …) - les vibrations transmises aux membres supérieurs par des machines portatives guidées à la main ( pilonneuses utilisées principalement pour le compactages des tranches lors de la pose de canalisations pour l’eau , le gaz ou l’éléctricité, plaques vibrantes….) ou par des pièces travaillées tenues à la main polissage …) Tout système mécanique, incluant les machines industrielles les plus complexes, peut être représenté par des modèles formés : d’un ressort, un amortisseur et une masse. Travail demandé : Système mécanique vibratoire courant : présentation- Modélisation- Etude dynamique ( 1ddl) Principe d'analyse Notre objectif est de mettre en place une équation différentielle qui nous permettra de déterminer le comportement dynamique du système. C'est à dire ses fréquences de résonance, et ses réponses à des sollicitations périodiques, par exemple. Cette équation différentielle dépendra des - Caractéristiques physiques du système - Conditions Initiales - Sollicitations Extérieures éventuelles
  • 4. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 4 Introduction La prédiction du comportement vibratoire des systèmes mécanique à un degré de liberté est fondamentale pour pouvoir aborder ensuite le comportement vibratoire des systèmes discrets (complexes) à (n ddl). Nous allons présenter différents types de mouvement « oscillations libres », « oscillations forcées », réponse à une excitation harmonique puis périodique. Puis analyser les principales propriétés de ces réponses qui seront utilisées pour évaluer expérimentalement les caractéristiques mécaniques de l’oscillateur : sa masse, sa raideur, son amortissement. Système à un degré de liberté: Nous allons étudier un système simple ou modélisé comme tel. Le système le plus simple que l'on puisse étudier est un système qui ne dépend que d'un paramètre, on l'appelle aussi système à un degré de liberté. Prenons pour exemple un système Masse - Ressort - Amortisseur, ce système est l'Oscillateur élémentaire linéaire de la mécanique (OEL) : Il s’agit d’une équation différentielle du second ordre, linéaire, à coefficients constants. 1- Généralités Le modèle mécanique élémentaire que nous allons étudier est constitué : Fig1 : Modèle de 1ddl d’une masse m d’un ressort de raideur k (supposé linéaire) d’un amortisseur de constante d’amortissement visqueux ou résistance b Soumis à une excitation extérieure F(t), la masse se déplace par rapport à sa position d’équilibre statique dans la direction x. Autre exemple On considère un pendule de torsion constitué d'un fil, de constante de torsion C, et d'une tige fixée en son centre à l'une des extrémités de fil, l'autre extrémité étant fixée à un support. On appelle J le moment d'inertie de la tige par rapport à un axe passant par son centre. Si l'on écarte la tige de sa position d'équilibre et qu'on la libère, elle se met à osciller autour de sa position d'équilibre. On appelle respectivement  et  l'abscisse angulaire et la vitesse angulaire de la tige à l'instant t.
  • 5. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 5 La tige est soumise au seul couple de torsion du fil :=-C  D'après le théorème du moment cinétique, J = = -C  Forme canonique de l’équation La mise en équation du modèle mécanique élémentaire représenté ci-contre, à partir de la loi de Newton ou du principe fondamental de la dynamique (PFD) conduit à une équation différentielle du second ordre à coefficients constants : Posons , est la pulsation propre du système libre conservatif ( sans amortissement) ou pulsation naturelle non amortie b : constante d’amortissement visqueux ou résistance = est le facteur d’amortissement visqueux ( sans dimension) L’équation du mouvement se met sous sa forme canonique : [1] en rad/s : fréquence propre et période propre La réponse dynamique d’un système décrit par l’équation [1] est la somme de la solution générale de problème homogène (F = 0) et d’une solution particulière. Si, la force extérieure et les conditions initiales, sont données. La réponse dynamique du système peut être déterminée analytiquement. Eq générale ssm composante transitoire Equation diff avec (sm) solu géne Eq particulière avec sm comp permanante 2-Vibration libre 2-1 : Système considéré Soit l'oscillateur harmonique amorti par effet visqueux (proportionnel à la vitesse)
  • 6. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 6 Fig 2 : Représentation schématique d'un oscillateur amorti simple On dit qu'un frottement est fluide lorsque la force de frottement est proportionnelle à la vitesse : f=-b , le signe moins signifie que le vecteur force est de sens opposé au vecteur vitesse. Ce type de frottement agit lorsqu'un corps se déplace dans un fluide (gaz ou liquide). L'étude dynamique d'un pendule élastique horizontal soumis à ce frottement aboutit à l'équation :m Le mouvement de l'oscillateur amorti dépend de l'importance du coefficient de frottement b. Nous allons étudier la réponse du système à des conditions initiales non nulles, en absence de force extérieure. Soit résoudre : avec les conditions initiales : 2-1 Aspect analytique Les solutions de l’équation homogène : sont cherchées sous la forme : x = Aert ; = rAert ; = Aert r est solution de l’équation caractéristique : Le discriminent réduit de cette équation est Trois cas se présentent : é é Remarque : En mécanique nous auront presque toujours ε <1, et dans la plus part des cas ε<<1 Le cas ε = 0 correspond à l’oscillateur non amorti, ou système conservatif é é Les racines de l’équation sont réelles : b
  • 7. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 7 On pose x = (A ch ’t + B sh ’t) Les constantes sont déterminées par les conditions initiales : D’où a- Amortissement fort Si le frottement est fort, le mouvement est apériodique. Le système, ayant été écarté de sa position d'équilibre, revient lentement vers cette position d'équilibre, mais sans osciller. Ce mouvement est d'autant plus lent que le frottement est important. Cas 2 : mouvement apériodique critique : amortissement critique ; C’est le cas de la voiture L’équation admet une racine double x = (A + Bt) Les conditions initiales x(t) = ( + b-Amortissement critique En partant d'un frottement fort, si l'on diminue ce frottement, le mouvement apériodique se fait avec un retour vers la position d'équilibre de plus en plus rapide. Pour une valeur particulière de ce frottement, le régime est dit critique: parmi tous les mouvements apériodiques de cet oscillateur, c'est celui pour lequel le retour vers la position d'équilibre est le plus rapide. Si, à partir de cette valeur particulière, on diminuait encore le frottement, le mouvement de l'oscillateur deviendrait pseudo- périodique Ce régime critique présente un intérêt important pour les systèmes mécaniques soumis à des vibrations. On désire très souvent que ces systèmes reviennent rapidement à leur position d'équilibre, mais sans osciller. La suspension de ces systèmes est donc couplée à des amortisseurs réglés sur le régime critique (cas des voitures automobile… Cas 3 : ε <1 mouvement sinusoïdal amorti (le plus souvent en mécanique)
  • 8. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 8 On pose pseudo pulsation propre ou la pulsation amortie du système Les racines de l’équation sont complexes : = − ± i x (t)= (A cos t + B sin t) Les conditions Les constantes sont déterminées par les conditions initiales : d’où avec peut se mettre aussi sous la forme suivant : Avec et Fig3 : Réponse libre d’un système 1ddl pour différente valeurs de  Toutes les courbes de réponse tendent vers zéro, c’est pourquoi ce régime sera dit régime transitoire. c-Amortissement faible Si le frottement est faible, le mouvement est pseudopériodique. Le système, ayant été écarté de sa position d'équilibre, oscille, mais l'amplitude des oscillations diminuent progressivement et leur valeur tend vers 0. c’est pourquoi ce régime sera dit régime transitoire. L'oscillateur se rapproche progressivement de sa position d'équilibre. Théoriquement l'équilibre n'est jamais atteint. Temps de relaxation :  = >1/ Facteur de qualité : Du fait des frottements il y’a dissipation d’énergie mécanique, cette dissipation est caractérisée par un facteur de qualité Q définie par : Q=
  • 9. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 9 Remarques: " Le signal est pseudo - périodique, on voit une ondulation dont la pseudo période est constante et dont l’amplitude décroît avec le temps. En effet, x(t) contient des produits de fonctions exponentielles à coefficients réels et complexes. L’amplitude varie exponentiellement (décroissante bien sûr) avec le temps. C’est à dire que le logarithme rapport entre deux battements successifs est constant (d’où l’expression de l’amortissement en décibels). 2-4 : Décroissance des pseudo-oscillations En reprenant l’expression de x(t) dans le cas oscillatoire amorti, on exprime le rapport des amplitudes de 2 oscillations consécutives. D1/D2= Xexp(- Ceci donne après calculs l’expression du décrément logartithmique : =ln(D1/D2)= 2-5 : Excitation de base On considère l’exemple d’une suspension de voiture ( modèle ¼ de vhéicule), modèle 1ddl ; On imagine que le vhéicule roule sur une route bosselée et provoque un deplacement de la forme : Déterminer l’amplitude des oscillation ? X(t)  
  • 10. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 10 2-5 : Cas du système conservatif Ce cas particulier est obtenu en négligeant l’amortissement cette hypothèse est purement théorique pour les problèmes de mécanique. L’équation : x = Xmsin(t+) La réponse n’est pas amortie, on ne pourra plus parler de régime transitoire. 2- 6 : l'énergie mécanique d'un oscillateur a- Cas d’un système conservatif On considère le pendule élastique horizontal vu précédemment. Le système est formé du solide (S) de masse m et du ressort de raideur k. On écarte le solide de sa position d'équilibre et on le libère. À un instant donné, le centre d'inertie G du solide (S) a une abscisse X, une vitesse .
  • 11. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 11 L'équation horaire du mouvement s'écrit X=Xmsin(t+) et la vitesse . Energie cinetique pour un pendule élastique : Energie potentielle d’un pendule élastique : Energie mécanique : Em= = + = avec m : vitesse maximale du solide (lorsqu'il passe à sa position d'équilibre x = 0).  Remarques :  l'énergie mécanique du système est constante : elle ne dépend que de l'amplitude.  le système est conservatif  au cours des oscillations lorsque l'énergie potentielle augmente, l'énergie cinétique diminue et réciproquement. b: Energie en régime libre dissipatif Energie mécanique : Em= = + Dans le cas d’un amortissement faible on a: = Avec et comme et on obtient = D’où E= , or donc E= , ainsi l’énergie oscille à la pulsation autour d’une valeur moyenne décroissante.
  • 12. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 12 2-7 : Puissance dissipée dans l’amortisseur p p(t)=force dissipative*vitesse=b =b 2-8: Analogie avec les circuits électriques L’équation différentielle du 2nd ordre linéaire à coefficients constants est identique en électricité à un circuit RLC en série. C Loi de Kirchoff : Ri+Ldi/dt+q/c=0 or i =dq/dt Analogie électro-mécanique Circuit RLC Ressort-masse-amortissement q: charge x: déplacement L: inductance propre m: masse R: résistance b: constante d’amortissement 1/C: inverse de la capacité k : constante de raideur i=dq/dt: intensité dx/dt=v : vitesse f0= f0= i R L
  • 13. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 13 Le système est maintenant soumis à une excitation F(t) non nulle 3-2 : Forme canonique de l’équation L’équation du mouvement pour un oscillateur harmonique amorti soumis à une force extérieure F(t) s’écrit : 1er membre 2nd membre non nul Le même que pour les Terme d’excitation forcée : oscillations libres. imposé par le dispositif extérieur 3-3 : Régime permanent- réponse harmonique Le cas le plus simple est celui d'une force harmonique, ie F(t) = F cos(t+). La solution générale de l'équation du mouvement est alors une combinaison linéaire de la solution générale de l'équation sans second. Comme précédemment, on peut ré-écrire l’équation précédente comme : , avec F(t) = F cos(t+) Une méthode simple consiste à utiliser la notation complexe F(t) = F cos(t+) soit en notation complexe , et F(t)=Re[ En régime permanent, on considère une solution particulière sous la forme : x(t)=A cos(t++) soit en notation complexe , x(t)=Re[ On considère l’équation différentielle en notation complexe : A partir de cette dernière notation, l’amplitude complexe = A = A  =A(cos+isin) avec = 3- Vibration forcée 3-1 : Système considéré F(t)
  • 14. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 14 Et la phase de déplacement tg=-arg(X) On peut alors exprimer le module et la phase du déplacement x(t) comme suit : 3-4: Fonction de transfert Entrée Sortie ( Réponse) Force F cos(t+) Elongation A cos(t++) Par définition la fonction de transfert H( = On peut d’ores et déjà exprimer la fonction de transfert H( ou fonction de réponse en fréquence On retrouve la fonction de transfert d’un filtre passe-bas du second ordre, identique à celle d’un circuit RLC en régime sinusoïdal. Cette fonction de transfert peut être représentée suivant sont amplitude et sa phase ou suivant ses partie réelle et imaginaire. 3-4 : Réponse en fréquence L’amplitude de la fonction de transfert s’appelle admittance. Représenter en fonction de La dérivée de l’amplitude de la fonction de transfert s’annule pour : ) si . La courbe passe par un maximum : la courbe prend la forme d’un pic de résonnance. On voit apparaître un phénomène de résonance pour . (Il y’a danger pour la structure mécanique). Losque il s’agit d’antirésonance. Filtre mécanique Filtre mécanique
  • 15. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 15 Diagramme de Bode : Le diagramme de Bode consiste à représenter l’amplitude et la phase ϕ en fonction de la pulsation réduite r=  / 0 La réponse en fréquence est représentée sur la figure suivante : Réponse de l’amplitude Lorsque le système est excité à la pulsation par le vibreur, l’amplitude des oscillations de la masse devient maximale. Cette pulsation de résonance est toujours inférieure à la pulsation propre : r <  0. Plus l’amortissement est faible plus r se rapproche de . 3-5: Réponse en phase : déphasage  A basse fréquence pour (<< 0), le déphasage est faible (0) ; le déplacement de l’oscillateur est est donc en phase avec la force d’excitation.  Aux alentours de la résonnance ( 0), le déphasage =- /2 le comportement est déterminé par le facteur d’amortissement . Il s’agit d’une résonance de phase
  • 16. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 16 Le déplacement l’oscillateur est en avance de /2 sur l’excitation.  A haute fréquence le déplacement vibre en opposition de phase avec l’excitation. Le déplacement l’oscillateur est en avance de sur l’excitation. Réponse de la phase 3.6 Etude de la résonance en vitesse : v= En dérivant l’équation (1) par rapport au temps en prenant , on obtient :  En notation complexe : , l’équation du mouvement devient : La vitesse complexe s’écrit alors : Le module de la vitesse :
  • 17. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 17 Il s’agit cette fois d’un filtre mécanique passe –bande du 2ième ordre , il y’a toujours résonance pour = V Vm= Résonance en vitesse 3-7 : Puissance consommée en régime permanent : Puissance instantanée= force extérieure. Vitesse de déplacement P(t)=F(t).V(t)=- F   =    Puissance réactive Puissance active énergie nulle consommée par l’amortisseur 3-8 : Impédance mécanique L’impédance mécanique est un nombre complexe. Elle est définie par le rapport de l’amplitude complexe de la force excitatrice sur l’amplitude complexe de la vitesse de l’oscillateur. Or l’amplitude complexe de la vitesse
  • 18. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 18 Elle peut s’écrire aussi : En fonction de b et de   Rél( : est la résistance et Im ( Il est possible de représenter l’impédance de l’oscillateur forcé dans un référentiel de Fresnel. Rél( =b et Im (       3-9 Puissance dissipée dans un oscillateur forcé- Résonance La puissance dissipée = force excitatrice. Vitesse de déplacement Comme = F cos(t+e) et = V cos(t+v) P= F Vcos(t+e ) cos(t+v) Or ; par conséquent P= [cos(2t+e+v )+ cos] avec = e-v La puissance moyenne est alors cos Or à partir de la construction de Fresnel cos= on obtient En tenant compte de l’expression de Z b m-K/
  • 19. Mécanique vibratoire :ING_2 Chapitre 1 L. HACHANI 19 La puissance est maximale pour = Le phénomène de la résonance se produit lorsque la pulsation réduite vaut 1. On remarque que la résonance est aigue quand le facteur de qualité est élevé. Si Q est faible la résonance est floue. La puissance moyenne fournie par l’excitateur est entièrement dissipée par l’excitateur.