SlideShare a Scribd company logo
1 of 12
Download to read offline
OMAE2009-79431

A PHENOMENOLOGICAL MODEL FOR
VORTEX-INDUCED MOTIONS OF THE
  MONOCOLUMN PLATFORM AND
 COMPARISON WITH EXPERIMENTS
   Guilherme F. Rosetti – University of São Paulo – Brazil
   Rodolfo T. Gonçalves – University of São Paulo – Brazil
    André L. C. Fujarra – University of São Paulo – Brazil
     Kazuo Nishimoto - University of São Paulo – Brazil
        Marcos D. Ferreira – CENPES - PETROBRAS
Scope of the presentation
• Phenomenological model for the VIM of Monocolumn
  platforms
   – General aspects and formulation;
   – Results and comparison with experiments;
   – Investigation of some aspects related to the phenomenon.
Modeling of VIM/VIV-Semi-Empirical Methods

•Non-linear oscillators represent the dynamics of the fluid
region during vortex-induced motions;
•Oscillators describe lift and drag;
•Fluid oscillator interacts with the structure modeled as a
linear oscillator;
•Parameters of the model must be calibrated with
experimental results;
•Tuning parameters are determined around resonance.
Premises

What should the model reproduce from the phenomenon
to be useful for engineering analysis?

•Self-excited and sustained phenomenon;
•Lock-in (synchronization of frequencies);
•Quantify amplitudes, frequencies, forces, coeficients
(such as added mass etc).
Equations
                                    (2𝑚Ω 𝑠 𝜉 + 𝛾Ωf 𝜌𝐿𝐷2 )   𝑘   1
Structural Oscillator:         𝑟+                         𝑟+ 𝑟=    𝜌𝑉 2 𝐷𝐿𝐶 𝑇
                                              𝑚             𝑚   2𝑚

                                                                          𝐴𝑦
Cross-Flow Fluid Oscillator:    𝑞 𝑦 + 𝜀 𝑦 Ω2 𝑞 2 − 1 𝑞 𝑦 + Ω2 𝑞 𝑦 =
                                           f   𝑦            𝑓                𝑦
                                                                          𝐷

                                                                          𝐴𝑥
Inline Fluid Oscillator:       𝑞 𝑥 + 𝜀 𝑥 Ω2 𝑞 2 − 1 𝑞 𝑥 + 4Ω2 𝑞 𝑥 =
                                          f   𝑥             𝑓
                                                                          𝐷
                                                                             𝑥


Displacement:                  r = x + iy


Lift Force:                     𝐶 𝐿 = 𝐶 𝐿0 𝑞 𝑦 /2



Drag Force:                    𝐶 𝐷 = 𝐶0 1 + 𝐾𝑞 2 + 𝐶 𝑖0 𝑞 𝑦 /2
                                               𝑥


                               1
Model Parameters:                 𝜌𝑉 2 𝐷𝐿𝐶 𝑇             𝜉        𝑘
                               2𝑚

                                                                                      𝑉
Tuning Parameters:              𝛾     𝐴𝑦      𝐴𝑥    𝜀𝑦       𝜀𝑥       𝐾   Ω 𝑓 = 2𝜋𝑆
                                                                                      𝐷
Model and Tuning Parameters
How to Obtain The Model Parameters?

        Experiments performed in 2008 with MonoBr platform and
experiments with bare cylinders.

Strouhal Number, Lift and Drag vortex-shedding and Drag coefficients for
stationary structure, geometric characteristics.

How to Tune the Remaining Parameters?

        Following the Procedures adopted and accepted by specialists such
as Facchinetti, Furnes, Blevins.
Results
Operational Draft of MonoBR
           •Cross-flow amplitudes follow the trend up to Vr=10;
           •Inline amplitudes show some difference in the trend due to the
           coupling of inline and cross-flow;
           •Periods are well represented as of Vr=8. For smaller Vr’s, periods
           follow Strouhal frequency.
          1
                                                                                          4
                       Fujarra A.L.C. et al. (2009)                                                                   Fujarra A.L.C. et al. (2009)
         0.8           Present data                                                       3                           Present data




                                                                                     nY
                                                                              T /T
         0.6                                                                              2
AY / D




                                                                                     Y
                                                                                          1
         0.4
                                                                                          0
         0.2

                                                                                          2
          0
                                                                                      1.5
         0.2
                                                                          TX / TnY




                                                                                          1
AX / D




         0.1
                                                                                      0.5
          0
               0   2         4       6         8      10   12   14   16                   0
                                                                                              0   2   4   6         8      10     12      14         16
                                         Vr0 = UT0 / D
                                                                                                              Vr0 = UT0 / D
Results – Eight Shape
•Same range of reduced velocities although different reduced velocities;



                                                                        0.8

                                                                        0.6




                                      Cross-flow reduced displacement
                                                                        0.4

                                                                        0.2

                                                                          0

                                                                        -0.2

                                                                        -0.4

                                                                        -0.6

                                                                        -0.8
                                                                          -2.5   -2       -1.5              -1      -0.5   0
                                                                                      Inline reduced displacement
Results – Added Mass and Synchronization Range
                         •Added mass follows the trend observed by other researchers and
                         presents asymptotic limit in zero;
                         •As mass ratio is low (~1), synchronization range is very wide.
                         25                                                              1

                                                                                        0.9

                         20                                                             0.8
Added mass coefficient




                                                                                        0.7

                         15                                                             0.6




                                                                               AY / D
                                                                                        0.5

                         10                                                             0.4

                                                                                        0.3

                          5                                                             0.2

                                                                                        0.1

                                                                                         0
                          0                                                                   0   200   400   600     800     1000   1200   1400
                              0   2   4   6         8      10   12   14   16
                                                                                                              Vr0 = UT0 / D
                                              Vr0 = UT0 / D
Results – Hysteresis
                      30
                                                                                                               1

                                                                                                             0.8
                      25
                                                                                                             0.6
Flow Velocity [m/s]




                      20                                                                                     0.4

                                                                                                             0.2




                                                                                                      A /D
                      15
                                                                                                               0




                                                                                                        Y
                                                                                                             -0.2
                      10
                                                                                                             -0.4

                       5                                                                                     -0.6

                                                                                                             -0.8
                       0
                           0   500   1000        1500                  2000                                   -1
                                                                                                                    0        500   1000        1500   2000
                                      Time [s]
                                                                                                                                    Time [s]
                                                              1
                                                                                                      increasing velocity
                                                             0.9                                      decreasing velocity
                                                             0.8

                                                             0.7

                                                             0.6
                                                    AY / D




                                                             0.5

                                                             0.4

                                                             0.3

                                                             0.2

                                                             0.1

                                                              0
                                                                   0      200   400   600     800      1000         1200   1400
                                                                                      Vr0 = UT0 / D
Results
Low Draft of MonoBR
•When the aspect ratio is 0.20, ocillations drop substantially;
•Oscillations are strongly dependent on aspect ratio and constant
Strouhal number may not correctly represent the vortex shedding
pattern for the entire range.


                             1
                                                          Fujarra A.L.C. et al. (2009)
                            0.8                           Present data


                            0.6
                   AY / D




                            0.4

                            0.2

                             0

                            0.2
                   AX / D




                            0.1

                             0
                                  0   2   4   6         8      10     12      14         16
                                                  Vr0 = UT0 / D
Discussion
•The model was compared with experimental results showing
merits and deficiencies;
•It is necessary to reevaluate the coupling between inline and
cross-flow in order to better represent the behavior of the
structure;
•It seems that there is a reciprocal influence of inline and cross-
flow and it has to be better modeled;
•It will be useful to employ Hilbert-Huang analysis in order to
study hysteresis;
•Considering the usual Strouhal number equal to 0.2 might be
incorrect for low aspect ratio structures;
•More investigation on low aspect ratio in terms of vortex
shedding pattern and Strouhal number is required.

More Related Content

Similar to OMAE2009-79431: A Phenomenological Model for Vortex-Induced Motions of the Monocolumn Platform and Comparison with Experiments

Numerical Offshore Tank - Details
Numerical Offshore Tank - DetailsNumerical Offshore Tank - Details
Numerical Offshore Tank - DetailsRodolfo Gonçalves
 
NumXL 1.55 LYNX release notes
NumXL 1.55 LYNX release notesNumXL 1.55 LYNX release notes
NumXL 1.55 LYNX release notesSpider Financial
 
Heat Transfer2010 Estonia
Heat Transfer2010 EstoniaHeat Transfer2010 Estonia
Heat Transfer2010 EstoniaRobvanGils
 
Fctcp Chw Trends 2 12 2007 1 58
Fctcp Chw Trends 2 12 2007 1 58Fctcp Chw Trends 2 12 2007 1 58
Fctcp Chw Trends 2 12 2007 1 58guest6ac2d0
 
Fctcp Chw Trends 2 11 2007 9 59
Fctcp Chw Trends 2 11 2007 9 59Fctcp Chw Trends 2 11 2007 9 59
Fctcp Chw Trends 2 11 2007 9 59guest6ac2d0
 
Fctcp Chw Trends 2 8 2007 2 3
Fctcp Chw Trends 2 8 2007 2 3Fctcp Chw Trends 2 8 2007 2 3
Fctcp Chw Trends 2 8 2007 2 3guest6ac2d0
 
Fctcp Chw Trends 2 6 2007 2 2
Fctcp Chw Trends 2 6 2007 2 2Fctcp Chw Trends 2 6 2007 2 2
Fctcp Chw Trends 2 6 2007 2 2guest6ac2d0
 
Fctcp Chw Trends 1 30 2007 18 2
Fctcp Chw Trends 1 30 2007 18 2Fctcp Chw Trends 1 30 2007 18 2
Fctcp Chw Trends 1 30 2007 18 2guest6ac2d0
 
Fctcp Chw Trends 2 10 2007 10 2
Fctcp Chw Trends 2 10 2007 10 2Fctcp Chw Trends 2 10 2007 10 2
Fctcp Chw Trends 2 10 2007 10 2guest6ac2d0
 
Fctcp Chw Trends 1 30 2007 2 2
Fctcp Chw Trends 1 30 2007 2 2Fctcp Chw Trends 1 30 2007 2 2
Fctcp Chw Trends 1 30 2007 2 2guest6ac2d0
 
Fctcp Chw Trends 2 5 2007 2 2
Fctcp Chw Trends 2 5 2007 2 2Fctcp Chw Trends 2 5 2007 2 2
Fctcp Chw Trends 2 5 2007 2 2guest6ac2d0
 
Fctcp Chw Trends 2 11 2007 2 3
Fctcp Chw Trends 2 11 2007 2 3Fctcp Chw Trends 2 11 2007 2 3
Fctcp Chw Trends 2 11 2007 2 3guest6ac2d0
 
Fctcp Chw Trends 2 8 2007 10 2
Fctcp Chw Trends 2 8 2007 10 2Fctcp Chw Trends 2 8 2007 10 2
Fctcp Chw Trends 2 8 2007 10 2guest6ac2d0
 
Fctcp Chw Trends 2 10 2007 18 2
Fctcp Chw Trends 2 10 2007 18 2Fctcp Chw Trends 2 10 2007 18 2
Fctcp Chw Trends 2 10 2007 18 2guest6ac2d0
 
Fctcp Chw Trends 2 3 2007 18 2
Fctcp Chw Trends 2 3 2007 18 2Fctcp Chw Trends 2 3 2007 18 2
Fctcp Chw Trends 2 3 2007 18 2guest6ac2d0
 
Fctcp Chw Trends 2 6 2007 10 2
Fctcp Chw Trends 2 6 2007 10 2Fctcp Chw Trends 2 6 2007 10 2
Fctcp Chw Trends 2 6 2007 10 2guest6ac2d0
 
Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem...
Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem...Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem...
Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem...TERN Australia
 
Initial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon MicrobeadsInitial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon Microbeadsguestdc9119
 
DCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデルDCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデルTsuyoshi Horigome
 

Similar to OMAE2009-79431: A Phenomenological Model for Vortex-Induced Motions of the Monocolumn Platform and Comparison with Experiments (20)

Numerical Offshore Tank - Details
Numerical Offshore Tank - DetailsNumerical Offshore Tank - Details
Numerical Offshore Tank - Details
 
NumXL 1.55 LYNX release notes
NumXL 1.55 LYNX release notesNumXL 1.55 LYNX release notes
NumXL 1.55 LYNX release notes
 
Heat Transfer2010 Estonia
Heat Transfer2010 EstoniaHeat Transfer2010 Estonia
Heat Transfer2010 Estonia
 
Fctcp Chw Trends 2 12 2007 1 58
Fctcp Chw Trends 2 12 2007 1 58Fctcp Chw Trends 2 12 2007 1 58
Fctcp Chw Trends 2 12 2007 1 58
 
Fctcp Chw Trends 2 11 2007 9 59
Fctcp Chw Trends 2 11 2007 9 59Fctcp Chw Trends 2 11 2007 9 59
Fctcp Chw Trends 2 11 2007 9 59
 
Fctcp Chw Trends 2 8 2007 2 3
Fctcp Chw Trends 2 8 2007 2 3Fctcp Chw Trends 2 8 2007 2 3
Fctcp Chw Trends 2 8 2007 2 3
 
Fctcp Chw Trends 2 6 2007 2 2
Fctcp Chw Trends 2 6 2007 2 2Fctcp Chw Trends 2 6 2007 2 2
Fctcp Chw Trends 2 6 2007 2 2
 
Fctcp Chw Trends 1 30 2007 18 2
Fctcp Chw Trends 1 30 2007 18 2Fctcp Chw Trends 1 30 2007 18 2
Fctcp Chw Trends 1 30 2007 18 2
 
Fctcp Chw Trends 2 10 2007 10 2
Fctcp Chw Trends 2 10 2007 10 2Fctcp Chw Trends 2 10 2007 10 2
Fctcp Chw Trends 2 10 2007 10 2
 
Fctcp Chw Trends 1 30 2007 2 2
Fctcp Chw Trends 1 30 2007 2 2Fctcp Chw Trends 1 30 2007 2 2
Fctcp Chw Trends 1 30 2007 2 2
 
Fctcp Chw Trends 2 5 2007 2 2
Fctcp Chw Trends 2 5 2007 2 2Fctcp Chw Trends 2 5 2007 2 2
Fctcp Chw Trends 2 5 2007 2 2
 
Fctcp Chw Trends 2 11 2007 2 3
Fctcp Chw Trends 2 11 2007 2 3Fctcp Chw Trends 2 11 2007 2 3
Fctcp Chw Trends 2 11 2007 2 3
 
Fctcp Chw Trends 2 8 2007 10 2
Fctcp Chw Trends 2 8 2007 10 2Fctcp Chw Trends 2 8 2007 10 2
Fctcp Chw Trends 2 8 2007 10 2
 
Fctcp Chw Trends 2 10 2007 18 2
Fctcp Chw Trends 2 10 2007 18 2Fctcp Chw Trends 2 10 2007 18 2
Fctcp Chw Trends 2 10 2007 18 2
 
Fctcp Chw Trends 2 3 2007 18 2
Fctcp Chw Trends 2 3 2007 18 2Fctcp Chw Trends 2 3 2007 18 2
Fctcp Chw Trends 2 3 2007 18 2
 
Fctcp Chw Trends 2 6 2007 10 2
Fctcp Chw Trends 2 6 2007 10 2Fctcp Chw Trends 2 6 2007 10 2
Fctcp Chw Trends 2 6 2007 10 2
 
Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem...
Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem...Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem...
Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem...
 
Initial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon MicrobeadsInitial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon Microbeads
 
DCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデルDCモータードライバICのスパイスモデル
DCモータードライバICのスパイスモデル
 
SPICE Model of TA7291P
SPICE Model of TA7291PSPICE Model of TA7291P
SPICE Model of TA7291P
 

More from Rodolfo Gonçalves

VIV em cilindros com baixarazão de aspecto e pequena razão de massa
VIV em cilindros com baixarazão de aspecto e pequena razão de massaVIV em cilindros com baixarazão de aspecto e pequena razão de massa
VIV em cilindros com baixarazão de aspecto e pequena razão de massaRodolfo Gonçalves
 
Estudo Experimental do Movimento Induzido por Vórtices (VIM) em Plataforma Se...
Estudo Experimental do Movimento Induzido por Vórtices (VIM) em Plataforma Se...Estudo Experimental do Movimento Induzido por Vórtices (VIM) em Plataforma Se...
Estudo Experimental do Movimento Induzido por Vórtices (VIM) em Plataforma Se...Rodolfo Gonçalves
 
Vibrações Induzidas pela Emissão de Vórtices em Cilindros com Baixa Razão de ...
Vibrações Induzidas pela Emissão de Vórtices em Cilindros com Baixa Razão de ...Vibrações Induzidas pela Emissão de Vórtices em Cilindros com Baixa Razão de ...
Vibrações Induzidas pela Emissão de Vórtices em Cilindros com Baixa Razão de ...Rodolfo Gonçalves
 
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...Rodolfo Gonçalves
 
ISOPE2012-TPC145: Vortex-Induced Yaw Motion (VIY) of a Large-Volume Semi-Subm...
ISOPE2012-TPC145: Vortex-Induced Yaw Motion (VIY) of a Large-Volume Semi-Subm...ISOPE2012-TPC145: Vortex-Induced Yaw Motion (VIY) of a Large-Volume Semi-Subm...
ISOPE2012-TPC145: Vortex-Induced Yaw Motion (VIY) of a Large-Volume Semi-Subm...Rodolfo Gonçalves
 
Numerical Offshore Tank - Description
Numerical Offshore Tank - DescriptionNumerical Offshore Tank - Description
Numerical Offshore Tank - DescriptionRodolfo Gonçalves
 
OMAE2009-79380: Mitigation of Vortex-Induced Motions of a Monocolumn Platform
OMAE2009-79380: Mitigation of Vortex-Induced Motions of a Monocolumn PlatformOMAE2009-79380: Mitigation of Vortex-Induced Motions of a Monocolumn Platform
OMAE2009-79380: Mitigation of Vortex-Induced Motions of a Monocolumn PlatformRodolfo Gonçalves
 
OMAE2009-79378: Vortex-Induced Motion of a Monocolumn Platform: New Analysis ...
OMAE2009-79378: Vortex-Induced Motion of a Monocolumn Platform: New Analysis ...OMAE2009-79378: Vortex-Induced Motion of a Monocolumn Platform: New Analysis ...
OMAE2009-79378: Vortex-Induced Motion of a Monocolumn Platform: New Analysis ...Rodolfo Gonçalves
 
OMAE2011-4910: Experimental Study on Vortex-Induced Motions (VIM) of a Large-...
OMAE2011-4910: Experimental Study on Vortex-Induced Motions (VIM) of a Large-...OMAE2011-4910: Experimental Study on Vortex-Induced Motions (VIM) of a Large-...
OMAE2011-4910: Experimental Study on Vortex-Induced Motions (VIM) of a Large-...Rodolfo Gonçalves
 

More from Rodolfo Gonçalves (10)

OMAE2014-23383
OMAE2014-23383OMAE2014-23383
OMAE2014-23383
 
VIV em cilindros com baixarazão de aspecto e pequena razão de massa
VIV em cilindros com baixarazão de aspecto e pequena razão de massaVIV em cilindros com baixarazão de aspecto e pequena razão de massa
VIV em cilindros com baixarazão de aspecto e pequena razão de massa
 
Estudo Experimental do Movimento Induzido por Vórtices (VIM) em Plataforma Se...
Estudo Experimental do Movimento Induzido por Vórtices (VIM) em Plataforma Se...Estudo Experimental do Movimento Induzido por Vórtices (VIM) em Plataforma Se...
Estudo Experimental do Movimento Induzido por Vórtices (VIM) em Plataforma Se...
 
Vibrações Induzidas pela Emissão de Vórtices em Cilindros com Baixa Razão de ...
Vibrações Induzidas pela Emissão de Vórtices em Cilindros com Baixa Razão de ...Vibrações Induzidas pela Emissão de Vórtices em Cilindros com Baixa Razão de ...
Vibrações Induzidas pela Emissão de Vórtices em Cilindros com Baixa Razão de ...
 
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
 
ISOPE2012-TPC145: Vortex-Induced Yaw Motion (VIY) of a Large-Volume Semi-Subm...
ISOPE2012-TPC145: Vortex-Induced Yaw Motion (VIY) of a Large-Volume Semi-Subm...ISOPE2012-TPC145: Vortex-Induced Yaw Motion (VIY) of a Large-Volume Semi-Subm...
ISOPE2012-TPC145: Vortex-Induced Yaw Motion (VIY) of a Large-Volume Semi-Subm...
 
Numerical Offshore Tank - Description
Numerical Offshore Tank - DescriptionNumerical Offshore Tank - Description
Numerical Offshore Tank - Description
 
OMAE2009-79380: Mitigation of Vortex-Induced Motions of a Monocolumn Platform
OMAE2009-79380: Mitigation of Vortex-Induced Motions of a Monocolumn PlatformOMAE2009-79380: Mitigation of Vortex-Induced Motions of a Monocolumn Platform
OMAE2009-79380: Mitigation of Vortex-Induced Motions of a Monocolumn Platform
 
OMAE2009-79378: Vortex-Induced Motion of a Monocolumn Platform: New Analysis ...
OMAE2009-79378: Vortex-Induced Motion of a Monocolumn Platform: New Analysis ...OMAE2009-79378: Vortex-Induced Motion of a Monocolumn Platform: New Analysis ...
OMAE2009-79378: Vortex-Induced Motion of a Monocolumn Platform: New Analysis ...
 
OMAE2011-4910: Experimental Study on Vortex-Induced Motions (VIM) of a Large-...
OMAE2011-4910: Experimental Study on Vortex-Induced Motions (VIM) of a Large-...OMAE2011-4910: Experimental Study on Vortex-Induced Motions (VIM) of a Large-...
OMAE2011-4910: Experimental Study on Vortex-Induced Motions (VIM) of a Large-...
 

OMAE2009-79431: A Phenomenological Model for Vortex-Induced Motions of the Monocolumn Platform and Comparison with Experiments

  • 1. OMAE2009-79431 A PHENOMENOLOGICAL MODEL FOR VORTEX-INDUCED MOTIONS OF THE MONOCOLUMN PLATFORM AND COMPARISON WITH EXPERIMENTS Guilherme F. Rosetti – University of São Paulo – Brazil Rodolfo T. Gonçalves – University of São Paulo – Brazil André L. C. Fujarra – University of São Paulo – Brazil Kazuo Nishimoto - University of São Paulo – Brazil Marcos D. Ferreira – CENPES - PETROBRAS
  • 2. Scope of the presentation • Phenomenological model for the VIM of Monocolumn platforms – General aspects and formulation; – Results and comparison with experiments; – Investigation of some aspects related to the phenomenon.
  • 3. Modeling of VIM/VIV-Semi-Empirical Methods •Non-linear oscillators represent the dynamics of the fluid region during vortex-induced motions; •Oscillators describe lift and drag; •Fluid oscillator interacts with the structure modeled as a linear oscillator; •Parameters of the model must be calibrated with experimental results; •Tuning parameters are determined around resonance.
  • 4. Premises What should the model reproduce from the phenomenon to be useful for engineering analysis? •Self-excited and sustained phenomenon; •Lock-in (synchronization of frequencies); •Quantify amplitudes, frequencies, forces, coeficients (such as added mass etc).
  • 5. Equations (2𝑚Ω 𝑠 𝜉 + 𝛾Ωf 𝜌𝐿𝐷2 ) 𝑘 1 Structural Oscillator: 𝑟+ 𝑟+ 𝑟= 𝜌𝑉 2 𝐷𝐿𝐶 𝑇 𝑚 𝑚 2𝑚 𝐴𝑦 Cross-Flow Fluid Oscillator: 𝑞 𝑦 + 𝜀 𝑦 Ω2 𝑞 2 − 1 𝑞 𝑦 + Ω2 𝑞 𝑦 = f 𝑦 𝑓 𝑦 𝐷 𝐴𝑥 Inline Fluid Oscillator: 𝑞 𝑥 + 𝜀 𝑥 Ω2 𝑞 2 − 1 𝑞 𝑥 + 4Ω2 𝑞 𝑥 = f 𝑥 𝑓 𝐷 𝑥 Displacement: r = x + iy Lift Force: 𝐶 𝐿 = 𝐶 𝐿0 𝑞 𝑦 /2 Drag Force: 𝐶 𝐷 = 𝐶0 1 + 𝐾𝑞 2 + 𝐶 𝑖0 𝑞 𝑦 /2 𝑥 1 Model Parameters: 𝜌𝑉 2 𝐷𝐿𝐶 𝑇 𝜉 𝑘 2𝑚 𝑉 Tuning Parameters: 𝛾 𝐴𝑦 𝐴𝑥 𝜀𝑦 𝜀𝑥 𝐾 Ω 𝑓 = 2𝜋𝑆 𝐷
  • 6. Model and Tuning Parameters How to Obtain The Model Parameters? Experiments performed in 2008 with MonoBr platform and experiments with bare cylinders. Strouhal Number, Lift and Drag vortex-shedding and Drag coefficients for stationary structure, geometric characteristics. How to Tune the Remaining Parameters? Following the Procedures adopted and accepted by specialists such as Facchinetti, Furnes, Blevins.
  • 7. Results Operational Draft of MonoBR •Cross-flow amplitudes follow the trend up to Vr=10; •Inline amplitudes show some difference in the trend due to the coupling of inline and cross-flow; •Periods are well represented as of Vr=8. For smaller Vr’s, periods follow Strouhal frequency. 1 4 Fujarra A.L.C. et al. (2009) Fujarra A.L.C. et al. (2009) 0.8 Present data 3 Present data nY T /T 0.6 2 AY / D Y 1 0.4 0 0.2 2 0 1.5 0.2 TX / TnY 1 AX / D 0.1 0.5 0 0 2 4 6 8 10 12 14 16 0 0 2 4 6 8 10 12 14 16 Vr0 = UT0 / D Vr0 = UT0 / D
  • 8. Results – Eight Shape •Same range of reduced velocities although different reduced velocities; 0.8 0.6 Cross-flow reduced displacement 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -2.5 -2 -1.5 -1 -0.5 0 Inline reduced displacement
  • 9. Results – Added Mass and Synchronization Range •Added mass follows the trend observed by other researchers and presents asymptotic limit in zero; •As mass ratio is low (~1), synchronization range is very wide. 25 1 0.9 20 0.8 Added mass coefficient 0.7 15 0.6 AY / D 0.5 10 0.4 0.3 5 0.2 0.1 0 0 0 200 400 600 800 1000 1200 1400 0 2 4 6 8 10 12 14 16 Vr0 = UT0 / D Vr0 = UT0 / D
  • 10. Results – Hysteresis 30 1 0.8 25 0.6 Flow Velocity [m/s] 20 0.4 0.2 A /D 15 0 Y -0.2 10 -0.4 5 -0.6 -0.8 0 0 500 1000 1500 2000 -1 0 500 1000 1500 2000 Time [s] Time [s] 1 increasing velocity 0.9 decreasing velocity 0.8 0.7 0.6 AY / D 0.5 0.4 0.3 0.2 0.1 0 0 200 400 600 800 1000 1200 1400 Vr0 = UT0 / D
  • 11. Results Low Draft of MonoBR •When the aspect ratio is 0.20, ocillations drop substantially; •Oscillations are strongly dependent on aspect ratio and constant Strouhal number may not correctly represent the vortex shedding pattern for the entire range. 1 Fujarra A.L.C. et al. (2009) 0.8 Present data 0.6 AY / D 0.4 0.2 0 0.2 AX / D 0.1 0 0 2 4 6 8 10 12 14 16 Vr0 = UT0 / D
  • 12. Discussion •The model was compared with experimental results showing merits and deficiencies; •It is necessary to reevaluate the coupling between inline and cross-flow in order to better represent the behavior of the structure; •It seems that there is a reciprocal influence of inline and cross- flow and it has to be better modeled; •It will be useful to employ Hilbert-Huang analysis in order to study hysteresis; •Considering the usual Strouhal number equal to 0.2 might be incorrect for low aspect ratio structures; •More investigation on low aspect ratio in terms of vortex shedding pattern and Strouhal number is required.