Sesión 03,Plano tangente, derivadas parciales y derivada direccional

6,932 views
6,154 views

Published on

Plano tangente, derivadas parciales y derivada direccional

Published in: Education
0 Comments
6 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
6,932
On SlideShare
0
From Embeds
0
Number of Embeds
34
Actions
Shares
0
Downloads
241
Comments
0
Likes
6
Embeds 0
No embeds

No notes for slide

Sesión 03,Plano tangente, derivadas parciales y derivada direccional

  1. 1. CÁLCULO 3 Departamento de Ciencias Juan Carlos Broncano Torres
  2. 2. ¿Qué dirección debe tomar el esquiador si quiere bajar la montaña rápidamente?
  3. 3. Curva Maravillosa: Braquistócrona Un curva braquistócrona, o curva del descenso más rápido, es la curva entre dos puntos que es recorrida en menor tiempo, por un cuerpo que comienza en el punto inicial con velocidad cero, y que debe desplazarse a lo largo de la curva hasta llegar al segundo punto, bajo acción de una fuerza de gravedad constante y suponiendo que no existe fricción. Comparación entre una trayectoria braquistócrona, y otras dos trayectorias posibles. Cicloide generada por una circunferencia. En 1696 el matemático Johann Bernoulli anunció a la comunidad matemática la solución al problema de la braquistocrona (curva que sigue el descenso más rápido cuando existe gravedad y que es objeto de estudio en el cálculo de variaciones), mostrando que la solución era una cicloide. Leibniz, Newton, Jakob Bernoulli y Guillaume de l'Hôpital, encontraron la solución del problema enunciado por Bernoulli.
  4. 4. Logros de la sesión: Al finalizar la sesión, el estudiante resuelve problemas vinculados a la gestión e ingeniería a partir de la derivada parcial y direccional usando el cálculo de la gradiente, e interpretando su resultado con las propiedades físicas que el tiene.
  5. 5. DERIVADAS PARCIALES
  6. 6. NOTACIÓN DE LAS DERIVADAS PARCIALES Ejemplo
  7. 7. DERIVADAS DE ORDEN SUPERIOR
  8. 8. PLANO TANGENTE Se llama plano tangente a una superficie en un punto P de la misma, al plano que contiene todas las tangentes a las curvas trazadas sobre la superficie por el punto P. ECUACIÓN DEL PLANO TANGENTE
  9. 9. Ejemplo Hallar la ecuación del plano tangente al paraboloide en el punto RECTA NORMAL Se llama recta normal a una superficie a la recta que pasa por un punto P y es perpendicular al plano tangente.
  10. 10. LA GRADIENTE
  11. 11. PROPIEDADES DE LA GRADIENTE Ejemplo
  12. 12. Ejemplo Determine la ecuación del plano tangente y la recta normal al hiperboloide de dos mantos en el punto Solución 2 x2 y 2 1 Haciendo: F ( x, y, z ) z tenemos que: Fx 2x x 1 2 Fy Fz 2y 2z z y 2 4 6 Por tanto, la ecuación del plano tangente es: Por otro lado, la ecuación de la recta normal es : x 1 2t y 2 4t z 6 2t 6 x 2y z 6 0
  13. 13. Ejemplo Hallar el o los puntos de la esfera en los cuales el plano tangente es paralelo al plano Solución Sea uno de estos puntos, entonces por estar en la esfera: Por otro lado, por ser el plano tangente a la esfera en el punto y el plano paralelos, sus vectores normales son paralelos, es decir : Entonces se obtiene el siguiente sistema de ecuaciones: De donde obtenemos que los puntos que buscamos son:
  14. 14. Ejemplo ¿En qué punto de la superficie ? la recta normal es paralela al vector Solución Sea el punto que buscamos. Si la recta normal es paralela al vector entonces su vector director también es paralelo a con lo cual, si : entonces : ; Evaluando en esta sobre la superficie, por lo que satisface su ecuación : Obtenemos el siguiente sistema: Y así, el punto buscado es:
  15. 15. DERIVADA DIRECCIONAL La derivada direccional de f en la dirección dada por el vector unitario u está dada por: f ( x su1 , y su2 ) - f(x, y) D f(x, y) lim s 0 s u si el límite existe.
  16. 16. Teorema: Si f tiene sus primeras derivadas parciales continuas entonces tiene derivada direccional en la dirección de cualquier vector unitario u y se cumple: D f(x, y) f x (x, y) u1 u f y (x, y) u 2
  17. 17. BIBLIOGRAFÍA # CÓDIGO AUTOR TÍTULO EDITORIAL 1 515.33 PURC PURCELL, EDWIN J. Cálculo Diferencial E Integral Pearson Educación 2 515 STEW/M 2002 STEWART, JAMES Cálculo Multivariable Cuarta edición, Mexico 2001, Edit. Thomson Cálculo Aplicado Para Administración, Economía Y Ciencias Sociales Octava edición, México 2007,.Mcgrawhill 3 515 HOFF/C HOFFMANN, 2006 LAURENCE D.
  18. 18. http://www.tecdigital.itcr.ac.cr/revistamatematica/cursoslinea/SUPERIOR/derivadadireccional/node1.html

×