Your SlideShare is downloading. ×
ANESTÉSICOS GERAIS INALATÓRIOS
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

ANESTÉSICOS GERAIS INALATÓRIOS

16,347
views

Published on

www.farmacologia-anestesia.blogspot.com

www.farmacologia-anestesia.blogspot.com


0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
16,347
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
161
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. ANESTÉSICOS INALATÓRIOS Carlos Darcy A. Bersot
  • 2. Anestesiologia - Dados Históricos 1842 1846
  • 3. PK Inalatória
  • 4. PK Inalatória  Captação  FA  FI  FA/FI
  • 5. Dalton’s law:  partial pressure of each component gas is directly related to its concentration  P total = P1 + P2 + P3 + .......Pn  The Partial Pressure is defined as the pressure of a single gas in the mixture as if that gas alone occupied the container
  • 6. Henry’s law:  The quantity of gas that will dissolve in a liquid is proportional to the partial pressure of that gas in contact with the liquid, or the partial pressure of the gas in the gas phase
  • 7. Partition coefficient:  An expression of the relative solubility of a substance in two immiscible phases. It compares the amount of gas present in the first phase when one part dissolves in the second phase.
  • 8. Partition coefficient:  An expression of the relative solubility of a substance in two immiscible phases. It compares the amount of gas present in the first phase when one part dissolves in the second phase.
  • 9. PK Inalatória
  • 10. PK Inalatória
  • 11. PK Inalatória
  • 12. PK Inalatória
  • 13. 300 Isoflurane Enflurane Halothane 250 200 Tempo(seg) 150 100 50 0 INDUCTION RECOVERY Bersot,CD UFRJ 2006 in mice
  • 14. Concentration/Second Gas Effects As you  anesthetic concentration, you  alveolar concentration. As you  1st anesthetic concentration, you  alveolar concentration of 2nd anesthetic .
  • 15. A B 1% of 1.7 % second gas of second gas 19 % O2 31.7 % O2 Uptake of half of the N2O 66.7 % N2O 80% N2O
  • 16. Minimum alveolar concentration (MAC)  Alveolar concentration required to prevent movement in 50% of subjects  standard stimulus – originally incision  represents +/- brain concentration  additive
  • 17. MAC Values (%)
  • 18. PROPRIEDADES FISICOQUÍNICAS DOS ANESTÉSICOS INALATÓRIOS   Sevoflurano Desflurano Isoflurano Enflurano Halotano N2O Ponto de ebulição (°C) 59 24 49 57 50 –88 Pressão de vapor a 20°C (mm Hg) 157 669 238 172 243 38.770 Peso molecular (g) 200 168 184 184 197 44 Coeficiente de partição óleo:gás 47 19 91 97 224 1.4 Coeficiente de partição sangue:gás 0,65 0,42 1,46 1,9 2,50 0,46 Solubilidade cérebro:sangue 1,7 1,3 1,6 1,4 1,9 1,1 Solubilidade gordura:sangue 47,5 27,2 44,9 36 51,1 2,3 Solubilidade músculo:sangue 3,1 2,0 2,9 1,7 3,4 1,2 CAM em O , 30-60 a, 37°C P 760 (%) 2 B 1,8 6,6 1,17 1,63 0,75 104 CAM em 60–70% N O (%) 2 0,66 2,38 0,56 0,57 0,29   CAM >65 a (%) 1,45 5,17 1,0 1,55 0,64 — Preservativo Não Não Não Não Timol Não Estável em absorvedor CO úmido2 Não Sim Sim Sim Não Sim Inflamabilidade (%) (N O/O 70/30%) 2 2 10 17 7 5,8 4,8   Recuperado como metabólitos(%) 2–5 0,02 0,2 2,4 20  
  • 19. NEUROSCIENCE OF GENERAL ANAESTHESIA    
  • 20. Molecular Mechanism of Action: Two Ideas 1. Meyer-Overton Theory lipid soluble drug increases volume of lipid membranes which, in turn, distorts membrane proteins 2. Protein Receptor Hypothesis inhaled agent binds directly to hydrophobic part of membrane protein
  • 21. The GABA/Cl channel complex  GABAA / GABAB  ↑GABA effects vs direct Cl- action  ↑Channel open-time  Bicuculline = GABAA antagonist (NB bicuculline doesn’t reverse general anaesthesia!!!)
  • 22. Subcortical vs Cortical  Cortex is more sensitive than thalamus/ reticular activating system (Steriade, Electro Clin Neurophys 1994;90:1), (Tomoda, BJA 1993;71:383), (Angel, Exp Phys 1991;76:1), (Dougherty, J. Neurophys 1997;77:1375)
  • 23. The Pathways of MAC/Rousability Actual State Potential response
  • 24. “Functional Disconnection of cortico-thalamic circuits” White & Alkire, Neuroimage 2003;19:402
  • 25. Halothane and K Channels + (IKAn) (Winegar -Anesth 1996;85:889)  Hyperpolarization is minor and NOT proportional to Spike Rate (MacIvor & Kendig, Anesthesiology, 1991;74:83)  May be important in EEG phenomena of Deep Anaesthesia
  • 26. Nitrous Oxide  Simple linear compound  Not metabolized  Only anesthetic agent that is inorganic
  • 27. Nitrous Oxide  Low potency  MAC value is 105%  Weak anesthetic, powerful analgesic  Needs other agents for surgical anesthesia  Low blood solubility (quick recovery)
  • 28. Nitrous Oxide Systemic Effects  Minimal effects on heart rate and blood pressure  May cause myocardial depression  Little effect on respiration  Safe, efficacious agent
  • 29. Nitrous Oxide Side Effects  Beginning of case: second gas effect  End of case: diffusion hypoxia  Diffusion into closed spaces
  • 30. Nitrous Oxide Side Effects  Inhibits methionine synthetase (precursor to DNA synthesis)  Inhibits vitamin B-12 metabolism  Dentists, OR personnel, abusers at risk
  • 31. Halothane  Synthesized in 1956 by Suckling  Halogen substituted ethane  Volatile liquid easily vaporized, stable, and nonflammable
  • 32. Halothane  Most potent inhalational anesthetic  MAC of 0.75%  Efficacious in depressing consciousness  Very soluble in blood and adipose  Prolonged emergence
  • 33. Halothane Systemic Effects  Inhibits sympathetic response to painful stimuli  Inhibits sympathetic driven baroreflex response (hypovolemia)  Sensitizes myocardium to effects of exogenous catecholamines-- ventricular arrhythmias
  • 34. Halothane Systemic Effects  Decreases respiratory drive-- central response to CO2 and peripheral to O2  Depresses myocardium-- lowers BP and slows conduction  Mild peripheral vasodilation
  • 35. Halothane Side Effects  “Halothane Hepatitis” -- 1/10,000 cases  fever, hepatic necrosis, death  metabolic breakdown products are hapten-protein conjugates  immunologically mediated assault  exposure dependent
  • 36. Halothane Side Effects  Malignant Hyperthermia-- 1/60,000 with succinylcholine to 1/260,000 without  halothane in 60%, succinylcholine in 77%  Classic-- rapid rise in body temperature, muscle rigidity, tachycardia, rhabdomyolysis, acidosis, hyperkalemia, DIC
  • 37. Enflurane  Developed in 1963 by Terrell, released for use in 1972  Stable, nonflammable liquid  Pungent odor  MAC 1.68%
  • 38. Enflurane Systemic Effects  Potent inotropic and chronotropic depressant and decreases systemic vascular resistance-- lowers blood pressure and conduction dramatically  Inhibits sympathetic baroreflex response  Sensitizes myocardium to effects of exogenous catecholamines-- arrhythmias
  • 39. Enflurane Side Effects  Metabolism one-tenth that of halothane-- does not release quantity of hepatotoxic metabolites  Metabolism releases fluoride ion-- renal toxicity  Epileptiform EEG patterns
  • 40. Isoflurane  Synthesized in 1965 by Terrell, introduced into practice in 1984  Not carcinogenic  Nonflammable,pungent  Less soluble than halothane or enflurane  MAC of 1.30 %
  • 41. Isoflurane Systemic Effects  Depresses respiratory drive and ventilatory responses-- less than enflurane  Myocardial depressant-- less than enflurane  Inhibits sympathetic baroreflex response-- less than enflurane  Sensitizes myocardium to catecholamines -- less than halothane or enflurane
  • 42. Isoflurane Systemic Effects  Produces most significant reduction in systemic vascular resistance-- coronary steal syndrome, increased ICP  Excellent muscle relaxant-- potentiates effects of neuromuscular blockers
  • 43. Isoflurane Side Effects  Little metabolism (0.2%) -- low potential of organotoxic metabolites  Bronchoirritating, laryngospasm
  • 44. Sevoflurane and Desflurane  Low solubility in blood-- produces rapid induction and emergence  Minimal systemic effects-- mild respiratory and cardiac suppression  Few side effects  Expensive  Differences
  • 45. Sistema Nervoso Central
  • 46. Silêncio ao EEG: Iso, Sevo e Desflurano: em torno de 2 CAM Halotano: acima de 3,5 CAM Enflurano: não há silêncio Proteção cerebral: Isoflurano: semelhante ao tiopental, até silêncio Atividade convulsivante: Enflurano > 2 CAM
  • 47. Fluxo Sangüíneo Cerebral Stoelting Isoflurano preserva auto-regulação Halotano não preserva
  • 48. Liquor Produção Absorção Efeito na PIC Enflurano + - + Isoflurano = + N 2O =
  • 49. Sistema Nervoso Autônomo Barash Stoelting
  • 50. Índice Cardíaco, PVC, RVS RVS Contra- RVS PA tilidade Halot - + - I, S, D = - -
  • 51. Freqüência Cardíaca e Pressão Arterial Pressão Arterial FC: H - I,S,D + Mecanismos: depressão de reflexo baro-r, depressão NSA
  • 52. Arritmias
  • 53. Parâmetros Respiratórios Mecanismo da depressão: depressão dos centros medulares alteração da função dos músculos intercostais Barash
  • 54. Resposta à hipoxemia 0,1 CAM diminui 50-70% Resposta Ventilatória ao CO2 Stoelting
  • 55. Broncodilatação Barash É difícil demonstrar efeito broncodilatador na ausência de broncoconstricção
  • 56. Vasoconstricção Hipóxica A inibição da vasoconstricção pulmonar hipóxica pelos anestésicos inalatórios não prejudica a oxigenação na ventilação monopulmonar. Barash
  • 57. Músculos Esqueléticos Hipertermia Maligna Todos os halogenados podem desencadear Aumento das contraturas induzidas por cafeína no sartório do sapo N 2O Iso Enfl Hal 1,3 3 4 11
  • 58. Contratilidade Uterina
  • 59. Metabolismo dos Anestésicos Inalatórios
  • 60. Metabolismo dos Anestésicos Inalatórios Degradação pelos absorvedores de CO2 Monóxido de Carbono – CO Composto A Metabolismo Oxidativo Fluoretos Trifluoracetato Redutivo O metabolismo dos halogenados pode: gerar produtos tóxicos ao fígado, aos rins e órgãos reprodutores influenciar na eliminação do anestésico (metoxiflurano)
  • 61. Composto A Produção maior com: fluxos baixos de gases temperaturas altas umidade baixa absorvedor baritado O composto A em si não é tóxico. A biodegradação para conjugados de cisteína e a ação da enzima renal beta-liase resulta na produção de tiol potencialmente tóxico. O metabolismo pela via da beta liase é menos extenso em humanos que em ratos
  • 62. Fluxo Sangüíneo Hepático Stoelting A ação do Desflurano é semelhante à do Isoflurano
  • 63. Hepatotoxicidade Os testes de função hepática ficam alterados transitoriamente com quase todos os anestésicos, exceto isoflurano, em voluntários Hipóxia e baixa perfusão agravam as alterações no pós-operatório Indução enzimática aumenta necessidade de oxigênio Pacientes com lesão hepática têm alterações maiores Barash
  • 64. Hepatotoxicidade As alterações no pós-operatório são mais evidentes com o Halotano: 20% têm quadro benigno e auto-limitado: náusea, letargia, febre, aumento de transaminases Produtos do metabolismo redutivo não são tóxicos Hepatite por Halogenados Eosinofilia, febre, alterações cutâneas, artralgia, exposição prévia Há suscetibilidade genética 1:10.000 a 1:30.000 de pacientes que recebem Halotano Ocorre também com enflurano, isoflurano e desflurano incidência é menor que com halotano, em proporção com solubilidade e metabolização oxidativa há sensibilização cruzada entre anestésicos
  • 65. Hepatite por Halogenados TFA é produto do metabolismo oxidativo Proteínas trifluoracetiladas evocam resposta imune Do Sevoflurano não se forma trifluoracetato
  • 66. Hepatite por Halogenados Quadro Clínico Eosinofilia Fatores Predisponentes Febre Rash Artralgia Mulher Exposição prévia Meia idade Exposições múltiplas
  • 67. Rins Todos os halogenados, pela queda da PA e do DC, diminuem: FSR TFG Diurese A hidratação pré-operatória abole ou diminui essas alterações
  • 68. Nefrotoxicidade por fluoretos Incapacidade de concentrar urina Poliúria Hipernatremia Hiperosmolaridade Aumento da creatinina sérica Observada primeiro com Metoxiflurano: Fluoretos: < 40 µm/L sem efeitos 50 – 80 µm/L toxicidade subclínica > 80 µm/L toxicidade clínica Os níveis não são iguais para outros anestésicos produção intra-renal?
  • 69. Sevoflurano e Função Renal
  • 70. Netrotoxicidade por haletos vinílicos (Composto A) Composto A é fatal para 50% de ratos expostos a 400 ppm por 3 horas. Circuito fechado > 5h: < 20ppm