SlideShare a Scribd company logo
1 of 4
Download to read offline
TRANSISTORES
El transistor, inventado en 1951, es el componente electrónico estrella, pues
inició una auténtica revolución en la electrónica que ha superado cualquier
previsión inicial.
Con el transistor vino la miniaturización de los componentes y se llegó al
descubrimiento de los circuitos integrados, en los que se colocan, en pocos
milímetros cuadrados, miles de transistores. Estos circuitos constituyen el
origen de los microprocesadores y, por lo tanto, de los ordenadores actuales.
Por otra parte, la sustitución en los montajes electrónicos de las clásicas y
antiguas válvulas de vacío por los transistores, reduce al máximo las pérdidas
de calor de los equipos.
Un transistor es un componente que tiene, básicamente, dos funciones:
- Deja pasar o corta señales eléctricas a partir de una PEQUEÑA señal de
mando.
- Funciona como un elemento AMPLIFICADOR de señales.
¿Cómo es físicamente un transistor?
Hay dos tipos básicos de transistor:
a) Transistor bipolar o BJT (Bipolar Junction Transistor)
b) Transistor de efecto de campo, FET (Field Effect Transistor) o unipolar
A) Transistor bipolar
Consta de tres cristales semiconductores
(usualmente de silicio) unidos entre sí. Según como
se coloquen los cristales hay dos tipos básicos de
transistores bipolares.
- Transistor NPN: en este caso un cristal P está
situado entre dos cristales N. Son los más
comunes.
- Transistor PNP: en este caso un cristal N está
situado entre dos cristales P
La capa de en medio es mucho más estrecha que las
otras dos.
En cada uno de estos cristales se realiza un contacto metálico, lo que da origen
a tres terminales:
• Emisor (E): Se encarga de proporcionar portadores de carga.
• Colector (C): Se encarga de recoger portadores de carga.
• Base (B): Controla el paso de corriente a través del transistor. Es el
cristal de en medio.
El conjunto se protege con una funda de plástico o metal.
Nos centraremos en el transistor NPN:
B) Polarización del transistor
Se entiende por polarización del transistor las
conexiones adecuadas que hay que realizar con
corriente continua para que pueda funcionar correctamente.
Si se conectan dos baterías al transistor como se ve en la figura, es decir, con
la unión PN de la base-emisor polarizada directamente y la unión PN de la
base-colector polarizado inversamente. Siempre que la tensión de la base-
emisor supere 0,7 V, diremos que el transistor está polarizado, es decir, que
funciona correctamente.
Este montaje se llama con emisor común.
En este caso, el hecho de que el transistor esté en funcionamiento significa que
es capaz de conducir la corriente desde el terminal colector hasta el terminal
emisor. Se cumplen dos expresiones para este caso:
La primera…
IE= IB + IC
Donde…
IE es la corriente que recorre el terminal emisor.
IC es la corriente que recorre el terminal colector.
IB es la corriente que recorre el terminal base.
Como la corriente de base resulta siempre MUY PEQUEÑA, se puede decir
que la corriente del colector y la del emisor prácticamente coinciden.
IE ≈ IC
La segunda expresión dice
IC= β·IB
Donde β es una constante que depende de cada transistor llamado ganancia
que puede valer entre 50 y 300 (algunos transistores llegan a 1000).
La ganancia de un transistor nos habla de la capacidad que tiene para
amplificar la corriente. Cuanto mayor es la ganancia de un transistor, más
puede amplificar la corriente.
Se concluye que la corriente por el colector de un transistor bipolar es
proporcional a la corriente por la base, es decir, a mayor corriente en la base,
mayor corriente en el colector.
En la práctica no se utilizan dos baterías, sino una
sola.
Según estas dos expresiones el transistor bipolar puede tener tres estados
distintos de funcionamiento:
a) Corte: En este caso la corriente de base es nula (o casi), es decir, IB = 0,
por lo tanto, IC= β·IB= β·0 = 0  IC= 0
En este caso, el transistor no conduce en absoluto. No está
funcionando. Se dice que el transistor se comporta como un interruptor
abierto.
b) Activa: En este caso el transistor conduce parcialmente siguiendo la
segunda expresión (IC= β·IB). La corriente del colector es directamente
proporcional a la corriente de la base. Ejemplo: Si β = 100, la corriente
del colector es 100 veces la corriente de la base. Por eso se dice que el
transistor amplifica la corriente.
c) Saturación: En este caso, el transistor conduce totalmente y se comporta
como un interruptor cerrado. Este estado se alcanza cuando la corriente
por la base (IB) alcanza un valor alto. En este caso la expresión (IC= β·IB)
ya no tiene sentido pues, por mucho que aumente el valor de la corriente de
base (IB), no aumenta el valor de la corriente de colector.
Veamos un cuadro resumen con las tensiones de trabajo en los diferentes
estados de funcionamiento, así como las corrientes de un transistor conectado
a una pila cuya tensión es V
Corte Activa Saturación
VCE VCE = V 0< VCE < V VCE ≈ 0
IC IC≈ IE = 0
IC= β·IB
IE ≈ IC
IE ≈ IC
IB
en cualquier caso IB
siempre es una
corriente pequeña, es
decir, IB << IC
IB≈0 IB>0 IB con máximo valor
Conducción del
transistor
No conduce (se
comporta como
un interruptor
abierto)
Conduce
parcialmente
Conduce
totalmente (se
comporta como
un interruptor
cerrado)
Donde VCE es la tensión que existe entre el colector y el emisor.
Si la corriente de base es muy alta, el transistor puede estropearse, por eso, la
base del transistor debe protegerse SIEMPRE con una resistencia de una valor
alto.
Estados de funcionamiento de un transistor

More Related Content

What's hot

Clase 7 teorema de superposición
Clase 7 teorema de superposiciónClase 7 teorema de superposición
Clase 7 teorema de superposiciónTensor
 
Resistencias
ResistenciasResistencias
ResistenciasJomicast
 
Teorema de máxima transferencia de potencia practica
Teorema de máxima transferencia de potencia practicaTeorema de máxima transferencia de potencia practica
Teorema de máxima transferencia de potencia practicaMiguel Angel Peña
 
laboratorio-n-2-medida-de-valores-medios-y-eficaces
laboratorio-n-2-medida-de-valores-medios-y-eficaceslaboratorio-n-2-medida-de-valores-medios-y-eficaces
laboratorio-n-2-medida-de-valores-medios-y-eficacesHenri Tique Maquera
 
Diodo, tipos y su curva característica
Diodo, tipos y su curva característicaDiodo, tipos y su curva característica
Diodo, tipos y su curva característicaRuben Fuentes
 
Aplicacion de motores maquinas iii
Aplicacion de motores maquinas iiiAplicacion de motores maquinas iii
Aplicacion de motores maquinas iiinorenelson
 
Practica uno caracteristicas del diodo
Practica uno  caracteristicas del diodoPractica uno  caracteristicas del diodo
Practica uno caracteristicas del diodoMarx Simpson
 
Informe fisica 6 denisse leyes de kirchohoff dvc(1)
Informe fisica 6  denisse leyes de kirchohoff dvc(1)Informe fisica 6  denisse leyes de kirchohoff dvc(1)
Informe fisica 6 denisse leyes de kirchohoff dvc(1)denissita_betza
 
Problemas resueltos-transformadores
Problemas resueltos-transformadoresProblemas resueltos-transformadores
Problemas resueltos-transformadoresMoises Perez
 
Rectificador onda completa
Rectificador onda completaRectificador onda completa
Rectificador onda completaTensor
 
MOTOR MONOFÁSICO DE POLOS SOMBREADOS
MOTOR MONOFÁSICO DE POLOS SOMBREADOSMOTOR MONOFÁSICO DE POLOS SOMBREADOS
MOTOR MONOFÁSICO DE POLOS SOMBREADOSDanny Anderson
 
Transformadores de alta frecuencia
Transformadores de alta frecuenciaTransformadores de alta frecuencia
Transformadores de alta frecuenciaCristhian Rodriguez
 

What's hot (20)

Clase 7 teorema de superposición
Clase 7 teorema de superposiciónClase 7 teorema de superposición
Clase 7 teorema de superposición
 
Resistencias
ResistenciasResistencias
Resistencias
 
Teorema de máxima transferencia de potencia practica
Teorema de máxima transferencia de potencia practicaTeorema de máxima transferencia de potencia practica
Teorema de máxima transferencia de potencia practica
 
Tarea circuitos
Tarea circuitosTarea circuitos
Tarea circuitos
 
laboratorio-n-2-medida-de-valores-medios-y-eficaces
laboratorio-n-2-medida-de-valores-medios-y-eficaceslaboratorio-n-2-medida-de-valores-medios-y-eficaces
laboratorio-n-2-medida-de-valores-medios-y-eficaces
 
Diodo, tipos y su curva característica
Diodo, tipos y su curva característicaDiodo, tipos y su curva característica
Diodo, tipos y su curva característica
 
La soldadura
La soldaduraLa soldadura
La soldadura
 
Aplicacion de motores maquinas iii
Aplicacion de motores maquinas iiiAplicacion de motores maquinas iii
Aplicacion de motores maquinas iii
 
Filtro pasa banda pasivo
Filtro pasa banda pasivoFiltro pasa banda pasivo
Filtro pasa banda pasivo
 
Practica uno caracteristicas del diodo
Practica uno  caracteristicas del diodoPractica uno  caracteristicas del diodo
Practica uno caracteristicas del diodo
 
Informe fisica 6 denisse leyes de kirchohoff dvc(1)
Informe fisica 6  denisse leyes de kirchohoff dvc(1)Informe fisica 6  denisse leyes de kirchohoff dvc(1)
Informe fisica 6 denisse leyes de kirchohoff dvc(1)
 
2.5. Rectificador de Media Onda
2.5. Rectificador de Media Onda2.5. Rectificador de Media Onda
2.5. Rectificador de Media Onda
 
Problemas resueltos-transformadores
Problemas resueltos-transformadoresProblemas resueltos-transformadores
Problemas resueltos-transformadores
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Practica 4
Practica 4Practica 4
Practica 4
 
Rectificador onda completa
Rectificador onda completaRectificador onda completa
Rectificador onda completa
 
Los resistores
Los resistoresLos resistores
Los resistores
 
MOTOR MONOFÁSICO DE POLOS SOMBREADOS
MOTOR MONOFÁSICO DE POLOS SOMBREADOSMOTOR MONOFÁSICO DE POLOS SOMBREADOS
MOTOR MONOFÁSICO DE POLOS SOMBREADOS
 
Transformadores de alta frecuencia
Transformadores de alta frecuenciaTransformadores de alta frecuencia
Transformadores de alta frecuencia
 
Convertidor boost
Convertidor boostConvertidor boost
Convertidor boost
 

Similar to Teoria de Transistores

Similar to Teoria de Transistores (20)

Transistores
TransistoresTransistores
Transistores
 
Transistores
TransistoresTransistores
Transistores
 
Transistores Bjt
Transistores BjtTransistores Bjt
Transistores Bjt
 
Transistores
TransistoresTransistores
Transistores
 
Transistores
TransistoresTransistores
Transistores
 
Los transistores
Los transistoresLos transistores
Los transistores
 
Los transistores
Los transistoresLos transistores
Los transistores
 
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
 
TRANSITORES
TRANSITORESTRANSITORES
TRANSITORES
 
Transistor Bipolar
Transistor BipolarTransistor Bipolar
Transistor Bipolar
 
Documento inicial bueno (1)
Documento inicial bueno (1)Documento inicial bueno (1)
Documento inicial bueno (1)
 
Documento editado
Documento editadoDocumento editado
Documento editado
 
Transistores
TransistoresTransistores
Transistores
 
Proyecto 3 lab
Proyecto 3 labProyecto 3 lab
Proyecto 3 lab
 
Mejorar documento
Mejorar documentoMejorar documento
Mejorar documento
 
ELECTRÓNICA BÁSICA
ELECTRÓNICA BÁSICAELECTRÓNICA BÁSICA
ELECTRÓNICA BÁSICA
 
Mejorar documento
Mejorar documentoMejorar documento
Mejorar documento
 
Mejorar documentoe
Mejorar documentoeMejorar documentoe
Mejorar documentoe
 
Transistores.doc
Transistores.docTransistores.doc
Transistores.doc
 
Electrónica Básica
Electrónica BásicaElectrónica Básica
Electrónica Básica
 

Recently uploaded

Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfvladimiroflores1
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...JohnRamos830530
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfAnnimoUno1
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21mariacbr99
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estossgonzalezp1
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxMiguelAtencio10
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.FlorenciaCattelani
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxAlan779941
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanamcerpam
 

Recently uploaded (11)

Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 

Teoria de Transistores

  • 1. TRANSISTORES El transistor, inventado en 1951, es el componente electrónico estrella, pues inició una auténtica revolución en la electrónica que ha superado cualquier previsión inicial. Con el transistor vino la miniaturización de los componentes y se llegó al descubrimiento de los circuitos integrados, en los que se colocan, en pocos milímetros cuadrados, miles de transistores. Estos circuitos constituyen el origen de los microprocesadores y, por lo tanto, de los ordenadores actuales. Por otra parte, la sustitución en los montajes electrónicos de las clásicas y antiguas válvulas de vacío por los transistores, reduce al máximo las pérdidas de calor de los equipos. Un transistor es un componente que tiene, básicamente, dos funciones: - Deja pasar o corta señales eléctricas a partir de una PEQUEÑA señal de mando. - Funciona como un elemento AMPLIFICADOR de señales. ¿Cómo es físicamente un transistor? Hay dos tipos básicos de transistor: a) Transistor bipolar o BJT (Bipolar Junction Transistor) b) Transistor de efecto de campo, FET (Field Effect Transistor) o unipolar A) Transistor bipolar Consta de tres cristales semiconductores (usualmente de silicio) unidos entre sí. Según como se coloquen los cristales hay dos tipos básicos de transistores bipolares. - Transistor NPN: en este caso un cristal P está situado entre dos cristales N. Son los más comunes. - Transistor PNP: en este caso un cristal N está situado entre dos cristales P La capa de en medio es mucho más estrecha que las otras dos. En cada uno de estos cristales se realiza un contacto metálico, lo que da origen a tres terminales: • Emisor (E): Se encarga de proporcionar portadores de carga. • Colector (C): Se encarga de recoger portadores de carga.
  • 2. • Base (B): Controla el paso de corriente a través del transistor. Es el cristal de en medio. El conjunto se protege con una funda de plástico o metal. Nos centraremos en el transistor NPN: B) Polarización del transistor Se entiende por polarización del transistor las conexiones adecuadas que hay que realizar con corriente continua para que pueda funcionar correctamente. Si se conectan dos baterías al transistor como se ve en la figura, es decir, con la unión PN de la base-emisor polarizada directamente y la unión PN de la base-colector polarizado inversamente. Siempre que la tensión de la base- emisor supere 0,7 V, diremos que el transistor está polarizado, es decir, que funciona correctamente. Este montaje se llama con emisor común. En este caso, el hecho de que el transistor esté en funcionamiento significa que es capaz de conducir la corriente desde el terminal colector hasta el terminal emisor. Se cumplen dos expresiones para este caso: La primera…
  • 3. IE= IB + IC Donde… IE es la corriente que recorre el terminal emisor. IC es la corriente que recorre el terminal colector. IB es la corriente que recorre el terminal base. Como la corriente de base resulta siempre MUY PEQUEÑA, se puede decir que la corriente del colector y la del emisor prácticamente coinciden. IE ≈ IC La segunda expresión dice IC= β·IB Donde β es una constante que depende de cada transistor llamado ganancia que puede valer entre 50 y 300 (algunos transistores llegan a 1000). La ganancia de un transistor nos habla de la capacidad que tiene para amplificar la corriente. Cuanto mayor es la ganancia de un transistor, más puede amplificar la corriente. Se concluye que la corriente por el colector de un transistor bipolar es proporcional a la corriente por la base, es decir, a mayor corriente en la base, mayor corriente en el colector. En la práctica no se utilizan dos baterías, sino una sola. Según estas dos expresiones el transistor bipolar puede tener tres estados distintos de funcionamiento: a) Corte: En este caso la corriente de base es nula (o casi), es decir, IB = 0, por lo tanto, IC= β·IB= β·0 = 0  IC= 0 En este caso, el transistor no conduce en absoluto. No está funcionando. Se dice que el transistor se comporta como un interruptor abierto.
  • 4. b) Activa: En este caso el transistor conduce parcialmente siguiendo la segunda expresión (IC= β·IB). La corriente del colector es directamente proporcional a la corriente de la base. Ejemplo: Si β = 100, la corriente del colector es 100 veces la corriente de la base. Por eso se dice que el transistor amplifica la corriente. c) Saturación: En este caso, el transistor conduce totalmente y se comporta como un interruptor cerrado. Este estado se alcanza cuando la corriente por la base (IB) alcanza un valor alto. En este caso la expresión (IC= β·IB) ya no tiene sentido pues, por mucho que aumente el valor de la corriente de base (IB), no aumenta el valor de la corriente de colector. Veamos un cuadro resumen con las tensiones de trabajo en los diferentes estados de funcionamiento, así como las corrientes de un transistor conectado a una pila cuya tensión es V Corte Activa Saturación VCE VCE = V 0< VCE < V VCE ≈ 0 IC IC≈ IE = 0 IC= β·IB IE ≈ IC IE ≈ IC IB en cualquier caso IB siempre es una corriente pequeña, es decir, IB << IC IB≈0 IB>0 IB con máximo valor Conducción del transistor No conduce (se comporta como un interruptor abierto) Conduce parcialmente Conduce totalmente (se comporta como un interruptor cerrado) Donde VCE es la tensión que existe entre el colector y el emisor. Si la corriente de base es muy alta, el transistor puede estropearse, por eso, la base del transistor debe protegerse SIEMPRE con una resistencia de una valor alto. Estados de funcionamiento de un transistor